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AN AGENT-BASED APPROACH TO IDENTIFICATION

OF PREDICTION MODELS

TIEJU MA and YOSHITERU NAKAMORI

School of Knowledge Science, Japan Advanced Institute of Science and Technology

1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan

This paper presents an agent-based approach to identification of prediction models in
two-dimensional data spaces. A number of agents are sent to the two-dimensional data
space that people want to investigate. At the micro-level, every agent tries to build a
local linear model by competing with others, and then at the macro-level all surviving
agents build the global model by cooperating with each other. And a genetic algorithm
is introduced for improving the global model built by the agents. Two examples that
apply this approach are given. The advantages of this approach are it does not need
people to give a certain formula in advance; and most of time, it can give more precise
prediction models than those given by traditional methods.

Keywords : agent, local linear model, global model, data space.

1. Introduction

During the 1980s and 1990s, many disciplines converged into an interdisciplinary

research field, i.e. research on complex adaptive systems. A belief underlying this

complex adaptive systems research is that macro-level complexity of the system

may spontaneously be derived from the interactions at the micro-level and that this

fundamental mechanism should be common among different systems in different

fields. As a consequence, agent-based modeling has been applied to many fields in

the last decade. Such works can be seen in Gerara Ballot and Erol Taymaz (1999)1,

Miller John H. (1998)2, Jim Doran (1994)3, Ostrom Thomas M. (1988)4, Beuu Roy

(1998)5, Derek W. Bunn and Fernando S. Oliveira (2001)6, and so on.

Prediction can be viewed as the construction and use of a model to assess the

class of an unlabeled sample, or to assess the value or value ranges of an attribute

that a given sample is likely to have7. Prediction of discrete or nominal values can

be dealt with by classification techniques, such as Classification by Decision Tree
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Induction, Bayesian Classification, Classification by Backpropagation, Classification

Based on Concepts from Association Rule Mining, and so on. And for the prediction

of continuous values, it is always modeled by statistical techniques of regression. We

intend to apply agent technology to identify prediction models in a bottom-up way.

As a first step of this plan, the approach presented in this paper deals with the

prediction of continuous values with two dimensions.

Modeling by statistical techniques of regression is something like a top-down

way. People first observe the distribution of all the data, form a whole structure

of the data space in their minds, then select a certain function to fit the data by

experience and specific knowledge. For example, for the data distribution in Fig.

1 a, people will select linear model y = ax+ b; for the data distribution in Fig. 1 b,

people may select exponential function y = ax + b; and for the data distribution in

Fig. 1 c, people may select sine or cosine function y = a sinx+ b or y = a cos x+ b.

But how about the data distribution in Fig. 2 or more complex distributions? It is

very difficult or impossible to find a function to fit the whole data distribution by

using statistical techniques of regression in a top-down way. Certainly we can divide

all the data in Fig. 2 into several parts, and for every part we find a function to fit

it. But when we deal with high-dimensional data, for example 6-dimensional data,

how can we know where we should separate the data. This paper puts forward the

idea that we can find the whole structure of data space by agent technology in a

bottom-up way, and the approach presented in this paper is elicited by this basic

idea.

Fig. 1. Cases which are easy for modeling.

A simple description of the approach presented in this paper is as follows. A

number of agents are sent to the two-dimensional data space that we want to investi-

gate. At the micro-level, individual agents use linear regressions to build local linear

models in their territories; at the same time, they try to expand their territories by

finding new data objects in their visions. Correlation coefficients are used as rules

to decide whether agents succeed in expanding their territory or not. During the

process of expanding their territories, there is survival competition among agents.

Then at the macro level, the local linear models built by those surviving agents are

integrated into a global model by introducing membership functions and applying

a genetic algorithm.

In our agent-based approach, we will introduce three design parameters which
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Fig. 2. A case which are difficult for modeling.

are p1, p2 and p3. Considering the argument that ”modeling is an art”8, Y.

Nakamori point out that, without using educated and informed intuition, it is

difficult to obtain a convincing model that can be used in an actual situation 9.

According with this argument, it is necessary to join logic and intuition together

and avoid combinatorial explosion for setting the three parameters. The second

numerical example in section 5 shows human’s informed intuition can play an im-

portant role during the process of modeling.

2. Standardizing Data Set

Before investigating a data set, it is necessary to standardize it to simplify the later

work. Suppose that the raw data set is O = {(x01, y01), (x02, y02), · · · (x0N , y0N )}. We
call oi(x

0
i, y

0
i) ∈ O a data object of data set O. It can be standardized in both

X-dimension and Y -dimension with Eq. (1) and Eq. (2)

xi =
(x0i − x0min)× SpaceXSize

x0max − x0min
, (1)

yi =
(y0i − y0min)× SpaceY Size

y0max − y0min
. (2)

Here x0i indicates the value of X-dimension of object oi, xi indicates the stan-
dardized x0i, x

0
max indicates the maximum value of O in X-dimension, x0min indi-

cates the minimum value of O in X-dimension, SpaceXSize indicates the size of

X-dimension of the space in which we will put all data objects; y0i indicates the
value of Y -dimension of object oi, yi indicates the standardized y

0
i, y

0
max indicates

the maximum value of O in Y -dimension, y0min indicates the minimum value of O in
Y -dimension, and SpaceY Size indicates the size of Y -dimension of the space. The

setting of SpaceXSize and SpaceY Size depends on the accuracy requirements of

the result. If the accuracy requirements are high, they should be set big, otherwise

they can be set a little small. In the rest of this paper, the setting of SpaceXSize

and SpaceY Size also follows this rule: they are big enough to meet the accuracy

requirements when all the values are standardized into integers. As an approach it

is not necessary to follow this rule; the rule is used just for simplifying the work
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of programming. In the rest of this paper we also set SpaceXSize = SpaceY Size,

which is also for simplifying the work of programming. After standardized the data

set, we can build a data space and put all the data objects into it. As shown in Fig.

3, points indicate the data objects.

Fig. 3. Data space.

3. Agents and Building Local Linear Model

3.1. Initializing Agents

From a programming perspective, agent technology is a further development of the

object-oriented technology. There are many definitions of agent. In this paper, an

agent is simply defined as a programmed unit.

If totally there are N data objects, then after building the data space, N agents

are sent into it, and each agent mounts on a data object. Each agent is initialized

like the following:

Level: level = 1,

Vision: p1,

Strength: s = 0.

Fig. 4. Vision of an agent.

In our approach, agents will evolve through competition. Their initial level is 1;
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after competing with each other, some agents will evolve into high levels and some

agents will die. Every agent has a vision, which means its ability to observe the

environment. As shown in Fig. 4, in its field of vision (indicated by the circle), the

agent mounting on data object o2 can see another two data objects, o1 and o3. The

p1 can be seen as a design parameter, and the setting of it need human’s informed

intuition. An agent’s strength indicates its power of building a global structure of

the data space by cooperating with other agents. For an agent of level 1, its strength

is 0 because it does not participate in the construction of the global structure that

is done by higher level agents.

Besides the above properties, the agents in our approach also have built-in knowl-

edge and instinct. Every agent knows the regression method, and it expands its

territory by instinct.

3.2. Building Local Linear Model

After initialization, every agent tries to build a local linear model according to the

following steps:

• Step 1: The agent counts the number of objects in its vision. If the number
is smaller than 3, this agent dies; otherwise it goes to step 2.

• Step 2: The agent does linear regression analysis of all the data objects in its
vision. If the correlation coefficient r ≥ p2, it goes to step 4; otherwise it go
to step 3. Here p2 is another design parameter.

• Step 3: The agent decreases its vision by 1, that means pt+11 = pt1 − 1 (here t
means time). If pt+11 = 0 it dies; otherwise it goes to step 1.

• Step 4: The agent builds a local linear model and evolves into an agent with
level 2.

This progress also can be shown as in Fig. 5.

3.3. Expanding Territory

Those agents that evolve into level-2 agents try to expand their territories. Here an

agent’s territory means the subspace that includes all the data objects used by the

agent to build its local linear model. As shown in Fig. 6, if agent A builds a local

linear model based on data objects o1, o2, o3, o4 and o5, then its territory is the

area which includes these five data objects. Although an agent’s territory is shown

as an ellipse in Fig. 6, it has no special shape. In fact it is a set of the data objects

that are used by the agent to build its local linear model. Another thing worthy

of attention is that a data object can be in several agents’ territories. As shown in

Fig. 6, the data objects o4 and o5 belong to both agent A’s territory and agent B’s

territory. Also an agent can move in its territory. For example, the agent A in Fig.

6 can move from the position of data object o1 to the positions of data object o2,

o3, o4 and o5.
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Fig. 5. The process of building local linear models.

Fig. 6. Agents’ territory.
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An agent expands its territory according to the following steps:

• Step 1: The agent finds all frontier data objects, and memorizes them in a

list fo. The agent also memorizes its current territory as T0.

• Step 2: The agent moves to the location of a frontier data object in its terri-
tory.

• Step 3: The agent looks for new data objects in its vision. If it finds new data
objects, it goes to step 4; otherwise it goes to step 5.

• Step 4: The agent does linear regression analysis with the data objects in T0
and these new data objects. If the correlation coefficient r ≥ p3, the agent
succeeds in expanding its territory, that is to say these new data objects are

included in this agent’s territory; otherwise it fails to expand its territory.

• Step 5: If there are another frontier data objects in list fo that the agent
has not visited, it moves to one of them and goes to step 3. If the agent has

visited all the data objects in the list fo, it memorizes its current territory as

T1 and then goes to step 6.

• Step 6: If T1 = T0, the agent stops expanding its territory and evolves into

level 3; otherwise it goes to step 1.

This progress can be shown as in Fig. 7.

An agent finds the frontier objects of its territory in the following way:

If the number of all data objects in its territory is M and the distance between

two data objects oi(xi, yi) and oj(xj , yj) is dij =
p
(xi − xj)2 + (yi − yj)2, then the

agent gets the distance matrix D:

D =


d11 d12 · · · d1M
d21 d22 · · · d2M
...

...
...

...
dM1 dM2 · · · dMM

. (3)

The agent ransacks D and finds the biggest distance values. The data objects

that form these biggest values are marked as frontier data objects by the agent. For

example if d23 is one of the biggest distance values, then data objects o2 and o3 are

marked as frontier objects.

Along with the progress of agents’ expanding their territories, there is compe-

tition among agents for survival in the data space. After an agent has expanded

its territory (at the end of step 5), it checks whether there are other agents whose

territories are covered by its territory. If there are, it eats those agents, i.e. those

agents are removed from the data space. As shown in Fig. 8, agent A eats agent

B. Those agents that expand their territories more efficiently and more effectively

will have more chance to survive. In this sense, expanding its territory can be seen

as a manifestation of an agents’ instinct for survival.
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Fig. 7. The process of expanding territory.
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Fig. 8. Agent A eats agent B.

Fig. 9. An example of fuzzy model.
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4. Forming Global Model

When there are only level-3 agents left in the data space, they begin to build the

global model that is formed by integrating local linear models. Here the integration

is done by introducing membership function (Fuzzy model). Fig. 9 shows a simple

example with two local linear models or two rules10. For the first local linear model

(or rule: x is small), the membership function is µ1(x); for the second local linear

model (or rule: x is large), the membership function is µ2(x). For a certain x value

x = x∗, if µ1(x∗) = c, µ2(x∗) = d, the output of the first local linear model is yc,
and the output of the second is yd, then the estimation of y is:

y∗ =
c · yc + d · yd

c+ d
. (4)

If there are H level-3 agents left in the data space, the set of these agents is:

A = {A1, A2, · · · , AH}. (5)

For every agent Ai ∈ A(i = 1, 2, · · · , H), it holds a local linear model yi =
fi(x) = aix + bi. Suppose that wi(x) is x’s membership value for Ai, then the

global model is:

y =

HP
i=1

wi(x)fi(x)

HP
i=1

wi(x)

. (6)

In Eq. (6), we can see every surviving agent contributes to the final global model

with different weight. Corresponding to the ’competition’ that we have used when

describing the process of agents expanding their territories, we’d like to say agents

cooperate with each other to build the global model.

Now the problem is how to get wi(x)(i = 1, 2, · · · , H). Three factors are consid-
ered. The first is agent Ai’s strength, the second is the correlation coefficient of the

local linear model built by agent Ai, and the third is the distance between x and

agent Ai.

As discussed in Section 3, an agent’s strength indicates its power to build global

model. We define an agent’s strength in the following way. If there are N data

objects in the data space and Mi data objects in agent Ai’s territory, then Ai’s

strength is:

si =
Mi

N
. (7)

To define the distance between x and agent Ai, we first define agent Ai’s center

in the X-dimension. Suppose for the data object oj(j = 1, 2, · · · ,Mi), its value in

the X-dimension is xj , then agent Ai’s center in the X-dimension is:

Cix =

MiP
j=1

xj

Mi
. (8)
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The distance between x and agent Ai is defined as:

di(x) = |x− Cix|. (9)

And wi is defined as:

wi(x) = ki
siri
edi(x)

. (10)

Here ri is the correlation coefficient of the local linear model built by agent Ai, and

ki is a design parameter that will be used to minimize the mean squared residual

of the global model. Suppose the set of ki for A in Eq. (5) is:

K = {k1, k2, · · · , kH}. (11)

It is possible that the set K has too many elements (parameters) in it, for example,

if there are 1000 agents surviving, then the number of elements (parameters) in set

K will be 1000. It will be difficult to optimize so many parameters with traditional

optimization methods. So instead of aiming at optimization, the strategy here is

to improve K with certain resources that users can afford. The following genetic

algorithm will be used to identify K.

• Step 1: Randomly initialize a set that includes L K, as shown in Eq. (12):

KSt = {Kt
1, · · · ,Kt

L}(t = 0). (12)

Here the superscript t denotes time step.

• Step 2: For each Kt
j(j = 1, · · · , L), according to Eq. (6), Eq. (7), Eq. (8),

Eq. (9) and Eq. (10), calculate the residual sum of squares δj of the global

model and get a set:

Rt = {δt1, · · · , δtL}. (13)

Suppose δmax is the maximum value in Rt, then for every Kt
j(j = 1, 2, · · · , L)

in KSt, its possibility of being the genome of the next generation K is:

P (Kt
j) =

δtmax − δtj
LP
l=1

(δtmax − δtl )
. (14)

• Step 3: t = t+1, generate the next generationKSt by crossover and mutation.
If t < V , go to step 2; otherwise go to step 4.

• Step 4: If δtq is the minimum value in Rt, then the Kt
q in KS

t is selected to

build the global model.

• Step 5: End.
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In the above, for generating enough genomes and better results, we recommend

that L be not smaller than 10 and V be not smaller than 500. Introducing the

genetic algorithm here does not mean people have to use it to identify K. People

can use other optimization methods according to actual situations.

The global model given by Eq. (6) is based on the standardized data set. Cor-

responding to Eq. (1) and Eq. (2), for getting the global model for the raw data

set, linear conversions should be done according to Eq. (15) and Eq. (16) :

x0 =
x0max − x0min
SpaceXSize

x+ x0min, (15)

y0 =
y0max − y0min
SpaceY Size

y + y0min. (16)

Now we give a simple example to show how the level-3 agents build the global

model. As shown in Fig. 10, there are 10 data objects in the data space. At the

beginning, 10 agents are sent into the space. After the competition of survival,there

are only two level-3 agents left in the data space: agent A1 and agent A2. The num-

ber beside every data object indicates the data object’s value in the X-dimension.

There are 6 data objects in agent A1’s territory and 5 data objects in agent A2’s

territory. According to Eq. (7), The strengths of these two agents are:

Fig. 10. A simple example for building global model.

s1 = 6/10 = 0.6,

s2 = 5/10 = 0.5.
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According to Eq. (8), the centers in the X-dimension of these two agents are:

C1x = (10 + 15 + 21 + 30 + 42 + 50)/6 = 28,

C2x = (50 + 61 + 70 + 79 + 90)/5 = 70.

Then, according to Eq. (9), the distances between x and these two agents are:

d1 = |x− C1x| = |x− 28|,

d2 = |x− C2x| = |x− 70|.
Suppose r1 = 0.9, r2 = 0.96, k1 = 0.2, and k2 = 0.3, according to Eq. (10), we can

get:

w1(x) = k1
s1r1
ed1(x)

= 0.108e−|x−28|,

w2(x) = k2
s2r2
ed2(x)

= 0.144e−|x−70|.

Then, according to Eq. (6), we can get the global model of the data space:

y =

2P
i=1

wi(x)fi(x)

2P
i=1

wi(x)

=
3e|x−70|(0.982x+ 0.046) + 4e|x−28|(0.449x+ 0.017)

3e|x−70| + 4e|x−28|
.

This example just focuses on how to integrate local linear models to get the global

model. It is just an assumption that there are two level-3 agents left in the data

space after competition.

In real applications, it is possible there are hundreds of level-3 agents after

competition. We can not know the real number of level-3 agents until the multi-

agent system gives us the result. To a great extent, the number of level-3 agents

depends on how we set the design parameters p1, p2 and p3. For setting these three

design parameters, it is necessary to join logic and intuition together and avoid

combinatorial explosion. Generally, the bigger the p1 is set, the less agents will

survive, because with bigger visions (see Fig. 4), the agents have more chance to

eat each other; the bigger the p2 is set, the less agents can survive, because with a

bigger p2 there will be less agents which can evolve into level-2 agents (see Fig. 5);

and the bigger the p3 is set, the more agents can survive, because with a bigger p3
it will be more difficult for agents to expand their territories, and then the agents

have smaller chance to eat each other (see Fig. 7). In the next section, we will

give two examples that apply the approach presented in this paper and show how

informed intuition affect modeling.

5. Two Numerical Examples

In this section, we will use the approach presented in this paper to deal with two

real two-dimensional numerical cases.
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Table 1. Time of fall in seconds vs. radius of falling sphere of paraffin.

Raw dataset Standardized dataset.
x0 y0 x y

0.00415 1.5 200 0
0.00372 3.2 176 3
0.00369 2.5 175 2
0.00354 3.4 167 3
0.00343 3.75 161 4

.

.

.
.
.
.

.

.

.
.
.
.

0.000527 106 1 172
0.0005 123.2 0 200

x0max = 0.00415 y0max = 123.2
x0min = 0.0005 y0min = 1.5

Fig. 11. The first example.
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5.1. Example 1

The data set in Table 1 is time of fall in seconds vs. radius of falling sphere

of paraffin in cm. It comes from UCI (University of California, Irvine) machine

learning repository11. We set SpaceXSize = SpaceY Size = 200. The raw data set

is standardized according to Eq. (1) and Eq. (2). If we look every oi(xi, yi) as a

data object, there are 68 data objects in the data space. As shown in Fig. 11 1, a

point indicates a data object.

We send 68 agents into this data space and set p1 = 40, p2 = 0.7, p3 = 0.99,

L = 40, and V = 1000. For the genetic algorithm, the crossover rate is set to be

0.7 and the mutation rate is set to be 0.02 for identifying the K in Eq. (11). Fig.

11 2 shows the local linear models built by agents at the beginning. After agents

expand their territories and compete to survive, only 12 agents survive. Fig. 11 3

shows the local linear models built by these 12 agents. In Fig. 11 2 and Fig. 11 3,

one circle means an agent, but that does not mean an agent is a circle. One circle

is just a symbol of an agent. Fig. 11 4 shows the global model built by integrating

those local linear models built by surviving agents. Fig. 12 shows the residual sum

of squares (
68P
i=1

e2i =
68P
i=1

(y0i − ŷ0i)2) at each step of the genetic algorithm. We can see
that although the genetic algorithm can’t ensure to find the optimizing solution, it

can improve the solution little by little.

Fig. 12. Residual sum of squares at each step of the genetic algorithm (Example 1).

In a traditional way, people will build a model like ln y0 = a lnx0+ b for this raw
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Fig. 13. Distribution of the residual sum of squares (Example 1).

data set. After using regression analysis, the model will be y0 = 5.012× 10−5x0−1.9,
and the residual sum of squares will be 2731.192. The agent-based approach intro-

duced in this paper is a kind of soft computing method. The residual sum of squares

is not absolutely the same at every time when we run the programming. We ran

the programming of the agent-based approach for 100 times, and after doing linear

conversions according to Eq. (15) and Eq. (16), the average value of the residual

sum of squares of the model in Fig. 11 4 is 769.116. Fig. 13 shows the distribution

of the residual sum of squares of the 100 times. Compared to the model given by

the traditional approach, the global model given by the agents fits the data objects

better.

5.2. Example 2

The data set in Table 2 is the personal income and gross saving of America from

1929 to 2000 in billions of dollars12. We also set SpaceXSize = SpaceY Size = 200.

There are totally 72 data objects in the data space. The settings of the parameters

(p1, p2, p3, L and V ) are just the same as in the example 1. And for the genetic

algorithm, the crossover rate is set to be 0.7 and the mutation rate is set to be 0.02.

In a traditional way, people will build a model like y0 = ax0 + b for this raw data
set. After using regression analysis, the model will be y0 = 0.205x0 + 38.864, and
the residual sum of squares will be 945182.863. We also ran the programming of the

agent-based approach for 100 times, and after doing linear conversions according
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Table 2. Personal income and gross saving of America.

Raw dataset Standardized dataset
x0 y0 x y
85.3 19.2 1 2
76.5 14.9 1.0 1.0
.
.
.

.

.

.
.
.
.

.

.

.
8319.20 1785.70 200 200

x0max = 0.00415 y0max = 123.2
x0min = 0.0005 y0min = 1.5

to Eq. (15) and Eq. (16), the average value of the residual sum of squares of the

model in Fig. 14 2 is 12089.936. Fig. 15 shows the residual sum of squares at each

step of the genetic algorithm. Fig. 16 shows the distribution of the residual sum of

squares of the 100 times.

Fig. 14. The second example.

In this example, many people may prefer to select the traditional way to build a

simple linear model for the data, because the correlation coefficient r is about 0.971,

very close to 1. If we set the agent’s vision to be large enough (cover all the data

space), the model given by the agent-based approach is just the same as the linear

model obtained by using regression, as shown in Fig. 17. In this case, just one

agent survives. So we can see human’s informed intuition can play an important

role during the process of modeling.

Neural Networks have been widely used in economic forecasting. Now we com-

pare the performance of the agent-based approach with that of a neural network

by using Root-Mean-Square Error (RMSE). In Eq. 17, the Nt is the size of the

testing set. For example, if Nt = 10, then the final 10 data records (from 1991-
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Fig. 15. Residual sum of squares at each step of the genetic algorithm (Example 2).

Fig. 16. Distribution of the residual sum of squares (Example 2).
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Fig. 17. The same as the model yielded by linear regression.

Fig. 18. Comparing the performance of the agent-based approach with that of a neural network.
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2000) are used as testing data, while the 62 data records from 1929 to 1990 are

used as training data. The smaller the RMSE, the better the performance of the

model. The neural network we have used is a backpropagation network which has

been programmed into the software Neunet13. With 3 nodes, we trained the neural

network for 1× 105 times in each forecasting.

RMSE =

vuut 1

Nt

NtX
i=1

(ŷ0i − y0i)2. (17)

In Fig. 18, the Nt is set from 1 to 20. We can see that the performance of

the agent-based approach is always better than that of the neural network except

when Nt = 17. Of course, the comparison doesn’t prove that the performance of

the agent-based approach is better than Neural Networks at any occasion.

6. Conclusion and Future Work

This paper presented an agent-based approach to identify prediction models in

two-dimensional data spaces. The advantage of this approach is it builds prediction

models in a bottom-up way by competition and cooperation among agents; that is

to say, it does not need people to give a certain formula in advance (which is very

difficult in most of time) because the agents will find the right formula. Although

it has not been proven that the models yielded by this approach always are better

than those yielded by other approaches, this approach shows and proves the idea

that agents can produce the global model by cooperation and competition with

some built-in knowledge and simple rules. The models built by this approach are

something like emergences. This idea is different from the one that says some

software, such as Microsoft Excel, can give models according to input data. In fact,

these softwares just do some calculating work, not build models; the models are

built by humans. This idea is also a little different from that of the neural network

which also does not need people to give a certain formula in advance. The basic

elements of neural network are nerve cells which have no intelligence themselves.

The agents in this paper are equipped with some knowledge and intelligence.

Now we just use this approach to deal with two-dimensional numerical data. In

the real world, most of data are multi-dimensional, both numerical and categorical.

For multi-dimensional data, a very difficult problem is to select variables. That is to

say, in a subspace, some variables are irrelevant to the problem we are investigating;

we would need to identify those variables that are relevant to the problem for

getting better prediction result. Y. Nakamori and M. Ryoke have described this

problem in detail and have succeed in developing an interactive approach in which

human knowledge or intuition can play an important role9. For categorical data,

the problem is how to define similarity. Based on the basic thinking of this paper,

we plan to develop an agent-based approach to deal with multi-dimensional data,

both numerical and categorical.
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