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Real-world networks are neither regular nor random, a fact elegantly explained by
mechanisms such as the Watts–Strogatz or the Barabási-Albert models, among others.
Both mechanisms naturally create shortcuts and hubs, which while enhancing the
network’s connectivity, also might yield several undesired navigational effects: They
tend to be overused during geodesic navigational processes—making the networks
fragile—and provide suboptimal routes for diffusive-like navigation. Why, then,
networks with complex topologies are ubiquitous? Here, we unveil that these models
also entropically generate network bypasses: alternative routes to shortest paths which
are topologically longer but easier to navigate. We develop a mathematical theory that
elucidates the emergence and consolidation of network bypasses and measure their
navigability gain. We apply our theory to a wide range of real-world networks and find
that they sustain complexity by different amounts of network bypasses. At the top of
this complexity ranking we found the human brain, which points out the importance
of these results to understand the plasticity of complex systems.

complex networks | geometric embedding | communicability paths

The advent of Network Science (1, 2) was marked by the urgent need to decipher simple
and local mechanistic models underlying the self-organized formation and growth of
natural and artificial real-world networks, models able to parsimoniously account for
large-scale structural patterns systematically deviating from stylized ones such as purely
ordered lattices or purely random graphs. Two such celebrated models, aiming to explain
the ubiquitous real-world patterns of “small-worldness” (SW) and “scale-freeness,” were
proposed in seminal contributions by Watts and Strogatz (3) and Barabási and Albert
(BA) (4), respectively. The resulting network topologies of SW and BA networks—
poised between order and disorder at the statistical level—were coined as “complex.”
Here, we give special attention to these as they are paradigmatic mechanisms that create
complexity through heterogenization although we acknowledge that other patterns (2)—
e.g., communities, assortative, and disassortative mixing, triadic closure, etc.—are also
relevant in this context.

Indeed, what is complex in a complex network? Conceptually, system complexification
(5) may occur via different types of mechanisms including symbiosis, exaptation, or
structural deepening, to cite some. The latter concept of structural deepening (6), which
we adopt here, focuses on the situation where the efficiency of an existing function
in the system is increased as the system complexifies, where a higher efficiency is
usually interpreted in terms of performing the same function using less available energy.
Accordingly, a network with a structure poised between total order (lattice) and pure
disorder (random graph), such as SW and BA networks as well as many networks in
the real-world, is compatible with the existence of a structural deepening mechanism
which improves the communication efficiency between the nodes in the networks.
Identifying a quantitative proxy that characterizes such structural deepening mechanism
in networks remains, however, an open problem, and constitutes the first motivation of
this work. As a matter of fact, the Watts–Strogatz mechanism does not provide a clear-
cut definition of what an SW network is—only a certain range of network’s mean path
length and clustering coefficient, indicating that neither of these two network properties
are quantitative proxies of a potential structural deepening mechanism. Similarly, the
extensive zoology of degree distributions existing in empirical networks (7, 8) points to
the fact that observing scale-freeness is not in itself enough to indicate the existence or not
of a structural deepening mechanism. Other network properties, such as the node-based
fractal dimension (NFD), the node-based multifractal analysis (NMFA), the structural
distance, or the degree of complexity (9, 10), suffer from similar problems, and, e.g., fail to
identify a specific point within the SW region where structural deepening is maximized.

And yet, networks serve the purpose of facilitating the communication between
otherwise isolated entities of a complex system. Therefore, if a structural deepening
mechanism exists in the evolution of a network, it is likely that it involves an improvement
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of some communication efficiency. SW and BA-type mechanisms
indeed tend to generate networks with enhanced connectivity (9)
(a form of structural deepening) which are robust against random
failures (10, 11), what in principle could explain the ubiquity of
these mechanisms and the resulting macroscopic patterns, even
if quantifying such complexity has proven elusive.

However, observe that the SW mechanism reduces mean
path length simply by creating path shortcuts, making enhanced
connectivity overly dependent—and thus, fragile—on them.
Likewise, in BA-like networks, shortest paths often involve hubs,
and these networks are known to be extremely fragile against
failure of hubs (12) or jamming (13–16), potentially inducing
a failure cascade which can severely harm the macroscopic
network’s function.

Why, then, complex networks are ubiquitously observed?
First, note that walkers navigating a network do not necessarily
have full information of the network structure, and geodesic
navigation is indeed a global optimization problem (17) that,
accordingly, “blind” walkers cannot perform. Second, such blind
walkers typically undergo diffusion-like navigation, and such
parsimonious navigation strategy can lead walkers to “diffuse out”
and get lost easily if attempting to follow shortest paths, as these
tend to have higher degree nodes*. Accordingly, nongeodesic
navigational strategies have been proposed (18–24), usually
providing heuristic recipes based on local network information
available [such as the degree (18–20) or the matching index
(21)]. Solving the apparent dilemma between the prevalence of
complex network architectures—underpinned by WS and BA
mechanisms among others—with structural deepening related to
enhanced communication capacity requires to find parsimonious
mechanisms which can mitigate the undesired effects of geodesic
navigability, and this is the second motivation of our work.

Our contention in this work is that as a network complexifies,
it is capable to mitigate the impact of the undesired geodesic
navigability issues by structural deepening mechanisms which
favor the consolidation of network bypasses: alternative routes
to mere geodesic navigation that i) decrease the tendency of
“getting lost” by blind walkers, and ii) if needed can also be
used by nonblind walkers to avoid problematic links and nodes,
therefore allowing the overall connectivity to be maintained and
the network to be robust against failure of shortcuts and hubs.

In what follows we start from first principles and develop a
theory to define and detect the emergence of network bypasses
in both synthetic and real-world networks and quantify their
associated gain and impact in terms of network navigability.
Our theory is based on a network geometrization by which
initially unweighted edges and paths acquire an effective weight—
an effective length, or cost—induced solely by the topology
of the surrounding network’s structure. Network bypasses then
emerge as geodesic paths in the geometrized network, i.e., they
are the solutions of a topology-induced minimum-cost path
optimization problem (25), and in many cases, we show that
they do not coincide with the shortest paths of the original
network. We also show that i) the emergence of these network
bypasses is an unavoidable (entropic) by-product of the WS and
BA mechanisms themselves and that ii) the effect of these bypasses
is optimally emphasized when networks fall in a specific point
of SW regime and an intermediate edge density in the sparse
regime for BA-like networks, thus finding a quantitative proxy
for structural deepening. We also certify that iii) network bypasses
indeed provide source–destination routes with better navigation

*A node of degree k potentially connects k(k − 1)/2 pairs of nodes by shortest paths of
length two. Longer SP also uses them to connect other pairs of nodes. Thus, the higher
the degree of a node, the higher the number of SP crossing that node.

properties for diffusive-like blind walkers than geodesic routes
and finally rank and discuss the emergence of network bypasses
and their associated navigability gain in a range of real-world
networks.

Results

To fix the intuition, let us begin by illustrating two situations
in simple graphs that highlight the importance of bypasses in
the operation of a network that harbors transportation and
propagation of signals and information. To this aim, we initially
consider a particle hopping between the nodes of a network
created via the WS model (3), and we focus on the propagation of
the particle between nodes i and j (Fig. 1A). Starting with rewiring
probability p = 0, we have a circulant graph G, and the path
P1 = {i, j−1, j} of length 2 (highlighted in blue) is a shortest path
connecting i and j. Mimicking the action of WS-like mechanism
kicking in, the edge e = (i, i + 1) of G is randomly rewired, and
subsequently, another edge is also randomly rewired, so that node
j−1 now receives an edge from a “distant” node. In the resulting
graph G′, vertex i + 1 drops its degree by one, whereas vertex
j − 1 increases its degree. This situation creates a small degree
heterogeneity in the graph G′ which did not exist in the circulant
graph G: Node j − 1 now participates in many more shortest
paths starting elsewhere and ending at vertex j− 1. Accordingly,
the length-2 path P1, in practice, might not be the “best” route
to connect i and j, even if it is still the shortest path, topologically
speaking. For instance, a random walker choosing P1 has a higher
likelihood of “diffusing out” through j− 1, thus hardly reaching
the destination. Likewise, geodesic navigation will make j − 1
systematically overused, leading to a higher chance of damage
or jamming. In turn, the length-3 path P2 = {i, i − 1, i + 1, j}
(highlighted in pink), while being topologically longer than P1,
contains node i + 1 whose degree is at the same time lower
than the average and also avoids j − 1; hence, it can be seen
as a potentially more ballistic route that avoids a potentially
problematic j − 1 and still connects i and j.

A similar situation is depicted in Fig. 1B where node h
becomes a hub via a rich-get-richer (i.e., BA-like) mechanism.
The shortest path between i and j (highlighted in blue) will again
be more prone for the walker to get lost due to the presence

B

A
C

Fig. 1. (A) Illustration of the effects of the edge rewiring process in the
Watts–Strogatz model on the paths connecting two arbitrary vertices of the
resulting graph: the shortest path P1 (blue) can be bypassed by the path
P2 (pink), topologically longer but with a lower energetic cost. (B) A similar
phenomenon happens when the node hbecomes a hub after a rich-get-richer
mechanism. The shortest path P1 (blue) typically crosses the hub but, with
a sufficiently large mean degree, other paths such as P2 (pink) can bypass
the shortest path P1, allowing alternative routes when hubs reach capacity
and become saturated or damaged. (C) Navigational dilemma embedded in
a network: The blue path P1 is the shortest path, but it turns out that the pink
“braquistochronic” path P2 is more advantageous as it avoids congestion and
is less resistive (see SI Appendix, section S5 for an explicit calculation).

2 of 10 https://doi.org/10.1073/pnas.2305001120 pnas.org
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of a high-degree node, once the BA mechanism enhances such
heterogeneity. Now, if the network supports a sufficiently large†

mean degree—i.e., if the network allows more edges to be formed
than a spanning tree—, then other routes can emerge, bypassing
the hub (pink path).

The two examples illustrated in Fig. 1 A and B raise the
question of whether a particle would “prefer” to travel from i
to j via the shortest—albeit with higher uncertainty to reach
the destination—path P1 or along the slightly longer but more
ballistic—smaller uncertainty—alternative path P2. In Panel (C )
of the same figure, we illustrate such a conundrum where two
alternative routes (a shortest path P1, in blue, and a topologically
longer one P2, in pink) are highlighted. It is intuitive to think
that there is a trade-off: Sometimes, P1 is to be preferred,
sometimes P2 is a contingently better option. Extending this
situation to a network-growth mechanism, this suggests that the
creation of shortcuts (SW) and hubs (BA) should be sustained
by the emergence of some alternative paths bypassing these, with
structural deepening effects that would reach a maximum impact
for a specific rewiring probability p (SW) as well as specific hub
abundance (BA). In what follows, we introduce a formalism
that puts these questions and their general solution in a solid
grounding.

The Concept of Resistive Paths. Starting from first principles,
the possible trajectories that a hopping particle can perform over
a network G = (V, E) of |V | = n nodes with binary adjacency
matrix A = {Aij}ni,j=1 can be enumerated by computing the
powers of A. A natural way to penalize longer trajectories
connecting the same initial and end nodes is to properly weight
them

G(�) = e�A; Gij(�) =
∞∑
l=0

� l
(
Al )

ij

l !
=
(
e�A
)
ij
, [1]

where � is an empirical parameter. This expression is known as the
communicability function of a graph (26, 27). While originally
being a purely combinatorial expression that encapsulates the
contributions of different walks in a graph, G(�) indeed emerges
as a central matrix when analyzing a wide variety of dynamics
on graphs (27–31) (see SI Appendix, S1.1 for details and S1.2
for a derivation of G(�) as the actual propagator in a specific
case with Hamiltonian dynamics). Nowadays communicability
is applied across a range of disciplines, from neuroscience (32–39)
or cancer research (40) to ecology (41) or economics (42), to cite
a few.

While this operator naturally emerges in relation to different
types of dynamics on networks, in this work, we shall highlight
that it is fundamentally a combinatorial one and is not a priori
derived from any concrete dynamics running on the network. In
other words, while we will consider that there is some kind of
generic propagation—let it be information, electrons, or other
types of particles hopping through the network—the theory
presented hereafter does not require to specify which dynamical
equations rule such propagation, as we focus on the structural
(topological) constraints which generally affect such propagation.
By analogy to the cases discussed in SI Appendix, S1.1 and
S1.2 and (27), we call Gij the structural propagator, which
parsimoniously captures the role that the network’s architecture
plays in j receiving particles sent from i. Similarly, Gii accounts
for how much a node i structurally retains an item at it, as the

†Yet sufficiently small so that the network is in the sparse regime.

item returns to i infinitely often. For a particle initially located at
the node i, the difference,

Ri→j(�) = Gii(�)− Gij(�), [2]

accounts for the opposition offered by the network structure
to the directional displacement of a particle sent by node i to
the node j, where the smaller the value of Ri→j, the higher the
probability that the particle does not get trapped at the origin
i and can propagate to node j, i.e., there are more conductive
walks between i and j than those returning back to the origin.
In order to account for the resistance of the displacements
between any pair of nodes, we should take into account the
two possible directions of their mutual communication (i → j
and j → i). To this aim, one can symmetrize (2) to define
the communication resistance between nodes i and j as �ij(�) :=
(Rij(�)+Rji(�))1/2. From the definition of the communicability
function, and setting � = 1 without loss of generality, we obtain
that the communication resistance reads:

�2
ij =

n∑
m=1

e�m
(
( m)i − ( m)j

)2
. [3]

where ( m)i is the i-th entry of the eigenvector associated with
the m-th eigenvalue (�m) of A. We rigorously proved that �ij
is an Euclidean distance (see SI Appendix, section S2 for a
proof). Conceptually, �ij is a measure of the network resistance
to a flow between i and j. Recently (43), it was proven that
this communicability distance—and every spherical Euclidean
distance—is the effective resistance between nodes in a network
with given edge weights.

Network Geometrization and Resistive Shortest Paths. Since
�ij is an Euclidean distance and particles motion is confined to
the network edges, we can proceed to the geometrization of the
network (44, 45). To this aim, we first transform every edge of
the graph into a compact 1-dimensional manifold. That is, for
an edge e =

{
i, j
}

we consider the boundary of the manifold
to be ∂e = i ∪ j. Then, each edge e inherits a metric ge such
that (e, ge) is isometric to a finite interval [0, L(e)] of the real
line with the standard metric, where the length L(e) is given
by the communicability distance of the corresponding edge, i.e.,
L(e) ≡ �e = �ij. Finally, the distance metric on the edges is
extended to the full graph via infima of lengths of curves in the
geometrization of G, such that the graph becomes a metrically
complete length space (45).

Equipped with this geometrization, we can now define two
different types of lengths for any given path p(s → t) =
(s, . . . , t) connecting nodes s and t in the network. First, the
topological length `p(s→t) of this path is just the number of
edges in it. Among all paths {p(s → t)} connecting s and t,
the one with the minimum length is denoted the shortest path
SP(s, t) as

SP(s, t) = argminp(s→t)[`p(s→t)]. [4]

Observe that Eq. 4 can have more than one solution, specially
for large networks SI Appendix, S4.

Second, and based on the geometrization induced by the com-
municability resistance above, we also define an effective length
Lp(s→t) by summing the induced length of each of the links
involved in p(s→ t):

Lp(s→t) =
∑

(i,j)∈E∈p(s→t)

�ij. [5]
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At odds with `p(s→t), which blindly assigns the same length
(unity) to every edge of the network, Lp(s→t) takes into account
the topological neighborhoods of each of the nodes in the path
and the associated likelihood that the particle might diffuse out
of the path, accordingly. Likewise, it penalizes paths for which
particles take naturally more time to travel due to the structure
of the network in which the path is embedded. The specific path
connecting s and t that minimizes this effective length is denoted
the Shortest Resistive Path SRP(s, t), defined as:

SRP(s, t) = argminp(s→t)[Lp(s→t)]. [6]

We are now ready to quantify i) the emergence of potential
bypasses—i.e., the proliferation of non-SP between any two
nodes—and ii) decide in a principled way when this path re-
dundancy becomes relevant to the network function—something
that, we advance, will happen when SRPs start to differ from SPs.

Communicability Entropy. To address the first question above,
we now quantify, both microscopically and then at the network
level, the degree by which, as disorder increases, new routes
between edges become available. To this aim, let us return
to the WS and BA models that we have considered before.
As we have discussed, both the rewiring process and the BA
mechanism create degree heterogeneities that intuitively make
some a priori “inefficient” paths—e.g., long ones—to scale up
in a predefined efficiency ranking (that would indeed be the
case of path P2 connecting nodes i and j in Fig. 1). Now, in
practice, both WS and BA mechanisms can have heterogeneous
effects on this reranking, depending on the particularities of the
starting and ending nodes i and j (see SI Appendix, section S3
for an in-depth microscopic analysis on the effect of these local
mechanisms on �ij and Lp(i→j)) . We first start by quantifying
how these mechanisms generate a richness of possible trajectories
connecting any pair of nodes i and j. The probability that
a randomly intercepted trajectory indeed corresponds to one
connecting i and j is

qij =
Gij∑
k<l Gkl

. [7]

Then, the heterogeneity in the different number of choices
for the trajectory of a particle, i.e., the trajectory richness of the
network is given by the entropy

S(q) = −
1
2

∑
i<j

qij ln qij, [8]

that we call the communicability entropy. From an information-
theoretic perspective, this entropy is a measure of the ignorance
we have on who is the sender node and receiver node, when
intercepting a message navigating the network. Since 0 ≤ S(q) ≤
ln(n(n − 1)/2), the upper bound only reached when the set
of probabilities q are uniform, we define a normalized version
Ŝ(q) := S(q)/ ln(n(n− 1)/2).

Let us now analyze how Ŝ(q) behaves in our two reference
frameworks. Intuitively, for a fixed mean degree 〈k〉, Ŝ(q) will
increase in the WS model as p increases since rewiring increases
trajectory richness. Likewise, in a BA model, one can vary
the network’s mean degree: For very small 〈k〉, the resulting
BA network is almost tree-like, with no potential bypasses
and thus low trajectory richness, whereas when we allow 〈k〉

to increase, additional routes are formed, thus increasing the
trajectory richness; hence, Ŝ(q) should also increase. Fig. 2 A and
B (red axis) confirm our intuitive arguments. In particular, in
Fig. 2A, we observe that entropy grows rather quickly in a WS
model for small rewiring probability 0 < p ≤ 0.4, reaching a
steady maximum afterward. The impact of rewiring is notably
stronger for small p, and this effect is emphasized further for SW
networks of increasing 〈k〉. This behavior is easy to understand:
In the small p region, there are few shortcuts, and each new one
makes a difference. On the contrary, for large values of p, the
entropy saturates very quickly to Ŝ(q) ' 1, i.e., the addition
of more shortcuts does not make much of a difference beyond
a certain p (see below for further analysis on the influence of
the average degree). Fig. 2B reveals a similar behavior of Ŝ(q)
for the BA model as the mean degree 〈k〉 increases (within the
sparse regime for the BA preferential attachment mechanism to
hold, see below), reaching full trajectory richness very quickly
after a sudden increase in the region of small 〈k〉 values. In short,
rewiring an ordered structure and increasing the link density
of a heterogeneous network quickly (nonlinearly) boosts the
trajectory richness and, thus, the amount of potential bypasses to
any specific shortest path connecting any pair of nodes.

We now need to quantify when some of these new routes
actually may become consolidated bypasses to shortest paths,
like the situation illustrated in Fig. 1, where a particle traveling
between two nodes i and j “might prefer” to use P2, although
being longer (in terms of number of edges to be traversed) than
the shortest path P1.

Bypass Consolidation and Associated Navigability Gain. To
evaluate the impact of potential bypasses on the actual naviga-
bility, we use Eq. 5 and consider that, for any pair of nodes
i and j, the SRP between i and j is a consolidated bypass
to the shortest path(s) if the effective length of the SRP is
smaller than the effective length of the (potentially many) SPs
(i.e., LSRP(i, j) < LSP(i, j) for all SPs connecting i and j).
Interestingly, this criterion results to be equivalent to check that
`SRP(i,j) > `SP(i,j) (see SI Appendix, S4 for details). Once bypass
detection is done, we need to quantify its impact. A measure that
quantifies the impact of bypasses on the network’s navigability is
the topological length excess �(i,j)

�(i,j) =
(

1−
`SP(i,j)

`SRP(i,j)

)
· 100, [9]

which indicates that, for a particle traveling between two arbitrary
nodes i and j, choosing the consolidated bypass SRP over the SP,
while beneficial according to the (hidden) network geometry,
leads to an apparent excess of �(i,j)% from the topological distance
traveled via the shortest path. It turns out that Eq.9 also quantifies
the effective distance per link and the resulting gain of using SRP
over SP (see SI Appendix, S4 for a full derivation of these metrics
and their interpretation). To extract a global metric for the whole
network, we just average �(i,j) over all pairs of nodes to define the
network navigability gain:

� =
2

N (N − 1)

N∑
i<j

�(i,j). [10]

An illustration of these metrics in a toy network is given in
SI Appendix, S5. Observe that � quantifies an improvement of
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A B C

D E F

Fig. 2. Plot of the normalized communicability entropy Ŝ(q) (red) and of the net gain factor � (blue) vs. : (A) the rewiring probability p for WS networks (numerical
step of �p = 0.01) with n = 250 nodes and different average degree 〈k〉, or (B) the mean degree 〈k〉 of a BA model with n = 250 nodes. Each dot is the average of
100 realizations, and standard deviations over the ensemble of realizations are also depicted. In both panels, the shaded blue area highlights the maximum of
� and marks the network’s good navigational point (pGNP ≈ 0.15 for WS model, 〈k〉GNP ≈ 11 for BA model). (C) � vs 〈k〉 for networks of n = 250 nodes generated
via the BA model, the WS model (poised at the good navigational point), and an Erdos-Renyi (ER) model for comparison. The bypass-induced navigability gain is
substantially larger in heterogeneous (BA) networks than in more homogeneous ones. The comparison between ER and SW networks is nontrivial and can be
explained in terms of the shapes of the respective degree distributions as 〈k〉 increases (see the text and SI Appendix). (D) Normalized communicability entropy
of both BA and ER networks with the same number of nodes, as a function of the mean degree. (E) Ratio �BA/�ER to highlight the difference in navigability gains
displayed in panel (C). (F ) �BA vs 〈k〉 in the extended region of high density, where preferential attachment is not properly working anymore (SI Appendix, S9),
leading to an explosion of the navigability gain due to the transition to ultrashort graphs.

a function (network navigability) as a result of an innovation
(consolidation of bypasses) and is therefore a quantitative proxy
of structural deepening.

We can now quantify bypass consolidation and its associated
navigability gain on relation to both WS and BA mechanisms.
When we apply this formalism to the evolving SW network we
obtain the results illustrated in Fig. 2 A, Left axis. We observe
that the navigability gain factor � exhibits a clear nonmonotonic
shape as a function of the rewiring probability p. In fact, our
measure detects a maximum for p ≈ 0.15 at which, on average,
traveling through the SRP is much more favorable than doing so
through the SP. We call this probability the “good navigational
point” (GNP) of the network, pGNP. It is interesting to observe
that pGNP is a precise location inside the so-called small-world
regime, which is independent of the network mean degree 〈k〉.
Anecdotally, this value appears close to the saturating point of
spectral spacing in SW networks (46, 47).

Now, note that the SW mechanism consolidates bypasses out
of a regular-to-random transition, so comparatively speaking
the values of � should be typically higher in more structured
networks—e.g., in networks with fat-tailed degree distributions
like the BA model—where the presence of hubs makes the
existence of bypasses even more necessary. This hypothesis is
confirmed in Fig. 2 B, Right axis, in which � reaches roughly
values one order of magnitude larger in the BA model than those
found in a comparable WS model. In this case, we observe again
nonmonotonic behavior of � with 〈k〉, displaying a maximum
close to 〈k〉 ≈ 11, i.e., the BA model also has a good navigational
point when mean degree is 〈k〉GNP ≈ 11, where bypassing
shortest paths that include hubs is maximally relevant.

To further analyze the impact of bypasses, we now compare the
values of � obtained in a BA model (n = 250 nodes and mean

degree 〈k〉) against i) those obtained for an Erdös-Renyi (ER)
graph with the same n and 〈k〉—this latter being a model with
the same number of edges but with a homogeneous (Poisson)
degree distribution and thus virtually lacking any hubs—and ii)
those of a WS model with the same n and same 〈k〉, and poised at
p = pGNP. Results are shown in Fig. 2C and certify that, in the
sparse regime (〈k〉 < 35), � is substantially larger in BA than both
ER and SW, i.e., the gain supported by bypasses is considerably
more important in heterogeneous networks, as expected (48).
When comparing the behavior of � in ER vs SW networks (both
in principle lacking substantial hubs), we observe an interesting
effect: For a range of small mean degrees 〈k〉 < 11, SW networks
benefit more from bypasses than ER ones. The opposite is true for
an intermediate 11 < 〈k〉 < 30, and the effect is again changed
for very large mean degrees 〈k〉 > 30. This nontrivial behavior
can be explained by comparing the degree distributions of both
ER networks and SW networks at pGNP and by realizing the
(often overlooked) fact that the degree distribution (in particular,
the skewness and kurtosis) of an SW network poised at a fixed
p undergoes different shapes as 〈k〉 increases (see SI Appendix,
section S8 for details). Incidentally, this can also explain why
Ŝ(q) initial increase in SW networks is sharper for larger 〈k〉 (SI
Appendix).

In summary, the effect of bypasses is maximized for SW
networks at the good navigational point pGNP ≈ 0.15, and
within that point, this effect appears to be monotonically boosted
when these SW networks increase their degree heterogeneity, i.e.,
increasing 〈k〉. ER networks have bypassing properties as long as
they show degree heterogeneities, and to a small extent (Poisson
distribution), this is the case. Such effect is then maximal around
〈k〉 ≈ 20 (the fact that bypasses have a nonmonotonic effect
also within ER networks can again be explained in terms of the
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A B

DC

Fig. 3. (A) Toy network with a concrete source–destination pair (p, q), which can be navigated via paths P1 and P2. (B) Computation of the different metrics
certifies that P2 is a bypass of the shortest path P1, and the navigability gain associated with this pair is 25% (a lower bound of the actual gain; see SI Appendix,
S5). Random walk trajectories starting at p and eventually hitting q can be classified as P1-like or P2-like, depending on their specific trajectories (SI Appendix,
S6). The hitting time and excess time of the P1 class is larger than for P2, meaning that random-walk navigability is enhanced in the P2 (that is, the SRP)
class. The excess time saving is a diffusion-proxy of the navigability gain (SI Appendix, S6). (C) Coactivation brain network. (D) Excess time saving for several
source–destination pairs in the brain network, finding that SRP enhances navigability in all cases .

skewness degree distribution; see SI Appendix). Finally, in BA
networks, bypassing effects are substantially larger due to higher
degree heterogeneities, as expected.

To close this analysis, one can ask about the theoretical upper
bound on �. Heuristically, the effect of bypasses would be fully
maximized in a situation where we add to a given (connected)
network a new node that is linked to every other node. Such a new
node would be a “superhub” that makes the network have shortest
paths of length≤ 2 for all pairs of nodes. In this extreme situation,
many of the shortest paths will be systematically bypassed and
� would explode (see SI Appendix, S9 for details). Now, is this
just a theoretical scenario? It turns out that this situation can
take place in an extreme version of the BA model in a finite
graph, where 〈k〉 is large enough (compared to the initial seed) so
that new nodes entering systematically connect to a large portion
of the network, leading to so-called ultrashort graphs (49). This
explosion is reported in Fig. 2F. Evidently, in this case, there is no
preferential attachment anymore, so in some sense, the rationale
behind the BA model breaks down in this dense regime‡.

Effect on Dynamics. As already anticipated, our theory is purely
structural and therefore dynamically agnostic and speaks of
the effect of network geometrization on the formation of
shortest paths in the geometrized network—the SRPs—which are
different from the shortest paths of the original, ungeometrized
network. Our contention is that these emergent bypasses have
an effect on the network’s navigability, and here, we provide
an initial validation of this hypothesis by considering source–
destination random walk trajectories navigating a network. Each
of these random walk trajectories is then classified as SRP-like or
SP-like depending on the specific sequence of nodes the walker
is visiting (see SI Appendix, S6 for details). One can subsequently
compare the SRP class and the SP class by computing a number
of quantities, such as the average hitting time in each class, or the

‡In the dense regime 〈k〉 > 35, the calculations of � need to be taken with caution as
numerical rounding effects might become important when computing exp (A).

excess time (i.e., for each class, how much more time than the time
spent by a ballistic walker it takes to reach the destination), which
yield dynamical proxies for the effective length or the associated
navigability gain defined above (SI Appendix, S6). Results for
both a synthetic small network and for a large real network
(a coactivation brain network, see below) are shown in Fig. 3
and confirm our hypothesis that particles are more prone to
“get lost” (and thus spend a significantly longer time) navigating
through a SP-like path compared to an SRP-like one. In other
words, the presence of SRPs enhances navigability for diffusion-
like dynamics (additional details and analysis are provided in SI
Appendix, S6). At the same time, this finding further confirms that
bypasses induce structural deepening by increasing the efficiency
of network navigability.

We have also made some preliminary progress on analyzing
how bypasses impact other network functions by considering
two additional dynamical processes running on a network:
synchronization and epidemic spreading. Results (fully detailed
in SI Appendix, section S7) suggest that the prototypical dynam-
ical fingerprints in each case (i.e., eigenratio of the Laplacian
matrix for synchronization and epidemic threshold for epidemic
spreading) are affected by bypass consolidation, and, in particular,
qualitative dynamical changes occur in both types of dynamics
close to pGNP.

Empirical Networks. To round off, we have considered a total
of 177 empirical networks of different nature, including social
(4 collaboration networks of different nature, 3 termite mounds),
biological (Human brain—70 anatomical, 70 functional at
resting-state, one functional at task-driven (extracted and aver-
aged from a meta-analysis of 1,600 works)—, neural network of
C. elegans, a protein–protein interaction, a transcription yeast, 15
food webs), and technological ones (air transportation, Internet,
3 electronic circuits, power grid, 5 software networks), see SI
Appendix, section S11.1 for details and full references. Results on
several metrics are summarized in Table 1, and some scatter plots
are visualized in Fig. 4.
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Table 1. Summary of metrics for empirical networks, depicting the communicability entropy Ŝ(q), the navigability
gain �, the optimal rewiring probability p∗, and the navigability ratio �/�BA (see the text) across 177 different
empirical networks (for many of them, we offer averages; see SI Appendix, S10 for details), where: Human brain
(anatomical) provides the averaged results across 70 anatomical networks (using the same parcellation), Human
brain (functional, resting-state) provides the averaged results across 70 functional networks (using the same
parcellation as the anatomical networks), Software provides the averaged results across the networks MySQL,
XMMS, Abi, Digital, and VTK; Food webs is the average of 15 food webs (see SI Appendix, S11.3 for disaggregation);
Electronic circuits is the average of three electronic circuits; Termite mounds is the average of three termite mounds

Network Ŝ(q) � (%) p∗ �/�BA

Human brain (functional, task-driven) 0.9234 51.71 0.30 0.78
Collaboration CoGe 0.7776 41.50 0.21 0.93
Collaboration QcGr 0.4598 38.39 0.15 0.79
Human brain (anatomical) 0.925± 0.022 36.21± 1.52 0.23± 0.01 0.86± 0.04
C. elegans neurons 0.9312 31.69 0.34 0.87
USA airports 1997 0.8501 28.60 0.27 0.76
Internet AS 1997 0.8891 25.49 ∼ 1 0.52
Yeast PPI 0.8344 25.50 0.24 0.55
Drugs users 0.7794 21.18 0.10 0.57
Software 0.8308± 0.0263 21.11± 12.10 ∼ 1† 0.58
Human brain (functional, resting-state) 0.758± 0.054 20.81± 1.42 0.17± 0.02 0.49± 0.05
Roget thesaurus 0.9215 19.18 0.35 0.43
Transcription yeast 0.8128 12.26 ∼ 1 0.38
Food webs 0.9498± 0.0208 9.94± 7.13 ** 0.64∗∗∗
electronic circuits 0.8202± 0.0260 3.456± 2.561 ∼ 1 0.12
Termite mounds 0.5707± 0.0331 3.100± 2.12 ∼ 1 0.11
Power grid 0.6348 2.61 ∼ 1 0.05

†Except MySQL which has p∗ ≈ 0.29. **Three types of behaviors: i) p∗ ≈ 1 for 8 food webs; ii) 0.43 ≤ p∗ ≤ 0.45 for El Verde, Shelf, Ythan1, and Ythan2; iii) 0.03 ≤ p∗ ≤ 0.14 for Bridge
Brooks, Coachella, and Little Rock. *** See SI Appendix, section S11 for disaggregated data and additional details.

The first two columns of this table report the normalized com-
municability entropy Ŝ(q) and navigability gain �. Interestingly,
all of them appear to be entropic enough for potential bypasses
to have been formed, as values of Ŝ(q) are in the region where
our analysis on synthetic models show consolidated bypasses§.
We indeed find that essentially all real-world networks harbor
consolidated bypasses (� > 0), albeit with different impacts, what
allows us to rank them accordingly. At the top of the ranking,
the net gain induced by consolidated bypasses reaches over 50%
for the (task-driven) functional brain network, followed by many
other self-organized networks (collaboration networks,C. elegans,
etc). It is interesting to see that the navigability gain substantially
drops for functional brain networks when passing from task-
driven activation to resting state. This might be suggesting the
possibility that navigability gain in functional brain networks
might be task-related, something that deserves further research.
Our finding that the navigability gain of anatomic networks
is in between those of task-driven and resting-state functional
networks is reasonable. On one hand, resting-state function in
adults is usually thought to be restricted to a brain module. On the
other hand, the specific task-driven network that we analyze here
is the outcome of a meta-analysis of over 1,600 works considering
different tasks—and thus, in principle, the result of multiple
brain modules. These hypotheses await confirmation, and, in any
case, further research is needed to elucidate the relation of the
topology-induced bypasses studied here with specific cognitive
aspects.

At the bottom of the list in Table 1, we find some designed
networks, such as electronic circuits or the power grid, the

§Note, however, that a finer analysis is needed as, e.g., we have observed in the SW
analysis that reaching the GNP is density-dependent, i.e., the communicability entropy
saturates quicker as p increases for networks with larger mean degree.

latter having only a discrete 2.6% navigability gain. This can
be indicative that the power grid, while having hubs to some
extent (4, 50), has not evolved according to mechanisms such
as WS or BA, is not self-organized, and, as a consequence, does
not hold the necessary preemptive structural bypasses to avoid
systemic failures, as we have seen during blackouts (51). Note at
this point that the navigability gain � does not trivially correlate
with more standard network metrics, such as network density
(linear regression of the scatter plot offers a R2 = 0.12), mean
degree (R2 = 0.09), average path length (R2 = 0.01), or average
clustering (R2 = 0.006), see SI Appendix, S11.4 for details.

Now, to which extent the observed bypasses are indeed of the
SW-type (i.e., bypassing shortest paths consistently generated via
a WS-like mechanism), and in such case, how close empirical
networks are to their theoretical good navigational point? While
this question is difficult to answer, the metric p∗ reported
in the third column of Table 1 (Fig. 4) provides a first
step. Operationally, for a given empirical network G with n
nodes and mean degree 〈k〉, we estimate the closest purely
SW-generated network G′(p) (with the same (n, 〈k〉)). This
is achieved by minimizing the spectral dissimilarity distance

D(G,G′) =
√∑n

j=1
(
�j (G)− �j (G)

)2, where �j(G) is the
j-th eigenvalue of the adjacency matrix of network G and
minimization is over p, i.e., p∗ = argminp[D(G,G′(p)]¶. This
metric indicates that networks can be typically clustered in two
types: one (which includes all human brain networks, the neural

¶Note that this analysis is not designed to find which real-world networks can be classified
as small-world. It just assumes they all have such ingredient in their network formation
and evaluate, setting that prior as the sole generating mechanism, what would then be
the value of the rewiring probability, so as to establish whether the bypass amount is close
or not to the GNP. For those networks whose p∗ is found to be close to the GNP, this is
partial evidence that such network harbors bypasses of the SW-type.
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Fig. 4. Some scatter plots of the metrics reported in Table 1 for empirical networks. (Left) Net navigability gain � vs p∗, revealing the emergence of two
well-defined groups of networks. (Centre) Navigability ratio �/�BA vs. p∗, finding the same clustering as in panel (left). (Right) � vs. the normalized communicability
entropy Ŝ(q), where no clear clustering emerges .

network of C.elegans, the protein–protein interaction network,
collaboration networks, Roget network, and the US air network)
where D(G,G′(p)) has a nonmonotonic shape with a minimum
p∗ ∈ [0.15, 0.35]—i.e., close but not exactly at the good
navigational point—and another cluster of networks (including
electronic circuits, Internet AS97, software networks of termite
mounds) where D(G,G′(p)) is monotonically decreasing and
thus p∗ = 1 (see SI Appendix, S11.2 for further details and
analysis). The former class thus tends to harbor bypasses of
the SW-type—avoiding shortcuts—and its network formation
includes at least partially some SW ingredient while the second
one tends to have a structure which cannot be well explained
only by SW mechanisms (this does not mean, however, that
such network is random). Incidentally, no clear function-related
clustering emerges.

The fourth column of Table 1 finally depicts �/�BA—where
�BA is the navigability gain of a BA network with the same
number of nodes n and mean degree 〈k〉 of the real network—and
quantifies whether the observed network bypasses are effectively
bypassing hubs. This metric highlights two different groups of
networks. The first group is characterized by the relevance of
hubs (i.e., �/�BA ∼ 1). In the second group of networks the
hubs are not necessarily playing a fundamental role in terms
of the consolidated bypasses. That is, either the bypasses are
not necessarily skipping hubs, or such networks have not been
designed to harbor bypasses. In closing, they do not abide to a
BA-like mechanism, so �/�BA is closer to zero (see SI Appendix,
S11.3 for further discussion).

Discussion

The journey of network complexification is supported by basic
mechanisms including the celebrated WS and BA, among others.
As the network evolves accordingly, we have shown that it
naturally increases its communicability entropy S(q) and, in
so doing, it allows for new navigational routes to be built,
entropically providing bypass “candidates” to the network. Our
theory allows to detect when some of these new routes consolidate
their bypassing property by subsequently getting to be more
favorable than the corresponding shortest paths connecting the
same pairs of nodes, and we show that consolidation takes
place in both WS and BA models. Interestingly, we find
that the role of bypasses is maximized in a small parameter
region—which we call the network’s good navigational point—
located in a point inside the Small-World regime and for a
specific mean degree in the BA model. These findings suggest
that the navigation gain offered by the network bypasses is

indeed reflecting a form of structural deepening, thus putting
the onset of complexity in networks into a solid quantitative
footing.

We have certified that bypasses induce clear navigation gain
for particles undergoing diffusion-like dynamics and also play
an effect on other network functions, including harboring
synchronization and epidemic spreading. We have then shown
that many empirical networks considered complex, including
brain networks, indeed have good navigational point properties,
while those that are not cataloged as self-organized but have
been designed tend to not include bypasses in their design, with
well-known unfortunate consequences (51).

In hindsight, our results could provide a theoretical and
mechanistic support for the role of bypasses in, e.g., physiological
systems—where plasticity is of utmost importance (52). First,
network bypasses naturally relate to the existence of the so-
called “collateral circulation”: a system of specialized endogenous
bypass vessels present in most tissues providing protection
against ischemic injury caused by ischemic stroke, coronary
atherosclerosis, peripheral artery disease, and other conditions
and diseases (53). Second, in brain networks, there is nowadays
enough observational evidence which supports that these are
SW in the Watts–Strogatz sense (54) and possess hubs which
create skewness of their degree distributions (55). At the same
time, recent experiments (56) suggest that propagating signals
in the brain using hubs as part of the navigation path might
have a large energetic cost, triggering research on nongeodesic
information propagation (56–58). Our work indeed supports
the concept of nongeodesic navigability (via network bypasses)
and reconciles this with the reported network structure. In this
context, note that (59) proposed considering networks of neurons
as evolving and growing connections in a distributed fashion (via
mechanisms different that SW or BA) such that shortest path
minimization and robustness maximization (which in general
implied to avoid the creation of hubs) was performed at the same
time. Note, however, that brain navigation is not likely to occur
always geodesically (56–58) (this also would imply that individual
neurons perform global optimization and have access to the
whole brain structure). The logical conclusion is that the seminal
findings in ref. 59 imply that the creation of shortest paths should
be accompanied by the proliferation of additional structure that
plays a role of structural deepening, in good agreement with our
theory.

Third, in another recent work (60), it has been shown that
brain function appears to be robust against damage by readapting
and repurposing nondamaged links, something that can be
interpreted to the brain’s ability to recompute SRPs and thus

8 of 10 https://doi.org/10.1073/pnas.2305001120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
 D

E
 Z

A
R

A
G

O
Z

A
 o

n 
O

ct
ob

er
 2

4,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

15
5.

21
0.

57
.4

2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2305001120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2305001120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2305001120#supplementary-materials


rerank bypasses after network damage. All in all, elucidating the
impact of our findings in the context of neuroscience is an exciting
avenue for future work.

An aspect not explored in this paper but also of major interest
is the implications of our theory to congestion or jamming
phenomena in networks and to which extent our proposed
measures of topological length excess and navigability gain could
anticipate congestion in, e.g., transportation and urban systems.
First, we should disclose that conceptually similar problems have
been theorized in the mathematics literature, where some authors
have studied the so-called “resistance distance” in networks
(61)—where some unit resistances are placed at every edge
in a network—in the context of congestion (62, 63). Now,
while an interesting mathematical concept, this latter distance
analytically converges, for large graphs and in high dimensions,
to an expression that does not take into account the structure of
the graph (64) (i.e., it only depends on the degrees of the source
and destination nodes) and thus unfortunately turns useless in
real-world scenarios#. Second, recent empirical evidence in urban
science indeed suggests that, at rush hours, in different cities
worldwide, paths which can be identified as SRPs are supporting
more traffic than SPs (65), i.e., they become systematically
preferred routes. This constitutes preliminary support in favor of
the relevance of SRPs for navigation strategies in networks subject
to jamming, and further research is deserved. For instance, we
speculate that this strategy can be further refined by, instead
of systematically selecting only the SRP as the preferred route,
ranking each of the paths connecting any two locations via
the computation of its associated topological length excess and
rerouting traffic accordingly when needed.

#Anecdotally, it is easy to see that such resistance distance is already unable to capture
the nuanced navigability properties of paths P1 and P2 in the toy network presented
in Fig. 3 (revealed by the hitting times analysis) and that in turn our theory correctly
predicts.

Other important open questions for further research in-
clude understanding the role played by network bypasses and
their relation to structural deepening in other mechanistic
growth models (e.g., assortative/disassortative mixing, triadic
closure, etc), and the extension of our theory to weighted (see
a preliminary discussion on this topic in SI Appendix, S10),
temporal and higher-order networks (66, 67).

Finally, while network bypass emergence appears to be
contingent on the growth mechanism—and thus appears to be
a by-product of it—bypass consolidation (structural deepening)
is the effect which probably makes those growth mechanisms to
be sustainable in the first place. Simply put, we argue, bypasses
sustain complexity.

Data, Materials, and Software Availability. All data sources are openly
available and have been referenced in SI Appendix. Reasonable requests can
be sent to estrada@ifisc.uib-csic.es. Mathematical and algorithmic details of
the methods are provided in SI Appendix, section S4. Codes are available at
https://github.com/lucaslacasa/bypasses (68).
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