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DENSITY FUNCTIONALS, WITH AN

OPTION-PRICING APPLICATION

KAAARRRIIIMMM M. ABBBAAADDDIIIRRR

University of York

MIIICCCHHHAAAEEELLL ROOOCCCKKKIIINNNGGGEEERRR

HEC Lausanne,

CEPR,

and FAME

We present a method of estimating density-related functionals, without prior knowl-

edge of the density’s functional form+ The approach revolves around the specifi-

cation of an explicit formula for a new class of distributions that encompasses

many of the known cases in statistics, including the normal, gamma, inverse

gamma, and mixtures thereof+ The functionals are based on a couple of hypergeo-

metric functions+ Their parameters can be estimated, and the estimates then re-

veal both the functional form of the density and the parameters that determine

centering, scaling, etc+ The function to be estimated always leads to a valid den-

sity, by design, namely, one that is nonnegative everywhere and integrates to 1+

Unlike fully nonparametric methods, our approach can be applied to small data-

sets+ To illustrate our methodology, we apply it to finding risk-neutral densities

associated with different types of financial options+ We show how our approach

fits the data uniformly very well+ We also find that our estimated densities’ func-

tional forms vary over the dataset, so that existing parametric methods will not

do uniformly well+

1. INTRODUCTION

It is often the case that one wishes to estimate a probability density function

~p+d+f+! of a variate, without prior knowledge of its functional form+ If the var-

iate is directly observable, a number of parametric and nonparametric methods
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are already available for estimating the density+ If, however, the variate is not

observable, and its density can only be extracted indirectly, the problem is more

complicated+ In this paper, we propose a method that can be used in the case of

either type of variate+ Its advantages are illustrated with the following application+

1.1. A Motivating Problem

Let St be the price of an asset at time t+ To illustrate, we assume for the mo-

ment that the asset does not pay dividends and that it is domestic, i+e+, no con-

siderations need to be paid to foreign interest rates+ Later on, we will consider

an extension to foreign currency options+
Suppose that this asset is underlying a European call option with expiration

date T and strike price K+ Then, the intrinsic value of this option at expiration

is VT 5 max~ST 2 K,0!+ In an arbitrage-free economy, it is known ~see Harri-

son and Pliska, 1981! that there exists a risk-neutral density ~RND! g~{! such

that the price of a call option can be written as

Ct ~K ! 5 e2r~T2t !Et ~VT !5 e2r~T2t !E
K

`

~ST 2 K !g~ST ! dST , (1)

where Et~{! is the expectations operator conditional on all information avail-

able at time t, Ct~{! is the price at time t of the call option, and r is the contin-

uously compounded risk-free interest rate+ The function Ct~{! depends on the

parameters r,T, t and also on others characterizing the process followed by St +
In an arbitrage-free economy we also have the martingale condition

St 5 e2r~T2t !Et ~ST !, (2)

where the expectation is taken with respect to the RND g~{!+
As noticed by Breeden and Litzenberger ~1978!, differentiating the integral

gives

d

dK
Ct ~K ! 5 2e2r~T2t !E

K

`

g~ST ! dST [2e2r~T2t ! @1 2 G~K !# , (3)

where G~{! is the cumulative distribution function ~c+d+f+! corresponding to the

p+d+f+ g~{!+ The second derivative is given by

d2

dK 2
Ct ~K !*

K5ST

5 e2r~T2t !g~ST !,

which reveals the required density g~{!+ It is convenient to work with the future

value

C~K ! [ er~T2t !Ct ~K ! (4)

whose second derivative is the required density function+
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If the asset were to return a yield of r * , or if we were to consider a currency

call option with foreign interest rate r *, the martingale condition of the arbitrage-

free economy ~2! would be

St 5 e2~r2r * !~T2t !Et ~ST ! (29)

instead of ~2!+ Of course, no alterations are necessary in formulas ~1!, ~3!, and

~4!, where r is the unchanged discount factor used to calculate present values+
One way to estimate the density is to postulate a parametric form for g~{!,

work out analytically the corresponding integrals leading to an explicit C~{!,
and then fit the observed option prices C~K ! to the strike prices K to determine

the parameters of g~{!+ Mixtures of lognormal distributions have been used by

Bahra ~1996!, Melick and Thomas ~1997!, and Söderlind and Svensson ~1997!+
It is possible to assume that the underlying process is more general than a log-

normal diffusion ~for jump-diffusion versions, see Bates, 1996a, 1996b; Malz,
1996!+

Alternatively, a nonparametric approach may be adopted+ Jarrow and Rudd

~1982! have developed a method based on an Edgeworth expansion involving

a lognormal density+ This approach has been implemented by Corrado and Su

~1996! to price options+ Using a system of Hermite polynomials, Madan and

Milne ~1994! suggest a method of approximating the underlying RND, and

Abken,Madan, and Ramamurtie ~1996! provide an application+ See also Knight

and Satchell ~1997! and Jondeau and Rockinger ~2001!, where Gram–Charlier

expansions are used+ Stutzer ~1996! uses a Bayesian method based on the

maximum-entropy principle of Shannon+ Finally, in a time series context where

large datasets are available, Aït-Sahalia and Lo ~1998! fit kernel-based esti-

mates to the RND+ See also Bondarenko ~2000!+ For a survey assessing exist-

ing methods, see Jondeau and Rockinger ~2000!+ Also, numerical methods can

be used to estimate functionals of densities and0or to simulate option prices,
but these have not been used to generate RNDs ~e+g+, see Wilmott, Dewynne,
and Howison, 1993!+

Improvements over these approaches are possible, because they are either

restrictive ~lognormals or jump-diffusions!, do not always yield positive prob-

abilities ~Edgeworth expansions or Hermite polynomials!, or require a large

number of observations ~kernel estimates!+ Furthermore, the methodology we

are about to suggest is general, and it may be applied to other problems not

necessarily related to finance or economics+

1.2. The Plan

The initial problem is to design a general function whose second derivative is a

class of density functions+ We derive such a function, and find that it is based

on the confluent hypergeometric 1F1 function+1 Examples of recent uses of

this function in economics include the option-pricing approach to investment
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~Dixit and Pindyck, 1994! and pricing of callable bonds ~Büttler and Waldvo-

gel, 1996!+ Also, Abadir and Lucas ~2000! show that this function is necessary

to represent densities associated with the minimal sufficient functionals of

Ornstein–Uhlenbeck processes, and all the related processes satisfying an in-

variance principle such as the functional central limit theorems in Phillips ~1987!+
In these applications, a reason for the success of 1F1 is that it includes as spe-

cial cases the incomplete-gamma and the normal distribution functions, in ad-

dition to mixtures of the two+ Also, iterated integrals and0or derivatives of 1F1

give mixtures of 1F1, which makes certain classes of these functions closed

under such operations+ These features suggest them as a natural tool to model

option prices and, more generally, functionals of densities+
For practical purposes, parsimony of the model is important+ For example,

considering the data in our motivating problem, there are not many strike prices

available+ Our approach is of a parsimonious semi-nonparametric nature, clos-

est in spirit to fitting a system of orthogonal Hermite polynomials+ However,
we do not estimate a system but rather the parameters of a couple of functions+
The functions we use include Laguerre and Hermite polynomials as special cases,
with the added advantage that Abadir’s ~1993a, 1999! “fractional” polynomials

allow for monotonic behavior at the tails of the density and thus do not suffer

from the forced oscillatory nature that standard polynomials have for extreme

values+ Within our model, parameter estimates determine the functional form,
in addition to the usual distributional properties ~e+g+, centering and scaling!+
This is more efficient than fully nonparametric estimation, which runs into dif-

ficulties in small samples+ It is also more flexible than parametric methods that

restrict functional forms+
We do not restrict the functional form of the density to a single type+ The

only restriction we impose is that it must belong to some family of densities to

be specified in Section 2, which includes exponential and degenerate nonexpo-

nential cases+ This new class of closed-form densities that we are proposing

can have applications in other areas of statistics too and can be used to charac-

terize a broad selection of continuous random variables+ For example, this class

can be used to provide an alternative approach to fully nonparametric density

estimation+ Another application would be to model nonnormal densities in gen-

eralized autoregressive conditional heteroskedasticity ~GARCH! models, etc+
Our class of densities does not assume the existence of moments, thus avoiding

the problem of basing an estimation procedure on calculated “moments” that

may be spurious+
In the next section we introduce our density functional, based on 1F1, for the

case of double integrals of densities+ In Section 3 we illustrate this methodol-

ogy with two applications in option pricing+We also discuss how the empirical

findings can be used for practical purposes+ In Section 4, we generalize the

methodology to the case of observing any functional ~not necessarily double

integrals! of densities+ We conclude in Section 5+ Proofs and lengthy deriva-

tions are collected in the Appendix+
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We denote the set of natural numbers ~which excludes zero! by N and real

numbers by R+ The indicator function is written as 1K, returning 1 if condition

K is satisfied and 0 otherwise+ The ~complete! gamma function is denoted by

G~n! for n [ R, and defining

~a!j [ ~a!~a 1 1! + + + ~a 1 j 2 1!5
G~a 1 j !

G~a!

leads to the generalized hypergeometric function

p FqSa1, + + + ,ap ;

b1, + + + ,bq ;
zD [ (

j50

` )
k51

p

~ak !j

)
k51

q

~bk !j

z j

j!
, (5)

where 2b{ Ó N ø $0% + Special cases that we will be discussing frequently are

g~n, z! [ E
0

z

e2xx n21 dx[
z n

n
1F1~n;n1 1;2 z!, 2n Ó N ø $0%, (6)

F~z! [ E
2`

z

e2x 202
dx

M2p
[

1

2
1

z

M2p
1F1S 1

2
;
3

2
;2

z 2

2
D

[
1

2
1

sgn~z!

2Mp
gS 1

2
,

z 2

2
D, (7)

where g~{,{! is the incomplete-gamma function, F~z! is the standard nor-

mal c+d+f+, and sgn~z! is the sign function+

2. THE DESIGN OF DENSITY FUNCTIONALS

The 1F1 function can represent a variety of density-related functions, and we

will use it in Section 2+1 to propose a generalization of the normal, gamma,
and other variates+ We will briefly outline how our functional is constructed

and how it reduces to some well-known continuous random variables in statis-

tics+ Sections 2+2 and 2+3 derive, respectively, the restrictions necessary for the

density functional to have a proper underlying density and the moments im-

plied by this function+ Section 2+4 discusses strategies for the estimation of our

function+

2.1. Specification and Main Special Cases

We need to model integrals of c+d+f+s and possibly mixtures ~integrals! thereof+
Integrating n times the functions g~n, z! of ~6!

E + + +Eg~n, z!~dz!n 5 (
j50

` ~21! jz j1n1n

j!~ j 1 n!n11

5
z n1n

~n!n11
1F1~n;n1 n 1 1;2z! (8)
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and F~z! of ~7!

E + + +EF~z!~dz!n 5 22~n02!21F zM2

GS n 1 1

2
D 1F1S 1 2 n

2
;
3

2
;2

z 2

2
D

1
1

GS n

2
1 1D 1F1S2

n

2
;
1

2
;2

z 2

2
DG + (9)

The latter is obtained by means of the parabolic cylinder function ~see Abadir,
1993b, 1999!, and integrals of negative orders ~i+e+, derivatives! yield the well-

known Hermite polynomials+ Generally, parabolic cylinder functions are linear

combinations of 1F1 functions that would allow for fractional n in ~9! and are

closed under differentiation and integration: these operations keep the result

within the same class of functions+ A weaker version of this property applies to

other linear combinations of 1F1 too, and this makes them appealing in model-

ing an arbitrary number of functionals of a class of densities that encompasses

the normal, gamma, and others+ We defer introducing the case of an arbitrary

number of functionals until later in Section 4, because of the added level of

difficulty that it poses+
For double integrals of densities, a mixture that extends the cases seen ear-

lier is given by

C~z! [ c1 1 c2 z 1 1z.m1
a1~z 2 m1!

b1
1F1~a2 ;a3 ;b2~z 2 m1!

b3 !

1 ~a4 !1F1~a5 ;a6 ;b4~z 2 m2 !
2 !, (10)

where 2a3,2a6 Ó N ø $0%, b2,b4 [ R2+ The indicator function is required to

represent a component of the density with bounded support+ It is also sufficient

for keeping the function real-valued for general b1 and b3+
Not all the parameters in C~{! are free to vary unrelatedly, because some

restrictions ~at least three in general and at least seven in our motivating exam-

ple! are needed for the function to be the integral of a c+d+f+, and we shall ana-

lyze these restrictions in detail in our next section+ Now, we analyze the relation

of C~{! to familiar distributions+
The first two parameters, c1 and c2, drop out when differentiating twice to

get the density, but they are needed in general either to represent the constants

of indefinite integration or when one of the limits of definite integration is in-

finite+An example of the need for such constants is in ~3!, where the integral of

the density is over ~K,`! rather than, say, ~2`,K !+ If the limits of integration

of the functional are an interval that is a strict subset of the support of the

density, then one would end up with the difference of two C~{! functions+ We

shall not consider this case explicitly, because it boils down to using C~{! twice+
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The first 1F1 function in C ~{! covers the gamma and other asymmetric

generalizations, whereas the second covers the case of symmetric quadratic-

exponentials such as the normal+ We do not go further to quartic-exponentials

~or higher powers of even order! because they are unlikely to occur in practice

unless the variate is almost degenerate+ They are nevertheless covered approx-

imately by b3 in the first 1F1 function+ Examples of special cases giving inte-

grals of known density functions include

gamma: a1 5
~2b2 !

b121

G~b1 1 1!
, a2 5 b1 2 1, a3 5 b1 1 1, a4 5 0, b3 5 1;

inverse gamma: a1 5
2~2b2 !

12b1

b1G~2 2 b1!
, a2 5 2b1, a3 5 2 2 b1, a4 5 0, b3 5 21;

Weibull: a1 5 21, a2 5
1

b3

, a3 5
1

b3

1 1, a4 5 0, b1 5 1;

normal: a1 5 0, a4 5
1

2M2b4p
, a5 5 2

1

2
, a6 5

1

2
;

Pareto: a1 5
m1

a2

, a3 5 2m1 b2 with b2r `, a4 5 0, b1 5 0, b3 5 1,

where standardization ~e+g+, centering around zero! is not imposed and the con-

stants of integration c1 and c2 are to be determined by the problem at hand+ For

the listing of the normal, recall that the first term in ~9! reduces to z02 when

n 5 1+ Extreme-value distributions are useful in the field of value-at-risk in

finance, and they are a special case of our approach+ For further degenerate

special cases, see the discussion of confluences in Abadir ~1999!+2 We have

provided one illustration, the Pareto, which relies on the confluence

lim
b2r`

1F1~a2 ;2 m1 b2 ;b2~z 2 m1!! 5 1F0Sa2 ;1 2
z

m1
D[ S z

m1
D2a2

(11)

obtained from the expansion in ~5!+ This is a case where the existence of higher

order moments will hinge on the magnitude of a2+ By the definition of the Pa-

reto density, we require in addition that a2 [ ~21,`! and m1 [ R1+ When

estimating the function C~{!, it is worth testing for its reduction to known sim-

pler cases such as those outlined previously and others in Johnson, Kotz, and

Balakrishnan ~1994, 1995!+
Given the fact that our method encompasses a large class of traditional den-

sities and is flexible, we believe that the potential for misspecification is small+
Of course, misspecification is always a possibility, even with the most flexible

of methods that assume the least ~e+g+, fully nonparametric methods!+ For ex-

ample, let z and j be two independent standard normal variates+ Then, the prod-

uct h[ zj has a density that is infinite at the origin and that could be represented

by hypergeometric functions of the sort we use ~see Abadir, 1999, p+ 302!+ If

one were to fit a nonparametric density to data generated for h, then the ker-
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nels would smooth ~build a “bridge”! over the origin in spite of the true density

being discontinuous there+ Our method avoids such assumptions and encom-

passes a broad class of statistical densities, including ones with discontinuities+

2.2. Necessary Restrictions on the Parameter Space

The second derivative of the C~{! function is a mixture of the densities men-

tioned earlier+ By differentiating termwise the 1F1 series,

g~z! [
d2

dz 2
C~z!

5 1z.m1
a1~z 2 m1!

b122Fb1~b1 2 1!1F1~a2 ;a3 ;b2~z 2 m1!
b3 !

1
a2

a3

b2 b3~2b1 1 b3 2 1!~z 2 m1!
b3

3 1F1~a2 1 1;a3 1 1;b2~z 2 m1!
b3 !

1
a2~a2 1 1!

a3~a3 1 1!
b2

2 b3
2~z 2 m1!

2b3

3 1F1~a2 1 2;a3 1 2;b2~z 2 m1!
b3 !G

1 2a4

a5

a6

b4F1F1~a5 1 1;a6 1 1;b4~z 2 m2 !
2 !

1 2
a5 11

a6 11
b4~z 2 m2 !

2
1F1~a5 1 2;a6 1 2;b4~z 2 m2 !

2 !G+
(12)

The estimate of g~z! that is implied from the estimate of C~z! should be a

density+ It should be nonnegative over its support, say, ~z,, zu! # R, and inte-

grate to 1+
The nonnegativity restriction is hardly ever binding near the optimum param-

eter estimates, given the design of our function C~{!+ Nevertheless, it can be

imposed on the estimation routine by a Lagrangian penalty function involving

min~0, g~z!!, if the optimum g~{! is found to be negative+ We did not need to

do so in our applications+
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For the restriction on the integral of the density, we derive

d

dz
C~z! 5 c2 1 1z.m1

a1~z 2 m1!
b121F~b1!1F1~a2 ;a3 ;b2~z 2 m1!

b3 !

1
a2

a3

b2 b3~z 2 m1!
b3

3 1F1~a2 1 1;a3 1 1;b2~z 2 m1!
b3 !G

1 2a4

a5

a6

b4~z 2 m2 !1F1~a5 1 1;a6 1 1;b4~z 2 m2 !
2 !+ (13)

This expression is linear in, at least, c2 and a4 so that the two restrictions that

ensure the proper choice of constants of integration, namely,

E
z,

z,

g~z! dz 5 0,

E
z,

zu

g~z! dz 5 1,

give rise to an explicit constraint on each of c2 and a4+ These can be directly

substituted into our C~z! and there are two fewer parameters to estimate+ The

two restrictions will be illustrated in the Appendix+
We have mentioned restrictions on the p+d+f+ ~positivity! and then two more

on the c+d+f+ It is also natural that the integral of the c+d+f+ will necessitate one

more restriction, namely, one to do with the constant of integration, which is

application-specific+ It takes the form of a boundary condition on C~{!, e+g+,
C~`! equals some fixed value+ Such conditions are often known in economics

~especially in growth theory! as transversality conditions and will be illustrated

in the Appendix+ Because C~{! is linear in c1, this condition implies an explicit

restriction on c1 that can be substituted directly into our function C~z!+

2.3. Explicit Characterization of the Moments

Finally, it is useful to characterize the moments of the density+ One of the rea-

sons for doing so could be the desire to investigate and0or impose restrictions

on the moments of the density if some theory ~e+g+, arbitrage pricing theory!
requires them+ Another reason may be the desire to estimate our function C~{!
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by fitting the data to its analytical moments, which is discussed later in Sec-

tion 2+4+
Subject to these functions being nondegenerate ~i+e+, the existence condition

for the moments!,

E~z n ! 5E
z,

zu

z n dG~z!

5E
z,

zu

z n d
dC~z!

dz

5 Sz n
dC~z!

dz
2 nz n21C~z!D*

z,

zu

1 n~n 2 1!E
z,

zu

z n22C~z! dz (14)

by integrating by parts two times+ For n 5 1 and assuming m1 [ ~z,, zu!, this

gives

E~z! 5 Sz
dC~z!

dz
2 C~z!D*

z,

zu

5 a1~zu 2 m1!
b121F~~b1 2 1!zu 1 m1!1F1~a2 ;a3 ;b2~zu 2 m1!

b3 !

1
a2

a3

b2 b3 zu~zu 2 m1!
b3

3 1F1~a2 1 1;a3 1 1;b2~zu 2 m1!
b3 !G

2 a4F1F1~a5 ;a6 ;b4~z 2 m2 !
2 !

2 2
a5

a6

b4 z~z 2 m2 !1F1~a5 1 1;a6 1 1;b4~z 2 m2 !
2 !G*

z,

zu

, (15)

by substituting from ~13! and ~10!, respectively+ This expression is linear in a1

and can be used to reduce further the number of parameters to estimate, if there

are reasons to believe that E~z! needs to be restricted, e+g+, as a result of the

no-arbitrage condition ~2! in our example+ This, along with a simplification of

the expression, will be done in the Appendix+
For n . 1, ~14! requires us to work out an explicit formula for the integral+

Substituting for C~z! from ~10! and integrating termwise,

DENSITY FUNCTIONALS 787



E
z,

zu

z n22C~z! dz

5
c1

n 2 1
~zu

n21
2 z,

n21!1
c2

n
~zu

n
2 z,

n!

1 a1E
m1

zu

z n22~z 2 m1!
b1

1F1~a2 ;a3 ;b2~z 2 m1!
b3 ! dz

1 a4E
z,

zu

z n22
1F1~a5 ;a6 ;b4~z 2 m2 !

2 ! dz

5
c1

n 2 1
~zu

n21
2 z,

n21!1
c2

n
~zu

n
2 z,

n!

1 a1 (
j50

n22Sn 2 2

j Dm1
n222j (

k50

` ~a2 !k b2
k

~a3 !k k!
E

m1

zu

~z 2 m1!
b11j1b3 k dz

1 a4 (
j50

n22Sn 2 2

j Dm2
n222j (

k50

` ~a5 !k b4
k

~a6 !k k!
E

z,

zu

~z 2 m2 !
j12k dz

5
c1

n 2 1
~zu

n21
2 z,

n21!1
c2

n
~zu

n
2 z,

n!

1 a1 (
j50

n22Sn 2 2

j D m1
n222j~zu 2 m1!

b11j11

j 1 b1 1 1

3 2 F2 1 a2 ,
j 1 b1 1 1

b3

;

a3 ,
j 1 b1 1 1

b3

1 1;

b2~zu 2 m1!
b3 2

1 a4 (
j50

n22Sn 2 2

j D m2
n222j~z 2 m2 !

j11

j 11
2 F2 1a5 ,

j 11

2
;

a6 ,
j 1 3

2
;

b4~z 2 m2 !
22*

z,

zu

+

Asymptotic expansions of p Fq can be used to simplify the expression further,
for extreme values of z, or zu, as is illustrated in the Appendix+

2.4. Strategies for Estimation and Inference

There is more than one possible method for estimating our function C~{!+ These

include maximum likelihood ~ML!, generalized least squares ~GLS!, general-

ized method of moments ~GMM!, and other approaches+We only discuss these
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three+ Other attractive estimation methods, such as M-estimators, can be ana-

lyzed in the same way if desired+
The pseudo-likelihood approach is one of the most appealing+ In the sim-

plest case where the errors of estimating our functional C~{! are spherical nor-

mals, we can fit the functional to the observed data by nonlinear least squares

~LS!+ In general, however, the errors may be nonspherically distributed+ If there

was evidence of nonspherical errors, one could specify a covariance structure

for the residuals+ Keeping the assumption of a pseudo-Gaussian likelihood, one

could then estimate the variance-covariance matrix, say, V, by an iterative ~e+g+,
two-step! procedure+ An analogous idea would apply to GLS estimation, albeit

with a difference of a factor of 1
2
_ log~det~V!! for the objective function to be

optimized+
Another potentially appealing approach would rely on the explicit formulas

for the moments, which we have derived in the previous section+ GMM estima-

tion would be based on these expressions+ However, we have an important con-

cern with applying this method here+ We would only recommend it if the user

were willing to restrict estimation to a class of our underlying densities where

the moments do exist+ We have given an example of our class of densities, the

Pareto, where some moments do not necessarily exist+ Subject to this proviso,
the appeal of GMM would be in the ease of obtaining an estimate of the co-

variance matrix for the moment restrictions+
Two theorems will now be derived for the case of a random sampling of N

observed values of C~z! and the nonlinear LS estimation of the model

C~z! 5 ZC~z!1 [«,

where estimates are denoted by a hat, « has zero mean and variance v2
, `+

The conditions on « are sufficient but not necessary for the theorems to hold+
Moreover, when the sampling scheme is not independent and identically dis-

tributed ~i+i+d+! then, for the theorems to be valid, we assume that the other

methods of estimation discussed earlier are used with the correct covariance

structure+ Let u denote the vector of parameters of the function C~z!, which are

defined in ~10! subject to the ~exclusion! restrictions outlined there and which

we denote by u [ Q+ Then, we have the following result+

THEOREM 1+ The nonlinear LS estimators of u [ Q are consistent for any

of the parameters that have a nonzero impact on the function C~z! .

The last part of the theorem’s statement refers to the situation when

some component of C~z! drops out, in which case some ~irrelevant! parameters

will not be estimated consistently+ For example, if a1 5 0, the parameters

m1,a2,a3,b1,b2,b3 in ~10! are neither identified nor estimated consistently+ In

such cases, however, these parameters have no effect at all on C~z! and are of

no interest+
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We now turn to inference regarding the estimated parameters+ For this, we

restrict u [ Q further to u [ EQ , Q by excluding the cases where either of

a1,a2,b2,a5 is zero,3 to keep standard asymptotic Gaussian inference+ Other-

wise, when a hypothesis on some parameters causes other parameters to disap-

pear from the model, then nonstandard asymptotics arise ~e+g+, see Andrews

and Ploberger, 1994; Hansen, 1996; and references therein!+ The case of non-

standard asymptotics is dealt with by Lawford ~2001! in the context of general

hypergeometric functions and is not treated here+

THEOREM 2+ The nonlinear LS estimators of u [ EQ are asymptotically

normal with mean u and covariance matrix

v2SNES ]C
]u

]C

]u '
DD21

,

where N is the sample size.

We need to qualify inferences in our applications of the next section with a

warning, because small datasets are involved and asymptotic inference may be

of limited relevance there+ The issue of finite-sample inference within a gen-

eral context is, as ever, an unresolved problem+ Various possibilities for attempt-

ing to improve such inference exist, but we do not pursue them in this paper,
and we rely instead on the well-documented robustness of F-tests ~but not of

t-ratios! ~e+g+, see Ali and Sharma, 1996; Godfrey and Orme, 2001; and their

reference lists!+ Examples that can help improve finite-sample performance in-

clude resampling methods such as the bootstrap+ The difficulties with bootstrap-

ping in the current setup are that it would be computationally very expensive

and that establishing analytically its validity for 1F1 functions is beyond the

scope of this paper+ For examples on the inconsistency of the bootstrap, see

Basawa, Mallik, McCormick, Reeves, and Taylor ~1991!, Young ~1994!, and

Andrews ~2000!+ Of particular relevance is the discussion in Young ~1994, es-

pecially p+ 385! about its failure in environments where moments need not ex-

ist ~e+g+, stable laws!, which can be the case when our function collapses to the

Pareto density ~11!+

3. APPLICATIONS TO OPTION PRICING

AND RISK-NEUTRAL DENSITIES

3.1. The Empirical Setup

We illustrate our methodology with foreign exchange options and with S&P500

index options+ Both types of options are known to exhibit deviations from log-

normality and are likely to reveal an interesting pattern in terms of densities

~for foreign exchange options, see Bates, 1996a, 1996b; for S&P500 options,
see Rubinstein, 1994!+ Because our only goal in this part is to illustrate the
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usefulness of our method, rather than to describe of all available options, we

represent the results for a few dates and maturities+
First, for foreign exchange data, we use over the counter ~OTC! options+ Even

though there exist options listed on currency exchanges, the vast majority of

currency options are traded in the OTC market+ According to the Bank of In-

ternational Settlement, in June 1999, the notional value of outstanding OTC

currency derivatives was about 200 times larger than that of currency ex-

changes+ This implies that foreign currency OTC markets have greater liquid-

ity+ The drawback is that OTC option prices are usually unavailable to the public+
We were able to collect OTC data of European French franc0Deutsche mark

~FF0DM! rate options, in addition to the current exchange rate, from a large

French bank for one randomly selected date ~17 May 1996! during which no

particular event happened and also for another date occurring a few days after

President Chirac announced a snap election ~28 April 1997! that eventually led

to a landslide victory of the then opposition party+
For a given time of the day, the bank that provided us with the data re-

quested quotes from the other dealers in the market+ Dealers are compelled to

give a bid-ask quote+ The bank then retained the best bid and ask quote for

various strike prices+ The fact that the bank retained dealer’s quotations guar-

antees that the option prices are determined simultaneously+ The situation would

have been quite different if only prices for traded options were available+ In

such a situation reported prices might have been obtained at very different times

of the day, possibly, for very different values of the underlying asset, in which

case prices would have been stale+ Also, for many strike prices there may not

have been transactions+ Similarly, we were given the exchange rate from the

same source+ For exchange-rate quotes, the mechanism is similar to OTC op-

tions in that dealers must quote a bid and ask price+ This means that for the

foreign currency options, the magnitude of the nonsynchronicity bias is small+
The drawbacks of this market are that prices are not publicly available and that

we were able to obtain data only for a few days+
For the first and second dates, we were able to obtain the bid and ask prices

for options corresponding to ~N 5! 13 and 11 different strike prices, respec-

tively+ Even though one could, for the purpose of option pricing, compute RNDs

for the bid or the ask side, we decided to follow initially the convention of

using the average of the bid and ask price for each strike price+ Taking the

mid-spread is compatible with the use made by central bankers, who are mainly

interested in the evolution of the density and its shape ~e+g+, see Campa, Chang,
and Reider, 1997!+ Nevertheless, we check in Section 3+3 the importance of

using the mid-spread rather than the bid or the ask prices+We report results on

options with two different maturities, 1 and 3 months+
Second, for the S&P500 options, we downloaded the prefiltered data used

and described in Aït-Sahalia and Lo ~1998!+ The options are European, cover

1993, and for each date there are various maturities available+ Unlike our for-

eign exchange options, these index options are characterized by many strikes
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and a high liquidity+ We selected three dates randomly and chose a maturity

with a large number of strikes+
The benchmark option pricing model assumes that the underlying asset’s price

process follows a lognormal diffusion with constant volatility s+ In this case,
European-type call options are traditionally priced with

Ct ~K ! 5 e2r *~T2t !StF~d1!2 e2r~T2t !KF~d2 !,

where

d1 [

log~St 0K !1 Sr 2 r * 1
1

2
s 2D~T 2 t !

sMT 2 t
,

d2 [

log~St 0K !1 Sr 2 r * 2
1

2
s 2D~T 2 t !

sMT 2 t
+

Similar formulas apply to put options+ If r * is a foreign risk-free interest rate,
then we obtain the Garman and Kohlhagen ~1983! formula for foreign ex-

change options+ If, instead, r * is the continuous dividend yield, then we obtain

the formula for index options of Black and Scholes ~1973! and Merton ~1973!+
In the numerical applications for FF0DM options, we take for r and r * the do-

mestic ~French! and foreign ~German! euro-interest rates chosen to match the

expiration of the options+ We obtain data on these rates and transform them

into their continuously compounded equivalents+
If one is willing to assume that volatility is constant across all strike prices,

then it is possible to estimate the single volatility parameter s 2 +We follow the

literature in doing this by minimizing the quadratic distance between actual

and fitted prices, i+e+, by nonlinear LS+ Table 1 presents the estimates of such

volatilities and also the associated goodness of fit measures+ For both dates of

Table 1. Parameter estimates for lognormal distributions

FF0DM options S&P500 options

17+05+1996 28+04+1997

T 2 t 30 days 90 days 30 days 90 days

3+05+1993

46 days

11+06+1993

98 days

20+10+1993

58 days

s 0+0208 0+0234 0+0265 0+0256 1+5347 1+5426 1+3891

sA ~0+33%! ~0+37%! ~0+42%! ~0+41%! ~24+28%! ~24+48%! ~22+05%!

N 13 13 11 11 15 17 20

R2 0+996841 0+994207 0+975545 0+966069 0+951508 0+928570 0+980671
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the FF0DM options, we notice a slightly better fit for the first maturity than for

the second maturity+ For the S&P500 options, we notice a better fit than for

FF0DM options, with the fit being similar across the three dates+
The annualized volatility is denoted by sA

2+ For FF0DM, sA ranges between

0+33% for the 30 days-to-maturity options on 17 May 1996 up to 0+42% for

similar options on 28 April 1997+ These figures are slightly smaller than those

reported by Malz ~1996!, who considers the DM0£ in 1992, a series that is

known to behave more erratically than the FF0DM+ The annualized volatility

of the S&P 500 ranges between 22+05% for the option on 20 October 1993 to

24+48% for the option on 11 June 1993+ The difference in magnitude between

the volatilities of exchange rates and stock returns is large+ However, the data

are of very different nature, and the market structures also differ+ For instance,
the FF0DM market was subject to tight trading bands within the European Mone-

tary System+
To get an overall feel for the inaccuracy of these benchmark fits, we present

in Figure 1 a typical plot of actual and fitted prices taken from the 3-months to

maturity options of 28 April 1997+We notice that, for options with a high strike

price, the fit is bad+ This implies that a model with constant volatility across

different strike prices is incomplete+ In other words, volatility is dependent on

K ~a phenomenon known as the volatility “smile” because of the U-shaped re-

lation!, and further information that is not extracted by the lognormal is con-

Figure 1. Original and fitted Garman–Kohlhagen call option prices, 28 April 1997,

3-months to maturity+
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tained in the available option prices+ This further information can be captured

with a hypergeometric-based RND, as we will show+

3.2. Numerical Aspects of Estimating Our Nonlinear Function C ({)

We performed all optimizations with the GAUSS program and the OPTMUM

module+ We used nonlinear LS as our fitting criterion for C~{!, as we did with

the lognormal+ In general, though, one should consider other methods based on

GLS or a likelihood criterion, as we have discussed in Section 2+4+ We do not

elaborate on this point in this section, given how uniformly good the fit turned

out to be and given that the sample we have for the observed C~{! is random+
This is because the data are given over a grid of options’ “deltas,” the term for

]C0]S+ This derivative is a constant plus the distribution function G~{! ~e+g+,
see ~A+2! in the Appendix!+ Because the distribution function of a continuous

variate is uniformly distributed when the function’s argument is random, taking

a grid over the option’s deltas is equivalent to stratified sampling+
In nonlinear estimation, it is crucial for numerical stability to obtain esti-

mates of comparable magnitudes+ To help the program find such estimates, we

rescale the strike prices K by defining the linear transform z [ a 1 bK+ Be-

cause C~{! is tied to the density of z, it is also necessary to rescale the option

prices by the Jacobian of the transform, according to bC~K ! 5 C~z!+ Because

the bulk of standardized density masses tends to lie in the interval @23,3# , the

mapping of strike prices achieving approximately z [ @23,3# will yield a nu-

merically stable estimation procedure+
Another important element in numerical optimization is the choice of initial

values+ The lognormal benchmark has a shape that is not too different from a

normal+ We therefore chose for the optimization to start with parameter values

that arise from a normal RND+ From the discussion following ~10!,

a5 5 2
1

2
, a6 5

1

2
, b4 5 2

1

2 3 variance of z
, m2 5 mean of z,

and the component starting with a1 is set to zero+ Setting a1 5 0 initially does

not guarantee a well-behaved function at the next iteration+ For example, care

should be taken not to let 2a3 [ N ø $0% , as a division by zero may occur in

computing the 1F1 function ~see the expansion in ~5! and the subsequent exclu-

sion restrictions!+ To make the program run smoothly, the starting values of the

initially omitted component ~the one beginning with a1! may be those of a re-

stricted gamma, e+g+,

b1 5 1 1 a2 b3 , b3 5 1, a3 5 a2 1 2, a2 5 4, m1 5 m2 ,

because of the shape of RNDs known to arise in the literature ~see the refer-

ences cited earlier!+

794 KARIM M. ABADIR AND MICHAEL ROCKINGER



We saw in Section 2+2 that explicit restrictions on c2, a4, and c1 exist and

must be implemented in the estimation routine, and in the Appendix we sim-

plify them for the setup of our problem+ Additionally, we found in our numer-

ical applications that the reductions implied by the joint hypothesis b1 5 1 1

a2 b3, a5 5 2
1
2
_ , a6 5

1
2
_ cannot be rejected by an F-test+ This simplifies the

former restrictions further to

c1 5 2c2 m2 ,

c2 5 21 1 a4M2b4p,

a4 5
1

2M2b4p
F1 2 a1~2b2 !

2a2
G~a3 !

G~a3 2 a2 !
G , (16)

as shown in the Appendix+ Finally, for the no-arbitrage condition to be checked,
~2! or ~15! simplifies to

E~z! 5 a1

G~a3 !

G~a3 2 a2 !
~2b2 !

2a2~m1 2 m2 !1 m2 , (17)

which is naturally a weighted average of m1 and m2+ In both our applications,
we found that the condition was satisfied by the data+ We now summarize the

empirical results+

3.3. Summary of the Results

Following the estimation strategy outlined previously, we obtain the estimates

displayed in Table 2 for the various dates and maturities+ Because R2 is invari-

Table 2. Estimation of our C~{! function

FF0DM options S&P500 options

17+05+1996 28+04+1997

T 2 t 30 days 90 days 30 days 90 days

3+05+1993

46 days

11+06+1993

98 days

20+10+1993

58 days

a2 3+2375 5+2241 3+4870 2+1929 3+7889 2+8683 2+0763

a3 5+2462 7+0280 5+6126 6+5079 6+3536 6+2076 4+7731

b2 20+9250 21+3249 20+8918 20+7344 21+6314 20+9381 23+9701

b3 1+4641 1+1114 1+5385 2+0968 1+7809 1+7482 0+5589

b4 20+5907 20+1979 20+3806 20+1131 20+2023 20+1837 20+6288

m1 21+5888 22+2587 22+3913 20+8451 20+6736 21+8040 21+4815

m2 0+0128 0+2263 20+9261 20+8509 0+2864 20+1961 1+8474

N 13 13 11 11 15 17 20

R2 0+999955 0+999957 0+999945 0+999899 0+999922 0+999911 0+999661

OR2 0.999909 0.999913 0.999863 0.999749 0.999864 0.999857 0.999504
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ant to affine transformations of the data, a comparison of this statistic with the

one in Table 1 is feasible+ We notice that across all estimations, the R2 and the

R2 adjusted for degrees of freedom ~i+e+, OR2! for our fit are larger by a sizable

magnitude than the ones obtained for the lognormal distribution+ For DM0FF

options we display in Figure 2 the plot of actual and fitted prices taken from 28

April 1997 ~3-months maturity!, which is representative of the fit at all the

dates we tried+ We notice an excellent fit for all options+ Also, a direct compu-

tation of option prices involving formula ~1! with a numerical routine corrobo-

rated that our method gives a very good fit+
We obtain a discretization of the RND by evaluating g~{! over a grid consist-

ing of 1,000 points, and the plot for two dates and two maturities is in Fig-

ures 3– 6+ The link between the RND and actual ~or objective! probabilities

involves the degree of risk aversion of investors, and an interpretation of the

RND as if it concerned the probability of the financial asset belonging to a

certain range is a rough approximation+ Aït-Sahalia and Lo ~2000! and also

Jackwerth ~2000! show how a measure of risk aversion may be inferred from

RNDs and the actual probabilities+ Conversely, if one had a model describing

risk aversion one could make a statement about actual probabilities+ These in-

vestigations are beyond the scope of our paper, and central bankers are typi-

cally more interested in how RNDs change from day to day than in measuring

risk aversion+

Figure 2. Original data and hypergeometric-based fit, 28 April 1997, 3-months to

maturity+
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Figure 3. Lognormal and hypergeometric-based risk-neutral densities, 17 May 1996,

1 month maturity+

Figure 4. Lognormal and hypergeometric-based risk-neutral densities, 17 May 1996,

3-months to maturity+
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Figure 5. Lognormal and hypergeometric-based risk-neutral densities, 28 April 1997,

1 month maturity+

Figure 6. Lognormal and hypergeometric-based risk-neutral densities, 28 April 1997,

3-months to maturity+
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Interesting comparative statics can be drawn from analyzing RNDs for dif-

ferent dates and0or maturities+ The influence of major events is reflected in

their changing shapes+ In our first application, graphical inspection of the RNDs

confirms that the first date was a rather quiet one, whereas the second date was

amid a period of great agitation+ Figures 3 and 4 display the RND for FF0DM

options at 17 May 1996, for the two maturities+ We notice that for the higher

maturity the spread is much larger, translating the fact that market participants

associate more uncertainty with the longer run+ Also, in comparison with the

lognormal case, we notice that our method reveals a heavier right tail+ This

translates the fact that investors, even on a rather normal day, are paying a pre-

mium in the anticipation of a latent devaluation of the FF ~the so-called peso

problem!+
When we turn to the second date, there is an overall shift to the left for all

distributions coming from the fact that, at that date, the FF had appreciated

with respect to the DM+ When we compare the distributions with those of the

first date, there is a larger spread for the p+d+f+ at all maturities+ In other words,
for the second date the global uncertainty is much larger+ In addition, the right

tail is more slowly decaying for the second date, reflecting the fact that market

participants were contemplating the possibility of a large subsequent deprecia-

tion of the FF, with a nonnegligible probability+
It should be mentioned that the bimodality of the RND, which has arisen in

the literature cited earlier, is also found to varying extents in Figures 3– 6+ In

our function, we have not forced this bimodality ~or any other oscillatory-tail

features!, as is clear from looking at our graphs+ Our earlier talk of “two” com-

ponents in our C~{! should not give the erroneous impression that our C~{! is

based on just a mixture of two densities with at most two modes ~see ~12! for

analytical details!+ Our graphs illustrate that this is not the case, some display-

ing multimodality but others not+ See also the discussion after ~A+8! in the Ap-

pendix, where we could not reduce our estimated functions to just mixtures of

normal and gamma+
The multimodality, when it appears, could be due to a number of reasons+

For exchange rates, the most plausible explanation of the right hump is the

expectation of a widening of the target band+ The center of the target zone was

set at 3+35 FF0DM and the width was set at 62+5%, implying a band ranging

from 3+2746 up to 3+4254+ The right hump, being outside this band, suggests

that market participants put a nonnegligible probability on a devaluation of the

FF with respect to the DM+
To check the robustness of our estimated RNDs, say, [g~{!, and the correspond-

ing distributions ZG~{!, we perform a sensitivity analysis+ We estimate the pa-

rameters of the hypergeometric-based C~{! when omitting one different strike

price at a time, obtaining N estimates of RNDs, each based on N 2 1 strikes+
Denote each of these estimated densities by [gj~{! and their corresponding dis-

tributions by ZGj~{!, where j 5 1,2, + + +N+ To illustrate, we choose our “worst”-

fitting C~{!, namely, the FF0DM options at 28 April 1997, for the second
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maturity+We find that the maximal absolute deviation between ZG~ST ! and each

of the 11 c+d+f+s ZGj~ST !, for any j or ST , is

max
j,ST

$6 ZG~ST !2 ZGj ~ST !6% 5 0+0056, (18)

which is about half a percentage point, thus indicating a very stable estimate of

the c+d+f+ This observation is corroborated by Figure 7+ There, the dotted line

represents our density estimate [g~ST !, whereas the narrow band around it is

obtained pointwise ~i+e+, for each ST ! as the minimal and maximal value over

the N estimates [gj~ST !+ This indicates that our estimated RNDs are robust to a

number of possible concerns raised in the finance literature, in addition to the

traditional econometric ones+ For example, our RNDs are robust to dropping

the observation with the largest bid-ask spread, or the observation with the larg-

est ~or smallest! strike price K, etc+
We check further the robustness of the estimated shapes to bid-ask spreads,

because this is a particularly important issue+ To do so, we reestimate the den-

sities by first assuming that all option prices were at the ask side and then by

assuming that they were all on the bid side+ We perform these estimations for

28 April 1997, a day when markets were rather agitated, and for the relatively

illiquid 3 months to maturity option+ For these options, the spreads tend to be

Figure 7. Sensitivity bounds for the hypergeometric-based density with one strike

deleted at a time+
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the largest of all the options considered in this study+ The results of the estima-

tion are displayed in Figure 8+As can be seen, the overall shape of the densities

is the same+ In particular, the bimodality of the RNDs for this date appears to

be numerically stable and not simply due to an error in the data+ Considering

the implied c+d+f+s, we find that the maximal discrepancy between the mid-

spread and the bid-only ~respectively, ask-only! prices is 0+058 ~respectively,
0+047!+ Though the shapes are analogous, the discrepancy of roughly 5% is larger

than the one found in ~18! because here we take the sensitivity analysis to the

extreme of changing all prices simultaneously+ Even so, the maximal discrep-

ancy between the distributions occurs very close to the peak ~first mode! of the

density, namely, at 3+37 and 3+35, respectively, but not in its tails, which are of

most interest as explained earlier in connection with Central Bank policy-making+
We now turn to the estimation results pertaining to fitting our C~{! function

to the S&P500 options+ Inspection of the second part of Table 2 confirms our

earlier results: the hypergeometric-based C~{! function allows for a very close

fit, of comparable quality to the one obtained for the FF0DM options+ For 3

May 1993, Figure 9 represents the RND obtained with the lognormal model

and the hypergeometric one+ We notice now, in line with the figures repre-

sented in Aït-Sahalia and Lo ~1998!, that the RND is negatively skewed for

Index options+ This pattern translates the idea that investors fear a crash+ A

lognormal cannot represent a negatively skewed density, and thus seems to be

Figure 8. Hypergeometric-based estimated densities with ask, with bid, and with mid-

spread option prices+
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incompatible with the data, whereas our hypergeometric-based densities allow

for either type of skewness+
Finally, we compare our results to the fits obtained by other methods+We do

not fit the entropy-based model, because it has as many parameters as data points

and is therefore going to lead to R2
5 1 and OR2

5 0 everywhere+ As for the

others, Table 3 reports the results+ The label “Hermite” refers to the method

used by Jondeau and Rockinger ~2001! to enforce nonnegativity constraints on

Figure 9. Lognormal and hypergeometric-based risk-neutral densities, S&P500 index

options, 3 May 1993, 46-days to maturity+

Table 3. A comparison of R2 and OR2 ~in bold! for other methods

FF0DM options S&P500 options

17+05+1996 28+04+1997

T 2 t 30 days 90 days 30 days 90 days

3+05+1993

46 days

11+06+1993

98 days

20+10+1993

58 days

Hermite 0+999669 0+999878 0+990926 0+991626 0+997214 0+984918 0+993403

@0.999603# @0.999853# @0.988658# @0.989532# @0.996750# @0.982764# @0.992627#

Jumps 0+999676 0+999926 0+999850 0+999804 0+997926 0+991013 0+995244

@0.999611# @0.999911# @0.999812# @0.999755# @0.997580# @0.989729# @0.994685#

Mixtures 0+999947 0+999878 0+999842 0+999835 0+998267 0+990682 0+996039

@0.999906# @0.999817# @0.999812# @0.999725# @0.997573# @0.987577# @0.994983#
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the estimation of Gram–Charlier densities by means of Hermite polynomials+
“Jumps” refers to the Malz-type jump-diffusion model discussed in the intro-

duction, whereas “Mixtures” is the generalization of the benchmark into log-

normal mixtures+ It is clear from the table that our method is always best in

terms of R2 and is only once beaten by “Jumps” in terms of an OR2 that differs

from ours by less than a unit in the fifth decimal place! Our method does very

well and uniformly so for

~1! volatile days, in addition to quiet ones;

~2! different maturities; and

~3! options on very different underlying assets+

Our estimated densities’ functional forms vary over the dates and maturities, as

can be seen in Table 2 from the parameter estimates of a2,a3,b3, the other

parameters playing mainly centering and scaling roles+ Therefore, parametric

methods that restrict functional forms ~e+g+, mixtures of lognormals! will not

do uniformly well+ Notice also that Table 2 indicates that, in all cases studied,
the tails of the RNDs decay exponentially fast+ For the markets studied, this

implies that all moments of finite order exist and that the perceived probability

of extreme events declines at exponential rates+ The estimated parameters of

the asymmetric component of ~10! were such that it ended up representing ex-

treme events by means of long tails, especially because b3 is mostly smaller

than the exponential power 2 of the other component+

4. THE DENSITY FUNCTIONAL FOR REPEATED INTEGRALS

Section 2 gave a C~{! function based on generalizing ~8! and ~9! for the case of

double-integrals of p+d+f+’s+ Here, we extend this approach to the situation where

the pth integral of a p+d+f+ is observed, where p [ N, by taking

C~z! [ c1 1 c2 z 1 {{{1 cp z p21

1 1z.m1
a1~z 2 m1!

b1
1F1~a2 ;a3 ;b2~z 2 m1!

b3 !

1 ~a4 !1F1~a5 ;a6 ;b4~z 2 m2 !
2 !+ (19)

The parameters are not generally ~i+e+, for p Þ 2! in correspondence with our

earlier C~z!, but the modeling methodology is the same and so is the number

of free parameters+ The case p 5 1 is one where the variate z is directly observ-

able, and its empirical c+d+f+ is available to compare to our fitted c+d+f+ C~z!+
Three types of restrictions on the parameters of C~z! are needed:

Type I:

A: restrictions on the c+d+f+ given by ~up to arbitrary constants! d p21C~z!0dz p21

for the edges of its support, namely, z, and zu;

B: nonnegativity restrictions on the p+d+f+ given by d pC~z!0dz p over its support

~z,, zu!;
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C: other specifics of the problem ~in our previous applications, the transversality

and no-arbitrage conditions!+

Type II: a priori information+

Type III: hypotheses of reduction to known simpler forms+

In this section, without a specific application in mind, one can only implement

restrictions of Types IA ~up to a constant! and IB and provide formulas ~such

as expressions for the moments! that are likely to be required for Type IC+
Types II and III are application-specific and are to be determined by the user+

For Types IA and IB, we need the ~ p 2 1!th and pth derivatives of C~z!+
They are obtained by expanding the 1F1 functions in ~19! and differentiating

termwise+ The result is, for either q 5 p 2 1 or q 5 p,

dq

dz q
C~z! 5 1q5p21 cp~ p 2 1!!

1 1z.m1
~21!qa1(

j50

` ~a2 !j b2
j

~a3 !j j!
~2b3 j 2 b1!q~z 2 m1!

b12q1b3 j

1 a4~21!q (
j5qi

` ~a5 !j b4
j

~a6 !j j!
~22j !q~z 2 m2 !

2j2q,

where qi is the integer part of ~q 1 1!02+ There are two equivalent ways of

expressing these sums+ The first is the one we have seen earlier, and it is the

sum of 1F1 functions+ For general p, the expression would be quite cumber-

some, so we resort to the second possible method+ It makes use of the general-

ized hypergeometric function in ~5! to write

dq

dz q
C~z! 5 1q5p21 cp~ p 2 1!!

1 1z.m1
~21!qa1~2b1!q~z 2 m1!

b12q

3 q11Fq11 1a2 ,
b1

b3

1 1, + + + ,
b1 2 q 1 1

b3

1 1;

a3 ,
b1

b3

, + + + ,
b1 2 q 1 1

b3

;

b2~z 2 m1!
b32

1
a4

Mp

~a5 !qi
GSqi 1

1

2
D

~a6 !qi
G~2qi 2 q 1 1!

~4b4 !
qi ~z 2 m2 !

2qi2q

3 3 F3 1 a5 1 qi ,1,
1

2
1 qi ;

a6 1 qi ,qi 2
q

2
1 1,qi 2

q

2
1

1

2
;

b4~z 2 m2 !
22 , (20)
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where the duplication formula

Mp2q22qiG~2qi 2 q 1 1! 5 GSqi 2
q

2
1 1DGSqi 2

q

2
1

1

2
D

has been used+
For restrictions of Type IC, it can be helpful to derive an expression for the

moments of z+ By letting q 5 p and pi [ qi ~5 integer part of ~ p 1 1!02! in

~20!, we get

E~z n ! 5E
z,

zu

z n
d pC~z!

dz p
dz

5 ~21! pa1~2b1!p

3 E
m1

zu

z n~z 2 m1!
b12p

p11Fp11 1a2 ,
b1

b3

1 1, + + + ,
b1 2 p 1 1

b3

1 1;

a3 ,
b1

b3

, + + + ,
b1 2 p 1 1

b3

;

b2~z 2 m1!
b3 2 dz

1
a4

Mp

~a5 !pi
GSpi 1

1

2
D

~a6 !pi
G~2pi 2 p 1 1!

~4b4 !
pi

3 E
z,

zu

z n~z 2 m2 !
2pi2p

3 F3 1 a5 1 pi ,1,
1

2
1 pi ;

a6 1 pi , pi 2
p

2
1 1, pi 2

p

2
1

1

2
;

b4~z 2 m2 !
2 2 dz

5 ~21! pa1~2b1!p(
j50

n Sn

jD m1
n2j~zu 2 m1!

j1b12p11

j 1 b1 2 p 1 1

3 p12 Fp12 1a2 ,
b1

b3

1 1, + + + ,
b1 2 p 1 1

b3

1 1,
j 1 b1 2 p 1 1

b3

;

a3 ,
b1

b3

, + + + ,
b1 2 p 1 1

b3

,
j 1 b1 2 p 1 1

b3

1 1;

b2~zu 2 m1!
b3 2

1
a4

Mp

~a5 !pi
GSpi 1

1

2
D

~a6 !pi
G~2pi 2 p 1 1!

~4b4 !
pi (

j50

n Sn

jD m2
n2j~z 2 m2 !

j12pi2p11

j 1 2pi 2 p 1 1

3 4 F4 1 a5 1 pi ,1,
1

2
1 pi ,

j 1 2pi 2 p 1 1

2
;

a6 1 pi , pi 2
p

2
1 1, pi 2

p

2
1

1

2
,

j 1 2pi 2 p 1 3

2
;

b4~z 2 m2 !
2 2*

z,

zu

+

This completes the explicit formulas mentioned in connection with restrictions

of Type I+
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5. CONCLUDING COMMENTS

We have provided a new methodology for estimating density-related function-

als, without prior knowledge of the density’s functional form+ In this endeavor,
we have been originally motivated by a problem in the area of contingent-

claim valuation+ We have shown in our applications that our method did uni-

formly very well, thus illustrating the analytical justifications for our new

approach+ However, the new general methodology we propose is equally appli-

cable to different problems+ Future work could apply our method to different

areas of research+ What this paper has done is to lay down the technical foun-

dations necessary for subsequent applications+

NOTES

1+ There are two different types of confluent hypergeometric functions, Kummer’s 1F1 and Tri-

comi’s C ~see Abadir, 1999, and references therein!+ There are also two related confluent hyper-

geometric functions due to Whittaker, M and W+ We use only 1F1 in this paper+

2+ The function can also mimic the basic properties of a lognormal+ For this, use page 68 of

Abramowitz and Stegun ~1972!: the leading term is picked up by the symmetric quadratic compo-

nent ~latter one! of C~{!, whereas the asymmetry is represented by the rest+ See also Johnson et al+

~1994, 1995! for approximating the lognormal density by normal, gamma, and0or Weibull ones+

3+ The parameter a4 is not free to vary unrestrictedly ~see the discussion of ~13!!+ To some

extent, m2 is also not free to vary, if one believes in arbitrage pricing ~see ~15! or more clearly

~17!!+
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APPENDIX

Proof of Theorem 1. The proof follows by checking the standard conditions for con-

sistency ~e+g+, see Amemiya, 1985, Ch+ 4; Gouriéroux and Monfort, 1995, Ch+ 8!+ It

draws on the properties of continuity and differentiability of hypergeometric functions

detailed in, e+g+, Erdélyi ~1953!+ First, by means of the polygamma function, the func-

tion C~{! is differentiable an arbitrary number of times with respect to the parameters u

when u [ Q, except possibly ~depending on b1! at the point m1 5 z that has probability

measure zero for the continuous variate z+ Second, the covariance of C~{! for different

values of u [ Q is finite, this being the integral of a distribution function that is bounded

by definition+ Finally, two nontrivial ~nonconstant! 1F1 functions will be identical for all

z, if and only if their parameters are identical+ The values of randomly sampled C~z! are

therefore distinct for different u [ Q+ n

Proof of Theorem 2. The nonlinear LS estimators of u [ EQ , Q are consistent, by

Theorem 1, so we now check the two additional conditions for asymptotic normality+

First, as mentioned in the proof of Theorem 1, the function C~{! is arbitrarily differ-

entiable with respect to u when u [ Q and, a fortiori, when u [ EQ+ Second, the matrix

of second derivatives of C~{! with respect to u is finite with probability 1 as seen in

the proof of Theorem 1, and it has a nonsingular expectation for u restricted further to

u [ EQ by the identifiability of all the parameters+ n

Derivations for Section 3.2. Letting O~z n! denote terms of order of magnitude of at

most z n ,

1F1~a;c; z! 5 5
G~c!

G~c 2 a!
6z 62aS1 1 OS 1

z
DD, as zr 2`

G~c!

G~a!
z a2cezS1 1 OS 1

z
DD, as zr `

(A.1)
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for z [ R+ We saw in Section 2+2 that explicit restrictions on c2, a4, and c1 exist+ Here,

we specialize them to the setup of our applications+

First, consider the restrictions on c2 and a4+ In the context of ~3! and ~4!

d

dz
C~z!*

z5z,

5 G~z, !2 1 5 21,

d

dz
C~z!*

z5zu

5 G~zu !2 1 5 0, (A.2)

where dC~z!0dz is given by ~13!+ On the assumption that z, # m1, the first constraint

reduces to

c2 5 21 2 2a4

a5

a6

b4~z, 2 m2 !1F1~a5 1 1;a6 1 1;b4~z, 2 m2 !
2 ! (A.3)

and the second is

c2 5 2a1~zu 2 m1!
b121F~b1!1F1~a2 ;a3 ;b2~zu 2 m1!

b3 !

1
a2

a3

b2 b3~zu 2 m1!
b3

1F1~a2 1 1;a3 1 1;b2~zu 2 m1!
b3 !G

2 2a4

a5

a6

b4~zu 2 m2 !1F1~a5 1 1;a6 1 1;b4~zu 2 m2 !
2 !+

The first of these is linear in c2, and the second may be reformulated by combining the

two as

a4 5 1 2 a1~zu 2 m1!
b121F~b1!1F1~a2 ;a3 ;b2~zu 2 m1!

b3 !

1
a2

a3

b2 b3~zu 2 m1!
b3

1F1~a2 1 1;a3 1 1;b2~zu 2 m1!
b3 !G

4 H2
a5

a6

b4 @~zu 2 m2 !1F1~a5 1 1;a6 1 1;b4~zu 2 m2 !
2 !

2 ~z, 2 m2 !1F1~a5 1 1;a6 1 1;b4~z, 2 m2 !
2 !#J (A.4)

which is linear in a4+ In our two applications, we found that the reductions implied by

the joint hypothesis b1 5 1 1 a2 b3, a5 5 2
1
2
_ , a6 5

1
2
_ cannot be rejected by an F-test+ As

a result, ~A+3! and ~A+4! simplify further to

c2 5 21 2 2a4

a5

a6

~2b4 !
2a5
G~a6 1 1!

G~a6 2 a5 !
lim

z,r2`
~m2 2 z, !

22a521

5 21 1 a4M2b4p (A.5)
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and

a4 5 F1 2 a1~2b2 !
2a2

G~a3 !

G~a3 2 a2 !
@b1 2 a2 b3 # lim

zur`
~zu 2 m1!

b12a2 b321 G
4 F22

a5

a6

~2b4 !
2a5
G~a6 1 1!

G~a6 2 a5 !

3 S lim
zur`

~zu 2 m2 !
22a521

1 lim
z,r2`

~m2 2 z, !
22a521DG

5
1

2M2b4p
S1 2 a1~2b2 !

2a2
G~a3 !

G~a3 2 a2 !
D, (A.6)

respectively, by means of formula ~A+1! for extreme values and by substitution for

b1,a5,a6+ As explained in Abadir ~1999!, the asymptotic formula ~A+1! does not require

6z 6 r ` but requires only that z reach some extreme values for the standardized

distribution+

Second, the restriction implied for c1 by the boundary condition of our applications

can be stated explicitly here+ The reader will have noticed from ~1! and ~4! that Ct~`!5

C~`! 5 0+ For our function C~z! of ~10!, this transversality condition translates into

c1 5 lim
zr`

S2c2 z 2 a1~2b2 !
2a2~z 2 m1!

b12a2 b3
G~a3 !

G~a3 2 a2 !

2 a4~2b4 !
2a5

G~a6 !

G~a6 2 a5 !
~z 2 m2 !

22a5D (A.7)

by means of ~A+1!+ Similarly to the simplification of ~A+3! and ~A+4! into ~A+5! and

~A+6!, respectively, we may simplify ~A+7! further for our applications by substituting

for b1,a5,a6 as

c1 5 lim
zr`

S2c2 z 2 Sa1~2b2 !
2a2

G~a3 !

G~a3 2 a2 !
1 a4M2b4pD~z 2 m2 !D

5 lim
zr`
~~1 2 a4M2b4p!z 2 ~1 2 2a4M2b4p 1 a4M2b4p!~z 2 m2 !!

5 lim
zr`
~~1 2 a4M2b4p!m2 !

5 ~1 2 a4M2b4p!m2

5 2c2 m2 + (A.8)

Note that for a gamma component to exist in C~{!, one would require the further sim-

plifications b3 5 1 and a3 5 a2 1 2+ These were not supported by our data here ~not

even at the 1% significance level! and were therefore not included in ~A+5!–~A+8!+ In

other words, the first three terms of the formula for the density given in ~12! do not

simplify to a gamma, but the latter two terms do reduce to a normal component+
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Finally, to implement the no-arbitrage condition ~2! of our example, we use ~A+1! to

simplify E~z! of ~15! as

E~z! 5 a1

G~a3 !

G~a3 2 a2 !
~2b2 !

2a2 lim
zur`

~zu 2 m1!
b12a2 b321~~b1 2 a2 b3 2 1!zu 1 m1!

2 a4

G~a6 !

G~a6 2 a5 !
~2b4 !

2a5 lim
2z, , zur`

SS6z 2 m2 6
22a5S1 1 2a5

z

z 2 m2
DD*

z,

zuD
5 a1

G~a3 !

G~a3 2 a2 !
~2b2 !

2a2 lim
zur`

~m1!

2 a4M2b4p lim
2z, , zur`

SS6z 2 m2 6S1 2
z

z 2 m2
DD*

z,

zuD
5 a1

G~a3 !

G~a3 2 a2 !
~2b2 !

2a2m1 2 a4M2b4p lim
2z, , zur`

~2m2 2 m2 !

5 a1

G~a3 !

G~a3 2 a2 !
~2b2 !

2a2m1 1 2a4~M2b4p!m2 ,

which can also be written as in ~17! by substituting for a4 from ~A+6!+ n
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