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ABSTRACT

Solving complex decision problems requires the esag
of information from different sources. Usually this
information is uncertain and statistical or proliabc
methods are needed for its processing. However, in
many cases a decision maker faces not only unaogyrtai
of a random nature but also imprecision in the
description of input data that is rather of lingigis
nature. Therefore, there is a need to merge unctes

of both types into one mathematical model. In thpap
we present methodology of merging information from
imprecisely reported statistical data and imprégise
formulated fuzzy prior information. Moreover, wesal
consider the case of imprecisely defined loss fanst

textbooks related to this problem, such as e.gsudal
books of Raiffa and Schleifer [1] and De Groot [2].
However, in practically all popular textbooks it is
assumed that both objective statistical data and
additional subjective information are precisely
described in terms of the theory of probability. SThi
assumptions have been questioned by many authors
who claim that epistemic vagueness of information
(i.e. uncertainty due to the imprecise character of
information expressed in terms of commonly used
natural language) cannot be described using thes sam
mathematical models as in the case of aleatoric
uncertainty (i.e. risk due to the randomness ofirit
events and existing statistical data). Therefdrere is a
need to propose a more general approach that attows

The proposed methodology may be considered as the merge information of a different type in mathemaitic

application of fuzzy statistical methods for theid®n
making in the systems analysis.

Keywords: Bayes decision-making, imprecise
information, fuzzy statistical data, possibilistiecisions

1. INTRODUCTION

Solving complex decision problems can be regarded a
processing of information of a different kind comin
from various sources. Objective information related
stochastic phenomena that describe the environofent
the decision situation can be treated as statistata. If
only such information is available, then the comple
decision problem may be reduced to a simpler proble
of a statistical decision. However, existing stati
data are usually not sufficient enough to solve glem
problems. A decision-maker has to rely also on
information from other, non-statistical, sourcehaf
information is usually subjective in contrast tgemtiive
statistical data. Therefore, the decision-makingcess
must contain a sub-process of merging informatiomf
different objective and subjective sources.

The generally accepted framework for dealing with
objective and subjective information is known unther
title of “Bayes decision-making”. There exist numeso

models used for solving complex decision problems.

In the paper we present the methodology that estend
the classical Bayes decision-making to the casenwhe
both linguistic and aleatoric uncertainty may beged

in one mathematical model. In the second sectichef
paper we present the methods for modelling impeecis
(i.e. vagually described) statistical data. In tihérd
section we generalize the well known in decision
making concept of the Bayes risk, and we propcse it
equivalent for the case of imprecise (fuzzy) stiatsé
data, and imprecise prior information. Finally, time
fourth section of the paper we propose a posdibilis
approach to decision making when the decision misdel
based on both random and imprecise information.

2. MATHEMATICAL MODELS FOR IMPRECISE
STATISTICAL DATA

In the analysis of statistical data related to clemp
problems of system analysis we often face the probl

of imprecise data. In many cases such data aredayv

by people who are not able to present precise ntanbe
There are many examples of cases where such imprecis
data are very common in practice. For examplehé@ t
analysis of reliability data we often face impretjs
defined data, as it has been described in Grzegskie



and Hryniewicz [3]. In this and many other casetda
are reported by people who use imprecise expression
like “about 5", “much larger than 5, but surely dlea
than 10", etc. The attempt do describe such lack of
precision in terms of probability seems to be very
guestionable, as these imprecise notions do no¢ hav
interpretation in terms of frequencies. Howeverhas
been noted by many authors that the fuzzy setsytheo
proposed by Lotfi Zadeh is especially useful for the
formal description of such imprecise data. Morepifer
the imprecise data are also of a random charabten,
the theory of fuzzy random variables can be useth®
mathematical description of imprecise statisticthd

In this paper we will use the notion of a fuzzydam
variable for the description of imprecise statstidata.
Before we describe this notion in a formal way, ust
introduce the concept of a fuzzy number. In a more
formal way, a fuzzy number can be defined as fadlow

Definition 1 (Dubois and Prade [5])
The fuzzy subsetA of the real lineR, with the
membership functionu: R - [0]], is afuzzy number if

e is normal, i.e. there exists an elemextl] R
such that p(x;) =1;

e s fuzzy convex, i.e.
HAX+A=A)y) 2 p(xX) T u(y) Ox,yOR
and 0<A< %

e is upper semicontinuous;
e sum(u)is bounded.

A useful concept used for the description of fuzzy
numbers is ther-cut. Thea-cut, A,, of a fuzzy

number A is a non-fuzzy set defined as
Ag ={xOR u(x)za}.

The family {Ay :a0O[01]} is a set representation of

the fuzzy numbeA. Basing on the resolution identity,
we have the alternative description of fuzzy nuraber

p(x) = sup{al, (%}
at[ol]

where 1, (x) denotes the characteristic function of

Aa. Definition 1 implies that everyr-cut of a fuzzy
number is a closed interval. Hence, we have

A =[Ar A

where

AL =inf {xOR: u(x) = a},
A) =sup{xJR: u(x) = a}.

The space of all fuzzy numbers will be denoted by
F(R).

A fuzzy random variable may be defined by analagy t
the definition of a real-valued random variable aas
mapping that assigns to a random event an imprecise
fuzzy number. The notion of a fuzzy random variable
has been defined independently by many authors (see
[3]). In general, a fuzzy random variab{es considered

as a perception of an unknown usual random
variablev: Q - R, called an original oX.

Formally, a fuzzy random variable can be definedgis
the following definition:

Definition 2 (Grzegorzewski and Hryniewicz [3])

a mapping X: Q - F(R ) is called afuzzy random
variable if it satisfies the following properties:

(2) {Xa(a;):aD[O,l]} is a set representation of
X(a) forall a0Q,

(2) for eachal [01] both X5 and X. defined
as

Xt =Xt (w) =inf X,,
Xg =Xg (&) =supXq,

are real-valued random variables a’gﬁ,F, P). Let y

denotes a set of all possible originals<oif only vague

data are available, it is of course impossible Hows

which of the possible originals is true. Therefone

can define a fuzzy set gf with a membership function
v: ¥ - F(R) given as follows:

v(V) =influx (o) V(@) 00 Qf

which corresponds to the grade of acceptability tha
fixed random variableV is the original of the fuzzy
random variable in question.

Fuzzy random variables have been used for the
description of many practical problems where stetiba
randomness is present together with fuzzy impregisi
Classical statistical methods have been also gkrenta

to the case of the analysis of fuzzy random data.

3. BAYES RISK IN CASE OF IMPRECISE
INFORMATION

There exist different methods for modeling
decisions in case of imprecise data. In this paper
present a generalization of the general model m@go
by Raiffa and Schlaifer [6]. The model proposed by
Raiffa and Schlaifer consists of two parts: onet fgr



dedicated to the choice of the final decision, #mgl
second part is dedicated to the choice of the axeet
whose ultimate goal is to provide the decision make
with some information about the actual state ofireat
According to this model the decision maker can #pec
the following data defining his decision problem.

1. Space of terminal decisions (acts‘}c:{a}.
State space@={6}.

Family of experiments:E ={e} :

Sample spaceX :{x} .

Utility function: u([,[,[,[,) on ExXxAx0.
The decision maker evaluates a utilit;(e, X, &, 6) of

making a particular experimeat obtaining the result of
this experimenk, taking a decisiom in case when the
true state of nature i In order to find appropriate
(hopefully optimal) decisions the decision makes ha
also to specify a joint probability measun@’x([,[le)

for a Cartesian produc®x X . The knowledge of this
probability measure means that we know the joint
probability distribution of observing in an expednie

the resuliz when therandom state of nature is described
by @ Knowing this joint probability distribution we oa
calculate some important marginal and conditional
probability distributions. In particular, for a @m
experiment e we are usually interested in three
distributions.

1. The marginal distribution on the state spéace
describing ouprior information about possible
states of nature. We assume that this
distribution does not depend en

2. The conditional distribution on the sample
spaceX for given state of natur@

3. The conditional distribution on the state space
© for given result of the experiment
describing our posterior information about
possible states of nature.

Note, that we may know only these particular
distributions as their knowledge is equivalent he t

knowledge of the joint probability distribution on
OxX.

a s~ w DN

Let us consider the simplest case of the generdeimo
when there is no experimeat In such a case the only
information we need is the probability distribution
n(H) defined on the state spag®. We call this
distribution the prior distribution of the parameter
(parametersylescribing the unknown state of nature.
If we know the utility functionu(a,d) defined on
Ax© we may calculatehe expected utility assigned
to a particular action (decision)

The basic notion used in the decision theory isrisle
defined as

pla)= [ L(a.6)6)de

o

1)

wherelL(a,6) is the loss related to the decision (actian)
when the state of a system & and (6 is the
probability distribution defined on the space o tall
possible states that reflects our prior knowledgeua
the system. Optimal decision (action) can be fobpd
the minimization of this risk. When the decisionk®aa
has an additional information about the state ¢dinegin
a form of observationsx = (xl, Xoyeees xn) of a random

vector described by a probability distributioﬁ(x, 9)

we may calculatethe expected risk assigned to a
particular action (decisiorg from a formula

pla)x)= I L(a, 6)g(0]x)de )
where
o(o1x)=X19/0) ®)

j t (x| 8)7(8)d6
o

is the posterior distribution of the parametgrwhich
describes the state of nature. The procedure dfnin
the optimal decision is exactly the same as inctimse
without statistical data.

Suppose now that the prior distribution(é’;() and
the loss L(a; H,gl/) are functions of parametegs and

Y, respectively, and that thesgarameters are known
only imprecisely. Let us assume that our imprecise
knowledge about possible values ¢f and ¢ is

represented by fuzzy setd and (J, respectively. A
fuzzy set X is defined using the membership function
Hg (X) which in the considered in this paper context
describes the grade of possibility that a fuzzyapaater,

say X, has a specified value &f Each fuzzy set may
be also represented by dtscuts defined as ordinary sets

x4 :{XDR Z,U)Z(X)ZO',OS(JS].}
From the representation theorem for fuzzy sets mask

that each membership function may be equivalently
represented as

()= suplet 1. (9: a o).

Now let us assume that imprecisely known parameters



{ and y(possibly vectors)are represented by their
a-contours (Cartesian products of thecuts), and that
thesea -contours are given in a form of multivariate

lce ] lwews|
respectively. The knowledge of thesecontours let us
calculate fuzzy equivalents of the expected losk)r

To make the presentation simple we assume that
decision are based exclusively on the knowledgthef
prior distribution n(G;Z) and the loss function
L(a;e,.l//). As these function are the function of
imprecise fuzzy parameters, they are also fuzzyg an
may be denoted asﬁ{é’;() and L(a; 6?;1/7) ,
respectively.

closed intervals and

Now, let us rewrite the formula for the expectezk as

plalc.v) j C(as0.9)7(6. 7 oo (4)

The risk calculated from this formula is now an
imprecisely definedfuzzy number whose membership
function may be calculated using Zadeh’s extension
principle.

Definition 3. Extension principle (Dubois and Prade
[7])

Let X be
X =X, x X,
in Xq,...,

a Cartesian product of universe
x..x X, and A,..., A ber fuzzy sets

X, , respectively. Leff be a mapping from
X=X xX,%x...x X, to a universe Y such
thaty = f(xl,...,xr). The extension principle allows us

to induce fronr fuzzy setA a fuzzy seB onY through
f such that

ug(y)= le_”yv;ys:tlfrgxwxr)minlﬂAi YN
pg(y)=0if f7(y)=0

When the formula (1) for the expected risk is given
explicitly, then its fuzzy version (4) can be obtd by
the "fuzzification" of the original non-fuzzy forrau
using the extension principle given above. In @egal
case, however, the a-cuts

(p”'L(ali,l/J),p"'U (a|(,z,//)) of the fuzzy expected
risk ,b"(a|Z,¢1) are given by the following formulae:

p"*(aw )=
I (a:0.0)76: e ®)

D
<y @

P (ald.w)=
m (6)

cwilele),xc oS

j 2.60.)76:7 e
where C(Z)a and C(l,T/)H are thea-contours of the
fuzzy parameters? of the prior distribution n(H;Z)
and fuzzy parameters¢y of the
L(a; 6’,1//) , respectively.

loss function

Now, let us consider the case when the statistesd
are fuzzy, and the remaining parameters of thesierci
model are crisp (i.e. precisely defined). In thesgnce
of fuzzy statistical data the posterior distribuatif the
state variabled can be obtained by the application of
the defined above Zadeh's extension principle ® th
formula that describes this distribution. Let
X =((ii”)l_,(§i”)u ),j=l...,n be the a-cuts of the
fuzzy observationsx,, X,,...,X, . Applying the notation
proposed by Fruehwirth-Schnatter [8] we denote by
C(i)a thea-contour of the fuzzy sample which is equal

to the Cartesian product of thecuts X7, j=1...,n

of individual fuzzy observations. The fuzzy posteri
distribution g(@|X) is, according to Viertl and Hule

[9] given bya-contours

(x|6)le;¢)

95 (81%x.¢)= mm /7() , 7)

where 7(x) is a normalizing constant equal to the
denominator of the right hand side of (3). Now, eea
compute the fuzzy risk using the general methodolog
for integrating fuzzy functions presented in [7].

Let us denote by
c(p), =(p"* (@lx.¢). 5" (alx.¢))

the a-cut of the fuzzy riskﬁ(a|x). The lower and

upper bounds of thisxi-cut are calculated from the
following formulae:

7 (alx.¢)= [ Lz 6)a5 (61x.¢ a0

€]

9)

Ualx,¢ :J'L Y(@|x,¢)de (10)
(S}



Thus, we can calculate the respective fuzzy risksaf
considered decisiors

Now, let us consider the calculation of fuzzy riskisen

all quantities involved, i.e., loss function, prior
distribution, and statistical data may be imprdgise
defined. Thea-cuts of the fuzzy posterior probability
distribution of the paramete@ are given by the

following formulae:
f(x|6)m(6,¢)

90)=, N (n(xji() | D
U _ fix|8)m6,¢
%00, L e) 12

where q(x,() is the normalizing constant. The fuzzy
expected risk,ﬁ(a|x,(,t,//), is now defined by its
a-cuts calculated from the following formulae:

,5”'L(a|x,Z,w):.[L”'L(a; 6.0)gL(01x.¢)de  (13)
€]

p7 (alx @)= [L™ (@ 6.0)al (1%, ¢)do  (14)
(S

where

aL(a — i :

L7 (a;6,¢) L L(a;6,¢), (15)
aU . - .

L7V (a;6,¢0) = Ja L(a;6,¢) (16)

are thea-cuts of the fuzzy loss function_ (a; 6;¢7) .

4. MAKING DECISIONS WIH IMPRECISE
INFORMATION — A POSSIBILISTIC APPROACH

In a classical approach a decision-maker chooses th
action with the minimal expected risk. This apptoac
cannot be directly used in the case of fuzzy rigs,
there is no natural method for ordering fuzzy nurabe
There exist two general ways of dealing with the
problem of choosing the best solution: either to
defuzzify the risks or to introduce additional meas
that allow to order considered options. If the tfirs
approach is preferred we claim that theaverage
ranking method proposed by Campos and Gonzalez [4]

is especially useful in decision making. L be a
fuzzy number (fuzzy set) described by the set of it

a-cuts |X[,XJ |, and S be an additive measure on

[0,1]. Moreover, assume that the support Xf is a
closed interval. The\-average value of such a fuzzy

numberX is defined by Campos and Gonzalez [4] as
1

vé ()Z):j[/\xg +a-Axg]asi@)aofod. @)
0

In the case of continuous membership functions this
integral is calculated with respect tin. Thus, the

A-average value ok can be viewed as its defuzzified
value. The parametek in the above integral is a
subjective degree of the decision-maker’'s optimism
(pessimism). In the case of fuzzy riskbk=0 reflects
his highest optimism as the minimal values of atluts
(representing the lowest possible risks) are takém
consideration. On the other hand, by takinglthe
decision-maker demonstrates his total pessimism, as
only the maximal values of ali-cuts (representing the
highest possible risks) are considered. If thasitet
maker takesA =05 his attitude may described as
neutral. Thus, by varying the value afthe decision
maker is able to take into account the level of his
optimism (pessimism) which may arise e.g. from hgvi
some additional information that has not been céflé

in the prior distribution.

When the second approach is preferred we propose to
use the methodology known from the theory of
possibility, namely thePossibility of Dominance and
Necessity of Srict Dominance indices proposed by
Dubois and Prade [5].

For two fuzzy numbersA and B the Possibility of
Dominance (PD) index is calculated from the formula

PD = Poss(ﬂz §)= sup min{y; (x) Ug (y)} (18)

X, Y:X2y

The PD index gives the measure pbssibility that the
fuzzy numberA is not smaller than the fuzzy number

B . Positive value of this index tells the decisioaker
that there exists even slightly evidence that tiation

A>B is true. The degree ofconviction that the

relation A>B s true is reflected by thiecessity of
Srict Dominance (NSD) index defined as

NSD = Ness(,&> I§):1— sup min{,u/;(x), U (v}
X,Y:XSy (29)

=1- Poss(§ > Z\)

The NSD index gives the measure oécessity that the

fuzzy numberA is greater than the fuzzy numi2e
Positive value of this index tells the decision evathat
there exists rather strong evidence that the oglati

A>B is true. This possibilistic index, and other



similar indices, may be used for choosing the best
option while solving complex decision problems.

5. EXAMPLES OF APPLICATIONS

To Iillustrate possible applications of the proposed
methodology let us consider two typical decision
problems: estimation of the parameter of a prokgbil
distribution, and choosing the best from among two
competing options. Both examples are simplified and
have rather an illustration character.

Consider the problem of the estimation of the mean
value v of a random variableX that is distributed
according to the normal distribution X) with the
known value of the standard deviationLet us assume
that we have the following additional information:

a) a samplexy, X,,...,X, of the random variablX is
observed;

b) there exists some prior information about fidss
values of the parameter which is summarized in the
form of the normal prior distribution MW@, where y
anddare known parameters;

c¢) the loss functioh is quadratic, i.e. proportional to
the squared difference between the estimated andlac
value of the parametex

The considered problem has a very well known
solution, see for example [1], and the Bayes demisi
(Bayes estimator of) which minimizes the posterior
risk is given by a simple formula:

o’ no?

g?+nd%? " g?+no?

(20)

Now, let us consider that we obseiurecise values of
the random variableX, and each observation
described by duzzy numberx;,i =1,...,n, denoted by

(X],ivXZ,i7X3,i1X4,i)v and described by drapezoidal
membership function given by the following expressi

is

0 if X < Xy

-)zi (X) = 1 |f X2,i S X < X3,i (21)
(X4| X)/(X4,| - X3|) if o Xgi S X <Xy
0 if Xgi € X

Moreover, let us assume that the parametaf the
prior distribution is known exactly, but the paraere
yis also imprecisely defined, and is described by th
following trapezoidal function:

0 if y<o
(v-a)(o,-a) if ss<y<g,
()= 1 if g,<y<gs (22
(94-¥)(g2-05) i gz<y<aq,
0 if g,y

The fuzzy Bayes estimator of the paramerean be
found by fuzzification of (20). Simple applicatiof the
Zadeh's extension principle leads to the followiasult:

the observed fuzzy valuweof the estimator of the mean
value v is also a trapezoidal fuzzy number described by
the membership function

if V<y,
(V‘V1)/( ) if visv<v,
I;(l/): 1 if v,<v<v, (23)
Va=-ilva-vs) it vssv<s,
0 if Va <V
where
2 n
o
V= 24
g +né'2 0' +nd? le (24)
2 n
o
v, = 25
2 g +n52 0' +nd? le (25)
0.2
Vqy = 26
30+n5230+n521: (20)
2 2 n
o
v, = + Xgi - 27
4 02+n5294 02"'“52;:1: 4,0 (27)

It is worthy to note that in the case of impreciatues of
other parameters, such as and J, the result of
fuzzification is not so simple, as the membership
function of ' is no longer a trapezoidal one. However,
the application of the concept@fcuts and the extension
principle let us calculate its approximation (fofiite

set of a-cuts) without serious problems.

Now, let us consider the second example: the chafice
the best action from among two possible actiamsag}.
Potential losses connected with the choice of hotions
depend upon the value of the state variadlén the
simplest case we may consider only two values ef th
state variabled, namely & and &. Suppose that there



exists the following prior probability distributioaver
the set 4,6} P(@=6,)=p,P(6=6,)=1-p.

Let us now define the loss function of the consder
problem in a form of a following table:

Table 1. Loss function in a tabular form

Decision/State 6 6
a; 0 Wy
ay Wy 0

In this simple case lossews;$0, w,>0) are generated
only in the case of wrong decisions.

The solution to this problem is well known in ligure
(for this and more complicated models see, e.ggrDet
[2]). The expected loss (risk) connected with deais;

is, according to (1), equal t@(a,)=w, (1- p), and the
risk connected with decisiona, is equal to
p(a2)=W2p. For given values of, w;, andw, we

calculate both risks, and we choose the actionected
with the smaller one.

Suppose now that the paramefens;, andw, are known
only imprecisely, and that they are described mzyu
triangular numbers that have the membership funaifo
the following general form:

0 if Y<wn
(Y‘Y1)/(Y2‘Y1) if ysy<y,
S\X) = . 28
5 Vo-)llys-vs) it yosy<y, O
0 if Y3<y

Let us denote this fuzzy number by a trip(lﬁ, Yo, y3).
For a given value ofr,0< a < ,1the lower limit of the
respectiven-cut is given as

yi =vi+aly, - ) (29)
and the upper limit is given by
Ve =vs-alys-y,) (30)

The fuzzy risks connected with the considered dmTss
are not described by triangular fuzzy numbers. Hmre
the limits of theira-cuts are still easy to calculate from
the following formulae:

pf(al):WfL(l_ pg) ' (31)
£ (@) =wiy - p) | (32)

ol (ap) =wg, pf, (33)

A6 (@z) = w5y - (34)
Suppose now that the actions are numbered in swely a
that the following relation holds:

pjl,u (al) = p%,L(aZ)'

In such a case the risk connected with actiois likely
to be greater than the risk connected with actan
Otherwise, either the risk connected with actanis
greater than the risk connected with acigor both risk
are similar, and undistinguishable due to theizifiuess.

TheNSD index that measures the dominance of the fuzzy
risk o(a,) over the fuzzy risk5(a,) can be now

calculated from the following expression:

NSD(p(a,) > Alar)) =
{RD(al’az) if p3(31)>p1(az) (35)
1 otherwise

where

a . a)=1- PACVACH)
Rl o e o)
and
pla)=pl(a) i=12, 37)
pa(a)=pi(a) =12, (38)
ps(a)=pG(a) i=12. (39)

If this value is greater than 0, we are entitleday that
the actiona; is, to some extent, preferable to act&n
Otherwise, there is gossibility that the actiora, is
preferable to the actica.

To give a numerical example let us assume thatis
described by a triangular fuzzy number (1, 2 ,\8), by
(2,3,4),andp by (0,4,0,5,0,6). From (31)—(34)
and (37) — (39) we haveo,(a)=1, ps(a,)=18 ,
pi(a,)=08 , and p,(a,)=15. The NSD for the

dominance of the risk connected with the actgover
the risk connected with the acti@a, calculated from
(35) is equal to 0,41. Thus, there is significaridence
that the actiom; should be preferred over the actin

6. CONCLUSIONS

In the paper we have presented a general methodolog
for making Bayes optimal decisions when input data,



i.e. parameters of the loss function, parameterthef
prior distribution of the state variable, and statal
data, may be imprecisely defined. This situation
frequently happens in the systems analysis of cexpl
systems where the input information is expressed by
people (experts) who use a common language. For the
description of that lack of precision we use the
formalism of the fuzzy sets. Therefore, the ridiat tare
calculated in order to find optimal decisions aneziy.

We present algorithms that are useful for the datmn

of these fuzzy risks. Moreover, we present the
methodology for the comparison of fuzzy risks. The
theory presented in the paper is illustrated witins
simple examples.
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