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TO THE EDITOR:

Hematopoietic stem cell mobilization for allogeneic stem cell
transplantation by motixafortide, a novel CXCR4 inhibitor

Zachary D. Crees,1,* Michael P. Rettig,1,* Asad Bashey,2 Steven M. Devine,3 Samantha Jaglowski,4 Fei Wan,1 Amy Zhou,1

Melinda Harding,1 Abi Vainstein-Haras,5 Ella Sorani,5 Irit Gliko-Kabir,5 Brenda J. Grossman,6 Peter Westervelt,1 John F. DiPersio,1 and
Geoffrey L. Uy1

1Division of Oncology, Washington University School of Medicine, St. Louis, MO; 2Blood and Marrow Transplant Program, Northside Hospital, Atlanta, GA; 3Center for
International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN; 4Division of Hematology, The Ohio State University Comprehensive
Cancer Center, Columbus, OH; 5BioLineRx Ltd, Modi’in, Israel; and 6Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO

Granulocyte colony-stimulating factor (G-CSF) is the most common agent used for mobilizing
peripheral blood (PB) hematopoietic stem and progenitor cells (HSPCs) for allogeneic hematopoietic
cell transplantation (allo-HCT). However, G-CSF mobilization often requires multiple leukapheresis
procedures (LPs) and injections.1,2 G-CSF is also associated with bone pain, rare but life-threatening
splenic rupture, and vaso-occlusive complications in patients with sickle-cell disease.1,3-5

CXCR4 and SDF-1/CXCL12 interactions are crucial for HSPC retention within the bone marrow
niche.6-8 Plerixafor (AMD3100), is a low-affinity (Ki: 652 nM), short-acting CXCR4 inhibitor (CXCR4i)
previously shown to mobilize PB HSPCs for HCT.9-11 In these studies, up to 34% of allogeneic donors
(allo-donors) mobilized with single-agent plerixafor failed to collect >2 × 106 CD34+ cells per kg with 1
injection and 1 LP; whereas 10% required ≥3 injections, ≥3 LPs, and G-CSF rescue.11-14 Therefore,
development of rapid and reliable HSPC mobilization regimens remains an unmet need.

Motixafortide (BL-8040) is a novel 14-residue, cyclic, synthetic peptide CXCR4i with high affinity (Ki
0.32 nM) and slow receptor dissociation rate, previously shown to induce rapid (onset, 0.5-2 hours) and
sustained (duration, >48 hours) HSPC mobilization.15 To our knowledge, the authors report the first
trial evaluating motixafortide mobilization of allo-donors for HCT.

A multicenter, open-label, single-arm, 2-part, phase 2 study (NCT02639559) was conducted with
institutional review board approval and written informed consent from all participants. Donors were
aged between 18 and 70 years, with an Eastern Cooperative Oncology Group performance status from
0 to 1. Recipients were aged between 18 and 75 years, with and Eastern Cooperative Oncology Group
performance status from 0 to 2, undergoing allo-HCT for hematologic malignancy (Table 1). Part-1
included HLA-identical (5/6 or 6/6 HLA-matched) sibling donors. Part-2 included HLA–matched sib-
ling or haploidentical donors. Motixafortide was administered via subcutaneous injection at 1.0 mg/kg in
part-1 and 1.25 mg/kg in part-2. The rationale for motixafortide dosing strategy in this study was based
on data from 3 prior clinical trials (NCT01010880, NCT02073019, and NCT01838395), in which
motixafortide alone or in combination with other mobilizing agents (chemotherapy ± G-CSF) was
administered at doses of 0.5 or 1.5 mg/kg in healthy volunteers, patients with multiple myeloma, and
patients with acute myeloid leukemia with an acceptable toxicity profile and a dose-dependent increase
in CD34+ cell mobilization at the 1.0 and 1.25 mg/kg dose range. The primary end point was efficacy of
1 motixafortide injection to mobilize ≥2 × 106 CD34+ cells per kg (recipient weight) in ≤2 LPs. First LP
(≥3 blood volumes) began from 180 to 270 minutes after motixafortide administration. Second LP
(if needed) began 24 hours after motixafortide administration. If ≥2.0 × 106 CD34+ cells per kg were
collected within 2 LPs, mobilization was complete (supplemental Figure 1). Myeloablative and reduced
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intensity conditioning regimens were permitted. Graft-versus-host
disease (GVHD) prophylaxis and supportive care were per inves-
tigator discretion. Adverse events (AEs) were graded per National
Cancer Institute-Common Terminology Criteria for Adverse Events
version 4.03, with all grades from 3 to 5 nonhematologic AEs
collected from conditioning until day 100, relapse, or subsequent
treatment. Neutrophil or platelet engraftment was defined per
Center for International Blood and Marrow Transplant Research
criteria. GVHD was graded per consensus criteria. The cumulative
incidence of nonrelapse mortality and relapse were analyzed as
competing risks. Correlative studies including pharmacokinetic
analyses, CD34+ enumeration and T-cell immunophenotyping were
performed per the protocol (supplemental Protocol). Multicolor
fluorescence-activated cell sorting was performed as previously
described11,16,17 (supplemental Table 1).

Twenty-five donor-recipient pairs were enrolled (n = 24 donors
evaluable for primary end point; n = 22 recipients with completed
allo-HCT). Median donor age was 55 years (range, 20-69 years),
with 18 HLA-matched siblings and 7 haploidentical donors. Median
recipient age was 58 years (range, 26-71 years; Table 1). In part-1,
13 evaluable allo-donors received motixafortide (1.0 mg/kg), with
11 of 13 (85%) collecting ≥2 × 106 CD34+ cells per kg in ≤2 LPs
(median, 5.18 × 106) and 8 of 11 (73%) doing so in 1 LP (median,
2.32 × 106; Figure 1A; supplemental Table 2). In part-2, 11 allo-
donors received motixafortide (1.25 mg/kg), with 11 of 11
(100%) collecting ≥2 × 106 CD34+ cells per kg in ≤2 LPs
(median, 6.07 × 106) and 8 of 11 (73%) doing so in 1 LP (median,
3.28 × 106) (Figure 1B). Motixafortide was well tolerated.

Twenty-five of 25 donors reported at least 1 AE, with the most
common nonhematologic AEs being transient grade 1 injection site
reactions (20/25), including pain, erythema, and hives. Clinically
significant cytopenias in donors were not observed at 7 or 30 days
after collection; with no serious AEs, long-term treatment-related
AEs, or treatment-related deaths observed.

PB CD34+ cell counts from 24 participants (n = 14, 1.0 mg/kg; n =
10, 1.25 mg/kg) reached maximal levels at ~24 hours after
motixafortide administration (supplemental Figure 2). The increase
in absolute PB CD34+ cell counts was similar: average (± standard
deviation) of 26.9 ± 13.1 cells per μL with motixafortide 1.0 mg/kg
and 25.4 ± 13.8 cells per μL with motixafortide 1.25 mg/kg.

Twenty-two patients underwent allo-HCT with motixafortide-
mobilized PB HSPCs. Median time-to-neutrophil engraftment was
13 days (range, 11-26 days). Time-to-neutrophil engraftment was
prolonged in haploidentical transplants compared with that in
matched-sibling donor transplants (median, 20 vs 13 days; P =
.02). Median time-to-platelet engraftment was 18 days (range, 15-
41 days).

Based on Minnesota grading criteria, cumulative incidence of
grade 2 or 4 acute GVHD (aGVHD) at 180 days after HCT was
32% (7 of 22). Cumulative incidence of chronic GVHD (cGVHD) at
2 years was 60%, with a moderate cGVHD rate of 39% (7 of 18)
and 1 case of severe cGVHD. Cumulative incidence of relapse or
progression was 22.2% (95% confidence interval, 0.079-0.52) at
1 year and 27.3% (95% confidence interval, 0.107-0.470) at
2 years. Median overall survival was not reached, with 71% overall
survival at 1 year.

CXCR4 expression on CD34+ HSPCs from the day 1 apheresis
product were assessed using 2 antibodies to CD184 (CXCR4),
clone 12G5, which competes with motixafortide for CXCR4
binding, and clone 1D9, which does not compete with motixafor-
tide for CXCR4 binding.18,19 Significantly reduced 12G5 binding
to HSPCs mobilized with motixafortide was observed while 1D9
remained detectable, consistent with extended CXCR4 occupancy
and CXCR4 surface expression by motixafortide (Figure 1C).
Immunophenotyping via multicolor fluorescence-activated cell
sorting of CD34+ HSPCs from the day 1 apheresis product
demonstrated 3 distinct HSPC populations, including (i) hemato-
poietic stem cells and common myeloid progenitors (HSCs/
CMPs), defined by CD34+CD45RA–CD123lo comprising 47.9%
of CD34+ HSPCs; (ii) granulocytic myeloid progenitors and com-
mon lymphoid progenitors, defined by CD34+CD45RA+CD123lo

comprising 26.7% of CD34+ HSPCs; and (iii) lineage-committed
plasmacytoid dendritic cell precursors (pre-pDCs), defined by
CD34+CD45RA+CD123+ comprising 23.1% of CD34+ HSPCs
(Figure 1D). Motixafortide induced pan-mobilization of all major
myeloid and lymphoid subsets in PB, with maximum relative
changes in pDCs, B cells, basophils, myeloid DCs, CD8 T cells,
and classical monocytes (Figure 1E; subsets defined in
supplemental Table 3). In general, magnitude of mobilization of
each subset correlated with baseline CXCR4 expression level
(Figure 1F; R2 = 0.4; P = .02). Although CD4 and CD8 T-cell
subsets were pan-mobilized, motixafortide preferentially mobilized
naïve and central memory CD8 T cells (Figure 1G; subsets defined
in supplemental Table 4). Naïve CD8 and CD4 T cells expressed
the greatest amount of baseline CXCR4 (Figure 1H).

Table 1. Patient characteristics at baseline

Donors (n = 25)

Age, median in y (range) 55 (20-69)

Sex, male, n (%) 18 (72)

HLA-match, n (%)

Matched sibling 18 (72)

Haploidentical 7 (28)

Recipients (n = 25)

Age, median in y (%) 58 (26-71)

Sex, male, n (%) 15 (60)

Disease, n (%)

AML 16 (64)

ALL 4 (16)

MDS 3 (12)

MPN 1 (4)

Hodgkin lymphoma 1 (4)

Conditioning regimen, n (%)

Fludarabine + busulfan 2 (RIC) or busulfan 4 (MAC) 11 (50)

Fludarabine/cytoxan/TBI 7 (32)

Busulfan/cytoxan 3 (14)

cytoxan/TBI 1 (5)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; MAC, myeloablative
conditioning; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; RIC,
reduced intensity conditioning; TBI, total body irradiation.
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In this study, a single injection of motixafortide resulted in a 22 of 24
(92%) allo-donors collecting ≥2.0 × 106 CD34+ cells per kg within 2
LPs, including 11 of 11 (100%) receiving motixafortide at 1.25 mg/kg.
In comparison, 10 of 29 (34%) of plerixafor-mobilized donors required
≥2 plerixafor injections and ≥2 LPs (goal, ≥2 × 106 CD34+ per kg),
with 3 of 29 (10%) requiring G-CSF rescue after 2 LPs.1,11 However,
multiple G-CSF injections (≥5) and LPs may yield higher total HSPCs
than a single injection of motixafortide or plerixafor.14 HSPC immu-
nophenotyping in this study revealed CXCR4 inhibition with motix-
afortide mobilized a large population of multipotent HSCs and a
distinct population of pre-pDCs, a pattern similarly observed in prior
studies with plerixafor when compared with G-CSF–mobilized allo-
grafts.11 In addition, recent data with extended immunophenotyping of
CD34+ HSPCs demonstrated that long-acting CXCR4 inhibition with
motixafortide + G-CSF, as compared with plerixafor + G-CSF,
resulted in the mobilization of a significantly higher number of com-
bined HSCs, multipotent progenitors, and CMPs.20-22 Interestingly,
gene expression profiling via single-cell RNA-sequencing also
revealed that motixafortide-mobilized CD34+ HSPCs may be more
transcriptionally primitive with enhanced repopulating activity versus
G-CSF and with uniquely upregulated gene expression profiles
associated with enhanced self-renewal, quiescence, and regeneration
versus both plerixafor and G-CSF.20-22 Assessment of immune cell
subsets mobilized with motixafortide in the allo-graft demonstrated a
pattern similar to that previously observed with CXCR4 inhibition with
plerixafor, in which increases in lymphocyte subsets were observed
relative to G-CSF mobilization (supplemental Table 5).12 Extended
T-cell immunophenotyping in PB also demonstrated motixafortide
induced pan-mobilization of CD4 and CD8 T cells, with preferential
mobilization of naïve and central memory CD8 T cells. Of clinical
relevance, specific T-cell immunoreceptor with Ig and ITIM domains
(TIGIT) positive T-cell subsets have been associated with impaired
graft-versus-leukemia and increased risk of relapse after allo-HCT,
whereas increased effector memory and central memory T cells
along with decreased naïve T cells are associated with lower GVHD
risk.23,24 In this study, the observed GVHD rates of 32% grade 2 or 4
aGVHD and 60% cumulative cGVHD at 2 years appear comparable
with that of historical controls reported in the literature using alter-
native mobilization regimens.11-13 In studies evaluating plerixafor as a
single-agent mobilizing regimen in allo-donors, rates of grade 2 or 4
aGVHD ranged from 18% to 53%; whereas the cumulative rates of
cGVHD at 1 year of follow-up ranged from 33% to 52%.11-13 Simi-
larly, a previously performed analysis using an institutional cohort of
patients undergoing allo-HCT with G-CSF–mobilized CD34+ cells
treated with similar conditioning, and GVHD prophylaxis from 2009 to
2011 demonstrated GVHD rates of 68% grade 2 or 4 aGVHD and
28% cumulative cGVHD at 100-days after allo-HCT.11 However,
these patient populations were heterogeneous with regard to disease
type, donor type, conditioning regimen, and GVHD prophylaxis, thus

limiting definitive conclusions regarding post-allo-HCT outcomes on
the basis of these studies alone. Rather, these findings highlight the
potential effectiveness of single-agent motixafortide as a rapid mobi-
lizing agent for allo-donors while raising important questions regarding
how specific HSPC and T-cell subsets mobilized for allo-HCT by
different mobilization regimens may affect post-HCT immune recon-
stitution, graft-versus-leukemia, and GVHD. As HSPC mobilization
regimens are developed, future studies systematically comparing
HSPC and T-cell graft characteristics with relevant clinical outcomes
are needed.
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Figure 1. Total HSPC yields, with extended CD34+ HSPC and T-cell immunophenotyping. (A) Total CD34+ HSPC yields in HLA–matched sibling donors mobilized with 1

injection of motixafortide (1.0 mg/kg) and up to 2 LPs. (B) Total CD34+ HSPC yields in HLA–matched sibling donors or haploidentical donors mobilized with 1 injection of

motixafortide (1.25 mg/kg) and up to 2 LPs. (C) Inhibition of anti-CXCR4 monoclonal antibody clone 12G5 binding to motixafortide-mobilized CD34+ HSPCs. CXCR4 expression

on CD34+ HSPCs obtained from the day 1 apheresis product was determined via flow cytometery, using anti-CXCR4 clones 12G5 and 1D9. (D) Extended HSPC

immunophenotyping of CD34+ purified cells from apheresis product mobilized with motixafortide with relative proportions of HSC/CMPs, granulocytic myeloid progenitors and

common lymphoid progenitors, and pre-pDCs. (E,G) Pan-mobilization of myeloid and lymphoid subsets by using motixafortide. The PB concentration of each subset was

calculated before and 3 hours after BL-804 treatment (before initiation of LP) and relative change calculated. (F,H) The expression of CXCR4 on each subset at baseline was

determined via flow cytometry, using anti-CXCR4 clone 12G5.
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