
Citation: Herrero, A.C.; Sanguesa,

J.A.; Garrido, P.; Martinez, F.J.;

Calafate, C.T. MoBiSea: A Binary

Search Algorithm for Product

Clustering in Industry 4.0. Electronics

2023, 12, 3262. https://doi.org/

10.3390/electronics12153262

Academic Editor: Miin-shen Yang

Received: 23 June 2023

Revised: 24 July 2023

Accepted: 27 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MoBiSea: A Binary Search Algorithm for Product Clustering
in Industry 4.0
Angel C. Herrero 1 , Julio A. Sanguesa 1 , Piedad Garrido 1 , Francisco J. Martinez 1,* and Carlos T. Calafate 2

1 Department of Computer Science and System Engineering, University of Zaragoza, 50018 Zaragoza, Spain;
acherrero@unizar.es (A.C.H.); jsanguesa@unizar.es (J.A.S.); piedad@unizar.es (P.G.)

2 Departament of Computer Engineering (DISCA), Universitat Politècnica de València, 46022 Valencia, Spain;
calafate@disca.upv.es

* Correspondence: f.martinez@unizar.es

Abstract: Proprietary systems used to modernize Industry 4.0 usually involve high financial costs.
Consequently, using low-cost devices with the same functionalities, capable of replacing these
proprietary systems but at a lower cost, has become an incipient trend. However, these low-cost
devices usually come with electromagnetic interference problems as they are encapsulated in electrical
panels, sitting alongside electromechanical devices. In this article, we present Mode Binary Search,
an algorithm specifically designed for use in a low-cost automated-industrial-productivity-data-
collection system. Specifically, productivity data are obtained from the availability and sealing signals
of the thermoplastic sealing machines in production lines belonging to the agri-food industry. Mode
Binary Search was designed to cluster sealing signals, thus enabling us to identify which products
have been made. Furthermore, the algorithm determines when the manufacturing of each product
starts and ends, in other words, the exact moment a product change occurs and all this without
the need for operator supervision or intervention. Finally, we compared our algorithm, based on
binary search, with three clustering mechanisms: k-means, k-rms and x-means. Out of all the cases
we analyzed, the maximum error committed by Mode Binary Search is limited to 2.69%, thereby
outperforming all others.

Keywords: Industry 4.0; low-cost devices; clustering; binary search; Rasbperry Pi

1. Introduction

The concept of Industry 4.0 aims to integrate machinery, devices and sensors, in other
words, the physical manufacturing process, with digital parts and advanced software [1].
All this is driven by modern connected industry technologies used to predict, control,
maintain and integrate manufacturing processes. As a result, their impact is expected to be
far-reaching in future manufacturing systems and, therefore, organizations will need to
increase their investments in digital technologies [2].

Although there is a wide range of devices and equipment capable of modernizing the
industry, the proprietary systems used tend to involve a high financial investment. In most
cases, they are encapsulated systems, implementing them is expensive and their communi-
cation protocols differ. Consequently, several proposals have analyzed the possibility of
adopting low-cost devices in industrial environments. Although they have not yet been
installed in real settings on a large scale, their usage is growing despite the difficulties
encountered, such as strong Electromagnetic Interferences (EMIs), which are prone to cause
both sensing and communications errors.

As a contribution towards increased industry automation through the adoption of
low-cost systems and to demonstrate that systems requiring less financial investment
may, nevertheless, be capable of performing the same operations as other proprietary
systems, we have developed a solution that measures and monitors the variables involved

Electronics 2023, 12, 3262. https://doi.org/10.3390/electronics12153262 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153262
https://doi.org/10.3390/electronics12153262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8055-5935
https://orcid.org/0000-0001-7657-0075
https://orcid.org/0000-0002-1750-7225
https://orcid.org/0000-0001-6945-7330
https://orcid.org/0000-0001-5729-3041
https://doi.org/10.3390/electronics12153262
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153262?type=check_update&version=1

Electronics 2023, 12, 3262 2 of 21

in calculating the Overall Equipment Effectiveness (OEE) factor [3]. The aim is to ob-
tain precise production parameters (availability, performance and quality) in real time in
industrial settings.

OEE is a measurement tool based on the Total Productive Maintenance (TPM) concept.
Its purpose is to detect and eliminate failures caused by equipment, thereby improving
production, reducing costs and inventory, and increasing labor productivity. Measuring
OEE enables us to identify reasons and quantify their effect in terms of poor performance,
thus providing us with improvement rates and an analysis of the source of the defects.
Figure 1 shows the components taken into account for the calculation of OEE: (i) the
availability metric evaluates time ratio when the machine is genuinely ready to operate,
(ii) the performance metric quantifies the share of time the machine can work, disregarding
time losses stemming from reduced speed and, lastly, (iii) the quality metric calculates the
fraction of time the machine operates at full productivity, accounting for time losses caused
by defects.

Figure 1. Overall-equipment-effectiveness components.

The automatic collection of productivity data is a crucial component for maximizing
efficiency, predicting and preventing problems and advancing towards greater automation
in the era of Industry 4.0. It offers tangible advantages, such as real-time monitoring of
machinery performance, enabling companies to promptly identify any system anomalies
or failures. This, in turn, contributes to minimizing downtime and optimizing operational
efficiency. Additionally, the collected data serve as a foundation for conducting predictive
analysis, enabling the prediction of future trends or issues before they arise. As a result,
proactive decision-making based on data is facilitated. Furthermore, these data play a
vital role in the implementation of cyber–physical systems and the Internet of Things
(IoT), as they provide the necessary information for automating and controlling production
processes in real time.

It is important to emphasize that our work is immersed in the context of Industry 4.0
and the IoT. Within the framework of Industry 4.0, which seeks to integrate machinery,
devices and sensors to achieve an effective digitalization of production processes, our
algorithm makes a significant contribution. It provides a low-cost solution for measuring
and monitoring the variables involved in the calculation of the OEE factor, a key element
to achieve greater industrial automation. In addition, thanks to the automatic collection
of productivity data in real time, our algorithm facilitates the implementation of cyber–
physical systems and IoT, two fundamental pillars of Industry 4.0. On the other hand, our
algorithm is used for the automation of electromagnetic-interference-filtering mechanisms,
a recurring and significant problem in industrial environments, especially when using
low-cost devices. We designed our algorithm to effectively eliminate erroneous signals
caused by these interferences, thus improving the precision and efficiency of the system.
This aspect is crucial as effective management of electromagnetic interference is vital to
ensure the integrity of the collected data and, ultimately, the effectiveness of the production
systems based on Industry 4.0 and IoT.

Our previous research focused on measuring availability and performance by measur-
ing sealing signals in thermoplastic sealing machines in the agri-food industry [4]. Figure 2
presents a scheme of our low-cost system previously designed to determine the mentioned
OEE, in particular the availability and performance factors. In this scheme, five parts can be
observed: the industrial sealer, which performs the sealing of the containers; the relays that
receive the electrical signals from the availability and sealing; the Raspberry Pi, a low-cost

Electronics 2023, 12, 3262 3 of 21

microcomputer programmed to receive the signals and to manage the database where EMI
filtering mechanisms are applied; the database, where the signals from each line are stored;
and finally, the OEE dashboard, responsible for monitoring the process.

Figure 2. Scheme of the low-cost OEE estimation system [4].

During the design and development process of our low-cost system, based on the
Raspberry Pi platform, we encountered significant EMI problems in the signals we gathered;
this is because low-cost devices are placed alongside other electromechanical elements.
We solved this problem by eliminating the wrong signals due to EMI using two filtering
mechanisms that were designed to detect and eliminate all wrong signals due to EMI [5],
thereby avoiding any additional equipment. Specifically, these mechanisms make it possible
to eliminate noise in two types of signals from thermosealing machines: sealing signals and
availability signals. The Database Filter (DBF) is responsible for filtering the sealing signals,
while the Smart Coded Filter (SCF) is responsible for filtering the availability signals of
the machine.

The proposal presented in this article focuses on the DBF filtering mechanism, which
enables us to determine valid sealing signals for a correct OEE calculation. This mechanism
first filters signals lasting less than one second and then discards wrong signals that do not
fit into a logical order of sealing signal values (in other words, a 1 and a 0). After these
two operations, the system needs to know the start and end time instants for each product.
Operators previously had to enter these values manually, which is cumbersome and error-
prone. That is why we aim to design an algorithm capable of automatically estimating the
manufactured products, as well as the sealing times for each product, without any operator
supervision. We have called this algorithm MoBiSea (Mode Binary Search).

MoBiSea clusters sealing times to automatically identify products and also how many
product types are involved in the industrial process. In addition, it determines the moment
when the process starts and ends for each of the products. In our proposal, we validate
MoBiSea by clustering the sealing-time values of various products in an agri-food industry
and, more specifically, those involved in the sealing lines of a cheese factory. The products
the algorithm must select and cluster are those involved in the manufacturing process; in
other words, all the products in the manufacturing process in a shift, at different times
and in each shift without distinction. MoBiSea provides the automation needed for our
low-cost system based on Raspberry Pi. It mainly measures OEE, although it can be applied
to other systems.

We compared MoBiSea against the k-means, k-rms and x-means algorithms to evaluate
its performance and validate the proposal. Specifically, we analyzed the number of signals
categorized in every cluster, the start and end of each cluster and detected the products
made in each shift. We also compared real clusters (i.e., the products that have been
manufactured) with those our algorithm detected, as well as the clusters estimated via the
x-means algorithm, which is a version of k-means that enables us to determine the optimal
number of clusters. The results, which we present in Section 4, show that the number of
clusters estimated via x-means is not correct in most of the cases we analyzed. Furthermore,
we show that k-means, k-rms and x-means cannot correctly estimate the number of signals
in each of the clusters, nor the start and end instants in the manufacturing of each product.
On the other hand, MoBiSea can achieve such goals with a maximum error of 2.96%, which
we can consider negligible for the purpose of OEE calculation.

The remainder of this article is structured as follows: in Section 2, we describe the
k-means, x-means and k-rms algorithms and the binary search and we discuss some

Electronics 2023, 12, 3262 4 of 21

studies related to our proposal. The MoBiSea algorithm is presented in Section 3, in which
we clearly detail all its relevant and unique aspects. We also comment on the results
after validating our proposal. MoBiSea is compared with k-means, k-rms and x-means
in Section 4. Finally, Section 5 presents the most important conclusions and refers to
future work.

2. Related Studies

There is currently a range of algorithms aimed at clustering data. Clustering consists
in putting data into several groups, so that the data in one cluster have a maximum level of
similarity; conversely, the data between clusters should have a minimum similarity [6]. k-
means and x-means are two of the most widely used clustering algorithms in unsupervised
learning. k-means groups objects into k clusters (users establish the value of k in advance),
thus minimizing the sum of distances between each object and its cluster centroid, while
x-means is a variation of k-means in which the number of clusters to be obtained does not
necessarily have to be defined initially, since the mechanism automatically establishes the
number of clusters based on the analyzed data.

There are also algorithms that make it possible to exactly locate an element in a sorted
array of data, such as binary search. This method works by repeatedly halving the array
that could contain the searched data until possible locations are reduced to only one.

Some research that uses or analyzes these clustering methods (i.e., k-means and x-
means algorithms), as well as studies using binary search to locate elements in a dataset,
are outlined below in more detail.

2.1. k-Means and x-Means

k-means [7] is an unsupervised learning algorithm that solves the clustering problem.
We consider (X1, X2,. . . , Xn) as the set of n points that we want to group into k clusters,
which we will call Sj. The k-means algorithm finds a partition that minimizes the mean
square error between the centroid of each cluster (µj) and all the points in it (XnεSj). The
clustering function is given by the following equation [8]:

J =
k

∑
j=1

∑
nεSj

∥∥Xn − µj
∥∥2 (1)

where µj is the arithmetic mean of the data in set Sj and is defined as:

µj =
1
Nj

∑
nεSj

Xn (2)

k-means is easy to implement and it has good scalability in terms of data. The clear
disadvantage of this clustering method is that we first have to manually state the number
of clusters we want to divide the dataset into.

The x-means mechanism [9] overcomes this drawback, since it does not require users
to define the number of clusters; instead, it preprocesses the data so that it can estimate the
appropriate number of clusters depending on the data to be grouped. Although it is based
on k-means, it enables us to automatically check several clusters within a variable range.

Specifically, the x-means algorithm starts with a number of clusters (k) equal to the
lower limit of the given range (kmin) and adds clusters to it until it reaches the upper limit
(kmax). During this process, it calculates the Bayesian Information Criterion (BIC) for each
of these solutions and finally selects the one with the best score.

In some studies, k-means is applied in a variety of areas, is compared with other
mechanisms and is even improved. Rahamathunnisa et al. [10] propose a system based on
k-means and multi-support vector machine (multi-SVM) to detect diseases in vegetable and
organic products. Image processing that considers color, shape, size and texture is used for
that purpose. The k-means algorithm is then applied to these characteristics to cluster the
infected elements. The authors compare the k-means clustering and SVM algorithm with

Electronics 2023, 12, 3262 5 of 21

digital image processing in MATLAB, resulting in a proposal that is more precise and takes
less time. We do not perform image processing to identify products, but instead determine
the number of clusters based on variations in statistical modes in sealing-time values.

Using the Sobel operator and k-means, Siswantoro et al. [11] automatically segment
food product images to identify them. The Sobel operator enables them to determine the
region of interest and they then use the k-means clustering mechanism to separate the
object from its background, thereby clearly identifying the product in question. The authors
state that the identification results are more precise with the combination of Sobel and
k-means than with k-means alone. Although the objective in our proposal is also to identify
products passing along a production line, we do not use an image-recognition system;
instead, we use sealing times to identify the products made at any given time.

Hüseynli et al. [12] use the k-means algorithm to categorize electronic commerce
products by using text mining to automate technical specification extraction. They do this
by first preprocessing the dataset and extracting attributes from a set. The processed data
are product price, availability, product image and specifications. They are then clustered
using k-means. The results show an effectiveness of 98%. The data do not have to be
preprocessed in our proposal, however, and the results are 100% effective.

Considering production requirements in terms of product variety and related planning
tasks, Hochdörffer et al. [13] propose a clustering method called Product Variety Manage-
ment (PVM) capable of handling binary data related to the production process (in other
words, data describing whether production technology applies to a product variant) and
metric data related to production capacity (data describing capacity to apply production
technology in a process step). By applying this method, they manage to divide the prod-
ucts into clusters in which product variants have similar requirements. The results show
that planning complexity in designing production networks can be reduced with PVM.
Furthermore, the authors point out that traditional clustering methods (such as k-means)
are not capable of handling data with mixed characteristics. Our proposal works with data
with the same characteristics; an algorithm applying mixed characteristics to determine the
products made, and the moment their production starts or ends, is not required.

Noorbehbahani and Mansoori [14] address the limitations of traditional approaches
to network-traffic classification. Specifically, they propose semi-supervised classification
methods, since modern traffic classification methods, based on machine learning, require a
large amount of labeled data to extract a precise classification model, considered costly and
time-consuming. Their new semi-supervised method is based on x-means, along with a
new label-propagation technique. The precision of the proposed method demonstrates its
effectiveness in learning to classify network traffic using limited labeled data.

In order to address accuracy issues and reduce the number of iterations required by
the k-means algorithm, Avishek and Dipankar [15] propose a modified version called the
k-rms clustering algorithm. This modified algorithm incorporates changes that enhance
both its accuracy and efficiency compared to the original k-means algorithm. The authors
conducted experiments using 12 datasets obtained from the web archive of the University
of California to evaluate the performance of the k-rms algorithm. The results obtained
demonstrate significant promise and show improved outcomes compared to the traditional
k-means algorithm, as shown in the comparison we have carried out.

Imamura et al. [16] propose a technique for automatically extracting moving objects in
videos using the x-means clustering method. Their proposal enables the feature points in
each video frame to be extracted based on affine motion parameters. Experimental results
reveal that the approach accurately extracts the various objects. However, in our case,
x-means returns wrong values in terms of the number of clusters for the shifts we studied,
as we show in Section 4.

2.2. Binary Search

As we will see in Section 3, our MoBiSea mechanism uses a method similar to binary
search as it splits the data in half at each iteration, so that it can detect when a product

Electronics 2023, 12, 3262 6 of 21

change occurs during manufacturing. The binary-search algorithm, also known as half-
interval search or logarithmic search, is an efficient iterative search algorithm that works
with a sorted array and chops the search space into two halves in every iteration. Specifically,
it compares the required value with the middle element in the sequence; if the element is
not found in that position, the half where the element has not been found is eliminated
and the required value is searched for in the other half by marking its middle element. If
the element is not found, the process is repeated until the match is found or the array is
exhausted (see Figure 3). The binary-search functions are detailed in Algorithm 1.

Figure 3. Binary Search [17].

Algorithm 1: Binary Search
R1R2. . . RN log table whose keys are in ascending order K1 < K2 <. . .< KN ; the
algorithm searches for a given argument K

l is the bottom pointer of the chosen dataset
u is the top pointer of the chosen dataset
i is the midpoint of the chosen dataset
Step 1 [Start] The following is established l ← 1, u← N
Step 2 [Obtain midpoint] At this point we know that if K is in the table, it fulfills
Kl ≤ K ≤ Ku. If u < l the algorithm ends unsuccessfully. Otherwise,
i← [(l + u)/2] will be established, approximating the midpoint in the table
Step 3 [Compare] If K < Ki, go to Step 4; if K > Ki, go to Step 5; and if K = Ki,
the algorithm ends satisfactorily
Step 4 [Adjust u] Establish u← i− 1 and go back to Step 2
Step 5 [Adjust l] Establish l ← i + 1 and go back to Step 2

The advantage of this algorithm is that it can be applied to both linear-array data
and binary-search trees; it is also the most efficient method for finding items in a sorted
array. However, as the algorithm only works with sorted arrays, it usually requires data
preprocessing. Binary search is one of the most widely used search mechanisms applied to
a dataset. Several authors have written papers based on binary search, some of which are
shown below.

Since binary-search comparisons require n elements to be split in half in each iteration
and matching to the key, Vuyyuru et al. [18] propose reducing the expected number of
comparisons during the search process. They present a new algorithm that decreases the
average number of comparisons required to search for an element depending on its size,
thereby showing there are fewer search steps when only elements the same size as the key
are considered. This research needs to know the element size to reduce the average time

Electronics 2023, 12, 3262 7 of 21

needed to lessen the comparison size, as well as the searched key. In our proposal, we
are searching for a switch value for data produced continuously in the production shift,
without knowing the size and the value we are looking for in advance.

Jacob et al. [19] combine binary search with linear search to create a new algorithm that
offers an efficient way of searching for a specific key item in an unsorted matrix, achieving
that goal within a limited time. The authors address the problems of each algorithm
separately, since every element is queried and compared with the key element sequentially
in the linear search; for the binary search, the data must be sorted in some way, so it is
time-consuming. In our case, unlike this proposal, the data do not have to be sorted, since
the signals are processed in the same order in which they are generated during production.

Bai et al. [20] also published a study on binary search. They propose an improved
binary-search algorithm based on combining dynamic binary search and the backward
binary-search algorithm. Experimental results show that the improved algorithm sig-
nificantly decreases search times and the quantity of transmitted data compared to the
traditional binary search, thus improving efficiency. More specifically, the results show the
search has decreased by 75% and traffic by 85%.

MoBiSea enables us to determine the exact point when the product change occurs in
the production process, calculates clusters efficiently and does not require data sorting,
since the data are processed in the order in which they occur. We also compared MoBiSea
with k-means, x-means and k-rms clustering mechanisms in terms of cluster detection,
precision in detecting the start and end of the manufacturing of each product and the
number of units forming each cluster, and we obtained highly positive results.

3. MoBiSea: Mode Binary Search

MoBiSea was developed to address the need to automate the DBF, our EMI filtering
mechanism designed for OEE monitoring using low-cost devices. With the DBF mechanism,
we can filter valid sealing signals, thereby avoiding wrong signals due to EMI; however,
part of the process was performed manually, since operators had to manually enter into the
system the time instants when a product changed during manufacturing. MoBiSea was
created to avoid this scenario so that (i) manufacturing shift data, (ii) the start and end of
each product and (iii) the units of each group of products involved in a shift are all entered
into the system automatically.

Algorithm 2 shows the operation of MoBiSea. First, two key parameters are initial-
ized and defined. They are: (i) the number of signals each interval contains (isize) and
(ii) the threshold applied to the mode values in every signal group. The data structure
(intervalMode) used afterward is also declared. This data structure will comprise the start,
end and mode of each interval.

The algorithm obtains signals from the database, stores it in the signals array and
calculates the modes of each interval by assigning it to the ims array. Mode changes are
obtained after this operation and are stored in the array mcs. The getModeChanges function
is used for that purpose. This function is responsible for detecting when the difference
between the mode of one interval compared with another is more than the established
difference (threshold). Next, the exact signal in which each product change occurs is sought
in the array with mode changes.

The end condition of the getSignalProductChange recursive function is that the num-
ber of signals taken in each interval (isize) is less than or equal to one; in other words, it is a
single signal. This is the signal in which the mode change occurs and, therefore, the signal
in which the product change occurs. For that purpose, MoBiSea takes both the interval in
which the change occurred and the previous one, splits the clusters into half the signals as
in the previous interval and determines the change in the exact signal in which it occurred.

MoBiSea is similar to binary search because it divides the previously taken dataset
into two to find the exact product change signal. Specifically, MoBiSea has two clearly
differentiated parts: The first, which we refer to as the ‘initial stage’, is responsible for deter-

Electronics 2023, 12, 3262 8 of 21

mining the number of different products that have been manufactured during the analyzed
shift and another one to determine the exact time when a product change takes place.

Algorithm 2: Mode Binary Search (MoBiSea)
/* */
/* isize: interval size */
/* ims: interval modes array */
/* im: interval mode, each of the elements within the ims array */
/* mcs: mode changes array */
/* mc: mode change, each of the elements within the mcs array */
/* */

integer isize = 50; //[50, 100, 300, 500]
float threshold = 0.05; //[0.01, 0.05, 0.1]
structure intervalMode{

integer start; //interval start signal
integer end; //interval end signal
double mode;

}
/* */

void main(){
float signals [];
intervalMode ims [];
integer mcs [];

/* */

signals [] = getprefilteredSignalsDB();
ims [] = calculateModes (0, signals.size(), isize);
mcs [] = getModeChanges(ims);
foreach (mc in mcs) do

im = getSignalProductChange (mc,isize)
insertProductTimeDB(im, shift);

end
}
/* */

integer getSignalProductChange(integer signalModeChange, integer isize){
intervalMode imAux [];

/* */

if (isize ≤ 1) then
return signalModeChange;

else
imAux = calculateModes (signalModeChange - isize, signalModeChange + isize,

isize/2);
isize = isize/2;
modeChangesAux[] = getModeChanges(imAux);

end
return getSignalProductChange (modeChangesAux[0], isize);}
/* */

integer[] getModeChanges(intervalMode[] ims)
integer[] modeChanges;
intervalMode im, aux;
aux = ims[0]

/* */

foreach (im in ims) do
if (abs(im-aux)>threshold) then

modeChanges.add(im)
end
aux = im;

end
return modeChanges;
}

Electronics 2023, 12, 3262 9 of 21

Figure 4 provides a graph of how MoBiSea operates. It shows the two parts into which the
process is divided: the first, consisting of determining the number of products, is represented
in the top part of the figure, since the signals are grouped into isize clusters and their statistical
mode is calculated. Consequently, when it is observed that (| mα −mα+1 |> threshold), for
example, the algorithm detects a product change during the manufacturing process (which
appears as a color change in the top rectangles in the figure).

Figure 4. MoBiSea operation.

As a result of this first step, the system determines the number of clusters, in other
words, the number of different products that have been made during the shift analyzed.

The bottom rows of the figure show the second part of the algorithm, since once the
product changes are detected, MoBiSea performs a recursive process to precisely determine
the final sealing signal of a product and, therefore, the beginning of the next. Specifically,
MoBiSea reduces the number of signals to be analyzed (isize) and recalculates the modes of
each new interval to finally detect the last sealing signal of a product and the change to a
different product.

In summary, the algorithm has these distinct phases:

• Signal Collection: The algorithm collects a set of signals from the database, creating a
sequence of signal values: s[1], s[2], . . . , s[n].

• Mode Calculation: Next, the algorithm divides this signal sequence into intervals of
size isize and calculates the mode of each interval. This produces a new sequence of
modes m[1], m[2], . . . , m[n/isize].

• Mode Change Detection: The algorithm then identifies the indices i in this mode
sequence, where |m[i] − m[i + 1]| > threshold. These indices are stored in the
array mcs.

• Binary Search for Product Changes: Finally, the algorithm searches for the exact
product change by repeatedly halving the search interval, using a binary-search
approach. This is equivalent to searching for the minimum index i in the mcs array such
that |m[i] −m[i + 1]| > threshold, but restricting the search to ever smaller intervals.

Validation of MoBiSea

In this section, we present the validation of MoBiSea in a real industrial setting,
specifically in the agri-food industry of cheese packaging. It has a plastic thermosealing
line for whole cheeses, cheese quarters and cheese wedges. We conducted a study over six
days with manufacturing shifts from 06:00 to 22:00 to correctly validate the operation of
the system.

Table 1 shows the real results (which we know as we monitored the entire process)
and the values MoBiSea estimated in terms of different products made, for the six analyzed
shifts. Concerning MoBiSea, we show the clusters we detected when we varied both the
interval size (isize = 25, 50, 100, 300 and 500) and sensitivity in the difference between
modes (threshold = 0.10, 0.05 and 0.01). Wrong values are shown in red. As can be
observed, MoBiSea is capable of obtaining the number of clusters (in other words, of the
different product types made) in most of the shifts and for the various configurations.

Electronics 2023, 12, 3262 10 of 21

However, in shift 6, MoBiSea is only correct for the following values: isize = 50 and
threshold = 0.01. The reason is that three different products are manufactured in this shift,
but only 30 units of one of these products are made, which causes MoBiSea to work well
only in one configuration.

In addition, when the threshold value is very small (i.e., 0.01), the algorithm does not
correctly detect mode changes in the analyzed intervals, which causes it to estimate the
different products manufactured incorrectly.

Table 1. Clusters determined by MoBiSea when varying the interval size (25, 50, 100, 300 and 500)
and the threshold (0.10, 0.05 and 0.01). Wrong values are shown in red.

Interval Size 25
Threshold:

Interval Size 50
Threshold:

Interval Size 100
Threshold:

Interval Size 300
Threshold:

Interval Size 500
Threshold:Shift Real

Clusters
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1

2 4 4 4 9 4 4 8 4 4 6 4 4 6 3 3 4

3 3 3 3 8 3 3 5 3 3 5 3 3 4 3 3 3

4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 3 3 3 6 3 3 5 3 3 3 3 3 3 2 2 2

6 3 2 2 4 2 2 3 2 2 2 2 2 2 2 2 2

As a result of all the above, we consider that the isize value should be set to 50, since
this ensures correct operation in all regular scenarios. Furthermore, the threshold should be
0.05 since that is the lowest possible value that ensures we can identify the correct number
of clusters.

After checking the most-recommendable values for the isize and threshold parameters,
we examine how the size of the intervals MoBiSea considers affects execution time. Specifi-
cally, Table 2 shows the execution times of our proposal when we vary the size variable. As
can be observed, the interval size does not have a huge impact on execution time, since it is
very similar for all the sizes analyzed.

Therefore, by way of summary, the execution time results consolidate the idea that
using isize = 50 is the best option, since it ensures precise data without compromising the
execution time needed to obtain this solution.

Table 2. MoBiSea execution times when varying interval size.

Interval Size

Time (s) 25 50 100 300 500

Real 0.357 0.344 0.353 0.337 0.351

User 0.635 0.603 0.618 0.581 0.606

Sys 0.072 0.070 0.072 0.069 0.073

User + System 0.707 0.673 0.690 0.650 0.679

Considering the above, Table 3 shows some of the signals our system collected in shift
5 as an example of how MoBiSea operates. Specifically, it shows signals from 701–850. The
first three columns show the values of Signal ID, Timestamp and Sealing Time, respectively,
for signals 701–750 and the other columns show the same information for signals 751–800
and 801–850. If we assume the aforementioned interval size of 50, MoBiSea will calculate
the mode for each of these intervals (or clusters of signals) so that it can compare them
and then establish whether the difference is more than the defined threshold. This is how
MoBiSea determines whether a mode change has occurred and when, in other words, when
there is a product change.

Electronics 2023, 12, 3262 11 of 21

Table 3. Excerpt of signal identification, timestamp and sealing times in shift 5.

Signals 701 to 750 Signal 751 to 800 Signal 801 to 850

Signal ID Timestamp Sealing
Time (s) Signal ID Timestamp Sealing

Time (s) Signal ID Timestamp Sealing
Time (s)

701 14:32:43.6 8.38 751 14:46:07.0 8.38 801 15:31:20.2 7.34

702 14:32:55.1 8.38 752 14:46:18.5 8.38 802 15:31:31.0 7.39

703 14:33:06.6 8.38 753 14:46:30.0 8.38 803 15:31:41.8 7.39

704 14:33:18.1 8.38 754 14:46:41.5 8.38 804 15:31:52.6 7.34

705 14:33:29.6 8.38 755 14:46:53.0 8.38 805 15:32:03.4 7.39

706 14:33:41.1 8.38 756 14:47:04.5 8.38 806 15:32:14.2 7.34

707 14:33:52.6 8.38 757 14:47:16.0 8.38 807 15:32:25.0 7.39

708 14:34:04.1 8.38 758 14:47:27.4 8.3 808 15:32:35.8 7.34

709 14:34:15.6 8.38 759 14:47:38.9 8.3 809 15:32:46.6 7.39

710 14:34:27.1 8.38 760 14:47:50.3 8.38 810 15:32:57.4 7.34

711 14:34:38.6 8.38 761 14:48:01.8 8.38 811 15:33:08.2 7.39

712 14:34:50.1 8.38 762 14:48:13.3 8.38 812 15:33:19.0 7.34

713 14:35:01.6 8.38 763 14:49:42.9 8.38 813 15:33:29.8 7.39

714 14:35:13.1 8.38 764 14:49:54.4 8.38 814 15:33:40.6 7.39

715 14:35:24.6 8.38 765 14:50:05.9 8.38 815 15:33:51.4 7.34

716 14:35:36.1 8.38 766 14:50:17.4 8.38 816 15:34:02.2 7.39

717 14:35:47.6 8.38 767 14:50:28.9 8.38 817 15:34:13.0 7.34

718 14:35:59.1 8.38 768 14:50:40.4 8.38 818 15:34:23.8 7.39

719 14:36:10.5 8.3 769 14:50:51.9 8.38 819 15:34:34.6 7.34

720 14:36:22.0 8.38 770 14:51:03.4 8.38 820 15:34:45.4 7.39

721 14:36:33.5 8.38 771 14:51:14.9 8.38 821 15:35:10.1 7.34

722 14:36:45.0 8.38 772 14:51:26.4 8.38 822 15:35:20.9 7.34

723 14:36:56.5 8.38 773 14:51:37.9 8.3 823 15:35:31.7 7.34

724 14:37:31.9 8.38 774 14:51:49.3 8.38 824 15:35:42.5 7.39

725 14:37:43.4 8.38 775 14:52:00.8 8.38 825 15:35:53.3 7.34

726 14:37:54.9 8.38 776 14:52:12.3 8.38 826 15:36:04.1 7.39

727 14:38:06.4 8.38 777 14:52:23.8 8.38 827 15:36:14.9 7.34

728 14:38:17.9 8.38 778 14:52:35.3 8.38 828 15:36:25.7 7.34

729 14:38:29.4 8.38 779 15:27:22.6 7.34 829 15:36:36.5 7.39

730 14:38:40.9 8.38 780 15:27:33.4 7.34 830 15:36:47.3 7.34

731 14:38:52.4 8.38 781 15:27:44.2 7.39 831 15:36:58.1 7.34

732 14:39:03.9 8.38 782 15:27:55.0 7.34 832 15:37:08.9 7.39

733 14:39:15.4 8.38 783 15:28:05.8 7.39 833 15:37:19.7 7.34

734 14:39:26.9 8.38 784 15:28:16.6 7.34 834 15:37:30.5 7.39

735 14:39:38.4 8.38 785 15:28:27.4 7.39 835 15:37:41.3 7.34

736 14:39:49.9 8.1 786 15:28:38.2 7.34 836 15:37:52.1 7.34

737 14:40:01.4 8.1 787 15:28:49.0 7.39 837 15:38:02.9 7.39

738 14:40:12.8 8.0 788 15:28:59.8 7.34 838 15:38:13.7 7.34

Electronics 2023, 12, 3262 12 of 21

Table 3. Cont.

Signals 701 to 750 Signal 751 to 800 Signal 801 to 850

Signal ID Timestamp Sealing
Time (s) Signal ID Timestamp Sealing

Time (s) Signal ID Timestamp Sealing
Time (s)

739 14:40:24.3 8.38 789 15:29:10.6 7.39 839 15:38:24.5 7.34

740 14:40:35.7 8.3 790 15:29:21.4 7.39 840 15:38:35.3 7.39

741 14:40:47.2 8.38 791 15:29:32.2 7.34 841 15:38:46.1 7.34

742 14:44:23.5 8.38 792 15:29:43.0 7.39 842 15:38:56.9 7.39

743 14:44:35.0 8.38 793 15:29:53.8 7.34 843 15:39:07.7 7.34

744 14:44:46.5 8.38 794 15:30:04.6 7.39 844 15:39:18.5 7.39

745 14:44:58.0 8.38 795 15:30:15.4 7.34 845 15:39:29.3 7.34

746 14:45:09.5 8.38 796 15:30:26.2 7.39 846 15:39:40.1 7.34

747 14:45:21.0 8.38 797 15:30:37.0 7.34 847 15:39:50.9 7.39

748 14:45:32.5 8.38 798 15:30:47.8 7.39 848 15:40:01.7 7.34

749 14:45:44.0 8.38 799 15:30:58.6 7.34 849 15:40:12.5 7.39

750 43902.6152 8.38 800 15:31:09.4 7.39 850 15:40:23.3 7.34

Figure 5 shows the mode values of the SealingTime in shift 5 with an interval size of
50 (i.e., the 1671 sealing signals are grouped into clusters of 50 signals). As can be observed,
the variation in the sealing-time mode allows us to determine the product types that have
been made during that shift. There are three different product types in this example,
corresponding to sealing times of 8.4, 7.3 and 6.1 s, respectively. Specifically, the mode
change is observed between signal intervals 701–750 and 751–800 and intervals 1151–1200
and 1201–1250.

After determining the number of clusters in the shift, the algorithm must detect which
intervals the mode changes occur between and thereby finally manage to determine the
moment when the product change occurs. In the example we use as a basis to validate
our proposal (shift 5), a first product change is detected between the clusters of 50 signals
ranging from 701 to 750 and from 751 to 800. Consequently, it halves the isize to adjust and
determine where exactly the change occurs. The process would be the same in the other
mode change (signals 1151–1200 and 1201–1250).

Reducing the interval size results in four clusters of 25 signals in which the mode is
recalculated (see Figure 6). As can be observed, the mode change occurs between intervals
751–775 and 776–800.

Figure 5. Example of sealing-time modes of grouped signals in shift 5 (isize = 50).

Electronics 2023, 12, 3262 13 of 21

Figure 6. Detail of sealing-time modes (grouped signals 701–800), with isize = 25.

MoBiSea again halves isize and recalculates the mode of the signals from 751 to 800.
Figure 7 presents the result of this process, showing the modes of the analyzed intervals
(isize = 12). As can be seen, the algorithm detects that the product change occurs between
signal clusters 763–775 and 776–787.

The process of reducing the interval sizes is repeated until isize = 1 since that is when
MoBiSea identifies exactly when the product change occurs in the manufacturing process.
Figures 8–11 show how sealing-time modes are recalculated to observe when a significant
change occurs in their value and, therefore, to reduce the set of signals analyzed until this
change is found.

Figure 7. Detail of sealing-time modes (grouped signals 751–800), with isize = 12.

Figure 8. Detail of sealing-time modes (grouped signals 763–787), with isize = 6.

Electronics 2023, 12, 3262 14 of 21

Figure 9. Detail of sealing-time modes (grouped signals 776–787), with isize = 3.

Figure 10. Detail of sealing-time modes (grouped signals 776–781), with isize = 2.

Figure 11. Detail of sealing-time modes (signals 778 and 779), with isize = 1.

Finally, Figures 12 and 13 provide an overview of the sealing signals collected by the
system and how the signals are grouped based on differing interval sizes. Figure 12 shows
the sealing times for signals the device receives correctly in blue and wrong signals due to
EMI in red. The signal analysis that makes it possible to detect product changes (in this
case, whole cheeses, cheese quarters and cheese wedges) can also be observed. Specifically,
one product change occurs at 15:30 and another one at 19:35.

Figure 13 shows details of how MoBiSea works to determine the exact point when the
product change occurs between 14:30 and 16:00. Given that MoBiSea detects a mode change
(i.e., the difference between them is more than the established threshold) between both
clusters of 50 signals, these are divided into clusters of 25 signals, to determine between
which of them a mode change again occurs. As mentioned above, the process is repeated
until the exact signal at which the product change occurs is determined.

Electronics 2023, 12, 3262 15 of 21

Figure 12. Example of all the signals gathered during shift 5.

Figure 13. Details of product-change analysis.

4. Comparison with Other Clustering Algorithms

We analyzed six different production shifts to check the performance of MoBiSea with
respect to the clustering mechanisms presented above in Section 2 by comparing the values
MoBiSea obtains with those obtained via x-means, k-means and k-rms. We also compared
them with real data to check the values were correct and precise. The methods we refer
to, k-means and x-means, enjoy wide recognition and use within what is referred to as
clustering. For this reason, we have chosen to present them as a base that is familiar to the
reader. However, in addition to comparing ourselves against classic algorithms, we have
also compared our proposal against more recent approaches such as k-rms. Our goal is to
establish a recognizable environment, thus facilitating a more nuanced understanding of
the unique attributes and advances that our approach incorporates, as well as making a
comparison with improved and current algorithms.

The first two metrics analyzed are the number of clusters detected by each algorithm
and the position of the centroids.

It is important to note that both k-means and k-rms cannot determine the number of
clusters by themselves since that value is a parameter that the user must establish. Therefore,
the number of real clusters has been used for comparison purposes. With MoBiSea, the
centroids are given by the mode value of the sealing times in each of the clusters.

Electronics 2023, 12, 3262 16 of 21

The third metric to consider is the number of signals included in each of the clusters
by each of the algorithms. These data are essential, since they show how many units have
been made of each product during the shift.

Finally, since the aim is to learn the exact moment when the shift change occurs
(necessary for the correct operation of the DBF filtering mechanism), the exact product start
and end signals determining each of the algorithms need to be determined.

Considering this, Tables 4–6 show the data obtained from the metrics previously
mentioned (i.e., the number of clusters, the position of the centroids, the number of signals
of each product, as well as the start and end values of each cluster). In addition, the real
values are presented, so that the errors committed by each of the analyzed mechanisms
(i.e., k-means, x-means, k-rms and MoBiSea) can be measured.

Table 4. Comparison between real-data metrics (Clusters/Center) and the results obtained via
x-means, k-means, k-rms and MoBiSea.

Shift
Clusters/CENTER

Real x-Means k-Means k-rms MoBiSea

1

1/7.34 1/7.42 1/7.30 1/7.33 1/7.34

- 1/7.27 - - -

- 1/7.24 - - -

2

1/7.34 1/7.08 1/7.22 1/7.04 1/7.34

2/8.38 - 2/8.22 2/7.79 2/8.38

3/5.96 - 3/5.73 3/6.21 3/5.96

4/8.38 - 4/7.55 4/7.26 4/8.38

3

1/8.29 1/8.34 1/8.36 1/8.33 1/8.29

2/6.05 2/6.08 2/6.23 2/6.13 2/6.05

3/7.34 3/7.23 3/7.21 3/7.23 3/7.34

- 4/7.12 - - -

4
1/7.34 1/7.23 1/7.23 1/7.28 1/7.34

2/8.38 2/8.26 2/8.26 2/8.25 2/8.38

5

1/8.38 1/7.54 1/8.49 1/8.39 1/8.38

2/7.34 - 2/7.69 2/7.57 2/7.34

3/6.05 - 3/6.18 3/6.17 3/6.05

6

1/5.96 1/5.93 1/5.93 1/5.93 1/5.96

2/8.38 2/7.47 2/7.46 2/7.11 -

3/7.34 3/7.36 3/7.35 3/7.36 2/7.34

As can be observed, the number of clusters the x-means algorithm records differs
considerably from the real-number clusters in four of the six analyzed shifts. Especially
noteworthy are shifts 1, 2 and 5, in which x-means determines a number of clusters that
differ significantly from the real number. Furthermore, it does not follow a pattern; in
other words, x-means fails in returning the correct number of clusters, both over- and
under-estimating this number. In all these cases, the number of clusters MoBiSea estimates
fully matches the real values, except in shift six, in which MoBiSea only detects two clusters
instead of three. This is due to the fact that, in that particular shift, only 30 units of one
of the products were elaborated (an unusually low number). Note that, although the
x-means detects three clusters, it fails when determining the number of signals of each
product. In addition, regarding the centroids, we see how MoBiSea satisfactorily detects
the sealing times of the different types of product that have been produced in all shifts,

Electronics 2023, 12, 3262 17 of 21

except in shift 6, where MoBiSea does not record the sealing time in cluster 2 due to the
aforementioned reason.

Table 5. Comparison between real-data metrics (number of signals (error)) and the results obtained
via x-means, k-means, k-rms and MoBiSea.

Shift
Number of Signals (Error)

Real x-Means k-Means k-rms MoBiSea

1

2046 479
(76.59%)

2046
(0.00%)

2046
(0.00%)

2046
(0.00%)

- 996 - - -

- 571 - - -

2

771 2588
(235.67%)

735
(4.67%)

1056
(36.96%)

771
(0.00%)

401 - 427
(6.48%)

537
(33.92%)

401
(0.00%)

914 - 696
(23.85%)

485
(46.94%)

914
(0.00%)

502 - 730
(45.42%)

510
(1.59%)

502
(0.00%)

3

533 533
(0.00%)

533
(0.00%)

533
(0.00%)

533
(0.00%)

581 581
(0.00%)

677
(16.52%)

602
(3.62%)

581
(0.00%)

696 497
(28.59%)

600
(13.79%)

675
(3.02%)

696
(0.00%)

- 199 - - -

4
981 977

(0.41%)
977

(0.41%)
1002

(2.14%)
981

(0.00%)

1235 1239
(0.33%)

1239
(0.33%)

1214
(1.70%)

1235
(0.00%)

5

778 1671
(114.78%)

525
(32.52%)

641
(17.61%)

778
(0.00%)

444 - 697
(56.98%)

581
(30.85%)

444
(0.00%)

449 - 449
(0.00%)

449
(0.00%)

449
(0.00%)

6

888 888
(0.00%)

888
(0.00%)

735
(17.23%)

888
(0.00%)

30 505
(1583.33%)

505
(1583.33%)

658
(2093.33%) -

1116 641
(42.56%)

641
(42.56%)

641
(42.56%)

1146
(2.69%)

Regarding the number of signals in each cluster, in other words, the number of sealing
actions taking place for each of the manufactured product types, we find that, for x-means,
errors mostly occur when a wrong number of clusters has been determined, as expected.
However, it also correctly (or with a minimal error) estimates the number of signals in some
clusters. With k-means, the error is very small in most of the shifts, although it is noticeable
for shifts 2, 5 and especially 6. Specifically, the error made in shift 5 is 32.52% and 56.98%
for the first two clusters; the error is even higher in shift 6, rising up to 1,583.33% for the
second cluster.

In the case of k-rms, the most significant errors also occur in shifts 2, 5 and 6, with
greater emphasis on the latter. In shift 2, cluster 3 presents an error of 46.94%, followed by
cluster 1 with an error of 36.96%. In shift 5, the greatest error is in cluster 2 with an error
of 30.85% and finally, cluster 2 in shift 6 presents an error of 2093.33%. These errors may

Electronics 2023, 12, 3262 18 of 21

be produced by the attempt to minimize the variance within the clusters and an outlier or
noise can significantly increase the variance of a cluster.

Table 6. Comparison between real-data metrics (Start/Finish) and the results obtained via x-means,
k-means, k-rms and MoBiSea.

Shift
Start/Finish

Real x-Means k-Means k-rms MoBiSea

1

1/2046 1/479 1/2046 1/2046 1/2046

- 480/1475 - - -

- 1476/2046 - - -

2

1/771 1/2588 1/735 1/1056 1/771

772/1172 - 736/1162 1057/1593 772/1172

1773/2086 - 1163/1858 1594/2078 1773/2086

2087/2588 - 1859/2588 2079/2588 2087/2588

3

1/533 1/533 1/533 1/533 1/533

534/1114 534/1114 534/1210 534/1135 534/1114

1115/1810 1115/1611 1211/1810 1136/1810 1115/1810

- 1612/1810 - - -

4
1/981 1/977 1/977 1/1002 1/981

982/2216 978/2216 978/2216 1003/2216 982/2216

5

1/778 1/1671 1/525 1/641 1/778

779/1222 - 526/1222 642/1222 779/1222

1223/1671 - 1223/1671 1223/1671 1223/1671

6

1/888 1/888 1/888 1/735 1/888

889/918 889/1393 889/1393 736/1393 -

919/2034 1394/2034 1394/2034 1394/2034 889/2034

Some of the values in Tables 4–6 are presented visually in Figures 14–16. These figures
help us observe the different clusters, their signals and the start and end moments of each
of the various products, determined via the analyzed clustering methods.

Figure 14. Products estimated via the x-means, k-means, k-rms and MoBiSea approaches in shift 1.

Electronics 2023, 12, 3262 19 of 21

Figure 15. Products estimated via the x-means, k-means, k-rms and MoBiSea approaches in shift 3.

Figure 14 shows how x-means erroneously determines that the number of different
products made in shift 1 is three, while MoBiSea correctly determines that only one product
was elaborated. Note that k-means and k-rms need to be manually provided with the
number of clusters.

Similarly, Figure 15 shows the difference that exists between the four mechanisms,
x-means, k-means, k-rms and MoBiSea, in terms of both cluster detection and the number
of signals. In this case, the x-means mechanism determines four clusters in round 3,
while MoBiSea accurately shows that three different types of products were manufactured.
Regarding the number of signals for each product, all mechanisms correctly grouped
the 533 units of the first product made, although k-means and k-rms make a mistake in
determining the number of signals for the second and third clusters.

Finally, Figure 16 shows how x-means determines a single cluster for shift 5, while
MoBiSea indicates that three different types of products were manufactured. Additionally,
both k-means and k-rms incorrectly group the signals forming part of each of the clusters,
especially for the first two products, although it is worth noting that k-rms comes closer to
the actual signal grouping of the clusters.

Figure 16. Products estimated via x-means, k-means, k-rms and MoBiSea approaches in shift 5.

5. Conclusions

When applied in industrial settings, the Internet of Things (IoT) changes how compa-
nies operate by facilitating and improving all production processes. However, proprietary
systems in this type of setting usually involve high financial costs and this slows down
adoption and, therefore, the transition to Industry 4.0. Nevertheless, there are more eco-
nomical alternatives that, instead, rely on low-cost devices. Although these devices have

Electronics 2023, 12, 3262 20 of 21

similar features, their cost is much lower, which can undoubtedly accelerate technological
transition in industry.

In this article, we have presented MoBiSea, an algorithm capable of determining the
number of different product types made in each shift and also of determining the moments
when their manufacturing process starts and ends. MoBiSea was created as a solution for
our low-cost system for measuring OEE, which required operators to manually enter the
details of the products made. Thanks to our mechanism, the OEE calculation system can
work automatically without needing any operator intervention.

We compared MoBiSea with the results obtained via k-means, k-rms and x-means
clustering algorithms, as well as with real values, to discover whether it performs correctly
and precisely. We found that MoBiSea is completely accurate, since the values obtained
exactly match the real values for all the shifts we studied, except for shift 6. We consider
it negligible given its singularity. However, the data obtained via x-means, k-means and
k-rms show wrong results, even though k-means and k-rms were previously provided with
the correct number of clusters.

Specifically, k-means and k-rms have precision errors when determining the sealing
times of the different products (shown by the cluster centroids); they also fail to correctly
determine the number of seals for each product and the moments when the manufacturing
of each product begins (start and end times). The error is more noticeable with x-means,
since we have found that it does not correctly determine the number of products made in
each shift; therefore, it does not determine the other parameters our system needs (sealing
times, number of seals and start and end times of the product).

As future lines of research, we first intend to analyze how MoBiSea performs in other
industrial production areas, since we consider that this algorithm can be used to identify
and cluster products in other production lines.

In addition, as we want to estimate OEE in an unsupervised manner and, at this point,
we can automatically quantify two of the three variables needed to determine OEE (i.e.,
availability and performance), we still have to solve the problem of obtaining data on the
quality variable, since these data are currently entered manually. The time lost due to
defective products will have to be determined for that purpose.

Author Contributions: Writing—original draft, A.C.H., J.A.S., P.G., F.J.M. and C.T.C.; Writing—review
and editing, A.C.H., J.A.S., P.G., F.J.M. and C.T.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been partially supported by the Government of Aragón and the European
Social Fund “Construyendo Europa desde Aragón” (T40_23D Research Group) and also by R&D
project PID2021-122580NB-I00, funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of
making Europe”.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bajic, B.; Rikalovic, A.; Suzic, N.; Piuri, V. Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective.

IEEE Syst. J. 2021, 15, 546–559. [CrossRef]
2. Horváth, D.; Szabó, R.Z. Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies

have equal opportunities? Technol. Forecast. Soc. Chang. 2019, 146, 119–132.
3. Nakajima, S. Introduction to TPM: Total Productive Maintenance; Productivity Press: New York, NY, USA, 1988.
4. Herrero, A.C.; Martinez, F.J.; Garrido, P.; Sanguesa, J.A.; Calafate, C.T. An interference-resilient IIoT solution for measuring the

effectiveness of industrial processes. In Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society
(IECON), Singapore, 18–21 October 2020; pp. 2155–2160. [CrossRef]

5. Herrero, A.C.; Sanguesa, J.A.; Martinez, F.J.; Garrido, P.; Calafate, C.T. Mitigating Electromagnetic Noise When Using Low-Cost
Devices in Industry 4.0. IEEE Access 2021, 9, 63267–63282. [CrossRef]

6. Kaushik, S. An Introduction to Clustering and Different Methods of Clustering; Analytics Vidhya: Amsterdam, The Netherlands, 2016;
p. 3.

http://doi.org/10.1109/JSYST.2020.3023041
http://dx.doi.org/10.1109/IECON43393.2020.9254454
http://dx.doi.org/10.1109/ACCESS.2021.3074588

Electronics 2023, 12, 3262 21 of 21

7. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; Volume 3.
8. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
9. Ishioka, T. Extended K-means with an Efficient Estimation of the Number of Clusters. In Proceedings of the Intelligent

Data Engineering and Automated Learning-IDEAL 2000. Data Mining, Financial Engineering and Intelligent Agents: Second
International Conference Shatin, NT, Hong Kong, China, 13–15 December 2000; Springer: Berlin/Heidelberg, Germany, 2003;
p. 17.

10. Rahamathunnisa, U.; Nallakaruppan, M.; Anith, A.; Kumar, K.S.S. Vegetable Disease Detection Using K-Means Clustering And
SVM. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS),
Coimbatore, India, 6–7 March 2020; pp. 1308–1311. [CrossRef]

11. Siswantoro, J.; Prabuwono, A.S.; Abdullah, A.; Idrus, B. Automatic image segmentation using Sobel operator and k-means
clustering: A case study in volume measurement system for food products. In Proceedings of the International Conference on
Science in Information Technology (ICSITech), Yogyakarta, Indonesia, 27–28 October 2015; pp. 13–18. [CrossRef]

12. Hüseynli, A.; Yildiz, O.; Akcayol, M.A. Specification based automatic product categorization from unstructured data. In
Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018;
pp. 1–4. [CrossRef]

13. Hochdörffer, J.; Laule, C.; Lanza, G. Product variety management using data-mining methods—Reducing planning complexity by
applying clustering analysis on product portfolios. In Proceedings of the IEEE International Conference on Industrial Engineering
and Engineering Management (IEEM), Singapore, 10–13 December 2017; pp. 593–597. [CrossRef]

14. Noorbehbahani, F.; Mansoori, S. A New Semi-Supervised Method for Network Traffic Classification Based on X-Means Clustering
and Label Propagation. In Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering
(ICCKE), Mashhad, Iran, 25–26 October 2018; pp. 120–125. [CrossRef]

15. Garain, A.; Das, D. K-RMS Algorithm. Procedia Comput. Sci. 2020, 167, 113–120. [CrossRef]
16. Imamura, K.; Kubo, N.; Hashimoto, H. Automatic moving object extraction using x-means clustering. In Proceedings of the 28th

Picture Coding Symposium, Nagoya, Japan, 8–10 December 2010; pp. 246–249. [CrossRef]
17. Knuth, D.E. The Art of Computer Programming, 2nd ed.; Addison-Wesley Longman Publishing Co.: Boston, MA, USA, 1998;

Volume 3.
18. Vuyyuru, G.M. KLP’s Search Algorithm—A New Approach to Reduce the Average Search Time in Binary Search. In Proceedings

of the 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization
Techniques (ICEECCOT), Mysuru, India, 13–14 December 2019; pp. 185–190. [CrossRef]

19. Jacob, A.E.; Ashodariya, N.; Dhongade, A. Hybrid search algorithm: Combined linear and binary-search algorithm. In
Proceedings of the International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai,
India, 1–2 August 2017; pp. 1543–1547. [CrossRef]

20. Bai, Y.; Yang, L.; Zhang, G.; Xu, Y. An improved binary search RFID anti-collision algorithm. In Proceedings of the 12th
International Conference on Computer Science and Education (ICCSE), Houston, TX, USA, 22–25 August 2017; pp. 435–439.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICACCS48705.2020.9074434
http://dx.doi.org/10.1109/ICSITech.2015.7407769
http://dx.doi.org/10.1109/SIU.2018.8404356
http://dx.doi.org/10.1109/IEEM.2017.8289960
http://dx.doi.org/10.1109/ICCKE.2018.8566608
http://dx.doi.org/10.1016/j.procs.2020.03.188
http://dx.doi.org/10.1109/PCS.2010.5702477
http://dx.doi.org/10.1109/ICEECCOT46775.2019.9114690
http://dx.doi.org/10.1109/ICECDS.2017.8389704
http://dx.doi.org/10.1109/ICCSE.2017.8085531

	Introduction
	Related Studies
	k-Means and x-Means
	Binary Search

	MoBiSea: Mode Binary Search
	Comparison with Other Clustering Algorithms
	Conclusions
	References

