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Abstract

The accelerating pace in the automation of agricultural tasks demands highly accurate and robust lo-
calization systems for field robots. Simultaneous Localization and Mapping (SLAM) methods inevitably
accumulate drift on exploratory trajectories and primarily rely on place revisiting and loop closing to keep
a bounded global localization error. Loop closure techniques are significantly challenging in agricultural
fields, as the local visual appearance of different views is very similar and might change easily due to
weather effects. A suitable alternative in practice is to employ global sensor positioning systems jointly
with the rest of the robot sensors. In this paper we propose and implement the fusion of GNSS, stereo
views and inertial measurements for localization purposes. Specifically, we incorporate, in a tightly-coupled
manner, GNSS measurements into the stereo-inertial ORB-SLAM3 pipeline. We thoroughly evaluate our
implementation in the sequences of the Rosario dataset, recorded by an autonomous robot in soybean fields,
and our own in-house data. Our data includes measurements from a conventional GNSS, rarely included in
evaluations of state-of-the-art approaches. We characterize the performance of GNSS-Stereo-inertial SLAM
in this application case, reporting pose error reductions between 10% and 30% compared to visual-inertial
and loosely-coupled GNSS-stereo-inertial baselines. In addition to such analysis, we also release the code of
our implementation as open source.

Keywords: GNSS-Stereo-Inertial SLAM, Agricultural Robotics, Precision Agriculture.

1. Introduction

Over the last decades, several agricultural tasks
such as sowing, weed detection and removal or har-
vesting are being progressively automated target-
ing sustainable and environmentally friendly pro-
duction. The use of autonomous robots in an agri-
cultural environment has gained relevance, as it en-
ables an efficient use of resources (Auat Cheein &
Carelli, 2013; Bac et al., 2014). In general, in or-
der to fully automate these and other agricultural
tasks, the robot needs to know its pose relative to
the environment in which it is navigating.
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A localization system must have a very high de-
gree of robustness and accuracy for a mobile robot
to navigate safely without damaging the environ-
ment or itself. For most environments and tasks,
a single sensor may not offer a sufficiently reliable
robot pose estimate. As a few illustrative examples,
GNSS sensors in outdoor environments do not ac-
cumulate error (drift) but they present considerable
variance in their global position readings and may
suffer frequent signal loss. State-of-the-art meth-
ods based on visual sensors perform badly if im-
ages have insufficient or repetitive textures, which
is common in agricultural environments. Lighting
can also be a problem if it is insufficient or ex-
cessive, and abrupt robot motion can cause image
blur that degrades the estimation performance. Fi-
nally, interoceptive sensors that measure the inter-
nal state of the robot, such as the encoders in the
wheel motors or inertial measurement units (IMU),
are accurate for short-term motion estimation but
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Figure 1: (a) and (b): Frontal and back views of our
field robot and the arable field environment in which we
navigate. (c): Trajectory estimated by our GNSS-stereo-
inertial SLAM framework, along with GNSS-RTK ground
truth, visual-inertial ORB-SLAM3 (Campos et al., 2021) and
VINS-Fusion (Qin et al., 2019)

drift after a few metres. Summing up, as all sen-
sors have different and complementary advantages
and disadvantages, it is essential for field robotics
to properly fuse the measurements of multiple sen-
sors to achieve robust and accurate pose estimates.
This is particularly relevant to allow the robot to
navigate over long periods of time (long-term nav-
igation) and to keep the error bounded locally and
globally.

SLAM, standing for Simultaneous Localization
and Mapping, stands for the set of methods tar-
geting global localization and mapping from a set
of onboard sensors in a mobile agent (Cadena et al.,
2016). A large number of visual-inertial SLAM
pipelines have been proposed in the last decade
(Mur-Artal & Tardós, 2017a; Qin et al., 2018; Cam-
pos et al., 2021). Many of them demonstrate high
accuracy and robustness in indoor and urban en-
vironments. However, when it comes to the agri-
cultural environment, they present problems in cor-
rectly estimating the pose of the robot. Among oth-
ers, agricultural environments are challenging for
visual navigation due to insufficient and/or repet-
itive texture and direct sunlight. Adding iner-
tial measurements provides a slight improvement
in the estimation. Nevertheless, as shown in (Cre-
mona et al., 2022), state-of-the-art visual-inertial
systems accumulate significant errors after navigat-
ing a few minutes on arable lands. Robust SLAM
systems such as ORB-SLAM3 (Campos et al., 2021)
can eliminate drift when revisiting already mapped
places, but the so-called loop closing offers a poor
performance on agricultural fields due to insuffi-
ciently discriminative visual appearances. A rea-
sonable alternative, that we use in this work, is to
employ measurements from global positioning sen-
sors such as GNSS to allow the robot to navigate
for long periods without accumulating drift.

This paper presents a GNSS-stereo-inertial
SLAM implementation that fuses GNSS, visual and
inertial measurements using a tightly-coupled ap-
proach. Specifically, we extend the state-of-the-art
ORB-SLAM3 (Campos et al., 2021) with GNSS
factors. The global positioning measurements are
incorporated into the mapping thread, so that it
performs periodic corrections in the local map and
hence also correct the current camera pose in the
tracking thread. In this manner, we can achieve
drift-less trajectories without depending on the
ability of the system to close loops based on vi-
sual appearance. We evaluated our implementa-
tion on the agricultural dataset known as Rosario
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Dataset (Pire et al., 2019) and an additional in-
house dataset, which contains data from a wheeled
robot in a soybean field (see Figure 1a-1b for a pic-
ture of our robot). In both cases, we show how
our implementation is able to effectively fuse GNSS
readings outperforming the original stereo-inertial
ORB-SLAM3. The contribution of the work can be
summarized as follows:

• Implementation of a GNSS-Stereo-Inertial
framework.

• Evaluation of our GNSS-Stereo-Inertial frame-
work tightly-coupled fusion in agricultural en-
vironments, incorporating real conventional
GNSS measurements instead of simulated
ones, which are rarely included in evaluations
of state-of-the-art approaches.

• Public release of our implementation as open-
source1 , in order to facilitate its usage, exten-
sions and comparisons and evaluations by the
robotics community.

The article is organized as follows: Section 2
discusses related work on multi-modal sensor fu-
sion. In Section 3, we describe the proposed GNSS-
Stereo-Inertial framework. In Section 4, we present
and discuss the experimental results of our GNSS-
Stereo-Inertial implementation on real data in an
agricultural field. Finally, we present our conclu-
sions in Section 5.

2. Related Work

Sensor fusion methods can be broadly divided
into two groups, loosely-coupled and tightly-coupled.
Loosely-coupled methods are those that omit cor-
relations between measurements from different sen-
sors. This simplifies the fusion, as the estimation
from each sensor can run separately and the es-
timates be fused afterwards. Most of these ap-
proaches are based on filters, such as the Ex-
tended Kalman Filter (EKF), that sequentially up-
dates the system state integrating previous infor-
mation. This is however suboptimal compared
to tightly-coupled methods (Strasdat et al., 2012),
which model the correlations between state vari-
ables and sensor measurements. In this last case,

1https://github.com/CIFASIS/

gnss-stereo-inertial-fusion

the measurements from all sensors are jointly in-
tegrated in the same optimization problem. As a
drawback, tightly-coupled solutions generally have
a higher computational cost than loosely-coupled
ones. In the rest of the section, we refer the most
related works to ours, from the loosely-coupled to
the tightly-coupled ones.

Weiss et al. (2012) propose an EKF-based esti-
mation method for Micro Air Vehicles (MAV). Its
contribution is a modular loosely-coupled method
that is capable of fusing visual, inertial and ex-
ternal positioning sensor (such as GPS or a laser
telemetry tracking system) information. The re-
sults show that the proposed method allows state
predictions to be made up to 1 kHz for MAV con-
trol tasks, being robust to low frequency measure-
ments of 1Hz, delays of up to 500ms in the mea-
surements and noise with standard deviations up to
20 cm. Shen et al. (2014) present a similar loosely-
coupled approach but using an Unscented Kalman
Filter (UKF), in order to better address the non-
linearities in the sensor models. Wei et al. (2011)
use stereo cameras to estimate the motion of a
ground robot, considering motions only in the hori-
zontal plane, and using an EKF to fuse global GPS
measurements in a loosely-coupled manner, reduc-
ing the drift. Won et al. (2014a,b) propose a selec-
tive integration method for GNSS, visual and iner-
tial measurements to improve localization accuracy
under GNSS-challenged environments. The authors
introduced a new performance index to recognize
poor environments based on the geometrical distri-
bution of the satellites and the local image features.

Li et al. (2019) present a multi-state constraint
Kalman filter (MSCKF) approach to fuse monoc-
ular, inertial and raw GNSS-RTK measurements.
The MSCKF makes use of a measurement model
that does not require to include the feature land-
marks in the state vector of the EKF, improving
the robustness and computational complexity of
the system. Salehi et al. (2017) use a mixture of
tightly-coupled and loosely-coupled techniques for
the fusion of visual and GPS measurements. An ex-
haustive optimization restricted to a temporal win-
dow of recent visual measurements is used, while
measurements outside the window are marginal-
ized by obtaining estimates of relative motion be-
tween poses. This allows improving computational
times, preventing the computational complexity to
scale. Yu et al. (2019) present a GPS-assisted
visual-inertial estimation framework for omnidirec-
tional platforms. It extends VINS-MONO (Qin
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et al., 2018) to support multiple cameras, fuses vi-
sual and inertial information in a tightly-coupled
manner, combined with a loosely-coupled approach
to incorporate the measurements provided by GPS.
Later, the same authors present GVINS (Cao et al.,
2022), a framework based on non-linear optimiza-
tion. GVINS tightly fuses GNSS raw measurements
with visual and inertial information for state esti-
mation. The GNSS pseudorange and Doppler shift
measurements are modelled under a probabilistic
factor graph framework along with visual and iner-
tial constraints. The same approach is applied in
(Liu et al., 2021).
Lynen et al. (2013) present Multi-Sensor Fusion

(MSF), a modular sensor fusion system based on
an EKF filter where inertial information is used at
the prediction step. The information coming from
the different sensors is modeled in a general man-
ner as relative and/or absolute pose estimates, thus
allowing to fuse measurements coming from a large
number of sensors using a loosely-coupled approach.
The work places particular emphasis on modelling
the temporal arrival of the measurements by apply-
ing a technique known as Stochastic Cloning able
to address asynchronous sensor fusion. Mascaro
et al. (2018) present the Graph-Optimization based
Multi-Sensor Fusion (GOMSF) framework which
solves the fusion of pose estimates in different coor-
dinate systems. Visual-inertial estimates from the
MSF in local coordinates are merged with measure-
ments in global coordinates from a GPS.
Lee et al. (2020) present a GPS-VIO system

that fuses visual-inertial data with intermittent
GPS measurements. The authors proposed a GPS-
IMU online calibration approach for the time off-
set and extrinsics estimation. In (Boche et al.,
2022) a tightly coupled visual-inertial-GPS system
is presented. The system is based on OKVIS2
(Leutenegger, 2022). In the work a new global
reference frame initialization has been introduced.
It incorporates measurement uncertainties to de-
cide whether the extrinsic transformation between
the global and visual-inertial reference frame be-
comes observable. (Han et al., 2022) implement
a system that integrates GNSS measurements into
ORB-SLAM3 (Campos et al., 2021). In contrast to
our research, their approach defines a residual that
combines GNSS and IMU pre-integration measure-
ments, along with implementing online calibration
for the GNSS-IMU extrinsic. Remarkably, their
system was evaluated within indoor and urban en-
vironments, where the GNSS signal can be suscep-

tible to disruptions, but without facing the visual
challenges typically present in agricultural fields.

In contrast to the previously mentioned works,
this paper presents a tightly-coupled GNSS-stereo-
inertial SLAM to tackle localization in agricultural
environments. The proposed framework extends
the Visual-Inertial SLAM system ORB-SLAM3
(Campos et al., 2021) with GNSS measurements.
We built on top of ORB-SLAM3 since it has a
fair performance in agricultural environments (Cre-
mona et al., 2022). Our implementation is publicly
released as open source to facilitate its use, exten-
sion and reproduction of the results by the robotics
community.

3. Proposed GNSS-Stereo-Inertial Frame-
work

This section presents the technical aspects of
our implementation. Firstly, we introduce the no-
tation and conventions adopted that are neces-
sary to fully detail the model of our GNSS factor.
Later, we briefly introduce ORB-SLAM3 (Campos
et al., 2021), the state-of-the-art framework Visual-
Inertial SLAM that we use in our method. We refer
the reader to the original ORB-SLAM3 publication
for the full details on such framework. Finally, we
describe the formulation of our GNSS factor.

3.1. Notation

Figure 2 shows the coordinate frames used in this
work. W represents the world frame and B repre-
sents the body frame, that we place in the IMU
sensor. aS represents the coordinates of a geom-
etry entity a with respect to the reference frame
S. RW

B ∈ SO(3) refers to the rotation of B with
respect to W , and tWB ∈ R3 represents the trans-
lation of the reference frame B expressed in the
frame W . The rigid transformation formed by the
rotation RW

B and the translation tWB is denoted as
TW

B ∈ SE(3), and transforms points in homoge-
neous coordinates from the reference frame B to
the reference frame W . For global positioning mea-
surements, tBA ∈ R3 is the position of the GNSS
antenna in the body frame, and is assumed to be
known from a calibration stage. All GNSS mea-
surements are transformed to the local Cartesian
frame that we denote as A0. We detail below how
we choose such reference frame.
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Figure 2: Reference Frames used in this work. W repre-
sents the world frame and Bi represents the body frame at
time ti. t0 corresponds to time of the arrival of the first
GNSS measurement. A0 is an East-North-Up (ENU) local
Cartesian frame whose position is given by this first GNSS
measurement, i.e. the position of the antenna at time t0.
The position of the GNSS antenna in the body frame is rep-
resented with a translation tBA ∈ R3 and shown with a blue
line, and can be obtained from the calibration of the sys-
tem. The red line represents the estimated translation of
the GNSS antenna from time t0 to time ti. This 3D vector
is compared with the GNSS measurements in the GNSS er-
ror residual rGi

. Both vectors are expressed in A0 frame.

3.2. ORB-SLAM3

ORB-SLAM3 is a state-of-the-art visual-inertial
SLAM framework evolved from ORB-SLAM2
(Mur-Artal & Tardós, 2017b) and ORB-SLAM-VI
(Mur-Artal & Tardós, 2017a). With respect to
ORB-SLAM-VI, ORB-SLAM3 proposes a substan-
tially more robust inertial initialization based on
maximum-a-posteriori estimates. As it is common
in current SLAM systems, the processing is split
into multiple threads to exploit multi-core archi-
tectures. Specifically, ORB-SLAM3 implements a
tracking thread, a local mapping thread and a loop
closure and map merging thread. The tracking
thread estimates the pose of the current frame by
minimizing the reprojection error and incorporat-
ing IMU constraints into the optimization by pre-
integration (Forster et al., 2017). It also contains
the heuristics for deciding whether a frame becomes
a keyframe. The mapping thread main task is a
visual-inertial bundle adjustment on a sliding win-
dow of keyframes, although it also performs aux-
iliary map management tasks such as point and
keyframe culling. Finally, the loop closure and map

merging thread ensures the global consistency of
large maps by recognizing revisited places and cor-
recting the drift, and joining separate maps if a
common overlap is detected.

From the results in (Cremona et al., 2022), ORB-
SLAM3 presents an acceptable accuracy in arable
lands for short camera trajectories, but long-term
navigation is still challenging. The authors propose
a novel loop closure algorithm to correct the drift.
However, even with such improvement, loop closure
keeps being challenging due to the similarity in ap-
pearance of the local visual features. As a result,
visual SLAM systems may accumulate drift when
loop closures are not detected or the estimation may
be corrupted by false loop detections.

3.3. GNSS-Stereo-Inertial Fusion

In this work, we formulate a tightly-coupled ap-
proach for fusing visual, inertial and GNSS data.
Firstly, GNSS measurements are associated to the
timestamp of a keyframe according to their tempo-
ral proximity. If there is a keyframe with a temporal
difference under a specific threshold, the GNSS con-
straint is set to this keyframe. GNSS readings that
are not close in time to any keyframe are discarded
(see an illustration of this approach in Figure 3).
While this is an approximation, we found that,
given the high variance of conventional GNSS, a suf-
ficiently small threshold and appropriate keyframe
management policy makes its effect negligible.

The first GNSS reading that is associated with a
keyframe determines the position of A0, the Carte-
sian frame for our global position measurements
(see Figure 2). We choose A0 as a East-North-
Up (ENU) local Cartesian frame. The subsequent
GNSS measurements are transformed to be ex-
pressed in A0, and we refer to them as ẑi, where
ti is the timestamp of the corresponding keyframe.
This is done once the IMU is initialized. If the map
is reset, the process of selecting A0 is repeated.

Our GNSS-Stereo-Inertial fusion is done in the
local bundle adjustment of a sliding window of
keyframes and 3D points observed from them. Fig-
ure 4 shows the factor graph corresponding to such
optimization. The state variables to optimize are
X = {XB ,L}, where XB = [x1, . . . ,xi, . . . ,xN ] is
the set of sensor states for a window covering the
last N keyframes and L = [y1, . . . ,yj , . . . ,yM ] is
the set of landmarks states that were measured dur-
ing those last N keyframes. The sensor state xi at
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GNSS Measurement
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Association between 
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Figure 3: Representation of the temporal association be-
tween keyframes and GNSS measurements. Keyframes are
depicted with blue crosses on the temporal line and GNSS
measurements are depicted with green arrows. The dotted
box represents the association between a keyframe and a
measurement. Note that there are keyframes without a cor-
responding GNSS measurement and that GNSS measure-
ments can be discarded if they are further than a specific
temporal threshold from any keyframe.

the time instant i is

xi = [TW
Bi
,v⊤

i ,b
⊤
ai
,b⊤

gi ], (1)

which contains the sensor rigid transformation with
respect to the world frame TW

Bi
∈ SO(3), its local

velocity vi ∈ R3 and the accelerometer and gyro-
scope bias bai

∈ R3 and bgi ∈ R3. Landmarks are
represented by their Euclidean coordinates in the
world frame, i.e., yj = [XW , Y W , ZW ]⊤ ∈ R3

In comparison to ORB-SLAM3, a GNSS error
term is added to the cost function. Note that, as
shown in Figure 3, some keyframes may not have an
associated GNSS measurement. Then, our GNSS-
Stereo-Inertial mapping optimization can be stated
as follows

X̂ = argmin
X

(
N∑
i=1

∥rIi−1,i
∥2
Σ−1

Ii−1,i

+

+

M∑
j=1

∑
i∈Kj

ρ

(
∥rVij

∥Σ−1
Vij

+

)

+
∑
i∈N∗

ρ
(
∥rGi∥Σ−1

Gi

+
))

,

(2)

where N ∗ is the set of keyframes that have an as-
sociated GNSS measurement. The three addends
correspond, respectively, to the inertial, visual and
GNSS constraints. For the sake of completeness,
we will detail the three of them, although the first
two are used exactly as proposed in ORB-SLAM3
and the third one is our novel contribution.
The inertial residual is defined as follows

rIi−1,i = [r⊤∆Ri−1,i
, r⊤∆vi−1,i

, r⊤∆pi−1,i
]⊤, (3)

where r∆Ri−1,i
, r∆vi−1,i

and r∆pi−1,i
correspond

to orientation, velocity and position residuals that

have the following form

r∆Ri−1,i
= log

(
∆R⊤

i−1,iR
⊤
i−1Ri

)
r∆vi−1,i

= R⊤
i (vi − vi−1 − g∆ti−1,i)−∆vi−1,i

r∆pi−1,i
= R⊤

i

(
pi − pi−1 − vi∆ti−1,i −

1

2
g∆t2i−1,i

)
−

−∆pi−1,i.
(4)

The terms denoted as ∆Ri−1,i, ∆vi−1,i and
∆pi−1,i come from the preintegration of the IMU
readings between the time instants i− 1 and i, and
are computed together with their on-manifold co-
variance ΣIi−1,i

according to (Forster et al., 2017).
g stands for the gravity direction, which is set at
the system bootstrapping.

The visual residual r∆vi−1,i
is

rVij = uij − π
(
TC

BT
W−1
B ỹj

)
, (5)

where ỹj stands for the homogeneous representa-
tion of the jth landmark, π(·) for the pinhole pro-
jection model of a 3D point in homogeneous coor-
dinates in a stereo image, and uij the measured
image coordinates of the jth landmark in the ith

stereo keyframe. The visual covariance of image
landmarks ΣVij

is set to the standard 1-pixel stan-
dard deviation isotropic Gaussian.

Finally, the GNSS error residual is

rGi
= ẑi −RA0

W

(
RW

Bi
tBA + tWBi

−
(
RW

B0
tBA + tWB0

))
. (6)

The second term represents the translation vector
of the global sensor (in this case, the GNSS an-
tenna) at time instant i in the reference frame A0,
as can be seen in Figure 2. RW

B0
and tWB0

, which are
the relative rotation and translation between the
body and the world frame at time t0, are kept con-
stant during the optimization. RA0

W is computed
by aligning the first 20 GNSS measurements with
the poses estimated by ORB-SLAM3 in the same
time period using Umeyama’s method (Umeyama,
1991). After estimating this rotation, it is kept
fixed during the whole optimization process. The
covariance matrix ΣGi is set from the specifications
sheet of our GNSS device in each Cartesian axis

ΣGi =

σ2
x 0 0
0 σ2

y 0
0 0 σ2

z

 . (7)

This covariance matrix is defined relative to a tan-
gential plane through the GNSS reported position.
The values are expressed in ENU frame. Finally,
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Figure 4: Factor Graph corresponding to the Local Bundle
Adjustment of our GNSS-Stereo-Inertial SLAM. In compar-
ison to ORB-SLAM3, a GNSS factor (in red) is added to the
cost function. The Local Window is composed by the N last
keyframes. The fixed window contains keyframes outside the
local window that are connected in the covisibility graph to
any local keyframe. These keyframes remain fixed during
optimization. Additionally, the keyframe N+1 is included in
the fixed window as it constrains the IMU states.

the Jacobian with respect to the pose error state is
defined as

∂rGi

∂δTW
Bi

=
[
RA0

W RW
Bi

[
tBA
]× −RA0

W

]
, (8)

where δ indicates that the derivative is computed
with respect to a right perturbation in the pose.

4. Experimental Evaluation

This section shows the experimental results of the
implementation proposed in Section 3. The frame-
work is evaluated on the Rosario Dataset (Pire
et al., 2019), a set of agricultural data captured
by a weed removal robot. Later, an evaluation of
the system in a soybean field is presented, using the
same weed removal robot. The difference between
the latter test and the evaluation on the Rosario
Dataset is that new sensors are available, including
measurements from a conventional GNSS. For the
temporal association between keyframes and GNSS
measurements explained in Section 3.3, a threshold
of 0.035 seconds is chosen in all experiments.

4.1. Rosario Dataset

The Rosario Dataset (Pire et al., 2019) is a set
of data captured by the sensors of a weed re-
moval robot developed by the CIFASIS institute
(CONICET-UNR) in Rosario, Argentina. It is com-
posed of six sequences captured in a soybean field.
The sequences contain stereo images of 672×376 px
captured at 15Hz, measurements from an IMU with
a frequency of 142Hz including gyroscope and ac-
celerometer, wheel odometry obtained at 10Hz and

Table 1: Mean (standard deviation) of the Absolute Trajec-
tory Error (ATE) [m] for stereo-inertial ORB-SLAM3 (Cam-
pos et al., 2021), a loosely-coupled GNSS-stereo-inertial
system (Qin et al., 2019) and our tightly-coupled GNSS-
stereo-inertial framework in the six sequences of the Rosario
Dataset. Best results are in bold.
Sequence Stereo-Inertial GNSS-Stereo-Inertial GNSS-Stereo-Inertial

(Campos et al., 2021) (Qin et al., 2019) (Ours)
01 0.90 (0.34) 1.44 (2.06) 0.86 (0.26)
02 1.33 (0.75) 0.90 (0.40) 0.94 (0.56)
03 1.12 (0.65) 1.34 (1.91) 0.99 (0.56)
04 1.09 (0.65) 1.42 (1.20) 1.04 (0.60)
05 0.89 (0.55) 1.43 (1.91) 0.76 (0.38)
06 2.48 (1.40) 1.81 (0.87) 1.23 (0.70)

GNSS-RTK measurements at 5Hz. The GNSS-
RTK data are used as positional ground-truth.

Since the Rosario Dataset does not have con-
ventional GNSS measurements, we simulate noisy
GNSS measurements by corrupting the ground-
truth with zero-mean Gaussian noise, as in (Cioffi
& Scaramuzza, 2020). We use isotropic Gaussian
noise np ∼ N

(
0, σ2

p · I
)
, with a standard deviation

σp = 0.5m. We selected this value from observing
the covariance of the conventional GNSS used in
the experiments in Section 4.2.

We compared our GNSS-Stereo-Inertial imple-
mentation against Stereo-Inertial ORB-SLAM3
and a loosely-coupled GNSS-Stereo-Inertial system
known as VINS-Fusion (Qin et al., 2019). VINS-
Fusion was chosen because it is a state-of-the-art
system that takes as input the same GNSS mea-
surements as our system, i.e. latitude, longitude
and altitude. Each system was run five times in
each of the Rosario sequences, and Table 1 presents
the lowest ATE error of the five executions for each
framework. ATE has been computed after the esti-
mated trajectories were aligned with the ground-
truth GNSS readings using Umeyama’s method
(Umeyama, 1991). The corresponding trajectories
are presented in Figure 5.

4.2. Data with conventional GNSS in soybean fields

In the experiments from the previous section,
noisy GNSS measurements had to be simulated
from GNSS-RTK ones, as the dataset does not con-
tain conventional GNSS measurements. In this sec-
tion we present an evaluation with conventional
GNSS measurements. For this, we equipped our
weed removal robot with such sensor and deployed
it again in a soybean field. On board the robot
there is a ZED stereo camera which captures im-
ages 1280×720 px at 15Hz, an Emlid Reach GNSS
operating at a frequency of 5Hz, and an InvenSense
MPU-9250 IMU set at 200Hz. The covariance of
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(a) Sequence 01 (b) Sequence 02

(c) Sequence 03 (d) Sequence 04

(e) Sequence 05 (f) Sequence 06

Figure 5: Results from Stereo-Inertial ORB-SLAM3 (Campos et al., 2021), a loosely-coupled GNSS-Stereo-Inertial system
(Qin et al., 2019) and our tightly-coupled GNSS-Stereo-Inertial system on the Rosario Dataset. The estimated trajectories are
aligned with the ground-truth using Umeyama’s method (Umeyama, 1991).
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Figure 6: Weed removal robot used in our in-house dataset
in a soybean field. We equipped the robot with a ZED stereo
camera, an Emlid Reach GNSS receiver, and an InvenSense
MPU-9250 IMU. Furthermore, wheel odometry can be ob-
tained from the wheel encoders.

the conventional GNSS measurements is offered by
the driver of the GNSS receiver. In addition, GNSS-
RTK provides positional ground-truth. Figure 6
shows the robot configuration in the soybean field.
We commanded the robot to record three data se-
quences. The corresponding GNSS-RTK trajecto-
ries are shown in Figure 7 and images samples cap-
tured by the ZED camera can be seen in Figure 8.

On this data we ran the three frameworks men-
tioned in the previous experiment. The results of
this experiment are shown in Table 2, while the tra-
jectories can be seen in the Figure 9. Estimated
trajectories were aligned again with the ground-
truth using Umeyama’s method. Finally, the recon-
structed map and the trajectory estimated by our
our tightly-coupled GNSS-Stereo-Inertial SLAM for
sequence B is shown in Figure 10, as a qualitative
illustration of the mapping capability of our frame-
work.

4.3. Discussion

As can be seen in the results, our implementa-
tion clearly outperforms the stereo-inertial configu-
ration of ORB-SLAM3 and the loosely-coupled ap-
proach in (Qin et al., 2019). As a very relevant
note, we ran the full stereo-inertial ORB-SLAM3

Figure 7: GNSS-RTK trajectories for the sequences A (or-
ange), B (green) and C (purple) of our in-house recordings
in the soybean field.

Table 2: Mean (standard deviation) of the Absolute Trajec-
tory Error (ATE) [m] for stereo-inertial ORB-SLAM3 (Cam-
pos et al., 2021), a loosely-coupled GNSS-stereo-inertial sys-
tem (Qin et al., 2019) and our tightly-coupled GNSS-stereo-
inertial framework in the in-house recordings in soybean
fields. Best results are in bold.
Sequence Stereo-Inertial GNSS-Stereo-Inertial GNSS-Stereo-Inertial

(Campos et al., 2021) (Qin et al., 2019) (Ours)
A 0.64 (0.33) 1.08 (0.78) 0.44 (0.16)
B 0.43 (0.18) 5.58 (3.57) 0.36 (0.13)
C 0.46 (0.12) 16.90 (7.67) 0.39 (0.12)

in our configuration sequences with loop closure ca-
pabilities and, with its configuration by default, it
was unable to detect previously visited locations
and hence close loops due to insufficiently discrim-
inative visual appearances of the agricultural en-
vironment (perceptual aliasing). Although the de-
fault configuration for the loop closure parameters
might be loosened to detect a higher number of
loop closures, that would also produce a higher
number of false positives (due again to percep-
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Figure 8: Sample images from our in-house dataset. Note
the repetitive textures, a challenge for visual SLAM.

tual aliasing) that would corrupt the estimation.
These challenges are the main motivation for incor-
porating global positioning sensors in agricultural
environments, allowing to reduce the drift with-
out depending on visual features. Very interest-
ingly, we found in our experiments that only one
third of the optimized keyframes had associated
GNSS measurements. This may indicate that high-
frequency GNSS measurements are not necessary
to improve the estimation of visual-inertial SLAM,
and a sparse subset of them might suffice to offer a
reasonable performance.
Unlike the loosely-coupled system, our imple-

mentation returns smoother trajectories. More-
over, since the fusion is loosely-coupled, the global
position measurements correct the estimate with-
out considering the continuous motion of the robot
and act as an interpolation between the underly-
ing visual-inertial system and the GNSS measure-
ment. Even though in sequence 02 of the Rosario
Dataset, the loosely-coupled fusion system obtains
a lower error, in the trajectory of the Figure 5 it
can be observed that the estimation looks bumpy.
Smooth pose estimation, like the one offered by our
tightly-coupled approach, is more suitable for use
in a navigation control algorithm.
Regarding the experiment with conventional

GNSS measurements, it should be pointed out that
the loosely-coupled system lost the visual-inertial
tracking in the three sequences. This indicates that
it is important not only to focus on global mea-

surements, but also to have a robust visual-inertial
fusion. In our case, we use ORB-SLAM3 as the un-
derlying system, as a result of having analyzed the
performance of different visual-inertial systems in
previous research (Cremona et al., 2022). As a con-
clusion, in addition to a tight coupling of the sensor
data, the robustness of the visual-inertial estimates
are also relevant for practical implementations in
agricultural applications.

An important consideration is the modelling of
the noise of GNSS measurements. Based on previ-
ous works (Cioffi & Scaramuzza, 2020; Boche et al.,
2022), the uncertainty was modelled as additive
isotropic Gaussian noise. This is a simple model
that arises naturally from the GNSS device data,
as the device drivers generally provide a covariance
of the position. Other ways of modelling the noise
of GNSS measurements in the context of pose esti-
mation are worth studying, as when comparing the
simulated signal in the section 4.1 experiment with
the conventional GNSS signal used in the field ex-
periments, differences in their behaviour were ob-
served. When the conventional GNSS signal was
inspected in detail, a bias was found, mainly at al-
titude, which could be verified by the GNSS-RTK.
Therefore, this topic should be addressed in future
work.

5. Conclusions

This work presents a GNSS-stereo-inertial SLAM
framework that fuses in a tightly-coupled manner
the information from a stereo camera, an IMU and
a conventional GNSS sensor. In order to report
the most competitive results, we implement our
GNSS factor on top of the ORB-SLAM3 framework,
the top performer in the evaluation of (Cremona
et al., 2022). As we are motivated by long-term au-
tonomous navigation in arable farms, we present re-
sults in the Rosario Dataset and in-house sequences
from an agricultural robot. Very importantly, sev-
eral works in the literature evaluate GNSS-stereo-
inertial SLAM methods by emulating conventional
GNSS measurements while we use a real sensor, so
we are the first ones in reporting results in realistic
conditions in agricultural scenes.

Our results show that there is a consistent gain
in accuracy if GNSS measurements are tightly fused
with visual and inertial ones in the local mapping
optimization of a SLAM system. Very importantly,
not only the localization errors are reduced but also
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(a) Sequence A (b) Sequence B

(c) Sequence C

Figure 9: Results from Stereo-Inertial ORB-SLAM3 (Campos et al., 2021), the loosely-coupled GNSS-Stereo-Inertial system of
(Qin et al., 2019) and our tightly-coupled GNSS-Stereo-Inertial implementation on our in-house recordings in soybean fields,
using conventional GNSS. Estimated trajectories are aligned with the ground-truth using Umeyama’s method. Note the smaller
errors of tightly-coupled approaches, and how our GNSS fusion improves over the stereo-inertial baseline.
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Figure 10: Map estimated by our our tightly-coupled GNSS-
Stereo-Inertial SLAM for sequence B of our in-house dataset,
seen from tilted and top views. The black points correspond
to the tracked visual features, and the blue line to the esti-
mated trajectory.

their variance between runs, indicating a looser de-
pendence from the visual features used.
As an additional contribution of this work, we

release our implementation for the benefit of the
agricultural robotics community.
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