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At low temperature and zero applied magnetic field, besides the equilibrium helical state, monoax-
ial chiral helimagnets have a continuum of helical states differing by the wave number of the mod-
ulation. The wave number of these states in units of the equilibrium state wave number is denoted
here by p, and accordingly the corresponding states are called the p-states. In this work we study
in detail the metastability of the p-states. The application of an external magnetic field in the
direction of the chiral axis has a double effect: on one hand, it introduces a conical deformation of
the p-states, and on the other hand it destabilizes some of them, shrinking the range of p in which
the p-states are metastable. If a polarized current is applied along the chiral axis, the p-states reach
a steady moving state with a constant velocity proportional to the current intensity. Besides this
dynamical effect, the polarized current also induces a conical deformation and reduces the range of
stability of the p-states. The stability diagram in the plane applied field - applied current inten-
sity has interesting features that, among other things, permits the manipulation of p-states by a
combination of applied fields and currents. These features can be exploited to devise processes to
switch between p-states. In particular there are p-states with negative p, opening the possibility
to helicity switching. The theoretical feasibility of such processes, crucial from the point of view
of applications, is shown by micromagnetic simulations. Analogous p-states exists in cubic chiral
helimagnets and therefore similar effects are expected in those systems.

I. INTRODUCTION

Noncollinear magnetic textures such as magnetic he-
lices, domain walls, vortices, or skyrmions are very
promising for spintronic applications due to the possibil-
ity to control them using different external stimuli, like
magnetic fields or polarized electric currents [1–6]. To be
useful, these magnetic textures have to be (meta)stable in
some part of the relevant parameter space. Noncollinear
magnetic textures appear, in particular, as equilibrium
states at low temperature in chiral magnets, which are
characterized by the presence of a sizable Dzyaloshinskii-
Moriya interaction (DMI). The most studied systems of
this kind are cubic chiral helimagnets and films with in-
terfacial DMI, which host skyrmions and skyrmion lat-
tices [5–9]. Monoaxial chiral helimagnets, in which the
DMI propagates only along a single direction (the chiral
axis), have received comparatively less attention. Besides
the archetypal CrNb3S6, other known monoaxial chiral
helimagnets are MnNb3S6, CrTa3S6, CuB2O4, CuCsCl3,
Yb(Ni1−xCux)3Al9, and Ba2CuGe2O7 [10–18].

Not surprisingly, monoaxial chiral helimagnets present
also a strong uniaxial magnetic anisotropy (UMA) along
the chiral axis, which is of easy-plane type in CrNb3S6.
The competition of the exchange interaction, the DMI,
the UMA and the applied field determines the equilib-
rium state at low enough temperature, where thermal
fluctuations are only a minor effect. At zero external
field the equilibrium state is a magnetic helix with wave

vector along the chiral axis and wave number determined
by the competition of the exchange interaction and the
DMI. If a low enough external field is applied in a di-
rection perpendicular to the chiral axis the equilibrium
state is a Chiral Soliton Lattice (CSL)[19–22]. If instead
the magnetic field is applied in the direction of the chiral
axis, the equilibrium state is a conical state [20, 23–27].
These two magnetic textures, the CSL and the conical
state, are of different nature: the CSL is solitonic while
the conical state is helical. If the field direction is neither
perpendicular nor parallel, the equilibrium state is a one-
dimensional modulated texture which connects smoothly
the two limiting cases as the direction of the magnetic
field is varied from perpendicular to parallel to the chi-
ral axis [26]. In all cases, for sufficiently large magnetic
fields the equilibrium state is the forced ferromagnetic
state (FFM), which has a uniform magnetization point-
ing in the direction of the external field. The different
nature of the CSL and the conical states is manifested in
the transition to the FFM state: in the former case it is
of nucleation type and in the latter of instability type, in
de Gennes’s terminology [28]. These two different kinds
of phase boundaries are separated by tricritical points in
the temperature - applied field phase diagram [27, 29].
The phase diagram of monoaxial chiral helimagnets and
the nature of the phase boundaries in the temperature-
applied magnetic field space, determined experimentally
by several groups [24, 30–33], agree well with these the-
oretical predictions.
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It was shown in [34] that, at low temperature, be-
sides the conical equilibrium state a continuum of coni-
cal states differing by the wave number and the magne-
tization component along the chiral axis are local min-
ima of the energy functional of monoaxial chiral helimag-
nets with external magnetic field applied along the chi-
ral axis. Similar local minima of the energy are present
in cubic chiral helimagnets [35]. These conical states,
called here p-states, include states with helicity oppo-
site to the helicity of the equilibrium state, which, al-
though energetically disfavoured by the DMI, remain as
metastable states in some range of the applied magnetic
field. It is also remarkable that among these continuum
of metastable states there are some which are ferromag-
netic, with the uniform magnetization pointing to a di-
rection determined by the competition between the UMA
and the applied field.

In this work we analyze in detail the properties of these
p-states of monoaxial chiral helimagnets, clarifying their
role as metastable states and studying their behavior un-
der the action of polarized electric currents. One conclu-
sion of this analysis is the possibility of switching between
metastable conical states with different wave vectors, in-
cluding the possibility of helicity reversing. This is clearly
of great interest for applications. Indeeed, it has been ar-
gued recently that controlled switching among magnetic
states with opposite helicity might be used for memory
applications [36].

II. A CONTINUUM OF CONICAL STATES

Consider a monoaxial chiral helimagnet, such as
CrNb3S6, with chiral axis along z (we shall use x,y, z as
the orthonormal vector triad in space). At low enough
temperature the local magnetization is given by MSn,
where n is a unit vector field that describes the magne-
tization direction at each point of the material and the
constant MS is the saturation magnetization. The mag-
netic energy is given by the functional E[n] =

∫
d3r e(r),

with

e(r) = A
∑
i

(∂in)
2−Dz·(n×∂zn)−K(z·n)2−MSBz·n.

(1)
In the above equation the index i runs over {x, y, z}, A,
D, and K stand for the exchange stiffnes constant, and
the DMI and UMA strength constants, respectively, and
Bz is the applied magnetic field. We consider K < 0
to have an easy plane perpendicular to z. The DMI acts
only along the z axis, defining the chiral axis (notice that
the external field is applied along the chiral axis). The
sign of D is reversed if we reverse the direction of the z
axis, so that, with no loss of generality, we take D > 0.
It is convenient to introduce the parameters

q0 =
D

2A
, κ =

4AK

D2
, h =

2AMS

D2
B. (2)

FIG. 1. Energy density for h = 0 and h = 2 < hc, as a func-
tion of p = q/q0. The minimum value corresponds always to
the equilibrium state with p = 1. States indicated with con-
tinuous lines are stable against localized deformations, while
dashed lines indicate unstable states, as shown in Sec. IVA.
The grey regions indicates the gap in p values where there are
no states satisfying | cos θp| ≤ 1.

Notice that q0 has the dimensions of inverse length while
κ and h are dimensionless. We do not include explicitly
in the energy the magnetostatic energy, whose effect in
an infinite system in which the magnetization depends
only on z (as it is in this work) is completely absorbed
in the UMA [37].

The dynamics of n obeys the Landau-Lifschitz-Gilbert
(LLG) equation

∂tn = γBeff × n+ αn× ∂tn+ τ , (3)

where α and γ are the Gilbert damping parameter and
the gyromagnetic constant, respectively, and τ stands for
some applied nonconservative torque not included in the
energy (1). The effective field acting on n is given by

Beff =
2A

MS

(
∇2n−2q0z×∂zn+q20κ(z ·n)z+q20hz

)
. (4)

In absence of external torque τ the equilibrium states
are solutions of the static equation Beff = λn, where λ
is a Lagrange multiplier enforcing the constraint n2 = 1.
For h ≥ hc, where hc = 1− κ > 1 is the critical field, the
equilibrium state is the homogeneous FFM state, with
the magnetization pointing along the z direction: n = z.
For h < hc the static equation admits solutions which are
modulated states with the form of a conical helix propa-
gating along the chiral axis. With the parametrization

n = sin θ cosφx+ sin θ sinφy + cos θ z, (5)

these modulated states are given by [38]

cos θp =
h

hc − (p− 1)2
, φp(z) = pq0z, (6)
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where p is the wave number in units of q0. It is convenient
to label these states by p, writing θp, φp and np. For the
sake of brevity, these states will be referred to as the p-
states, i.e. a p-state is a conical state with wave number
q = pq0. Since | cos θp| ≤ 1, the range of p is limited to

1−
√
hc − |h| ≤ p ≤ 1 +

√
hc − |h|. (7)

Notice that hc > 1 because we consider easy-plane
anisotropy. Hence, for |h| small enough p can be neg-
ative. These p-states have helicity against the DMI. In
a range of h there is also a state with p = 0, which is
a ferromagnetic state with the magnetization component
along the chiral axis given by nz = h/(hc − 1). We shall
comment on these rather unexpected states in Sec. IV C.

The energy density of the p-states is given by

e(p) = Aq20

[
(p− 1)2 − 1− h2

hc − (p− 1)2

]
. (8)

The minimum of the energy corresponds to p = 1 for
all |h| ≤ hc, what means that the equilibrium states are
those with p = 1 (wave number q0). It is shown in Sec.
IV A that for |h| < hc there exists a range of p around
p = 1 in which p-states are metastable. This implies that
these p-states are local minima of the energy functional
and, therefore, the small perturbations around them are
damped as they evolve according to the LLG equation.

The energy density of the p-states as a function of
p is displayed in Fig. 1 for h = 0 and h = 2 < hc,
where hc = 6 approxiamately corresponds to CrNb3S6.
The state with minimum energy corresponds always to
p = 1 (red dots). The metastable p-states are located
in a finite range around p = 1 signaled by the contin-
uous lines. Outside this range the p-states are unsta-
ble (dashed lines). Notice that for h ̸= 0 there is a
gap in p values for which there are no states satisfying
| cos θp| ≤ 1.

It is remarkable that, in spite of what the form of Fig. 1
may suggest, states with p ̸= 1 are metastable since the
value of p cannot be changed by small perturbations. In-
deed, consider a small variation δp of p. A straightfor-
ward computation shows that for δp → 0

np+δp − np ∼ 2 sin θp sin

(
δpq0z

2

)
u(z), (9)

where

u(z) = − sin
(
(p+ δp/2)q0z

)
x+ cos

(
(p+ δp/2)q0z

)
y

(10)
is a unit vector. This means that a small change of p
cannot be considered a small perturbation of np, since
|np+δp−np| is not small for δpq0z close to π. This may be
clearer in a bounded system, of length R, with periodic
boundary conditions: then the minimum δp is 2π/q0R
and 0 ≤ z ≤ R, so that for this minimum δp we have
δpq0z = π if z = R/2. Summarizing, the situation is the
following: 1) the metastability of a state is related to the

behaviour of its energy under small perturbations; 2) a
change of p, however small, is not a small perturbation
of the p-state; 3) it is incorrect to infer from Fig. 1 that
the p-states are not metastable.

The discussion of the previous paragraph implies that
although the energy density of the p-states correspond-
ing to p and p + δp is close, if the stability ellipses of p
and p+ δp enclose the point (h,Γ = 0) these p-states are
separated by energy barriers in the whole configuration
space of n, for this value of h. How long is the life time
of the metastable p-states depends on these energy bar-
riers. This is a question that cannot be tackled with the
methods used in this work. In any case, we expect that
the lifetime will increase by decreasing the temperature,
a question that deserves further study.

III. STEADY MOTION OF THE CONICAL
STATES UNDER THE ACTION OF A

POLARIZED CURRENT

In this section we study the response of the p-states to
a polarized electric current applied along the chiral axis.
If the current density is j = −jz, the magnetic torque
delivered by the current is given by

τ = −jbj
(
∂zn− βn× ∂zn

)
, (11)

with bj = PµB/(|e|Ms), where P is the polarization de-
gree of the current, e is the electron charge, and µB is
the Bohr magneton [39]. The first term is the reactive
(adiabatic) torque and the second term the dissipative
(non-adiabatic) torque, whose strength is controlled by
the nonadiabaticity coefficient β [40].

We start by seeking for steady solutions of the LLG
equation (3) which have the form of a state that moves
rigidly with constant velocity, v, along the z direction.
The general steady solution is characterized by two func-
tions, θ(w) and φ(w), of the variable w = q0(z − vt).
Inserting this ansatz in the LLG equations we obtain the
steady motion equations, which can be cast to the form

θ′′ − (φ′ − 1)2 sin θ cos θ + (hc cos θ − h) sin θ+

Ωθ′ − Γ sin θφ′ = 0, (12)

sin θφ′′ + 2 cos θθ′(φ′ − 1) + Γθ′ +Ωsin θφ′ = 0, (13)

with the primes standing for derivatives with respect to
w and

Ω =
αq0
ω0

(
v − β

α
bjj

)
, (14)

Γ =
q0
ω0

(v − bjj) , (15)

where the quantity ω0 = 2γq20A/MS has the dimensions
of a frequency. Notice that the spin transfer torque, the
Gilbert damping, the nonadiabaticity coefficient, and the
steady velocity enter the equations of steady motion only
through the parameters Ω and Γ.
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The solutions of Eqs. (12) and (13) with constant θ =
θp and φ′ = p correspond to steady moving p-states. In
this case Eq. (12) is satisfied if

cos θp =
h+ pΓ

hc − (p− 1)2
. (16)

This steady moving p-state exists only if |h+ pΓ| ≤ hc −
(p − 1)2. The stability of these solutions is analyzed in
Sec. IV A.

To have a solution with constant θ = θp and φ′ = p
Eq. (13) requires Ω = 0, what provides the relation be-
tween the steady velocity and the intensity of the applied
current,

v =
β

α
bjj, (17)

and thus Γ becomes proportional to the current density,

Γ =
(β − α)q0

αω0
bjj. (18)

We see that the steady state velocity increases linearly
with the current density, with a mobility m = (β/α)bj
which is independent of the system parameters κ and h.
The same behavior occurs for domain walls [40], for 360o
domain walls [41, 42], and for the isolated solitons and the
chiral soliton lattice of monoaxial chiral helimagnets [43–
45]. Therefore this relation between steady velocity and
applied current density seems to be a universal feature
of the response of one dimensional magnetic modulated
states to polarized currents.

Equation (17) implies that v = 0 if β = 0, so that
the steady moving solution is actually static if there is
no dissipative torque. In this case, after applying the
current the system reaches a different equilibrium state,
a static p-state with cone angle given by equation (16).
Notice also that the case β = α is special, since then
Ω = 0 and Γ = 0, and therefore Eqs. (12) and (13) are
independent of the applied current. This implies that in
this case the p-state is rigidly dragged by the current,
with velocity v = bjj, keeping the cone angle equal to its
static value.

IV. STABILITY OF THE MAGNETIC STATES

In this section we analyze the stability of magnetic
states against small perturbations. The section is divided
into three subsections: one dealing with the stability of
the p-states, another one devoted to the the stability of
the FFM state, and the last one in which we discuss the
main features of the stability diagram.

A. Stability of the conical states

We analyze here the stability of the generic steady
moving p-state obtained for given h and Γ. The static

p-states discussed in Sec. II are the particular cases Γ = 0
of this general analysis. Here a p-state is a steady moving
state if Γ ̸= 0 and a static state if Γ = 0.

Let np be the (unitary) magnetization field of the
steady moving p-state, with θp described by (16) and
φp = pq0(z − vt), with v given by (17). A small per-
turbation of np is given by two fields, ξ1 and ξ2, which
depend on the three coordinates x, y, z, and on time t,
so that, for small enough ξ1 and ξ2, the perturbed mag-
netization is given by

n =
√

1− ξ21 + ξ22 np + ξ1 e1 + ξ2 e2, (19)

where {e1, e2,np} form a right-handed orthonormal
triad. We take

e1 = cos θp cosφp x+ cos θp sinφp y − sin θp z, (20)
e2 = − sinφp x+ cosφp y. (21)

We require that, for fixed t, the fields ξ1 and ξ2 be square
integrable functions of (x, y, z), to ensure that the energy
of the perturbation is finite.

The perturbed magnetization has to be a solution of
the LLG equation. Inserting Eq. (19) into (3) we obtain
the equations for the dynamics of the perturbation ξ =
(ξ1, ξ2)

T . Expanding in powers of ξ1 and ξ2, we have to
linear order

∂tξ =
ω0

(1 + α2)q20
Dξ, (22)

where D is a 2×2 operator matrix whose matrix elements
are the linear differential operators

D11 = α(∇2 − a) +
[
∆− (1 + αβ)b

]
∂z, (23)

D12 = ∇2 −
[
α∆+ (β − α)b

]
∂z, (24)

D21 = −∇2 + a+
[
α∆+ (β − α)b

]
∂z, (25)

D22 = α∇2 +
[
∆− (1 + αβ)b

]
∂z, (26)

with

a = q20
(
hc − (p− 1)2

)
sin2 θp, (27)

∆ = q02(p− 1) cos θp, b =
q0α

β − α
Γ, (28)

where we assumed α ̸= β. The case α = β is special,
as we said before, since then Γ = 0 for any value of the
applied current. In this case b = q20bjj/ω0.

Stability requires that the spectrum of D lies in the
complex half-plane with non negative real part. Since
Dij are linear differential operators with constant coef-
ficients, the spectrum of D can be readily obtained by
Fourier transform. Details on the calculations leading to
the stability conditions are given in Appendix A. Here
we collect the conclusions. A necessary condition for sta-
bility is a ≥ 0, what gives the following bounds for the p
values of stable p-states:

1−
√
hc ≤ p ≤ 1 +

√
hc. (29)
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It is shown in Appendix A that, having p within these
bounds, the p-state is stable only in the region of the
(h,Γ) plane enclosed by the ellipse of equation

A(p)Γ2 + 2B(p)Γh+ C(p)h2 = D(p), (30)

where the functions A(p), B(p), C(p), and D(p) are in-
dependent of h and Γ, and are given in Appendix A.
The stability ellipses of the p-states are centered at (0, 0)
and have the principal axes rotated with respect to the
coordinate axes. The amount of rotation depends on p.

The stability of the static p-states discussed in Sec. II is
obtained by setting Γ = 0 in this general approach. Thus,
the static p-state is stable in the range of h determined
by the intersection of its stability ellipse with the Γ = 0
axis.

Figure 2 displays the stability ellipses for several values
of p in the (h,Γ) plane, for hc = 6, which approximately
corresponds to CrNb3S6. For each p value, the p-state
is metastable for (h,Γ) inside the corresponding ellipse,
and unstable outside it.

The region of the (h,Γ) plane in which there ex-
ists some stable steady moving p-state is bounded by
the envelope of the one-parametric family of ellipses
(parametrized by p) given by Eq. (30). The envelope
can be readily found and it has four branches given by

Γ = σ(h)2
[
(1±

√
|h| − (hc − 1)

]
,

Γ = −h± 2
√
hc

[√
hc(hc − 1)−

√
hch− hc

]
,

(31)

where σ(h) is the sign function: σ(h) = 1 if h ≥ 0 and
σ(h) = −1 if h < 0. The parametric equations of the
envelop are given in Appendix A, Eqs. (A13)-(A16). We
call the region enclosed by this envelope the stability re-
gion of conical states. No modulated state is stable out-
side this region.

The four branches of the envelope in the case hc = 6
are shown in red in Fig. 2. Along each branch p changes
continuously within its bounds, from 1−

√
hc to 1+

√
hc.

Each ellipse, determined by a given value of p, is tangent
to the envelope at four points, one for each branch. These
four points, which depend on p, define the four pairs of
functions shown in Fig. 3. The red points in Figs. 2
and 3 correspond to p = 2. The detailed features of the
stability diagram will be further discussed in Sec. IVC.

B. Stability of the forced ferromagnetic state

The FFM state is the magnetic texture with a uni-
form magnetization aligned with the applied field, which
in our case points to the direction of the chiral axis z.
Hence, the FFM is given by n = z if h ≥ 0 and n = −z
if h < 0. It is the equilibrium state if |h| > hc. The FFM
state is insensitive to an applied current, since the torque
(11) vanishes for uniform magnetization. However, it is
destabilized by a sufficiently intense current. In this sec-
tion we discuss the stability diagram of the FFM state in
the applied field - applied current plane.

FIG. 2. Stability diagram in the plane (h,Γ) for hc = 6.
Steady moving p-states are stable inside the region bounded
by the red line. The FFM states are only stable within shaded
regions, which are unbounded. Red dots corresponds to the
stability limit of states with p = 2 lying in the boundary of
the stability diagram, as those shown in Fig. 3.

The perturbed FFM state has the form

n =
√

1− ξ21 − ξ22 σ(h) z + ξ1 σ(h)x+ ξ2 y. (32)

where σ(h) = 1 if h ≥ 0 and σ(h) = −1 if h < 0. The dy-
namics of the perturbation is obtained by inserting the
above expression in the LLG equation (3). Again, the
linearized LLG equation is given by a linear differential
operator with constant coefficients whose spectrum is ob-
tained by Fourier transform. The stability of the FFM
state requires that the spectrum lies in the complex plane
with non positive real part. The details of the calcula-
tions are given in Appendix B. The stability condition
leads to the inequality

Γ2 − 4σ(h)Γ + 4(hc − |h|) ≤ 0, (33)

where Γ is related to the current intensity, j, by Eq. (18).
The FFM state is stable in the region of the (h,Γ) plane
in which the above inequality holds.

Inequality (33) holds if and only if the two roots in Γ
of the left hand side of the inequality are real, and Γ is
between the two roots. Then |h| > hc − 1 and

2
(
1− ζ(h)

)
≤ σ(h)Γ ≤ 2

(
1 + ζ(h)

)
, (34)

with ζ(h) =
√

1 + |h| − hc. The above inequalities de-
termine the region of stability of the FFM state in the
(h,Γ) plane, which is displayed in Fig. 2 for hc = 6.

It is remarkable that the boundary of the stability re-
gion of the FFM state coincides exactly with the left and
right branches of the boundary of the stability region of
conical states. This means that modulated states and
the FFM state do not coexist in any region of the (h,Γ)
plane. Although in the model domain of FFM and coni-
cal states cannot coexist, it is possible to observe domains
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FIG. 3. The values of (a) h and (b) Γ as a function of p
along the different branches of the envelope of the stability
region defined by Eqs. (31). For a given value of p the four
branches (left, right, upper, lower) are presented, correspond-
ing to those shown in Fig. 2. Red dots correspond to those
shown in Fig. 2. Square symbols indicate (h,Γ) points for
which states with p = 0 and p = 2 are obtained in Sec. V.

coexistence in real materials, where dipolar interactions,
granularilty or disorder effects are present. However, it
is always possible to have domains with different p-states
within the boundary of the stability region.

C. Outstanding features of the stability diagram

There are some characteristics in the stability diagram
which have interesting consequences both from a theoret-
ical and applied point of view. Below we enumerate these
remarkable features and some of their consequences. Of
especial relevance is the discussion of point 3 below.

1. Destabilization of p-states. At each point (h,Γ)
within the stability region of conical states the stable p-
states are those whose stability ellipse encloses the point.
Since all stability ellipses are centered at the origin in
the (h,Γ) plane, the only stable p-states are those which
are metastable at h = 0 and Γ = 0, that is, which are
metastable in absence of applied field and current. They
are precisely those with p in the range (29). The appli-

cation of a field and/or a current does not stabilize any
other p-state, but it destabilizes some of them. As the
point (h,Γ) moves away from the origin, it crosses some
ellipses, and the corresponding p-states become unsta-
ble. Outside the stability region of conical states, whose
boundary is given by eqs. (31), no p-state is stable.

2. Range of stable p-states. One conclusion of the
discussion of point 1 above is that at each point (h,Γ) the
stable p-states have p in a certain range pmin(h,Γ) ≤ p ≤
pmax(h,Γ). These two values, pmin(h,Γ) and pmax(h,Γ),
are given by the two real roots of

A(p)Γ2 + 2B(p)hΓ + C(p)h2 −D(p) = 0, (35)

that lie within the bounds given by Eq. (29). These two
values, pmin and pmax, approach each other as (h,Γ) at-
tains the stability boundary of conical states. Therefore,
the closest (h,Γ) is to this stability boundary, the nar-
rower the range of p values of stable p-states.

3. Manipulating conical states. The discussion of point
1 above suggests a method to switch between metastable
conical states with different wave number. For instance,
suppose we start at h = 0 and Γ = 0 with some
metastable p-state, say with p ≈ 1. If we apply a field
and a polarized current such that (h,Γ) corresponds to a
point close to one of the red points of Fig. 2, the initial
p-state becomes unstable and it will evolve to one of the
p-states within the stability range at (h,Γ). Since this
point is close to one of the red points of Fig. 2, where the
stability range is narrow, the final p-state will have p ≈ 2.
Since this state is metastable also for h = 0 and Γ = 0, it
will remain as the field and the current are switched off.
Hence, the consequence of this process is to switch the
p-state from p ≈ 1 to p ≈ 2. In Sec. V we will show using
numerical simulations that these processes are feasible.

Therefore, a given p-state can be selected with high
precision by approaching the appropriate point of the
stability boundary. The values of h and Γ appropriate
to select a conical state with wave number q ≈ pq0 are
those represented in Fig. 3.

4. Helicity switching. Since for the easy-plane
anisotropy considered in this work hc > 1, we have that
1 −

√
hc < 0. This means that there are p < 0 within

the stability range (29), and the corresponding p-states
are stable within their stability ellipse. These p-states
with p < 0 are conical states with helicity against the
DMI. The metastability of these states opens the possi-
bility of helicity switching in monoaxial chiral helimag-
nets through the action of a polarized current, by means
of the process described in point 3 above.

5. Ferromagnetic states. For the same reason p = 0 is
within the bounds (29). Hence, the p-state with p = 0 is
metastable within its stability ellipse (the black ellipse in
Fig. 2). These states are ferromagnetic, with a uniform
magnetization which has a component nz = cos θp =
h/(hc−1) along the chiral axis. The magnetization com-
ponent lying on the plane perpendicular to the chiral axis
is undetermined, which means that these ferromagnetic
states are highly degenerate. This degeneracy is tan-
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FIG. 4. Stability region for the equilibrium p = 1 state (q =
q0) for applied magnetic field B and current j, as obtained
by numerical simulations. The regions where the FFM states
are stable are also shown. The dashed lines correspond to the
stability limits.

tamount to the translational degeneracy of the conical
p-states. Notice that these ferromagnetic states are dif-
ferent from the FFM state obtained for a sufficiently large
magnetic field, in which the magnetization is aligned with
the field. Instead, they would be the equilibrium states
in absence of DMI, which survive as metastable states
when the DMI is present.

6. Supercritical modulated states. The fact that the
stability region of the FFM state is convex (see Fig, 2)
implies that there are steady moving p states for super-
critical applied fields (|h| > hc). This means that if
we start with the FFM state with h in an appropriate
range, such that |h| > hc, and apply a polarized current
of appropriate intensity the FFM state will be destabi-
lized and will evolve to attain a steady moving p-state:
a modulation will be created by the polarized current at
a supercritical fileld. If the current is switched off, the
FFM state will be recovered. One process of this kind is
illustrated by micromagnetic simulations in Sec. V.

V. MANIPULATION OF THE CONICAL
STATES

The peculiarities of the stability diagram suggest a
method to manipulate the conical states described in
Sec. IV C, point 3. In this section we illustrate that these
ideas are sound by solving the LLG equation with appro-
priate initial conditions and time dependent applied field
and current, by means of micromagnetic simulations.

The micromagnetic numerical simulations are per-
formed using the MuMax3 code [46, 47] in which a
monoaxial DMI was implemented [43] to model the sys-
tem given by Eqs. (1) and (11), with material param-
eters appropriate for CrNb3S6 [43]: A = 1.42 pJ/m,
D = 369 µJ/m2, K = −124 kJ/m3, and MS = 129 kA/m
(see Osorio et al. [48] for further details). With these

FIG. 5. Evolution of the system when a simultaneous (ha,Γa)
square pulse is applied during 20 ns: the red and blue curves
represent the net magnetization along z and the winding num-
ber, respectively. The dashed black line indicates the moment
the pulse is turned off. Initially the system is at (h = 0,Γ = 0)
(yellow point in the inset) and is characterized by a winding
number Q0 = 10. The values of (ha,Γa) (red points in the
inset) are in one semi-axis of the shown ellipses corresponding
to positive p = 2 in (a) and negative p = −0.5 in (b).

parameters the equilibrium pitch of the helical state is
L0 = 2π/q0 ≈ 50 nm and the critical magnetic field
hc corresponds to Bc ≈ 2300 mT. The simulations are
performed for a one-dimensional system of linear size
R = 500 nm, with a mesh size ∆R = 1 nm, and periodic
boundary conditions. We set α = 0.01 and β = 0.02.
Notice that in a finite system with periodic boundary
condition only a discrete number of 2π rotations can be
attained. We denote by Q the winding number (see Ref.
48 for the definition of Q), and Q0 = R/L0 = 10 is the
equilibrium winding number, which corresponds to the
p-state with p = 1. Hence p = L0/L = Q/Q0 takes only
discrete values with step size 1/Q0 = 1/10.

Let us start showing the stability diagram correspond-
ing to the equilibrium p-state (p = 1) obtained from nu-
merical simulations. Given a point (h,Γ) of the stability
diagram, the initial state is either the p-state with p = 1
if |h + Γ| ≤ hc (this is the existence condition of the
p = 1 state), or the FFM state, otherwise. A perturba-
tion of small intensity, MS/10, and random orientation
is added to the magnetization of the initial state. Then,
the current is applied for 20 ns. Figure 4 displays the sta-
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bility region and the corresponding stability ellipse (see.
Fig. 2). The stability limits of the FFM are also shown
in the figure. The stability boundaries are in good agree-
ment with the analysis in Sec. IV B.

In order to show how the system can be manipulated
to obtain different targeted p-states we use the following
protocol. The system is initialized at (h = 0,Γ = 0) in a
state with a winding number Q0 = 10, which corresponds
to the equilibrium state with p = 1. A small random per-
turbation is added to the three components of the mag-
netization, so that the initial state is actually a perturbed
p-state. Then a simultaneous square pulse of magnetic
field and polarized current with (h = ha,Γ = Γa) is ap-
plied during 20 ns, afterwards the system is let to relax
to some metastable state at (h = 0,Γ = 0). The evo-
lution of the system can be followed by monitoring the
time evolution of the magnetization along the chiral axis,
which accounts for the conical distortion, and the wind-
ing number Q ∝ p. A small pulse length is necessary to
destabilize the initial state. We expect the final state to
depend on the initial perturbation and the shape of the
pulse, but not on the length of the pulse, since ones a
new state has been reached it is metastably retained.

Figure 5 shows how different p-states can be stabilized
following the main diagonals of the ellipses. In Fig. 5(a)
results are presented for (ha < 0,Γa > 0), while results
with (ha > 0,Γa > 0) are shown in Fig. 5(b). In both
cases, (ha,Γa) lies outside the stability region of the Q0

state. In Fig. 5(a) a final state with Q = 24 (p = 2.4)
is obtained, showing that a combined pulse of magnetic
field and current can be used to modify the winding num-
ber (p-state) in the system. Immediately after applying
the pulse the number of solitons stays constant at Q = 10
with a conical distortion (signaled by Mz ̸= 0) that grows
rapidly. After that, the number of solitons changes from
Q = 10 to Q = 24 and the conical distortion adapts
to the new number of solitons. These changes occur
roughly within the first 10 ns and after that the num-
ber of solitons remains constant. In (b), the values of
(ha > 0,Γa > 0) are such that the only stable p-states
are those with p < 0. The process in this case is similar
to that in Fig. 5 (a), except that not only the number of
solitons changes, their helicity and the conical distortion
are also reversed as Q and Mz, respectively, have changed
their sign. Therefore, the numerical results show that in
this case a helicity switching can be forced with the fi-
nal state metastably retained against the DMI favored
rotation direction. This shows how the magnetic config-
uration can be destabilized in favor of new p-states by
pushing the system outside the ellipse corresponding to
the initial state.

In order to select a p-state with a targeted p value, ha

and Γa should be chosen at the stability boundaries, such
that pmin ≤ p ≤ pmax with pmin and pmax very close to
each other. Figure 6 present results using (ha,Γa) close
to the stability boundaries and such that (a) p = 2 and
(b) p = 0 are expected (see square symbols in Fig. 3).
Numerical results show that these targeted p-states can

FIG. 6. Evolution of the system when a simultaneous (ha,Γa)
square pulse is applied during 20 ns: the red and blue curves
represent the net magnetization along z and the winding num-
ber, respectively. The dashed black line indicates the moment
the pulse is turned off. Initially the system is at (h = 0,Γ = 0)
(yellow point in the inset) and is characterized by a winding
number Q0 = 10. The values of (ha,Γa) (red points in the
inset) are exactly at the point where the ellipses for (a) p = 2
and (b) p = 0 touch the upper branch of the stability bound-
ary, as shown in the insets.

be readily selected. In Fig. 6(a) Q = 22 is obtained,
which corresponds to p = 2.2, close to the targeted p = 2
state. Since we use (ha,Γa) exactly at the point where
the ellipse for p = 2 touches the stability boundary, the
p = 2 state is in its stability limit and states very close
to Q = 20 can be stabilized, in this case Q = 22. The
evolution of the system for the process shown here is
similar to that shown in Fig. 5 (a), with a shorter tran-
sition time scale. In Fig. 6 (b), after fluctuating around
Q = ±1, the final ferromagnetic state with Q = 0 is ob-
tained. Note that this state is initially (when h = ha)
oriented along a random direction within the cone with
nz = cos θp = ha/(hc − 1), depending on the initial per-
turbation of the system. The overall evolution in Fig. 6
(b) is quite similar to that in Fig. 5 (b), but a series of in-
termediate transitions can be identified. A first transition
occurs when the number of solitons decreases suddenly
from Q = 10 to Q = 1. Then a subsequent transition is
seen in which the system has one soliton but with oppo-
site helicity (Q = −1). Finally this soliton is destroyed
and the system reaches the uniform state without soli-
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FIG. 7. Switching to a metastable state at zero field using
independent field and current pulses. First, a field pulse of
intensity h > hc is used to drive the system to the FFM state
(yellow point in the inset). Then, a t = 0 a current pulse
is applied using a negative Γ value (red dot in the inset) to
stabilize the p-state. After 20 ns the system is let to relax to a
metastable state (the obtained p-state) at (h = 0,Γ = 0). The
dashed black line indicates the moment the pulse is turned
off. The red and blue curves represent the net magnetization
along z and the winding number, respectively.

tons. During all the process the magnetization changes
to adapt its value to the corresponding number of soli-
tons, in particular when the last soliton disappears (at
t = 15 ns) a kink in Mz is seen. When h = 0 the ob-
tained ferromagnetic state is contained in the easy-plane
(xy) defined by the magnetic anisotropy. This ferromag-
netic state can be metastably retained, as opposed to the
FFM state.

For Γ = 0, going beyond hc erases the p-state and the
FFM state is stabilized. It is important to note that in
this case, for a field value h > hc, an applied current can
be used to stabilize a p-state, as shown in Fig. 7. The
system is initialized with Q0 = 10 at (h = 0,Γ = 0) and
then is set in a FFM state using (h = ha > hc,Γ = 0).
Applying then Γ = Γa inside the stability region, a state
with Q = 21 is obtained. Immediately after applying
the pulse, the number of solitons abruptly changes from
Q = 0 and fluctuates around Q = 21, to finally remain
constant at this value after t = 15 ns. It is also seen
that the net magnetization along z decreases from Mz =
1 (uniform state along the chiral axis) to Mz ≈ 0.85,
indicative of the conical distortion. This state remains
when going back to (h = 0,Γ = 0). That is, some p-states
can be created by means of a two step process: first,
the current p-state is erased by applying a field higher
than hc and afterwards the FFM state is destabilized by
applying an appropriate current. The system evolves to
some steady moving stable p-state which remains after
the field and the current are switched off.

The numerical results shown in this section illustrates
how the stability diagram obtained in Sec. IV A can be
used to manipulate the conical states.

VI. CONCLUSIONS

Let us summarize the findings reported in this work.
Besides the equilibrium state, at low temperature and
zero applied field monoaxial chiral helimagnets have a
continuum of helical states differing by the wave num-
ber of the modulation [38], which can be written as pq0,
where q0 is the wave number of the equilibrium state and
p is a dimensionless number. These states are called here
the p-states. For an infinite system, their energy is a
continuum function of p which is minimized by the equi-
librium state, corresponding to p = 1. These states are
local minima of the energy for p in a neighborhood of
p = 1 [38]. We argued here (Sec. II) that, in spite of
what the curve energy versus p may suggest (Fig. 1), the
p-states are metastable in that range.

The application of a magnetic field parallel to the chiral
axis has two effects: first, it introduces a conical deforma-
tion of the p-states; and second, it schrinks the interval of
metastability. For applied fields of strength higher than
the critical field no p-state is stable, and the equilibrium
state is the FFM state.

Analogously, the application of a polarized current
along the chiral axis has three effects on the p-states:
first, they reach a steady moving state with a velocity
proportional to the intensity of the applied current; sec-
ond, they suffer a conical deformation similar to that in-
troduced by the application of an external field in the
direction of the chiral axis; and third, some p-states
are destabilized, and therefore the stability interval is
schrinked.

The most remarkable fact of the stability diagram of
p-states in the applied magnetic field - applied current in-
tensity plane (Sec. IV C) is that for each p in the stability
range at zero field there are points in the stability dia-
gram at which the interval of stability is very narrow and
contains such p. This fact allows us to devise processes to
select a given p-state. For instance, if we start with some
metastable p-state at zero current and apply appropriate
magnetic field and current we end with a steady mov-
ing p-state with wave number within a narrow interval
around the targeted p. These new p-state is metastable
at zero field and zero current and therefore it would re-
main as the field and the current are switched off. The
feasibility of these processes, which is extremely impor-
tant from the point of view of applications, is shown by
micromagnetic simulations (Sec. V).

Switching between p-states opens the possibility of
their application in spintronic devices. In particular,
there are metastable p-states with negative p, and there-
fore helicity switching is possible in monoaxial chiral he-
limagnets. It has been argued that controlled switching
among magnetic states with opposite helicity might be
used for memory applications [36]. Current induced he-
licity switching has been discussed before in a non-chiral
monoaxial helimagnet [49] and in isolated skyrmions in
frustrated magnetic systems [50]. In both cases magnetic
textures of pure exchange origin were studied, while we
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report here helicity switching in a monoaxial chiral heli-
magnet, where chirality is due to the presence of DMI.

The p-states exist also in cubic chiral magnets [35]. In
that case they are characterized not only by the wave
number, but also by the orientation of the wave vector.
The dynamics and stability of the p-states of cubic chi-
ral helimagnets under the action of a polarized current
have been recently studied by Masell et al. [51, 52] in the
zero applied field case. These authors showed that, un-
der the action of the current, the p-states reach a steady
motion state with a velocity proportional to the current
density and, at the same time, they suffer a uniform con-
ical deformation with an angle determined by the cur-
rent. This behaviour is the same found here for monoax-
ial chiral helimagnets. Masell et al. found also a critical
current which destabilizes the p-states. Their analysis
of the longitudinal Fourier modes, whose wave vector is
parallel to the p-state wave vector, gives a destabiliz-
ing current which exactly coincides with the result re-
ported here for monoaxial helimagneets, in the particu-
lar case h = 0, hc = 1, as it must be since by ignoring
the transverse fluctuations the cubic chiral helimagnet
becomes the monoaxial chiral helimagnet without single-
ion anisotropy (UMA). In addition, they found that the
p-states are destabilized by any current, however small,
applied perpendicularly to the wave vector of the p-state.
This means that the p-states tend to propagate along
the direction of the applied current. The situation be-
comes more interesting if there is also an applied field,
since in this case the propagation direction of the p-state
tends to be aligned with the field. Thus, the interplay
between the magnitude and relative orientation of the
applied field, the applied current, and the p-state wave
vector promises a complex and rich stability diagram of
p-states in cubic chiral helimagnets.

The essential question of the lifetime of metastable p-
states cannot be addressed with the methods of this work.
The p-states are separated in the magnetic configuration
space by energy barriers (they are local minima of the en-
ergy functional) and their lifetime depends on the height
of such barriers. Thus, it is clear that the lifetime will
increase by decreasing the temperature and, therefore,
the presence of metastable p-states will be more easily
detected at low temperature.

The above discussion on lifetimes is related to the ex-
perimental signals of the p-states. To address these ques-
tions it is necessary a careful analysis of the experimen-
tal data at low temperature to seek for anomalies at-
tributable to p-states. We have already remarked that
p-states exist also in cubic chiral helimagnets [35]. In
these systems the continuum of p-states is richer than
in monoaxial chiral helimagnets since, besides the wave
number, the p-states differ also in the orientation of their
wave vectors. The low temperature anomalies reported
recently for the cubic chiral helimagnet MnSi [53] may
be due to the presence of metastable p-states.
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Appendix A: Stability of the conical states

A necessary condition for the stability of a p-state is
that the spectrum of the 2× 2 matrix operator D, whose
matrix elements are the linear differential operators given
by Eqs. (23)-(26) lies in the complex half-plane with non
positive real part. The p dependence is hidden in the
parameters a, ∆, and b given by Eqs. (27) and (28). Since
the coefficients of those linear operators are constants,
the spectrum is easily obtained by Fourier transform.

Denoting the wave vector of the Fourier modes by k,
and setting k = |k|, the spectrum is given by two complex
functions of k, denoted by λ±(k), given by

λ±(k) =− α

2
(2k2 + a)

+ i
(
∆− (1 + αβ)b

)
kz ±

√
ar + i ai.

(A1)

where

ar =
α2a2

4
− k2(k2 + a) +

(
α∆+ (β − α)b

)2
k2z , (A2)

ai = −
(
α∆+ (β − α)b

)
(2k2 + a)kz. (A3)

We only need the real parts, which are given by

Reλ±(k) = −α

2
(2k2 + a)±

√√
a2r + a2i + ar

2
, (A4)

Since Reλ+(k) ≥ Reλ−(k), stability requires Reλ+(k) ≤
0, which, with simple algebraic manipulation, it can be
shown to be equivalent to(

α∆+ (β − α)b
)2
k2z ≤ α2k2(k2 + a). (A5)

Since the left hand side of this inequality is non negative,
and since it must hold for any k, and in particular for
k → 0, we get a ≥ 0. This relation sets the bounds for
the p values of stable p-states given by the inequalities
(29).

Since a ≥ 0, the right hand side of (A5) increases with
k2x+k2y, and therefore the inequality is satisfied if and only
if it is satisfied for k2x + k2y = 0. Thus we set k2 = k2z ,
and then we have

k2z
(
k2z + a− (∆ + q0Γ)

2
)
≥ 0, (A6)
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Noticing that with a ≥ 0 inequality (A5) holds for all k
if and only if it holds for k = kzz, the stability condition
reduces to (∆+q0Γ)

2 ≤ a. To arrive to this inequality Eq.
(18) was used. Substituting the expressions for a, ∆ and
cos θp in this inequality we get the following expression
for the stability condition:

A(p)Γ2 + 2B(p)Γh+ C(p)h2 ≤ D(p), (A7)

where

A(p) = 2(p− 1)3 + 3(hc + 1)(p− 1)2 +

6hc(p− 1) + hc(hc + 1), (A8)

B(p) = (p− 1)3 + 3(p− 1)2 + 3hc(p− 1) + hc, (A9)

C(p) = hc + 3(p− 1)2, (A10)

D(p) =
(
hc − (p− 1)2

)3
. (A11)

Notice that D(p) ≥ 0 for p satisfying the bounds (29).
The inequality (A7) determines a region in the (h,Γ)
plane limited by a conic section. The discriminant of
the left hand side of (A7) is

B(p)2 −A(p)C(p) = −D(p) ≤ 0. (A12)

Therefore, the conic section is actually an ellipse centered
at (0, 0) with the principal axes rotated with respect to
the coordinate axes. The amount of rotation depends on
p. The steady moving p-state is stable within the region
of the (h,Γ) plane enclosed by the corresponding ellipse.
The stability the static p-states discussed in Sec. II is
obtained as a particular case of this general approach,
setting Γ = 0. The static p-state is thus stable in the
range of h determined by the intersection of its stability
ellipse with the Γ = 0 axis.

The region of the (h,Γ) plane in which there exists
some stable steady moving p-state is bounded by the en-
velope of the one-parametric family of ellipses given by
Eq. (30). The envelope can be readily found and it has
four branches determined by the parametric equations{

h = −
[
(p− 1)2 + 2(p− 1) + hc

]
Γ = 2(p− 1)

(A13)

{
h = (p− 1)2 + 2(p− 1) + hc

Γ = −2(p− 1)
(A14)

{
h = −

[
(p− 1)2 + 2hc(p− 1) + hc

]
/
√
hc

Γ =
[
(p− 1)2 + hc

]
/
√
hc

(A15)

{
h =

[
(p− 1)2 + 2hc(p− 1) + hc

]
/
√
hc

Γ = −
[
(p− 1)2 + hc

]
/
√
hc

(A16)

with p is in the range given by Eq. (29).
The parameter p can be eliminated in each of these four

pairs of equations and then the equations of the envelope

in the form (31) are obtained. This envelope bounds the
region of the (h,Γ) plane where some (steady moving)
p-state is stable, which in Sec. IV A is called the stability
region of conical states.

Appendix B: Stability of the FFM

To linear order, the dynamics of perturbations, ξ, of
the FFM state obey Eq. (22), in this case with

D11 = α(∇2 − a)−
(
2q0 + (1 + αβ)b

)
∂z, (B1)

D12 = ∇2 − a+
(
α2q0 − (β − α)b

)
∂z, (B2)

D21 = −∇2 + a−
(
α2q0 − (β − α)b

)
∂z, (B3)

D22 = α(∇2 − a)−
(
2q0 + (1 + αβ)b

)
∂z, (B4)

where now

a = q20(|h|+κ), b = σ(h)
q20bjj

ω0
= q0

α

β − α
σ(h)Γ, (B5)

with σ(h) = 1 if h ≥ 0 and σ(h) = −1 if h < 0.
If the FFM is stable the spectrum of D lies on the com-

plex half-plane with non positive real part. Again, the
spectrum of D is easily obtained by Fourier transform.
If, as before, k is the wave vector of the Fourier mode,
the spectrum is given by the complex functions λ±(k),
whose real parts are

Reλ±(k) = −α(k2 + a)±
(
α2q0 − (β − α)b

)
kz. (B6)

Now, Reλ±(k) ≤ 0 if and only if

αk2z ±
(
α2q0 − (β − α)b

)
kz + αa ≥ 0, (B7)

for all real kz. This means that the two roots in kz of the
left hand side of the above inequality must be either com-
plex or equal, that is, the discriminant of the quadratic
polynomial in kz given by the left hand side of the above
inequality must be non positive:(

α2q0 − (β − α)b
)2 − 4α2a ≤ 0. (B8)

Inserting the values of a and b given by equation (B5)
and defining Γ by Eq. (18) we obtain

Γ2 − 4σ(h)Γ + 4(hc − |h|) ≤ 0. (B9)

To have a non-empty solution of this inequality the two
roots in Γ of its left hand side must be real, and then the
inequality holds for Γ being between the two roots. Then
we get the condition |h| > hc − 1 and, if this holds, the
two roots are given by

Γ± = σ(h)2
(
1± ζ(h)

)
, (B10)

with ζ(h) =
√

1 + |h| − hc. In this way we obtain that
the stability region of the FFM state in the (h,Γ) plane
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is determined by the inequalities (34). It is remarkable
that the boundary of the stability region of the FFM
state coincides exactly with two of the branches of the

boundary of the stability region of conical states. As
stressed at the end of Sec. IV B, this means that conical
states never coexist with the FFM state.
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