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A B S T R A C T   

Local mechanical tissue properties are a critical regulator of cell function in the central nervous system (CNS) 
during development and disorder. However, we still don’t fully understand how the mechanical properties of 
individual tissue constituents, such as cell nuclei or myelin, determine tissue mechanics. Here we developed a 
model predicting local tissue mechanics, which induces non-affine deformations of the tissue components. Using 
the mouse hippocampus and cerebellum as model systems, we show that considering individual tissue compo-
nents alone, as identified by immunohistochemistry, is not sufficient to reproduce the local mechanical prop-
erties of CNS tissue. Our results suggest that brain tissue shows a universal response to applied forces that 
depends not only on the amount and stiffness of the individual tissue constituents but also on the way how they 
assemble. Our model may unify current incongruences between the mechanics of soft biological tissues and the 
underlying constituents and facilitate the design of better biomedical materials and engineered tissues. To this 
end, we provide a freely-available platform to predict local tissue elasticity upon providing immunohisto-
chemistry images and stiffness values for the constituents of the tissue.   

1. Introduction 

Many biological processes in the brain involve mechanical in-
teractions of cells with their surrounding tissue [1]. Cells exert forces on 
their environment and probe and respond to its local mechanical 
properties. Accordingly, CNS tissue mechanics is an important regulator 
of cell function during development [2,3] and disease [4]. During 
normal ageing and pathological processes, CNS tissue constituents 
change, including the extracellular matrix (ECM), myelin sheets around 
neuronal axons, and the number of cells [5–7]. These structural alter-
ations are accompanied by changes in tissue mechanics [8,5]. 

During the last decades, extensive experimental tests have been 
performed to determine mechanical properties of the brain (see, among 
many others, [9–19]). Nowadays, there is a clear consensus that the 
brain exhibits time-dependent behavior [14,19], both at small and large 

strains, and that elastic behavior dominates viscoelasticity at the cell 
and tissue level [20]. The elastic modulus of CNS tissue, a measure of its 
elastic stiffness, ranges from, approximately, 0.1–2 kPa [11,13,19]. This 
range of stiffness has been observed across species and different regions 
of the CNS [16–18]. However, while our knowledge of how brain tissue 
behaves mechanically at the tissue scale has progressed substantially, 
how individual brain components contribute to macroscopic brain tissue 
mechanics is still poorly understood. 

Most current mechanical models of brain tissue (see Refs. [19,21]) 
homogenize the behavior of the tissue constituents into a single 
constitutive law without further consideration of what components are 
present or how each of them is organized within specific brain regions 
[9–11,13,19]. Although there has been a large amount of research 
devoted to understanding the brain’s composition and architecture, this 
information has so far only sparsely found its way into advanced 
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mechanical models of the brain [22–24]. However, like in other bio-
logical tissues composed of networks of cells and ECM, the arrangement 
and stiffness of the underlying brain constituents should determine the 
mechanics of the organ as a whole. 

The definition of a Strain Energy Density Function (SEDF) has been 
the standard approach in the characterization of soft biological tissues 
[25]. Within this thermodynamic framework, the contribution of each 
individual tissue constituent is gathered by an additive decomposition of 
a SEDF per constituent. Naturally, the additive decomposition of the 
SEDF imposes affine deformations in the tissue constituents. In other 
words, it implies that the tissue constituents are arranged in parallel to 
each other. However, such approach may not accurately reproduce how 
the tissue components actually assemble. 

CNS tissue is mainly built of two cell types, neurons and glial cells. 
Fig. 1a presents an overview about the main components of the brain and 
their distribution in the tissue. Pyramidal and granular neurons represent 
90% of all neurons in the hippocampus, and the remaining 10% mainly 
consist of GABAergic interneurons [26]. Some neuronal axons are 
wrapped by oligodendrocytes, a type of glial cells. The resulting myelin 
sheath surrounds axons to improve electrical conductivity, and it is 
characterized by a comparatively high stiffness [27–29]. In addition to 
oligodendrocytes, other types of glial cells are found in CNS tissue, with 
astrocytes being the most abundant glial cells in mammals. 

The ECM [30] provides adhesion sites for cells to organize into 
distinct regions. However, unlike in other biological tissues, the ECM of 
the CNS lacks an abundant collagen network, which is a main deter-
minant of tissue stiffness, and is instead mostly composed of hyaluronic 
acid (HA) and proteoglycans [31]. Morphologically, the CNS ECM is 
divided into three main structures that create a scaffold with mechanical 
and functional roles: perineuronal net (PNNs), the neural interstitial 
matrix (NIM), and the basal lamina (BL) [32]. The relative ratios of 
PNNs and NIM components across different brain regions are still not 
known. In addition to the ECM, blood vessels pass through the tissue. 

Recent studies have started to investigate the relationship between 
the stiffness of specific brain regions and their constituting structures 
using phenomenological linear regression models [17,18,23,24]. How-
ever, although we already know the mechanical properties of individual 
neurons and glial cells [20,33–35], and that the presence of myelinated 
axons has a clear impact on the mechanics of brain tissue [7,15,36], we 
still do not fully understand how the multiple constituents of CNS tissue 
ensemble to establish its mechanical behavior at the tissue scale. 

The goal of this study was to test the role of the connectivity of in-
dividual tissue components in determining local mechanical brain 
properties at the tissue scale, and to provide a tool to the community that 
enables the estimation of heterogeneities in local brain tissue stiffness 
based on immunofluorescence images. Focusing on the hippocampus 
and cerebellum of the mouse brain, we developed a mechanical model 
accurately describing tissue-scale brain mechanics, taking into account 
the mechanical properties of individual brain tissue components and 
their connectivity. 

2. Materials and Methods 

2.1. Sample preparation, ROI identification, indentation protocol and 
image acquisition 

All experimental protocols and data have been previously described 
and published (see details in Refs. [18,23]). In summary, horizontal brain 
tissue slices of 300 μm thickness were extracted from 3 to 4 mm of 
dorsal-ventral positions from two age groups of wild-type mice 
(C57Bl6/Harlen): juvenile (1 month-old) and young adult (6 and 
9-month-old). Each brain tissue slice was placed in a glass bottom 
chamber for imaging with an inverted microscope, supplied with carbo-
genated artificial cerebrospinal fluid to maintain the viability and gently 
pressed down with harp for stabilization. All measurements were per-
formed within 8 h. Up to 12 regions of interest were identified in the 
hippocampus and three in the cerebellum. For dynamics mechanical 
experiments, the indentation setup consisted of a cantilever-based fer-
rule-top probe (0.2–0.5 N/m stiffness and 60–105 μm bead radius) 
mounted on a piezo transducer and XYZ micromanipulator. Indentation 
lines were selected to cross the dentate gyrus and the subiculum or the 
CA3 field of hippocampus (n ≥ 66 measurement points per slice). In 
addition, indentations on cortex were performed on 5 of the same slices 
adjacent to subiculum, in parallel lines between outer and inner layers (n 
≥ 21 measurement points per slice). The sample was indented up to 
10–17 μm to avoid effects of surface roughness and of sensing individual 
brain components so that tissue heterogeneities within each region of 
interest were homogenized. The indentation depth was also chosen to 
stay in the small strain regime (εT > 5%). Indentation was performed by 
imposing oscillations of 0.2 μm amplitude and 5.62 Hz frequency on top 
of the ramp loading at 0.01 strain rate in an indentation-depth controlled 
mode (see Refs. [18,23] for further results). The raw data was analyzed 
with an in-house Matlab code to fit the cosine function over oscillatory 
data to extract storage and loss moduli as a function of indentation-depth: 
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where F0 and h0 are the amplitudes of oscillatory load and indentation- 
depth, respectively, δ is the phase-shift between indentation and load 
oscillations, ν is the Poisson’s ratio (assumed to be 0.5 as brain tissue is a 
nearly incompressible material) and A is the contact area. Indentation 
mapping was performed at 50 μm step size over regions in hippocampus 
and cerebellum for tissue slices from juvenile brain (N = 6) and only 
over hippocampus for adult brain slices (N = 5). Each indentation 
location was assigned to the measured ROI. The Hertz model was used to 

Fig. 1. (a) Description of the micro-anatomical structures of the brain. We 
consider cell bodies, ρn, perineural nets (PNN, black translucent), ρPNN, 
myelinated axons (orange), ρm, and neural interstitial matrix (NIM), ρNIM, 
which may include blood vessels. PNNs surround neuronal cell bodies and 
dendrites and the NIM surrounds glial and neuronal cells. We also differentiate 
between neurons, ρn (yellow) and glial cells, ρa (pink). (b–c) Distribution of 
tissue constituents and modeling of a simplified 1D model based on a classical 
parallel arrangement (b) and on the distribution presented in this work (c): 
PNNs are linked in parallel with the neuronal somata, which are linked to the 
myelinated axons in series. These two elements in series are linked with the 
NIM in parallel. ψ i is the SEDF of each tissue constituent. λ and λi is the total 
stretch in the affine scheme (b) and the stretch of each constituent in the non- 
affine scheme (c), respectively. 

P. Sáez et al.                                                                                                                                                                                                                                     



Biomaterials 301 (2023) 122273

3

fit the initial loading data to obtain the precise the contact point location 
which is needed for the estimation of contact radius. We also compared 
our small strain approximation to the large strain theory by performing 
finite element simulation in Abaqus (see SI for details). 

2.2. Image adquisition and analysis 

Images of immunohistochemically stained slices were previously 
obtained and used here for further analysis [23]. In short, two age 
groups of 3 wild-type mice (C57Bl6/J) were used to stain nuclei of 
neurons (NeuN), all cell nuclei (Hoechst), astrocytes (GFAP), myelin 
(MBP) and dendrites (MAP2). Details on the antibodies used for the 
(immuno)histochemical staining are provided elsewhere [23]. Fluores-
cence images were obtained with a Zeiss Axioscope.A1 epi-microscope 
with a 10x Plan-NeoFluar objective. Anatomical regions were identi-
fied and drawn manually as polygons using ImageJ and their co-
ordinates stored in.roi files. 

We analyzed image data using custom-written MATLAB codes which 
allowed automatic processing of multiple images by providing their 
corresponding ROIs coordinates. To minimize intensity disparity due to 
acquisition conditions, we preprocessed all images to adjust their his-
tograms to match the histogram of an arbitrarily chosen reference 
image. After that, every color channel was individually normalized by its 
maximum intensity value. Subsequently, for every pixel of each image, 
the percentage of each color channel intensity (pr, pg, pb) was computed. 
Then, for each ROI and each channel (c) we calculated the weighted 
mean (p̂ROI

w,c ) of the color intensity percentage, using the total intensity of 
each pixel (the sum of the three channel intensities) as weight: 
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Multiplying the weighted mean intensity of each channel by the total 
average intensity of the ROI (iROI

av ) is equivalent to calculating the 
average channel intensity (iROI

c,av), which is later used to weight the storage 
and loss modulus of each of the brain components (see Supp. Material). 

p̂ROI
w,c ⋅iROI

av = iROI
c,av (4)  

2.3. Homogenization method 

Here, we followed a mean-field (MF) homogenization scheme to 
describe the mechanical behavior of the tissue (see SI for details). 
Microstructure heterogeneities are treated separately as homogeneous 
phases, and the quantities of interest in the microstructure are just 
averaged values for the macroscopic response. We define our Repre-
sentative Volume Element (RVE) such that it contains a large number of 
microstructural features and, therefore, has a statistical representation 
of the macroscopic material [37]. In our problem, we can define a length 
at the microstructures that correspond to somas (10um), axons (1-2μm 
in diameter), and the components of the EMC. We assumed that our 
RVE, which was on the order of 50um, was large enough compared with 
the microscopic length scales. Note, that we were limited by the size of 
some ROIs in the hippocampus, which were as small as 50 μm. 

Based on these assumptions, we describe two basic models. One in 
which the tissue constituents are all assembled in parallel and the other 
in which they are in series. We describe here the homogenization 
scheme in a small strain setting, which recovers the Voigt and Reuss 
estimates, respectively [38,39]. The derivation from the large strain 
setting is described in the SI. 

We first describe the model with all the tissue constituents arranged 
in parallel (see Fig. 1b). The total Cauchy stress tensor is given as 

σT =
∑n

i
ρiσi, (5)  

where the stress-strain constitutive relation for each constituent is 
defined as 

σi = Ci : ϵ (6)  

ϵ is the infinitesimal strain tensor, or Cauchy’s strain tensor, defined as 

ϵ = 1
2

[
∇u + (∇u)T

]
, where u is the displacement tensor. Note that, we 

assumed that the strain in each constituent is the same as the macro-
scopic strain tensor. Ci is the fourth-order stiffness tensor of each con-
stituent i. The constitutive law of the tissue is therefore uniquely 
determined by the stiffness tensor, which, assuming the tissue to be 
isotropic and almost incompressible, is a function of the storage modulus 
E (a measure of tissue stiffness). Finally, we can combine Eqs. (5) and (6) 
and write σT =

∑n
i ρiCi : ϵ. Considering the indentation tests, we can 

write the final stress-strain relation 

σT = ET ϵ,  where  ET =
∑n

i
ρiEi (7)  

is the total equivalent elastic modulus obtained from the indentation 
tests, that is the total stiffness of the tissue due to the presence of several 
constituents with elastic moduli Ei. 

If we consider brain tissue constituents arranged in series, stress will 
be now constant along the elements and strains will vary. To generalize 
this idea within a consistent thermodynamic formulation, we took 
advantage of the complementary energy density function (cSEF) (see 
Refs. [40–42] and SI). The additive decomposition of the cSEDF natu-
rally imposes non-affine deformations in the tissue constituents, which 
resembles the classical Reuss estimate [39]. 

In the linear regime, we can express the total infinitesimal strain 
tensor as 

ϵT =
∑

ρiϵi, (8)  

where the stress-strain constitutive relation for each constituent is 
defined as 

ϵi = Ĉi : σ. (9)  

Ĉi is the compliance tensor of each tissue constituent, which, again, is a 
function of E and the Poisson’s ratio. Combining the two previous 
equations, we obtain ϵT =

∑n
i ρi Ĉi : σ. Considering the indentation tests, 

we can write the final stress-strain relation as 

σ = ET ϵT ,  where  ET =

∏n
i ρiEi

∑n
i ρiEi

(10)  

is the total equivalent elastic modulus obtained from the indentation 
tests. 

2.4. Fitting of material parameters 

We used a custom-written MATLAB code to fit the storage and loss 
moduli, E’ and E”, for each constituent. We made use of the fmincon 
function to find the minimum of a constrained nonlinear multivariable 
goal function, 

Error =
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/
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√ /
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here n is the number of ROIs, i represents each ROI and μpi 
denote the 

mean of the experimentally measured E′ and E”. In addition, q is the 
number of parameters of the model, such that n − q denotes the number 
of degrees of freedom. 
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3. Results 

3.1. Local hippocampus composition correlates with tissue stiffness 

First, we analyzed the local composition of the juvenile mouse hip-
pocampus, using immunohistochemistry. We focused on myelin (using 
myelin binding protein, MBP, as marker), as an indicator of myelinated 
axons [7], nuclei of neurons (NeuN), nuclei of all cells (Hoechst), and 
astrocytes (glial fibrillary acidic protein, GFAP) in different regions of 
interest (ROIs) of the tissue (Fig. 2a–e and SI Appendix, Fig. S14)), as 
reported elsewhere [23]. Large variations in densities of the individual 
markers over the different ROIs where observed [23] (Fig. 2f and 
Table S1). 

The granular cell layer (GCL), which mainly consists of neuronal cell 
bodies, reached the highest concentration of nuclei with ∼ 46%, while 
the amount of myelin was just a residual 0.5%, the lowest of all ROIs (see 
Materials and Methods). The Alveus (Alv), on the other hand, which is a 
region containing mainly myelinated fibers that cover the ventricular 
parts of the hippocampus, had the highest concentration of myelin, 
∼ 50%, while the amount of cell nuclei reached 15%. All other regions 
presented a more uniform distribution of tissue components, in agree-
ment with previous image analysis results [23] (for details see Fig. 2f–k 
and Table S1). 

In order to quantify the fraction of neuronal and glial cell nuclei, the 
distributions of NeuN and the astrocyte marker GFAP were measured 
[18,23]. ROIs with higher amounts of cell nuclei (GCL, Sub and SP3, 
Fig. 2f) had the largest ratio of neuronal nuclei to total number of nuclei 
(see Fig. 2k) and showed a low concentration of GFAP (Fig. 2 and 
Table S1). Other regions, including the ML, SR1, SR3, SLM, Hilus and 

Alveus, were characterized by a low ratio of neuronal/total cell numbers 
and a high concentration of GFAP, confirming previous descriptions of 
the spatial heterogeneity of brain tissue components in the hippocampus 
[6]. 

To account for the remaining, non-cellular components of the tissue, 
we made the following assumption for the fraction of ECM and, in 
particular, of PNNs and NIM: ρECM = 1 − (ρN + ρm), that is, the space not 
occupied by either nuclei (ρN) or myelin (ρm) is assumed to be ECM. 
Then, we assume that NIM is more prevalent in regions where more 
astrocytes (ρa) are present and PNNs where more neuronal nuclei (ρn) 
are localized. The stiffness of smaller blood vessels with diameters 
comparable to those of other tissue components is effectively included in 
the stiffness of the NIM. Therefore, we defined ρNIM = ρECM*ρa/(ρn + ρa) 
and ρPNN = ρECM*ρn/(ρn + ρa) (SI Appendix, Figs. S1–3). 

Then, we compared recently published data of the stiffness of each 
ROI (see Materials and Methods and [23] for further details) with the 
distribution of each ROI’s components. Tissue stiffness had been 
measured using a nanoindentation approach, where forces were applied 
that were similar in magnitude and time scale as the forces exerted by 
CNS cells [2,43]. Means and standard deviations of the storage moduli 
E′, which are a measure of the tissue’s elastic component, for each ROI at 
every indentation level, δ, are provided in Fig. S6. We focused on an 
applied δ = 13 μm (Fig. 2,l-m), but all the features described next were 
consistent along the different δ(SI Appendix, Fig. S10, Tables S12–13). 

In summary, the lowest value of E’ ~ 0.3 kPa was obtained for the 
GCL. As shown in Fig. 2, the GCL is a region mostly occupied by neuronal 
cells, specifically granular cells and astrocytes, with a comparatively 
small number of myelinated axons (5%). The SP3, which mostly consists 
of pyramidal neurons and a moderate amount of myelinated axons 

Fig. 2. Imaging and quantification of brain tissue composition and stiffness values of juvenile mice. Imaging of (a) myelin (MBP), (b) cell nuclei (Hoechst), (c) nuclei 
of neurons (NeuN) and (d) intermediate filaments of astrocytes (GFAP) in specific regions of the hippocampus. (e) Abbreviations used for regions are: Alv - alveus, 
Sub - subiculum, SLM - stratum lacunosum moleculare, SR - stratum radiatum, SP - stratum pyramidale, SO - stratum oriens, ML - molecular layer, GCL - granule cell 
layer. White regions indicate excluded due to similarity with adjacent regions. Scale bars (a–e) are 200 μm. Mean and standard deviation of the tissue components 
quantification (f–k). Mean and standard deviation of the myelin and nuclei (f) and representation of the mean value in each specific ROI (g–h). Mean and standard 
deviation of the neuron nuclei and intermediate filament of filaments of astrocytes (i) and representation of the mean value of intermedia filaments and the ratio 
between neuron vs. total nuclei in each specific ROI (j–k). (l) Mean and standard deviation of E′ and E″ for the different regions of the hippocampus. Diamond marks 
shows the prediction of the proposed mechanical model and bars show the measured values. (m–n) Representation of E′ and E″ in all the ROIs. (o–p) Error of the 
proposed mechanical model for E′ and E″ represented in each ROI. 
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(20%), was the second softest region (~0.4 kPa). These two regions were 
characterized by the highest fraction of neuronal nuclei in the hippo-
campus. Surprisingly, the third softest region was the Alveus (~0.7 kPa), 
a region containing almost 60% of myelinated axons, few neuronal cell 
bodies, and a substantial number of astrocytes. Most other ROIs fell in 
the 0.8–1.2 kPa range. The stiffest ROIs was the SO1, with E’ ~ 1.3 kPa, 
which has a moderate fraction of astrocytes (30%) and low amounts of 
other stained components. 

To analyze how the tissue composition regulates tissue rigidity, we 
first investigated the correlation between the tissue fractions (Fig. 2) and 
the stiffness of all ROIs (SI Appendix, Fig. S4 and Table S2). We observed 
negative correlations between structure and stiffness for all tissue con-
stituents except for the fraction of astrocytes, which showed a positive 
correlation. Only the correlations between tissue stiffness and the den-
sities of all nuclei and those of neurons alone had a significant Pearson’s 
correlation coefficient (r = − 0.69 and r = − 0.66, respectively), in 
agreement with previous data [23]. These results indicated that the 
characteristic mechanical signature of each ROI may be related to the 
local tissue composition, and that tissue mechanics likely results from a 
combination of all the constituents rather than being dominated by one 
single component. 

3.2. Brain mechanics cannot be explained through affine deformation of 
its components 

To test this hypothesis, we set out to define a constitutive law 
describing the stiffness of each ROI by incorporating information about 
the local tissue composition. Previous work correlating stiffness and 
tissue composition in the nervous system developed phenomenological 
models assuming linear and non-linear relationships to reproduce 
composition-stiffness relations [22,23] or assuming that only the tissue 
component with the highest correlation with the tissue stiffness con-
tributes to its rigidity [24]. Here, we derived a homogenized model, 
based on a mean-field (MF) approach, to predict brain tissue mechanics 
as a function of the distribution and stiffness of each tissue constituent. 
The representative volume of material is defined such that it contains a 
large number of microstructural features. In our problem, the length of 
individual brain components is on the order of a few μm (nuclei, <10 
μm; axons, 1–2 μm; ECM filaments, 10 nm). The representative volume 
of our analysis was chosen to be 50 μm × 50 μm in x and y, respectively, 
as a compromise between the small dimensions of the mouse hippo-
campus and the size of microstructural features (see Materials and 
Methods, point 2.1 for further details. We first defined a MF model based 
on the total SEDF ΨT of the system, the density energy required to 
deform the tissue under an external load (we provide a complete deri-
vation in the SI Appendix). This is a standard approach in modeling soft 
biological tissues (e.g. arteries [25,44], cartilage [45] and brain tissue 
[21]). Within the small strain limit, and assuming that the tissue is 
isotropic, almost-incompressible, and that bonds between constituents 
are strong so that slippage does not occur at small strains [46], we can 
define the stress-strain relations as a function of the storage modulus E (a 
measure of tissue stiffness). The total equivalent ET of the tissue, that is 
the total stiffness of the tissue due to the presence of several constituents 
with elastic modulus Ei and fraction ρi, is ET =

∑n
i ρiEi, which recovers 

the classical Voigt estimation [38] (see Section 2.3 and SI). 
Following the additive decomposition of the SEDF, we took the 

values of tissue composition quantification (Fig. 2) and performed a 
fitting procedure against the experimental values of E′ at different 
indentation levels (see Materials and Methods). We fixed the storage 
modulus of cell nuclei to E’N = 0.6 kPa and took the modulus of 
myelinated axons, E’m = 2.0 kPa, and of the PNN and NIM, E’PNN = 1 kPa 
and E’NIM = 1 kPa, respectively, as initial seeds of the fitting procedure, 
in agreement with previously published values [5,20,33,35,47]. The 
fitting procedure yielded mean errors in all regions and indentation 
levels of ~21% based on the fraction of their components (SI Appendix 

Fig. S10 and Tables S12–13). E’m increased linearly from ~0.3 kPa at δ 
= 6.5 μm up to ~1.3 kPa at δ = 17 μm, and E’PNN and E’NIM also 
increased linearly from ~0.5 kPa and 0.2 kPa up to 1.7 kPa and 0.7 kPa, 
respectively. 

As mentioned above, the additive decomposition of the SEDF im-
poses a parallel arrangement of the brain constituents and, therefore, an 
affine deformation of the tissue constituents. In such affine de-
formations, the stiffest component dominates the mechanical response 
of the tissue. The stiffest component of the brain, according to literature, 
are myelinated axons, with elastic moduli between ~2 kPa-1MPa [20, 
48]. However, the fitted E’ values for myelin (~0.2–0.6 kPa, SI Ap-
pendix, Fig. S12) were lower than these published values. Even if we 
consider the lowest range of the myelinated axons, stiffness values of 
2–20 kPa, and impose it into the additive decomposition of the SEDF, it 
would lead to an equivalent stiffness of the tissue of ~3–12 kPa (the 
component stiffness multiplied by its tissue fraction). This resulting 
stiffness of the tissue represents errors of ~300–1500%, 1–2 orders of 
magnitude higher than the errors found when the model parameters 
were freely fitted by the minimization algorithm, suggesting that affine 
deformations cannot explain the observed behaviour. Moreover, it can 
be argued that tissue components are not all connected in parallel. 
Neurons have clearly differentiated regions (e.g. cell bodies and the 
myelinated axons) with specific mechanical properties [20], which must 
deform in a non-affine manner under an imposed force. 

These findings and arguments suggest that the mechanical response 
of the brain could not follow an additive decomposition of the SEDF or, 
equivalently, be explained through affine deformations of its 
constituents. 

3.3. Non-affine deformations of brain components explain tissue 
mechanics 

To evaluate possible explanations of the inconsistencies described 
above, and to derive a physical model capable of solving them and 
predicting local tissue stiffness based on the mechanical properties and 
arrangements of its constituents, we took a closer look at the brain tissue 
structure (Fig. 1). Some of the tissue constituents do not assemble in the 
tissue in a parallel arrangement but rather in series, as for example 
myelinated axons and their somata. Thus, the modeling limitations 
described for the additive decomposition of the SEDF could arise from 
the inherent affine deformation imposed on the tissue constituents. If 
tissue constituents arrange in series, forces are transmitted continuously 
in all the elements and the constituents will be subjected to non-affine 
deformations. We can generalize this idea within a consistent thermo-
dynamic formulation, taking advantage of the complementary energy 
density function (cSEDF), Ψ̂ [41,42]. In terms of the reduced storage 
modulus, the equivalent E′

T of n components arranged in series, i.e. 
defined through its cSEDF, is E′

T =
∏n

i E′
i/
∑n

i E′
i, which recovers the Reuss 

estimate [39] (see Section 2.3 and SI). We particularize this approach to 
our problem and model the structural organization as follows (see 
Fig. 1c): PNNs are linked in parallel with the neuronal somata, which are 
linked to the myelinated axons in series. These two elements in series, on 
the other hand, are linked with the NIM in parallel. We also assumed 
that the adhesion between cells and their environment is strong at the 
tested time and length scales. Therefore, 

E′
T =

(ρnE′
n + ρPNNE′

PNN) ∗ ρaE′
a

ρnE′
n + ρPNNE′

PNN + ρaE′
a

+ ρNIME′
NIM . (12)  

We then used this structural description of the tissue to analyze whether 
we could reproduce the mechanical properties of the tissue applying Eq. 
(12). We took again E’N = 0.4 kPa and E’m = 2.0 kPa as an initial seed for 
the fitting procedure [20,33,35,47], assumed that the PNNs have the 
same stiffness as the NIM, and fitted all values of E′

i for each constituent. 
The fraction, ρi, was again obtained from the tissue quantification 
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(Fig. 2). We focused on an indentation of δ = 13 μm (other indentation 
levels are shown in SI Appendix, Figs. S6–8 and Tables S5–8). 

Our theoretical model predicted the experimentally measured me-
chanical response of all locations in all ROIs with a mean error below 
19% (see Fig. 3g,h and SI Appendix, Tables S5–6), showing a slight 
improvement with respect to the affine model (21%). Most regions 
showed remarkably low errors below 15% except for the GCL (64%), 
SP3 (26%), SR3 (26%) and SR1 (23%) regions. Note that we obtained 
these low errors with a clear and physical meaning of the main tissue 
constituents analyzed in this study. In Table S9, we present the results of 
E′ for each indentation depth analyzed. The NIM and PNN showed a 
slightly non-linear strain-stiffening behavior. Considering only one type 
of ECM resulted in higher errors, which suggests that PNN and NIM 
could have different stiffness values. The PNN stiffness increased line-
arly from ~3 kPa, at δ = 6.5 μm, up to ~8.5 kPa at δ = 17 μm and the 
NIM stiffness increased linearly from ~0.5 kPa up to 1.5 kPa. Myelin 
showed a linear increase in the stiffness with increasing δ as well (see 
Fig. S8), from 2 kPa up to 7.5 kPa. E’ values reported in Table S9 are 
consistent with directly measured stiffness values of neurons, myelin 
and ECM [5,20,33,35,47], which was not achieved in the affine model. 
Values of the NIM are also consistent with the stiffness of substrates on 
which neurons and glial cells differentiate [49,50]. 

3.4. Viscoelasticity depends on tissue architecture 

To investigate whether the additive decomposition of the cSEDF 
could be used for analyzing not only tissue elasticity but also the 
viscoelastic behavior of the brain [12,14], we applied our model to a 
frequency-dependent characterization of the tissue. We took the loss 
moduli E″, which represent the viscous component of the mechanical 
response, of each ROI (see Materials and Methods) and plotted the mean 
values and standard deviation in Fig. 3g. Then, we applied the relation 
as in Eq. (12) but for the loss modulus E” to describe the viscoelastic 
response of each ROI based on its local composition, and performed the 
same fitting procedure as above (see Table S9). As shown in Fig. 3g,h, we 
found a good agreement between experimental data and the theoretical 
model, with a mean error lower than 16%, and most of the ROIs with 
errors lower than 15% except, again, the GCL, SP3, and SR3 regions, 
which slightly overpassed this threshold. The reported loss moduli for all 
components were again comparable to data from literature [20,33,35, 
47] and showed similar increases with increasing indentation depths (SI 

Appendix, Table S9). 

3.5. Composition and stiffness of brain components reproduce CNS 
mechanics 

To further investigate the general applicability of our model, we 
extended our study to the hippocampus of adult mice by using previ-
ously reported data [18]. The tissue composition in the adult hippo-
campus is shown in Fig. 3 and SI Appendix, Table S1. We focused again 
on δ = 13 μm (other indentation depths are shown in SI Appendix, 
Fig. S5 and Tables S3-4,S9). We observed a stiffening of both the ECM 
(PNN and NIM) and cell bodies compared to the juvenile samples, which 
is in line with previously published data on rodent brain tissue stiffening 
during development and ageing [3,5]. We found a same tendency for the 
loss modulus E” (see Fig. 3 and SI Appendix, Table S9). 

Using our model (Eq. (12)), we were able to reproduce the me-
chanical properties of the adult hippocampus with an average error of 
measurements of 25% and 27% for E′ and E″, respectively. Again, these 
values represent a decrease with respect to the errors obtained with the 
affine model, 31% and 35% for E’ and E”, respectively. The hilus and 
SP3 were the only regions with error higher than 40%. It is important to 
note, however, that the model accurately captured the tendency of the 
age-related change in tissue rigidity for all ROIs. Moreover, the stiffness 
values found by the fitting procedure were again within the values re-
ported in literature [20,33,35,47], which was not possible for the affine 
model. The myelin and NIM stiffness showed a linear increase with 
increasing indentation depths. However, the myelin stiffness showed a 
slight decrease with respect to the juvenile samples while the stiffness of 
the NIM doubled its values with respect to the juvenile animals. The 
PNN was again the stiffest component of the brain. 

Finally, we applied our model to a different region of the brain, the 
cerebellum of juvenile mice, by using previously reported data [23] 
(Fig. 4). We predicted E′ and E″ of different ROIs (see Fig. 4) considering 
the distribution of the cerebellum’s components (Fig. 4d-i) and the fitted 
values of E′ obtained for the components of the juvenile hippocampus 
(Fig. 3 and Table S9). The model was able to reproduce the cerebellum’s 
heterogenous mechanics [23] (Fig. 4k–j) without any further fitting of 
parameters and they were again within the values reported in literature 
[51]. 

We found mean errors of 21% and 15% for E′ and E″, respectively, 
which were lower than the 23% and 41% for E’ and E”, respectively, 

Fig. 3. Quantification and analysis of tissue composition and stiffness of ROIs for the hippocampus of juvenile mouse. Mean and standard deviation of the mylein and 
nuclei (a) and representation of the mean value in each specific ROI (b–c). Mean and standard deviation of the neuron nuclei and intermediate filament of filaments 
of astrocytes (d) and representation of the mean value of intermedia filaments and the neuron vs. total nuclei in each specific ROI (e–f). Mean and standard deviation 
of E′ and E″ for the different region of the hippocampus and prediction (diamond marks) of the proposed mechanical model (g). Error of the proposed mechanical 
model for E′ and E″ represented in each ROI (h–i). 
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yielded by the affine model (see also SI Appendix, Fig. S11 and 
Tables S14–15). In summary, our results indicated that the non-affine 
model predicts local nervous tissue mechanics well, irrespective of age 
and regions, solely based on the distribution and mechanical properties 
of its constituents, and it outperforms the affine model. 

4. Discussion 

In this study, we developed a mathematical model that uses the 
morphological structure of brain tissue to determine its local mechanical 
properties. We found that a classical additive decomposition of the 
Strain Energy Density Function (SEDF), and equivalently stresses, of 
each tissue constituent, cannot fully reproduce the complex mechanical 
behavior of brain tissue. However, when we took the actual structural 
organization of the tissue into account, we were able to predict brain 
mechanics. By considering the abundancy and mechanical properties of 
individual cellular and extracellular tissue components, as well as their 
arrangement within brain tissue, some being connected in parallel and 
others in series, we were able to reproduce the local mechanical 
behavior of the tissue. Finally, we also present an online platform for the 
scientific community (uploaded in the MATLAB Central File Exchange) 
that, upon providing immunohistochemistry images and stiffness values 
for the constituents of the sample, yields the viscoelastic properties at 
the tissue scale. 

Previously developed models (see Refs. [19,21] for a review) often 
considered a homogenized response of the tissue constituents to applied 
forces. Other models have considered different tissue components but 
not their actual properties, proposing constitutive laws that included 
parameters with unclear physical interpretation [22,23] or have focused 
on one tissue component with stronger correlation with tissue stiffness 
[24]. Our results suggest that the classical additive decomposition of the 
SEDF is not appropriate to reproduce tissue stiffness from the structure 
and stiffness of its components. We argue that this is due to an inherent 
affine deformation of such models. By incorporating a precise 
multi-scale description of the tissue, our model now enables us to predict 
mechanical properties of specific brain tissue regions, which are char-
acterized by distinct compositions and arrangements of cells and ECM. 

We followed a bottom-up approach: based on what we knew about 

the brain tissue constituents, we reproduced local brain tissue mechanics 
with minimal fitting parameters. Specifically, we only fitted the storage 
and loss moduli of myelinated axons, perineuronal nets and interstitial 
matrix. Ideally, this information could be obtained from separate ex-
periments. Here, we fitted their values and made sure they are within the 
range of data reported in the literature. Furthermore, we used the fitted 
values of the storage and loss moduli from the juvenile hippocampus 
(Table S9) and reproduced, without any further fitting procedure, the 
stiffness of the juvenile cerebellum (Fig. 4). 

We found that, in juvenile samples, the stiffness of the ECM increases 
non-linearly with increasing strain, that the stiffness of cell bodies does 
not change with strain, and that the stiffness of myelin increases with 
strain. In adult tissue, however, the stiffness to tissue constituents 
changes variably with changing strain levels. Regions with a high con-
centration of neurons, such as the GCL or the SP3, were reproduced less 
well than others. Overall, these errors may be attributed to the simpli-
fications used to reconstruct the tissue architecture from 2D immuno-
histochemistry images, instead of 3D information. The forces applied on 
structures just below the visualized layer of the tissue may contribute 
somewhat to the measured mechanical properties of the tissue. We hy-
pothesize that heterogeneities between structures below the plane 
imaged may also contribute to the slight deviation of our model from the 
data. 

Our results suggest that there are simple mechanical relationships 
between tissue constituents that regulate the mechanical properties of 
brain tissue. Incorporating tissue architecture into models describing 
tissue mechanics could potentially be used for the constitutive modeling 
of other soft biological tissues, for example, cardiovascular tissue [25, 
44]. 

While our model fits the experimental data well, there are still lim-
itations. We used indentation data acquired at small strains and built an 
elastic and linear model. At large strains, however, brain tissue behaves 
as a non-linear material and can also show non-elastic responses [19, 
21]. Extending our current model and experimental tests to a large strain 
setting will provide further insights into how brain tissue behaves me-
chanically. Moreover, a detailed analysis of the tissue’s anisotropy will 
be required at large strains. Our model relies on a simple mean-field 
homogenization method that takes into consideration the 2D 

Fig. 4. Quantification and analysis of tissue composition and stiffness of ROIs for the cerebellum of juvenile mice (a–c). Nuclei and myelin are shown in blue and red, 
respectively (a), nuclei (b) and myelin (c). Scale bars (a–e) are 100 μm. Abbreviations used for regions are: GCL = granular cell layer, ML = molecular layer, Av =
Arbor vitae. Mean and standard deviation of tissue brain composition (d–i): Mean and standard deviation of the myelin and nuclei (d) and representation of the mean 
value in each ROI (e–f). Mean and standard deviation of the neuron nuclei and intermediate filaments of astrocytes (g) and representation of the mean value of 
filaments and the neuron vs. total nuclei ratio in each specific ROI (h–i). Error of the proposed mechanical model for E′ and E″ represented in each ROI (k–l). Mean 
and standard deviation of E′ and E″ for the different region of the cerebellum (j). Diamond marks shows the prediction of the proposed mechanical model. 
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immunohistochemistry data we used for our analysis. A 3D morpho-
logical reconstruction of the representative volumes of interest at high 
resolution would foster more advanced homogenization methods (see, e. 
g., Refs. [52,53]). This would provide, for example, information on the 
anisotropy of the tissue. However, we have previously shown that, at 
small strains and in CNS tissue, structural anisotropy only leads to (a 
slight) mechanical anisotropy in white matter tissue, where large, 
myelinated axon bundles are aligned in parallel, but not in grey matter 
tissue [22], which is structurally much more similar to the tissue 
modeled in our current study. For other brain regions and strain re-
gimes, the effect of the morphological anisotropy of the tissue should be 
incorporated. 

Finally, our work specifically focuses on how different tissue con-
stituents are organized in parallel and in series, which induces affine and 
non-affine deformations, respectively. However, previous non-affine 
models and data of soft tissues rich in collagen suggested that the non- 
affine regime appears at large strains [54,55]. Other materials, such as 
polyacrylamide gels, show non-affine deformation at small strains while 
affine deformation is present at large strains depending on the 
cross-linking of the network [56]. Although our model is consistent with 
non-affine deformation even at small strains, our approach can also be 
applied in a large strain setting [42], and future work will be required to 
evaluate how different strain levels and load states influence the 
deformation affinity. 

In terms of tissue composition, we have considered all extracellular 
tissue components homogenized into one single material. But the role of 
each of these tissue components should be further investigated. For 
example, how do the different ECM structures contribute to tissue me-
chanics? What role does the vasculature and the anisotropy play in 
regulating brain tissue mechanics? We also used a viscoelastic model to 
focus on the arrangement of the tissue constituents. More advanced 
viscoelastic models could reproduce the behavior of the tissue even 
more accurately (see, e.g., Ref. [57]). Separating the role of viscoelas-
ticity from poroelasticity should also be the focus of research for a 
complete understanding of brain mechanics. Once these data are 
available, computationally more expensive multiscale finite element 
methods or advanced mean-field approaches can be applied to investi-
gate brain mechanics with even higher accuracy. 

There are still important questions to be answered to improve our 
current understanding of brain tissue mechanics: for example, do 
neuronal cells and ECM change their mechanical properties during 
development? How do cell-ECM interactions and adhesive interfaces 
change during development and ageing? A precise description of how 
tissue constituents arrange in soft biological tissue will allow us not only 
to better understand its mechanical properties but also to design better 
biomedical materials [58] and engineered tissues [59]. The cooperation 
of mathematical models, computational bioengineering, image analysis 
and neuroscience will eventually allow us to answer these and many 
more questions. 
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