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THE JOINT MOMENT GENERATING

FUNCTION OF QUADRATIC

FORMS IN MULTIVARIATE

AUTOREGRESSIVE SERIES

The Case with Deterministic Components

KAAARRRIIIMMM M. ABBBAAADDDIIIRRR

University of York

ROOOLLLFFF LAAARRRSSSSSSOOONNN

Stockholm University

Let $Xt % follow a discrete Gaussian vector autoregression with deterministic com-

ponents+ We derive the exact finite-sample joint moment generating function

~MGF! of the quadratic forms that form the basis for the sufficient statistic+ The

formula is then specialized to the limiting MGF of functionals involving multi-

variate and univariate Ornstein–Uhlenbeck processes, drifts, and time trends+ Such

processes arise asymptotically from more general non-Gaussian processes and also

from the Gaussian $Xt % and have also been used in areas other than time series,

such as the “goodness of fit” literature+

1. INTRODUCTION

Let the k 3 1 vector of discrete time series $Xt %1
T be generated by the vector

autoregression ~VAR!

Xt 5 (
j50

p

m j t j
1 AXt21 1 «t[mtt 1 AXt21 1 «t , «t; NID~0,V!, (1)

where m [ @m0,m1, + + + ,mp# is k 3 ~ p 1 1!, tt [ @1, t, + + + , t
p# ' is ~ p 1 1! 3 1,

A is k 3 k, X0 is a known constant vector, and V is k 3 k positive definite+
The moment generating function ~MGF! derivations given subsequently are not

affected by the value of V, which we take for simplicity to be Ik, the identity

matrix of order k+ Also, because the process includes a drift term, we can take
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X0 5 0 without loss of generality+ For example, defining $Yt % [ $Xt 2 X0%
and using ~1!,

~Yt 1 X0 ! 5 mtt 1 A~Yt21 1 X0 !1 «t ,

leading to the VAR

Yt 5 ~mtt 1 ~A 2 Ik !X0 !1 AYt21 1 «t[ Imtt 1 AYt21 1 «t ,

where Y0 5 0, Im [ @ Im0,m1, + + + ,mp# , and Im0 [ m0 1 ~A 2 Ik!X0+
The likelihood of this model can be written as

L~m,A;X0 , + + + , XT !

5 ~2p!2~Tk02! 6V62~T02!

3 etrF2 1

2
V21(

t51

T

~Xt 2mtt 2 AXt21!~Xt 2mtt 2 AXt21!
'G , (2)

where 6{6 [ det~{! and etr~{! [ exp@tr~{!# and the corresponding sufficient sta-

tistic is extracted from

( Xt @Xt
' tt

' Xt21
' # and (F ttXt21

G @tt' Xt21
' # ,

where henceforth all the summations are from t 5 1, + + + ,T except when stated

explicitly+ There are two obvious reductions in our special setting to

S( Xt tt
' ,( Xt21tt

' ,( Xt Xt21
' ,( Xt21 Xt21

' D,
unlike in the full linear model+ First, (tt tt' is deterministic and need not ap-

pear+ Second, (Xt Xt
' and (Xt21 Xt21

' differ by XT XT
' , which is already obtain-

able from the first element XT of (Xt tt
'
2 (Xt21tt

'+ There remains one final

and more subtle simplification+ To this end, note that

( Xt tt
'
2( Xt21tt

'
5 XT tT11

'
1( Xt ~tt

'
2 tt11

' !

and

( Xt ~tt11
'

2 tt
'! 5( Xt @0, 1, 2 t 1 1, 3t 2

1 3t 1 1, + + + #

is a function of (Xt tt
' only+ ~When p 5 0, the term is the null function and

may be omitted altogether+! The reduction is therefore to replace (Xt tt
' by XT ,

and the sufficient statistic is

SXT ,( Xt21tt
' ,( Xt Xt21

' ,( Xt21 Xt21
' D+

The sufficient statistic is minimal if one furthermore excludes terms that are

repeated in the symmetric matrix (Xt21 Xt21
' + The elimination matrix could be

used to remove the redundant terms, but this is not necessary for the MGF that
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follows where the off-diagonal elements of parameter matrices corresponding

to symmetric matrices are customarily scaled by 1
2
_ anyway+

For the purpose of the asymptotic analysis in Section 3, it is more conve-

nient to work with the basis for the sufficient statistic

S [ ~S1,S2 ,S3 ,S4 ! [ SXT ,( Xt21tt
' ,( «t Xt21

' ,( Xt21 Xt21
' D, (3)

which is a 121 transform of the sufficient statistic, by ~1!+
Distributional results for such models are patchy and are summarized in

Tanaka ~1996!+ See also Nielsen ~1997!, Rothenberg ~1999!, Gönen, Puri, Ruym-

gaart, and van Zuijlen ~1999!+ In this paper, we present the exact MGF of the

general S in Section 2+ This extends earlier work by Abadir and Larsson ~1996!
and opens the way for a systematic study of the effects of including drifts and

trends in VAR models+ For example, results along the lines of Abadir, Hadri,
and Tzavalis ~1999! may now be investigated+ In Abadir and Larsson ~1996!,
the marginal MGF for the different basis

SXT XT
' ,( «t Xt21

' ,( Xt21 Xt21
' D

was derived because there were no deterministic components there, hence the

irrelevance of the sign of XT , from a distributional viewpoint, and its inclusion

through XT XT
' +

In Section 3, we specialize the MGF to the asymptotic case, which happens

to allow the process ~1! to cover more general error structures $«t % + We do so

while focusing on the case m 5 0+ The result is the joint MGF of functionals

involving Ornstein–Uhlenbeck processes, drifts, and time trends, all of which

had no known joint MGF’s except for some ~not all! of the univariate special

cases+ Other potential uses for our results can be found in the literature on good-

ness of fit, where these functionals arise ~see, e+g+, d’Agostino and Stephens,
1986!+

All the proofs are collected in the Appendix+ As for the general notation, we

follow the one summarized in the appendix of Abadir and Larsson ~1996!+ Ad-

ditionally, the change of a variable of integration that maps u ° v [ l~u!, for

some function l~{!, will be written in the inverse-mapping form u a l21~v!,
whereby u is replaced by l21~v! in the integrand+

2. THE MOMENT GENERATING FUNCTION

Consider the block-tridiagonal nonsingular Tk 3 Tk symmetric matrix

Ds 5 3
P Q ' 0 J 0

Q P Q ' L I

0 L L L 0

I L Q P Q '

0 J 0 Q M

4 , (4)
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where M,P,Q are k-square full-rank matrices with M and P symmetric and 0

denotes null matrices of appropriate dimensions+ The following lemma is ex-

tracted from the proofs in Abadir and Larsson ~1996! and will be used in our

derivations here+

LEMMA 1+ The determinant of Ds is given by

6Ds 6 5 62Q 6T21* @Ik 0#F2PQ21
2Ik

Q 'Q21 0
GT21F M

2Q 'G* +
We need to derive one further lemma about Ds before proceeding to obtain the

main result of this section+ Following Abadir and Larsson ~1996, Theorem 2+1!,
define

C0 [ Ik

C1 [ PQ21,

Cj [ Cj21 PQ21
2 Cj22 Q 'Q21, j [ Z,

whose solution is

@Cj Cj21# 5 @Ik 0#F PQ21 Ik

2Q 'Q21 0
G j

5 2Q@0 ~Q ' !21 #F PQ21 Ik

2Q 'Q21 0
G j11

(5)

for any integer ~including negative! j+ Then we have the following lemma+

LEMMA 2+ The typical block of the inverse of Ds is given by

Ds
T2t111j,T2t11

5 ~21! jQ21~Ct2j22 M 2 Ct2j23 Q ' !

3 (
n50

T2t

~Ct1n21 M 2 Ct1n22 Q ' !21Q '~MCt1n22
'

2 QCt1n23
' !21

3 ~MCt22
'

2 QCt23
' !~Q ' !21,

where t 5 1, + + + ,T and j 5 0, + + + , t 2 1 and the superscripts refer to (block-) row

and column numbers, respectively, starting from the top left corner. The terms

above the diagonal blocks are obtained by Ds
T2t11,T2t111j

5 ~Ds
T2t111j,T2t11!'+

This lemma is general and, as pointed out by the referee, can be used in

problems that are not necessarily related to our work ~or to statistics!+
We can now derive the main result of this section+

THEOREM 3+ The MGF of S is

wT,m~u1,U2 ,U3 ,U4 ! 5 wT,0~0,0,U3 ,U4 !etrS2 2

1
2m'm( tt tt'D exp~ 2

1
2z 'Ds

21z!,
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where ~u1,U2,U3,U4! correspond to ~S1,S2,S3,S4!, respectively, U4 is symmet-

ric, and

M [ Ik

P [ Ik 2 2U4 1 U3 A 1 A'U3
'
1 A'A 5 P '

Q [ 2A 2 U3
'

wT,0~0,0,U3 ,U4 ! 5 det~2Q! ~12T !02

3 detS@Ik 0#F2PQ21
2Ik

Q 'Q21 0
GT21F Ik

2Q 'GD2~102!

+

Finally, Ds
21 is defined explicitly in Lemma 2, and z [ ~z1

' , + + + ,zT
' !' with

zt
' [ tt11

' ~U2 2m'U3
'
2m'A!1 tt

'm', t 5 1, + + + ,T 2 1,

zT
' [ u1

'
1 tT

' m'+

The theorem can be made more explicit in a variety of directions, depending

on the required application+ For example, the ~ p 1 1! 3 ~ p 1 1! matrix (tt tt'

can be written as

( tt tt' 5(3
1 t J

t t 2 J

I I L
4 5 3

T
T ~T 1 1!

2
J

T ~T 1 1!

2

T ~T 1 1!~2T 1 1!

6
J

I I L

4
; 3 T i1j21

i 1 j 2 1 4 ,
where i, j are the row and column numbers, respectively+ This theorem can also

be simplified to a variety of published univariate asymptotic special cases+ How-

ever, more important, we can specialize this theorem to a general asymptotic

nearly nonstationary case that arises frequently in connection with limiting dis-

tributions in time series+ This is the purpose of the next section+

3. THE NEARLY NONSTATIONARY LIMITING CASE

Let m 5 0 and A 5 Ik 1 ~10T !H, where H is an arbitrary k 3 k matrix+ Then,
defining

G [ diag~1,T 21, + + + ,T 2p !,
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it can be shown that

S 1

!T
XT ,

1

!T 3 ( Xt21tt
'G,

1

T
( «t Xt21

' ,
1

T 2 ( Xt21 Xt21
' D

d
&& SJH ~1!,E

0

1

JH ~r!@1, r, + + + , r
p #dr,SE

0

1

JH ~r!dW~r!'D',
E

0

1

JH ~r!JH ~r!
' drD

[ ~ DS1, DS2 , DS3 , DS4 ! [ DS, (6)

where
d
&& denotes convergence in distribution, W~r! is the standard k-

dimensional Wiener process on r [ @0,1# , and JH ~r! is the corresponding

Ornstein–Uhlenbeck process defined by

JH ~r! [ E
0

r

exp@~r 2 s!H #dW~s!

when X0 5 0+ These limiting distributions hold under less restrictive distribu-

tional assumptions on $«t % +
In view of ~6!, the limiting MGF of interest becomes

fH ~u1,U2 ,U3 ,U4 ! [ E@etr~u1
' DS1 1 U2 DS2 1 U3 DS3 1 U4 DS4 !#

5 lim
Tr`
wT,0S 1

!T
u1,

1

!T 3
GU2 ,

1

T
U3 ,

1

T 2
U4D,

which is the joint MGF of DS [ ~ DS1, DS2, DS3, DS4!+ When H 5 0, J0~r! 5 W~r! and

the resulting MGF is denoted by f~u1,U2,U3,U4! [ f0~u1,U2,U3,U4!, and the

functionals contain no stochastic components other than Wiener processes+

COROLLARY 4+ The joint MGF of DS is

fH ~u1,U2 ,U3 ,U4 ! 5 exp@ 2
1
2~,1 1 ,2 1 ,3 !# etr@2 1

2
_ ~H ' 1 U3 !#0!det~g~1!!,

where

F [ H 'H 1 H 'U3
'
1 U3 H 2 2U4 ,

G [ H ' 2 H 1 U3 2 U3
' ,

,1 [ u1
'E

0

1

~g~1 2 z!'g~1 2 z!!21 dz u1,

,2 [ 2u1
'E

0

1

~g~1 2 z!'g~1 2 z!!21 f ~z!dz,

MGF IN VAR 227



,3 [ E
0

1

f ~z!'~g~1 2 z!'g~1 2 z!!21 f ~z!dz,

g~z! [ @Ik 0# expSzFG Ik

F 0GDF Ik

2H ' 2 U3
G,

f ~z!' [ (
i50

p

@ui1 + + + uik , 0' #(
j50

i

~2i !j ~21! j

3 Sz i2j expS~1 2 z!FG Ik

F 0GD2 I2kD
3 FG Ik

F 0G2j21F Ik

2H ' 2 U3
G ,

with z being a scalar, uin being the typical element ~row i, column n! of U2,

and ~2i !j [ )n50
j21
~n 2 i ! denoting the Pochhammer symbol+

We have not worked out the integrals in z for the general case, as they are

more easily manipulated numerically ~the integration is over the interval ~0,1!
in one dimension! in applications+ Note that any function of an n 3 n matrix

can be written as a polynomial of degree n 2 1 in the matrix, by the Cayley–

Hamilton theorem, so that infinite series of matrices are not required numeri-

cally+ This comment applies to exp~{! and also to matrix functions such as

~g~{!g~{!'!21 +
In f ~{!, the finite series in j is Tricomi’s confluent hypergeometric function+

Little additional insight is gained from using the hypergeometric formulation

here, so we have refrained from doing so+
We now illustrate our corollary by specializing it to the univariate case with

general trend components+ In the univariate case, G 5 0 and, furthermore, put

F 5 f, H 5 h, and U3 5 u3 to stress that these quantities have become scalars+
Because

FG I1

F 0G 5 F0 1

f 0G,
it is now possible to evaluate the exponential of this matrix explicitly+ To this

end, a series expansion yields

expSzF0 1

f 0GD 5 3 cosh~z!f !
1

!f
sinh~z!f !

!f sinh~z!f ! cosh~z!f !
4 ,

implying

g~z! 5 cosh~z!f !2 v sinh~z!f !, v[
h 1 u3

!f
+ (7)
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In connection with ,1,,2,,3 of Corollary 4, we have the following further

reductions+

COROLLARY 5+ In the univariate case ~k 5 1!, we have

,1 5 u1
2

sinh!f

g~1!!f
,

,2 5 2
u1

g~1! f (i50

p

ui1S i!~1 1 ~21! i !

~!f ! i
2(

j50

i ~2i !j

~!f ! j ~e!f
1 ~21! je2!f !D,

,3 5
1

2g~1! f (i50

p

(
j50

p

ui1 uj1gij ,

where ui1 is the typical element of the vector u2 and

gij 5 2
i!~1 1 ~21! i !

~!f ! i11 F j!~~1 2 v!e!f
2 ~21! j~1 1 v!e2!f !

~!f ! j

1 (
n50

j ~2j !n~~1 1 v!2 ~21!n~1 2 v!!

~!f !n G
1 (

m50

i ~2i !m

~!f !m
F ~1 2 v!e!f

1 ~21!m~1 1 v!e2!f

j 1 i 2 m 1 1

1
~21!m~ j 1 i 2 m!!~~1 2 v!e!f

2 ~21! i1j~1 1 v!e2!f !

~2!f ! j1i2m11

1 (
n50

j1i2m ~m 2 i 2 j !n

~2!f !n11 ~~1 1 v!e!f
2 ~21!m1n~1 2 v!e2!f !G +

It is worth observing that, in the asymptotics for the univariate case, matters

simplify further+ This is because, from ~6!,

DS3 5E
0

1

Jh~r!dW~r!5
Jh~1!

2
2 1

2
2 hE

0

1

Jh~r!
2 dr

5
DS1
2
2 1

2
2 h DS4 ,

so that we may set u3 5 0+ This, however, induces no simplifications for the

preceding derivations, other than setting v [ hYY!f ~ i+e+, u3 5 0! in ~7!+ For the

vector case, inequalities such as

E
0

1

Jh~r!dW~r!' ÞSE
0

1

Jh~r!dW~r!'D'
rule out such manipulations+
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Some special cases follow directly from these corollaries by setting some

components of u• to zero, hence obtaining marginal MGF’s+ For example, when

only a constant is fitted to the model, we get the MGF of sufficient statistics

associated with de-meaned Brownian motions which are particularly useful in

connection with the goodness-of-fit literature ~see, e+g+, d’Agostino and Stephens,
1986!+ In this case, the joint MGF of the sufficient statistic

SW~1!,E
0

1

W~r!dr,E
0

1

W~r!2 drD
is

f0~u1,u2 ,0,u4 ! 5
exp@ 1

2
_ ~,1 1 ,2 1 ,3 !#

!cosh~!22u4 !

with the ordering of u1,u2,u4 corresponding to the respective variates given

earlier, and

,1 5
u1

2

!22u4

tanh~!22u4 !,

,2 5
u1 u2

u4
S 1

cosh~!22u4 !
2 1D,

,3 5
u2

2

2u4
S tanh~!22u4 !

!22u4

2 1D+
The marginal MGF of a famous related stochastic integral has been obtained

by Anderson and Darling ~1952! and used further by Abadir and Paruolo ~1997!;
see also Rothenberg ~1999!+
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APPENDIX: PROOFS

Proof of Lemma 1. See Theorem 2+3 of Abadir and Larsson ~1996!+

Proof of Lemma 2. Let

Ds
21

5 3
cT CT

'

CT cT21 CT21
'

CT21 L L

L c2 C2
'

C2 c1

4 ,
where ct is k 3 k and Ct is the ~t 2 1!k 3 k matrix of all the blocks below ct , therefore

expanding with t+ Abadir and Larsson ~1996, BT of Theorems 2+2 and 2+3 there! derive

cT by recursive partitioned inverse, but here we need to derive the whole matrix+

Define Ds~t ! as the matrix Ds~T ! [ Ds but of dimensions tk 3 tk instead of Tk 3 Tk

and denote the leftmost upper block of Ds
21~t ! by Bt + Notice that Bt Þ ct except for

t 5 T+ First, partition Ds into

Ds 5 3
P Q ' 0

Q

0
Ds~T 2 1!4 +

Then, using the partitioned inverse formula, the first component of the second diagonal

block is

cT21 5 @Ik 0#SDs
21~T 2 1!1 Ds

21~T 2 1!FIk

0GQcT Q ' @Ik 0#Ds
21~T 2 1!DFIk

0G
5 BT21 1 BT21 QcT Q 'BT21+

Second, partition Ds into

Ds 5 3
P Q '

Q P

0 0 J

Q ' 0 J

0 Q

0 0

I I

Ds~T 2 2! 4
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and repeat a similar operation to get

cT22 5 @Ik 0#1Ds
21~T 2 2!1 Ds

21~T 2 2! 3
0 Q

0 0

I I
4

3 F + +

+ cT21
GF 0 0 J

Q ' 0 JGDs
21~T 2 2!2FIk

0G
5 BT22 1 BT22 QcT21 Q 'BT22

as before+ By induction, this relation

ct21 5 Bt21 1 Bt21 Qct Q 'Bt21

holds for all partitions of Ds because B1 5 M21 + As a result,

ct 5 Bt 1 Bt QBt11 Q 'Bt 1 {{{1 Bt QBt11 + + +QBT Q '+ + +Bt11 Q 'Bt + (A.1)

For the explicit solution of this formula, we need to work out Bt Q + + +Bt1j Q using

Bt Q 5 @0 ~Q ' !21 #F PQ21 Ik

2Q 'Q21 0
G t21F M

2Q 'G
3 S@0 ~Q ' !21 #F PQ21 Ik

2Q 'Q21 0
G tF M

2Q 'GD21

, (A.2)

which we deduce from Abadir and Larsson ~1996, Theorem 2+3!+We have reformulated

the power of the first ~2k! 3 ~2k! matrix in their formula for Bt , so that the required

typical product simplifies sequentially to

Bt Q + + +Bt1n Q 5 @0 ~Q ' !21 #F PQ21 Ik

2Q 'Q21 0
G t21F M

2Q 'G
3 S@0 ~Q ' !21 #F PQ21 Ik

2Q 'Q21 0
G t1nF M

2Q 'GD21

5 Q21~Ct22 M 2 Ct23 Q ' !~Ct1n21 M 2 Ct1n22 Q ' !21Q (A.3)

by ~5!+We also need to work out Q 'Bt1n21 + + +Q
'Bt to solve ~A+1! explicitly+ Because the

B+ matrices are symmetric, Q 'Bt1n21 + + +Q
'Bt 5 ~Bt Q + + +Bt1n21Q!' , and using the trans-

pose of ~A+3! with n 2 1 in place of n,

Q 'Bt1n21 + + +Q
'Bt 5 Q '~MCt1n22

'
2 QCt1n23

' !21~MCt22
'

2 QCt23
' !~Q ' !21+
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Combining it with ~A+3!,

Bt QBt11 + + +QBt1n Q '+ + +Bt11 Q 'Bt

5 Q21~Ct22 M 2 Ct23 Q ' !~Ct1n21 M 2 Ct1n22 Q ' !21

3 Q '~MCt1n22
'

2 QCt1n23
' !21~MCt22

'
2 QCt23

' !~Q ' !21,

which upon substitution in ~A+1! gives

ct 5 (
n50

T2t

Q21~Ct22 M 2 Ct23 Q ' !~Ct1n21 M 2 Ct1n22 Q ' !21

3 Q '~MCt1n22
'

2 QCt1n23
' !21~MCt22

'
2 QCt23

' !~Q ' !21, (A.4)

as the required diagonal blocks+

Now we turn to the off-diagonal blocks of Ds
21~T !+ By symmetry of Ds

21~T !, we

only need the blocks Ct that are below any typical diagonal block ct + For this, we need

to calculate the complete first block-column of Ds
21~t !, which we denote by

Ds
21~t !FIk

0G [ FBt

Bt
G +

By the recursive partitioned inversion of Ds
21~t ! for successive t,

Bt 5 2Ds
21~t 2 1!FQ

0GBt 5 2FBt21

Bt21
GQBt 5 3

2Bt21 QBt

1Bt22 QBt21 QBt

2Bt23 QBt22 QBt21 QBt

I
4 +

Similarly,

CT 5 2Ds
21~T 2 1!FQ

0GcT 5 2FBT21

BT21
GQcT ,

and by repeated use of the partitioned inverse formula as we did earlier for ct ,

CT21 5 2Ds
21~T 2 2! 3

0 Q

0 0

I I
4F + +

+ cT21
GF0

Ik
G5 2Ds

21~T 2 2!FQcT21

0 G
5 2FBT22

BT22
GQcT21+

By induction,

Ct 5 2FBt21

Bt21
GQct 5 3

2Bt21 Qct

1Bt22 QBt21 Qct

2Bt23 QBt22 QBt21 Qct

I
4 + (A.5)
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Changing t a t 2 j and n a j 2 1 in ~A+3!, we have

Bt2j Q + + +Bt21 Q 5 Q21~Ct2j22 M 2 Ct2j23 Q ' !~Ct22 M 2 Ct23 Q ' !21Q, (A.6)

which together with ~A+4! and ~A+5! gives the stated result+ n

Proof of Theorem 3. The MGF of S [ ~S1,S2,S3,S4! [ ~XT ,(Xt21tt
' ,

(«t Xt21
' ,(Xt21 Xt21

' ! is

wT,m~u1,U2 ,U3 ,U4 !

[ EFexpSu1
' XT 1( tt'U2 Xt21 1( Xt21

' U3«t 1( Xt21
' U4 Xt21DG

5 ~2p!2~Tk02!EexpSu1
' xT 1( xt21

' U2
'tt 1( xt21

' U3«t

1( xt21
' U4 xt21 2

1

2
( «t

'«tD~dx! (A.7)

by using ~2! with V5 Ik and where the integral is over RTk with ~dx! being the exterior

product dx11dx12 + + +dxkT + Using the VAR formulation ~1! to substitute for «t , we can

decompose these sums into deterministic and stochastic components

( xt21
' U3«t 5( xt21

' U3~xt 2mtt 2 Axt21!,

2
1

2
( «t

'«t 5 2
1

2
( ~xt 2mtt 2 Axt21!

'~xt 2mtt 2 Axt21!

5 2
1

2
( tt'm'mtt

1 S( xt
'mtt 2

1

2
( xt

' xt 1( xt21
' A'Sxt 2mtt 2

1

2
Axt21DD

Substituting back into ~A+7!, rearranging, then using x0 5 0, these give

wT,m~u1,U2 ,U3 ,U4 !

5 ~2p!2~Tk02! expS2
1

2
( tt'm'mttD

3 EexpFu1
' xT 1( xt

'mtt 2
1

2
( xt

' xt

1( xt21
' S~U2

'
2 U3m2 A'm!tt 1 ~U3 1 A' !xt

1 SU4 2 U3 A 2
1

2
A'ADxt21DG~dx!+ (A.8)
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Define x[ vec~x1, + + + , xT !, and Ds as in ~4! with M,P,Q stated in the theorem+ Then, we

can rewrite ~A+8! as

wT,m~u1,U2 ,U3 ,U4 !

5 ~2p!2~Tk02!etrS2
1

2
m'm( tt tt'DEexpSz 'x 2

1

2
x 'Ds xD~dx!

5 6Ds 6
2~102!etrS2

1

2
m'm( tt tt'DexpS 1

2
z 'Ds

21zD
5 wT,0~0,0,U3 ,U4 !etrS2

1

2
m'm( tt tt'DexpS 1

2
z 'Ds

21zD, (A.9)

where we have completed the square and integrated x out and where wT,0~0,0,U3,U4! is

obtained by Lemma 1+ n

Proof of Corollary 4. From Theorem 3,

fH ~u1,U2 ,U3 ,U4 ! 5 lim
Tr`
wT,0S 1

!T
u1,

1

!T 3
GU2 ,

1

T
U3 ,

1

T 2
U4D

5 lim
Tr`
wT,0S0,0,

1

T
U3 ,

1

T 2
U4DexpS 1

2
z 'Ds

21zD+
The limit of the first component is available from Corollary 3+2 of Abadir and Larsson

~1996! as

lim
Tr`
wT,0S0,0,

1

T
U3 ,

1

T 2
U4D 5 etrF2

1

2
~H ' 1 U3 !G

3 *@Ik 0# expSFG Ik

F 0GDF Ik

2H ' 2 U3
G*2102

+

Define E [ G 2 ~10T !G~H 1 U3
'!+ Then for the second component, limTr`

exp~ 2
1
2z 'Ds

21z!, we note the reductions

M 5 Ik

P 5 2Ik 1
1

T
~H 1 H ' 1 U3 1 U3

'!1
1

T 2
F

2Q 5 Ik 1
1

T
~H 1 U3

'!

2Q21
5 Ik 2

1

T
~H 1 U3

'!1
1

T 2
~H 1 U3

'!2 1 OS 1

T 3D (A.10)

2PQ21
5 2Ik 1

1

T
E 1

1

T 2
F 1 OS 1

T 3D
Q 'Q21

5 Ik 1
1

T
E 1 OS 1

T 3D ,
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and dropping lower-order terms henceforth for clarity of exposition, ~5! gives

~21!q @Cq Cq21#F M

2Q 'G 5 @Ik 0#F2PQ21
2Ik

Q 'Q21 0
GqF M

2Q 'G
; @Ik 0# 32Ik 1

1

T
E 1

1

T 2
F 2Ik

Ik 1
1

T
E 0 4

q

3 F Ik

Ik 1
1

T
~H ' 1 U3 !

G
; @Ik 0# expS q

T FG Ik

F 0GDF Ik

2H ' 2 U3
G[ gS q

T D+
(A.11)

The latter step follows because, for any fixed ~2k! 3 ~2k! matrix J, and q [ N an

increasing function of T of maximal order O~T !,

lim
Tr`

SI2k 1
1

T
JDq

5 lim
Tr`

expFq logSI2k 1
1

T
JDG

5 lim
Tr`

expFqS 1

T
J1 OS 1

T 2DDG5 lim
Tr`

expF q

T
JG ,

so that we could use the same steps of Corollary 3+2 of Abadir and Larsson ~1996!+

Then, ~A+11! allows us to write the required blocks of Ds
21 of Lemma 2 for large T,

with t 5 1, + + + ,T and j 5 0, + + + , t 2 1, as

Ds
T2t111j,T2t11 ; gS t 2 j

T
D(

n50

T2tSgS t 1 n

T
D'gS t 1 n

T
DD21

gS t

T
D'+

We need the limit

lim
Tr`
z 'Ds

21z [ lim
Tr`
(
t51

T

(
j50

t21

~1 1 sgn~ j !!zT2t111j
' Ds

T2t111j,T2t11zT2t11

5 lim
Tr`
(
t51

T

(
j50

t21

~1 1 sgn~ j !!zT2t111j
' gS t 2 j

T
D

3 (
n50

T2tSgS t 1 n

T
D'gS t 1 n

T
DD21

gS t

T
D'zT2t11

5 lim
Tr`
(
t51

T

(
j50

t21

~1 1 sgn~ j !!zT2t111j
' gS t 2 j

T
D

3 (
n50

T2tSgS1 2
n

T
D'gS1 2

n

T
DD21

gS t

T
D'zT2t11, (A.12)
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where sgn~{! is the signum ~sign! function and we have reversed the sum in n by replac-

ing n a T 2 t 2 n+ In the context of this corollary,

zt
'
5

1

!T 3
tt11
' GU2 , t 5 1, + + + ,T 2 1,

zT
'

5
1

!T
u1
' ,

where tt11
' G is a normalized bounded matrix for any t,T+ For large T, the sums become

integrals, and we convert successively

t

T
a x [ ~0,1!,

j

T
a y [ ~0, x!,

n

T
a z [ ~0,1 2 x!,

and

tt11
' G ; F1,

t

T
, + + + ,S t

T
DpGa @1, x, + + + , x p # [ h~x!'+ (A.13)

With these normalizations, the quadratic terms in zt for t 5 1, + + + ,T 2 1 ~which are ob-

tained when j 5 0! vanish at a rate of T 21 + The remaining quadratic term is the one in

zT , which is obtained when j 5 0 and t 5 1 in ~A+12! and which we denote by ,1 in the

limit+ The cross-product terms are split in two, namely, when j 5 t 2 1 . 0 in ~A+12!

and we have products involving zT
' and zT2t11, whose limit we denote by ,2; and the

remaining terms whose limit we denote by ,3+ This gives

lim
Tr`
z 'Ds

21z 5 ,1 1 ,2 1 ,3 ,

where

,1 [ u1
'E

0

1

~g~1 2 z!'g~1 2 z!!21 dz u1,

,2 [ 2u1
'E

0

1E
0

12x

~g~1 2 z!'g~1 2 z!!21 dz g~x!'U2
'h~1 2 x!dx,

,3 [ 2E
0

1E
0

x

h~1 2 x 1 y!'U2 g~x 2 y!dy

3 E
0

12x

~g~1 2 z!'g~1 2 z!!21 dz g~x!'U2
'h~1 2 x!dx+ (A.14)
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The integral in z is the least tractable of the three, because of the inversion of g~{!+ It is

therefore beneficial to reverse the order of integration in ,2 to

,2 5 2u1
'E

0

1

~g~1 2 z!'g~1 2 z!!21E
0

12z

g~x!'U2
'h~1 2 x!dxdz+ (A.15)

For ,3, a change of variable of y a x 2 y, followed by a change of order of integration

~x and z!, gives

,3 5 2E
0

1E
0

x

h~1 2 y!'U2 g~ y!dyE
0

12x

~g~1 2 z!'g~1 2 z!!21 dz g~x!'U2
'h~1 2 x!dx

5 2E
0

1E
0

12zE
0

x

h~1 2 y!'U2 g~ y!dy~g~1 2 z!'g~1 2 z!!21g~x!'U2
'h~1 2 x!dxdz+

(A.16)

By symmetry of this particular integrand in x and y, we have here

E
0

12zE
0

x

+ + +dydx 5E
0

12zE
0

y

+ + +dxdy,

whereas we know that, from standard changing of the order of double integrals,

E
0

12zE
0

x

+ + +dydx [ E
0

12zE
y

12z

+ + +dxdy

for any integrand; so that

2E
0

12zE
0

x

+ + +dydx 5E
0

12zE
0

12z

+ + +dxdy

and

,3 5E
0

1SE
0

12z

g~x!'U2
'h~1 2 x!dxD'~g~1 2 z!'g~1 2 z!!21E

0

12z

g~x!'U2
'h~1 2 x!dxdz+

(A.17)

We now work out the row vector

f ~z!' [ E
0

12z

h~1 2 x!'U2 g~x!dx

for use in ~A+15! and ~A+17!+
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From the definitions of g~{! and h~{! in ~A+11! and ~A+13!,

f ~z!' 5E
0

12z

@@1, ~1 2 x!, + + + , ~1 2 x! p #U2 0' # expSxFG Ik

F 0GDdxF Ik

2H ' 2 U3
G

5E
21

2z

@@1, ~2x!, + + + , ~2x! p #U2 0' # expSxFG Ik

F 0GDdx

3 expSFG Ik

F 0GDF Ik

2H ' 2 U3
G ,

where the latter equality follows from xa x 1 1 and from the ~2k!3 ~2k! matrix com-

muting with itself+ Notice that the first matrix is now a row vector and we can write

f ~z!' 5 (
i50

p

@ui1 J uik , 0'#E
21

2z

~2x! i expSxFG Ik

F 0GDdx

3 expSFG Ik

F 0GDF Ik

2H ' 2 U3
G

5 (
i50

p

~21! i @ui1 + + + uik , 0' # expS~x 1 1!FG Ik

F 0GD(j50

i

~2i !j x i2j*
21

2z

3 FG Ik

F 0G2j21F Ik

2H ' 2 U3
G

5 (
i50

p

@ui1 + + + uik , 0' #(
j50

i

~2i !j ~21! jSz i2j expS~1 2 z!FG Ik

F 0GD2 I2kD
3 FG Ik

F 0G2j21F Ik

2H ' 2 U3
G ,

which is the required result+ n

Proof 1 of Corollary 5. To evaluate ,1, via ~7! and because

d

dz

sinh~~1 2 z!!f !

g~1 2 z!
5 2

!f

g~1 2 z!2
, (A.18)

we simply have

,1 5 u1
2E

0

1 dz

g~1 2 z!2
5 u1

2
sinh!f

g~1!!f
+ (A.19)

As for ,2, we retrace the steps of the proof of the previous corollary and observe that

U2
'h~1 2 x! 5 (

i50

p

ui1~1 2 x! i (A.20)
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to find

,2 5 2u1(
i50

p

ui1E
0

1E
0

12x dz

g~1 2 z!2
g~x!~1 2 x! i dx+ (A.21)

Here, via ~A+18! and using the identity

sinh a cosh b 2 cosh a sinh b 5 sinh~a 2 b!, (A.22)

we find

,2 5
2u1

!f
(
i50

p

ui1E
0

1S sinh!f

g~1!
2

sinh~x!f !

g~x!
Dg~x!~1 2 x! i dx (A.23)

5
2u1

g~1!!f
(
i50

p

ui1E
0

1

sinh~~1 2 x!!f !~1 2 x! i dx

5
2u1

g~1!!f
(
i50

p

ui1E
0

1

x i sinh~x!f !dx+

Further, successive integration by parts yields

E
0

y

x i sinh~x!f !dx 5 2
i!~1 1 ~21! i !

2~!f ! i11 1
y i

2!f
(
j50

i ~2i !j

~ y!f ! j
~e y!f

1 ~21! je2y!f !,

(A.24)

giving the desired expression for ,2 by letting y 5 1+

Looking at ,3, we use the proof of the preceding corollary to obtain

,3 5
1

2g~1! f (i50

p

(
j50

p

ui1 uj1gij , (A.25)

where, by ~A+20! and ~A+16!,

gij [ 4g~1! fE
0

1E
0

x

~1 2 y! jg~ y!dyE
0

12x dz

g~1 2 z!2
g~x!~1 2 x! i dx+

Now, as in ~A+21!–~A+23! again,

E
0

12x dz

g~1 2 z!2
g~x! 5

1

g~1!!f
sinh~~1 2 x!!f !,

and

gij 5 4!f E
0

1E
0

x

~1 2 y! jg~ y!dy sinh~~1 2 x!!f !~1 2 x! i dx

5 4!f E
0

1E
0

12x

~1 2 y! jg~ y!dy sinh~x!f !x i dx

5 4!f E
0

1

~1 2 y! jg~ y!E
0

12y

sinh~x!f !x i dxdy

5 4!f E
0

1

y jg~1 2 y!E
0

y

x i sinh~x!f !dxdy, (A.26)
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by x a 1 2 x, changing the integration order and y a 1 2 y, respectively+ The inner

integral is given by ~A+24!, so that

gij 5 22E
0

1

y jg~1 2 y!S i!~1 1 ~21! i !

~!f ! i
2 (

m50

i ~2i !m y i2m

~!f !m
~e y!f

1 ~21!me2y!f !Ddy

5 2E
0

1

y j~~1 2 v!e ~12y!!f
1 ~1 1 v!e2~12y!!f !

3 F i!~1 1 ~21! i !

~!f ! i
2 (

m50

i ~2i !m

~!f !m
y i2m~e y!f

1 ~21!me2y!f !Gdy

5 2
i!~1 1 ~21! i !

~!f ! i F~1 2 v!e!f E
0

1

y je2y!f dy 1 ~1 1 v!e2!f E
0

1

y je y!f dyG
1 (

m50

i ~2i !m

~!f !m F~~1 2 v!e!f
1 ~21!m~1 1 v!e2!f !E

0

1

y j1i2m dy

1 ~21!m~1 2 v!e!f E
0

1

y j1i2me22y!f dy

1 ~1 1 v!e2!f E
0

1

y j1i2me2y!f dyG
by the definition of g~{! in ~7!+ Using

E
0

1

yqeay dy 5
q!

~2a!q11
1 ea (

n50

q ~2q!n

an11

where q [ N ø $0% gives the stated result+ n

Proof 2 of Corollary 5. A more conventional proof may be obtained from exploiting

Girsanov’s theorem as in Perron ~1991, Theorem 2! or Tanaka ~1996, Ch+ 4!+

We want to calculate the MGF of

~S1,S2
' ,S3 ,S4 ! [ SJh~1!,E

0

1

~1, r, + + + , r p !Jh~r!dr,E
0

1

Jh~r!dW~r!,E
0

1

Jh~r!
2 drD,

which we define as

fh~u1,u2 ,u3 ,u4 ! [ E$exp~u1 S1 1 u2
' S2 1 u3 S3 1 u4 S4 !%, (A.27)

where u1,u3,u4 are scalars and u2
' [ ~u20, + + + ,u2p! is a ~ p 1 1!-dimensional vector+ At

first, apply Itô’s formula to write

d~Jh~t !
2 ! 5 2Jh~t !dJh~t !1 dt 5 2hJh~t !

2 dt 1 2Jh~t !dW~t !1 dt,

so that, by integrating and solving,

E
0

1

Jh~t !dW~t ! 5
1

2
$Jh~1!

2
2 1%2 hE

0

1

Jh~t !
2 dt
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and ~A+27! may be reformulated as

fh~u1,u2 ,u3 ,u4 ! 5 expS2
u3

2 DEHexpSu1 Jh~1!1 u2
'E

0

1

~1, t, + + + , t p !'Jh~t !dt

1
u3

2
Jh~1!

2
1 ~u4 2 u3 h!E

0

1

Jh~t !
2 dtDJ +

Now, following Tanaka ~1996, p+ 110!, we define the auxiliary process Y~t ! through

dY~t ! 5 2bY~t !dt 1 dW~t !, Y~0!5 0+

Putting X~t ! 5 Jh~t ! ~with a 5 2h in Tanaka’s notation! and letting mJ and mY be the

probability measures governing Jh and Y, respectively, we get

dmJ

dmY

~Y ! 5 expF~h 1 b!E
0

1

Y~t !dY~t !2
h 2

2 b2

2
E

0

1

Y~t !2 dtG
5 expF2

h 1 b

2
1

h 1 b

2
Y~1!2 2

h 2
2 b2

2
E

0

1

Y~t !2 dtG ,
the second line following from Itô’s formula+ Now, as in Tanaka ~1996, p+ 111!,

fh~u1,u2 ,u3 ,u4 !

5 expS2
u3

2 DEHexpSu1Y~1!1 u2
'E

0

1

~1, t, + + + , t p !'Y~t !dt

1
u3

2
Y~1!2 1 ~u4 2 u3 h!E

0

1

Y~t !2 dtD dmJ

dmY

~Y !J
5 exp~2g!EHexpSu1Y~1!1 u2

'E
0

1

~1, t, + + + , t p !'Y~t !dt 1 gY~1!2DJ (A.28)

by choosing

b [ !h 2
1 2hu3 2 2u4

and defining

g [
u3 1 h 1 b

2
+

To go further, the idea is to define a process Z~t ! 5 Y~t ! 2 ut Y~1!, where ut is a con-

stant, chosen in such a way that Z~t ! becomes independent of Y~1!+ But as is easily

shown, we have that for 0 , s # t # 1,

E $Y~s!Y~t !% 5 e2bt
sinh~bs!

b
, (A.29)
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and so

E $Y~1!Z~t !% 5
e2b

b
$sinh~bt !2 ut sinh b%,

implying the choice ~uncorrelatedness is equivalent to independence for normal processes!

ut 5
sinh~bt !

sinh b
+

Utilizing this, we may rewrite ~A+28! as

fh~u1,u2 ,u3 ,u4 !

5 exp~2g!EHexpSu1Y~1!1 u2
'E

0

1

~1, t, + + + , t p !'~Z~t !1 ut Y~1!!dt 1 gY~1!2DJ
5 exp~2g!EHexpFSu1 1 ut u2

'E
0

1

~1, t, + + + , t p !' dtDY~1!1 gY~1!2GJ
3 EHexpSu2

'E
0

1

~1, t, + + + , t p !'Z~t !dtDJ
5 exp~2g!E$exp~hY~1!1 gY~1!2 !%EHexpSu2

'E
0

1

~1, t, + + + , t p !'Z~t !dtDJ ,
(A.30)

where

h [ u1 1
1

sinh b (i50

p

u2iE
0

1

t i sinh~bt !dt+ (A.31)

But Y~1! is normal with mean zero and, from ~A+29!, variance s2 [ ~1 2 e22b!0~2b!+

Hence we have

E$exp~hY~1!1 gY~1!2 !% 5
1

!2ps2
E

2`

`

expShy 2
~1 2 2s2g!

2s2
y2Ddy

5
1

!1 2 2s2g
expS h2s2

2~1 2 2s2g!
D+ (A.32)

Moreover, *0
1
~1, t, + + + , t p !'Z~t !dt is ~ p 1 1!-variate normal with mean zero and covari-

ance matrix S with typical element sij , i, j 5 0,1, + + + , p where

sij 5E
0

1E
0

1

t is jE$Z~t !Z~s!%dtds+
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Here, via ~A+29!, we have for 0 , s # t # 1,

E$Z~t !Z~s!% 5 E$@Y~t !2 ut Y~1!# @Y~s!2 usY~1!#%

5 e2bt
sinh~bs!

b
2 e2b

sinh~bs!

sinh b

sinh~bt !

b
2 e2b

sinh~bt !

sinh b

sinh~bs!

b

1 e2b
sinh~bt !

sinh b

sinh~bs!

sinh b

sinh b

b

5 e2bt
sinh~bs!

b
2 e2b

sinh~bs!

sinh b

sinh~bt !

b

5
sinh~bs!sinh~b~1 2 t !!

b sinh b
,

and so

sij 5
1

b sinh b FE0

1

t i sinh~b~1 2 t !!E
0

t

s j sinh~bs!dsdt

1 E
0

1

s j sinh~b~1 2 s!!E
0

s

t i sinh~bt !dtdsG + (A.33)

Now, because

EHexpSu2E
0

1

~1, t, + + + , t p !'Z~t !dtDJ 5 expS 1

2
u2
' Su2D,

~A+30! and ~A+32! yield

fh~u1,u2 ,u3 ,u4 ! 5
1

!1 2 2s2g
expF2g1

h2s2

2~1 2 2s2g!
2

1

2
u2
' Su2G + (A.34)

To see how ~A+34! corresponds to the results of Corollary 5, observe that b 5 !f ,

and so

g~1! 5 cosh b2
h 1 u3

b
sinh b,

and we have

s2
5

sinh b

be b
, (A.35)

so that

1 2 2s2g 5 1 2 2
sinh b

be b

h 1 u3 1 b

2
5 1 2

sinh b

e b
2

h 1 u3

b

sinh b

e b

5 e2bg~1!+ (A.36)

But

e2g
5 e2@~h1u3 !0b#~e2b !102,
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so that

1

!1 2 2s2g
e2g

5
1

!g~1!
e2@~h1u3 !0b#,

which is the last factor of the result of Corollary 4+ Furthermore, by ~A+31!,

h2
5 u1

2
1

2u1

sinh b (i50

p

u2iE
0

1

t i sinh~bt !dt

1
1

sinh2b (i50

p

(
j50

p

u2i u2jE
0

1E
0

1

t is j sinh~bt !sinh~bs!dsdt, (A.37)

so the contribution of ~A+34! to the ,1 coefficient is, by ~A+35! and ~A+36!,

s2

1 2 2s2g
5

sinh b

bg~1!
, (A.38)

which is in accord with Corollary 5+ Moreover, the u1u2i coefficient is, by ~A+37! and

~A+38!,

2

bg~1!
E

0

1

t i sinh~bt !dt,

which is in accord with ~A+23! of the first proof of Corollary 5+ Similarly, the contribu-

tion to the u2i u2j coefficient from h2s20~1 2 2s 2g! is

aij [
1

b sinh bg~1!
E

0

1E
0

1

t is j sinh~bt !sinh~bs!dsdt+

In view of ~A+26!, we now need to prove that, for each ~i, j !,

aij 1 aji 1 sij 1 sji 5

gij 1 gji

2b2g~1!
5

2

bg~1!
E

0

1E
0

t

~t is j
1 t js i !g~1 2 t !sinh~bs!dsdt+

(A.39)

To this end, we see from ~A+33! that

b sinh b~sij 1 sji ! 5E
0

1E
0

t

~t is j
1 t js i !sinh~b~1 2 t !!sinh~bs!dsdt

1 E
0

1E
0

s

~t is j
1 t js i !sinh~b~1 2 s!!sinh~bt !dtds

5 2E
0

1E
0

t

~t is j
1 t js i !sinh~b~1 2 t !!sinh~bs!dsdt,
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where the second step follows by reversing the roles of t and s in the second integral of

the first step+ Similarly,

b sinh b~aij 1 aji ! 5
1

g~1!
E

0

1E
0

1

~t is j
1 t js i !sinh~bt !sinh~bs!dsdt

5
2

g~1!
E

0

1E
0

t

~t is j
1 t js i !sinh~bt !sinh~bs!dsdt,

the second step following by symmetry+ Hence, ~A+39! follows if we can prove

sinh~bt !sinh~bs!1 g~1!sinh~b~1 2 t !!sinh~bs! 5 g~1 2 t !sinh b sinh~bs!;

i+e+, crossing out sinh~bs! and using the definition of g,

sinh~bt !1 Scosh b2
h 1 u3

b
sinh bDsinh~b~1 2 t !!

5 Fcosh~b~1 2 t !!2
h 1 u3

b
sinh~b~1 2 t !!Gsinh b,

which is equivalent to

sinh~bt !1 cosh b sinh~b~1 2 t !! 5 cosh~b~1 2 t !!sinh b,

which is identically true because, for any a and b,

sinh~a 2 b!5 sinh a cosh b 2 cosh a sinh b+

Hence, ~A+39! is proved+ n
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