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ABSTRACT 24 

Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in 25 

lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct 26 

substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic 27 

activities have been linked to diverse pathologies.  28 
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1. – INTRODUCTION 29 

GRANZYMES 30 

Granule-secreted enzymes (granzymes, Gzms) are a family of serine proteases first identified in 1987 (1, 2). The 31 

human genome comprises five granzymes (Gzms A, B, H, K, M) that are located on chromosomes 5 (Gzms A, 32 

K), 14 (Gzms B, H) and 19 (GzmM), encoding proteases that exhibit distinct substrate specificities (3, 4). 33 

Human and mouse GzmA and GzmK (tryptases) cleave after basic residues; GzmB (asp-ase) cleaves after acidic 34 

residues; GzmM (met-ase) cleaves after aliphatic residues; and human GzmH/mouse GzmC (chymase) cleave 35 

after aromatic residues. The functional characteristics of each granzyme are summarized in Table I. Despite 36 

human granzymes sharing approximately 40% structural sequence homology (5), differences in substrate 37 

binding clefts dictate unique substrate specificities and downstream consequences in health and disease (6–9). 38 

As such, there is an emerging body of work investigating the physiologic and/or pathologic roles for each 39 

granzyme. 40 

Historically, granzymes have been viewed as redundant mediators of cytotoxic lymphocyte-mediated target cell 41 

death through a process involving the pore-forming protein, perforin, that facilitates granzyme entry into cells. 42 

There have been many excellent reviews written on the mechanisms of granzymes and perforin in the induction 43 

of cell death (6, 7, 10–13). In recent years, in addition to cytotoxicity, diverse roles of granzymes, particularly 44 

GzmB, have been delineated in inflammation, extracellular matrix (ECM) degradation, impaired wound healing, 45 

scarring, basement membrane disruption, blistering, loss of epithelial barrier function, vascular permeability and 46 

autoimmunity (9, 14–17). GzmA and GzmB are the most widely studied granzymes, with less understood 47 

pertaining to the roles of Gzms H, K and M, which are occasionally referred to as the ‘orphan’ granzymes (18). 48 

Notably, the roles of Gzms A, K and M in immune cell-mediated killing are currently an area of controversy (19, 49 

20). Thus, as our understanding of granzymes evolves, this may prompt the need to reassess earlier studies, 50 

characterizing elevated granzymes in fluids, cells and tissues from diverse human pathologies, through a new, 51 

non-cytotoxicity-focused lens. As the functions of granzymes are further delineated with advanced genomics, 52 
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proteomics, degradomics and other tools, other pathophysiological roles for granzymes are likely to emerge. The 53 

purpose of the present review is to provide insights into the non-cytotoxic functions of granzymes and 54 

contextualize the relevant literature within the framework of health and disease. 55 

ORIGINAL CONCEPT: GRANZYMES IN PERFORIN-DEPENDENT, LYMPHOCYTE-MEDIATED 56 
CELL DEATH 57 

As granzymes were first observed within the granules of cytotoxic T lymphocytes (CTLs) and natural killer 58 

(NK) cells, initial research established a role for granzymes in lymphocyte-mediated cell death. Under this 59 

paradigm, granzymes cleave intracellular substrates to initiate cell death (apoptosis, pyroptosis, necrosis) of 60 

target cells. This field of research gained particular traction in the 1990s — coinciding with the peak of apoptosis 61 

research — after a landmark study was published ascertaining synergistic roles for granzymes and the 62 

membrane-perforating molecule, perforin (formerly known as cytolysin), in cell death (21). Since then, 63 

granzymes and perforin — particularly, GzmB and perforin — have been recognized as major constituents of 64 

lytic granules within cytotoxic cells and the main effectors of granule-dependent cell death (7).  65 

Both CTLs and NK cells are capable of synthesizing and storing cytotoxic granules. Within these granules, 66 

granzymes are rendered as zymogens which, at least in mice, require N-terminal processing by proteinases, 67 

cathepsin C (also dipeptidyl peptidase I) (Gzms A, B, K) or cathepsin H (GzmB), to become fully, 68 

proteolytically active (22–24). Upon engagement of a target cell, the lytic granules are rapidly polarized toward 69 

the immunological synapse, which allows for transport of activated granzymes, perforin, and other contents 70 

towards the plasma membrane along a microtubule cytoskeleton (25). Subsequently, perforin helps to deliver 71 

granzymes into a target cell. Although different mechanisms have been proposed to explain how perforin 72 

releases granzymes into the cytosol of target cells (26), recent evidence suggests that this process is dependent 73 

on the ability of perforin to form pores in the plasma membrane of the target cell (27, 28). The successive 74 

delivery of granzymes into the cytoplasm of the target cell rapidly induces cell death through the cleavage of 75 

substrates both in the cytosol and nucleus. Apart from the release of granzymes triggered by target cell 76 



Non-Cytotoxic Roles of Granzymes in Health and Disease  

5 
 

recognition, granzymes, (i.e. GzmB), may be constitutively released to the extracellular space, albeit the exact 77 

regulation of this mechanism and its relevance is not clear (29). 78 

The role of the GzmB/perforin pathway in cytotoxic lymphocyte-mediated apoptosis is well-documented. Within 79 

the target cell, GzmB activates the caspase cascade directly by processing effector caspases 3 and 7 or indirectly 80 

through cleavage of pro-apoptotic BH3-interacting domain death agonist (Bid) (30–33). GzmB may also cleave 81 

Bid into a truncated form (gtBid) (30–33). Further, GzmB can bypass caspases and mitochondria, cleaving 82 

related substrates involved in apoptosis execution directly (34–41). The relative contribution of the different 83 

pathways to cell death induced by GzmB may depend on differences between the substrate specificity of human 84 

and mouse GzmB (42, 43). In mice, ten granzymes have been identified (Gzms A to G, K, M and N) and are 85 

primarily named after their human homologs, apart from GzmC, which is a homolog for the closely related 86 

human GzmH. The relevance of these findings, predominantly derived using recombinant proteins in in vitro 87 

settings, is still unclear (44). The cytotoxic potential of the remaining granzymes is less clear and differences in 88 

the profile of substrates cleaved by human or mouse granzymes may add to the obscurity (43, 45). Still, current 89 

investigations indicate that cell death pathways activated by other granzymes are non-apoptotic and caspase-90 

independent, although their relevance and potential implications in disease remain to be confirmed and fully 91 

characterized (12). More detailed information on these pathways and their potential relevance can be found in 92 

other reviews (6–14, 18–20, 46–48). 93 

Despite the breadth of literature describing the differential role(s) of granzymes in various cell death pathways, 94 

there remains significant controversy over the specific contributions of individual granzymes to cell death. As 95 

perforin is an essential precursor for granzyme delivery by CTLs, a lack of perforin would result in the loss of 96 

granzyme internalization by target cells. Based on this fact and the assumption that granzymes could only elicit a 97 

physiological effect intracellularly, perforin knockout mice were at one time used to dismiss the contribution of 98 

all granzymes to disease (6, 46, 49). We now know this is not the case, and that granzymes can exhibit perforin-99 
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independent and/or other non-cytotoxic intracellular/extracellular functions as discussed in the following 100 

sections. 101 

EMERGING CONCEPTS: NON-CYTOTOXIC ROLES FOR GRANZYMES  102 

Over the past 15 years, diverse roles for granzymes (especially GzmB) have been forwarded. Extracellular roles 103 

for granzymes have been identified along with increased granzyme levels observed in the extracellular space and 104 

biofluids. Extracellular granzymes can accumulate in the extracellular milieu due to leakage from immunological 105 

synapses of CTLs/NK cells, constitutive secretion (29, 50) and/or secretion by other immune and non-immune 106 

cell types that do not express perforin and/or form immunological synapses (reviewed in Turner et al. (16) and 107 

Boivin et al. (9)). In recent years, the extracellular roles of GzmA and GzmB have been investigated. The role of 108 

extracellular GzmB independent of perforin was first demonstrated in an in vivo mouse model of abdominal 109 

aortic aneurysm, whereby GzmB deficiency increased overall survival while perforin deficiency showed no 110 

improvement (51). In the latter study, a role for extracellular GzmB was proposed and later confirmed by Ang et 111 

al. (52) using an extracellular GzmB inhibitor (Serpina3n). In the extracellular milieu, GzmA (53) and GzmB 112 

(54–56) can induce perforin-independent cell detachment in anchorage-dependent cells through the cleavage of 113 

ECM proteins. In cultured rat small intestine epithelial cells, GzmA mediates collagen type IV and fibronectin 114 

degradation, promoting reduced cellular adhesion (53). GzmB cleaves fibronectin, vitronectin and laminin, 115 

leading to endothelial cell detachment and anoikis as well as inhibition of tumour cell spreading, migration and 116 

invasion (55). Similarly, in smooth muscle cells (54), fibroblasts (56) and endothelial cells (55), the addition of 117 

GzmB in the absence of perforin induces anoikis through the cleavage of fibronectin and other ECM proteins. 118 

Together, these observations underscore novel functional roles of granzymes outside of cytotoxicity that were 119 

previously not considered. As granzymes are observed in abundance in conditions as described below, often in 120 

the absence of perforin, it is important to consider non-cytotoxic, perforin-dependent (intracellular) and -121 

independent (extracellular) roles. 122 
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Interest in non-cytotoxic roles for granzymes has been fueled by observations suggesting that granzymes can be 123 

expressed and secreted by both immune and non-immune cells as well as observations demonstrating granzyme 124 

accumulation and retention of proteolytic activity in the extracellular milieu. Granzymes are expressed in diverse 125 

populations of immune cells including: CD34+ hematopoietic progenitor cells (GzmB (57)), regulatory CD4+ T 126 

cells (GzmB (48)), B cells (GzmB (58–61)), CD4+ T cells (GzmA (62, 63), GzmH (64), GzmK (63)), CD3+, 127 

CD56+ and gamma delta T-cells (GzmM (65)), type I innate lymphoid cells (mouse GzmC (66)), intestinal T 128 

cells (GzmM (67)), intraepithelial γδ lymphocytes (GzmA (68), GzmB (68)), macrophages (GzmB (69), GzmK 129 

(70)), type II pneumocytes and alveolar macrophages (GzmA (71), GzmB (71)), NK cells (GzmA (65, 71, 72), 130 

GzmB (64, 71), GzmH (64, 73), GzmK (72), GzmM (65, 73, 74)), mast cells (GzmA (75), GzmB (51, 56, 76–131 

81), GzmH (75, 78)), basophils (GzmB (76, 82)), monocyte-derived dendritic cells (GzmB (83)), plasmacytoid 132 

dendritic cells (GzmB (84–91)); as well as non-immune cells including: platelets (GzmA (92), GzmB (93)), 133 

keratinocytes (GzmB (94–96)), testicular Sertoli cells and placental syncytial trophoblasts (GzmB (97)), articular 134 

chondrocytes (GzmB (98)), visceral adipose tissue (GzmB (99)), photoreceptor cells of the retina (GzmM (100)); 135 

and cancer cells: B-chronic lymphocytic leukemia cells (GzmB (59)), breast carcinoma cells (GzmB (101)), 136 

urothelial carcinoma cells (GzmB (102)), nasal NK/T-cell, gamma delta T-cell and intestinal T-cell lymphomas 137 

(GzmM (67)).  138 

Importantly, it is now established that activation of granzyme-positive immune cells can leak or secrete 139 

granzymes into the extracellular milieu. Previous studies into the accumulation of extracellular granzymes in 140 

response to tissue damage and inflammation have elucidated novel roles for granzymes in disease pathogenesis, 141 

with pathologic roles for granzymes under active investigation (7, 103). Within the extracellular milieu, GzmB 142 

in particular can cleave and activate various substrates including cell junction proteins, cell surface receptors, 143 

extracellular matrix proteins, cytokines/growth factors, and plasma proteins, as will be discussed in the next 144 

sections of this review (6, 16, 104–106). Granzymes have also been implicated in mechanisms underlying viral 145 

clearance by inactivating diverse viral proteins independently of their ability to kill the host cell (reviewed in 146 
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Jong et al. (107); however, the scope of this review is limited to granzyme function as it relates to cellular 147 

physiology. 148 

Collectively, studies characterizing the expression of granzymes in cells other than CTLs/NK cells, cells 149 

expressing granzymes that lack perforin, accumulation of granzymes in the extracellular space and biofluids, and 150 

retention of proteolytic activity in biofluids, suggest that granzymes could play consequential, non-cytotoxic 151 

roles in various pathologies.  152 

2. – GRANZYMES: NON-CYTOTOXIC MECHANISMS 153 

The steady discovery of non-cytotoxic roles for granzymes has identified novel mechanisms and key roles in 154 

health and disease. In this section, substrates for each of the granzymes are discussed and classified based on 155 

their subcellular localization and primary functional role. This information is also summarized in Table II. As 156 

indicated above for cell death, it is important to note that the substrate specificities of human and mouse 157 

granzyme homologues are different and this may influence their pathogenic mechanisms and resulting biological 158 

functions (43). 159 

CELL JUNCTION PROTEINS 160 

To date, there is little in vitro or in vivo evidence to suggest that Gzms A, H, K or M disrupt cell adhesion via 161 

the cleavage of desmosomal or hemidesmosomal proteins. However, in recent years, GzmB-mediated cleavage 162 

of both desmosomal and hemidesmosomal proteins has been observed in a number of in vivo models, suggesting 163 

GzmB plays an important role in the disruption of epithelial barrier function, vascular permeability and/or 164 

disruption of the basement membrane zone (68, 76, 108–111). While much of this work has focused on skin, 165 

lessons learned are beginning to be transferred to other epithelial tissues (reviewed in Jung et al. (112)).  166 

Several studies have emerged recently suggesting a role for GzmB on epithelial dysfunction in different 167 

epithelial pathologies/tissues including the skin (cleavage of cell-cell junction proteins, filaggrin cleavage and 168 

loss of epithelial barrier function in dermatitis) (111), colon (intraepithelial γδ lymphocyte release of GzmB 169 
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inducing cell epithelial shedding in Crohn’s disease) (68), eye (disruption of tight junctions of the retinal 170 

pigment epithelium, ECM remodelling of the Bruch’s membrane and disruption of the blood-retina barrier in 171 

macular degeneration) (110), and airways (NK-derived extracellular GzmB-mediated epithelial protease-172 

activated receptor (PAR)-2 activation, IL-25 production and Th2 response in asthma) (108). While much of the 173 

data pertaining to GzmB and epithelial dysfunction is at its infancy, increasing evidence suggests a number of 174 

key junctional proteins are susceptible to GzmB-mediated proteolysis, including desmoglein-1 and desmoglein-3 175 

(111), epithelial (E)-cadherin (111), filaggrin (111), junctional adhesion molecule (JAM)-A (56, 110), zonula 176 

occludens (ZO)-1 (56, 110, 111), and occludin (110). Another mechanism for GzmB-mediated epithelial barrier 177 

dysfunction involves the production of soluble E-cadherin fragments (~80 kDa) (111). Soluble E-cadherin 178 

fragments are elevated in multiple conditions (113), including those with demonstrated GzmB activity and 179 

junctional protein dysfunction, such as dermatitis. In atopic dermatitis, soluble E-cadherin fragments correlate 180 

with disease severity and may disrupt cell-cell junctions important in epithelial barrier function maintenance 181 

(114). Indeed, attenuation of GzmB activity, achieved through genetic deletion or pharmacological inhibition, 182 

reduces the loss of barrier function in atopic dermatitis by inhibiting E-cadherin and filaggrin cleavage as 183 

demonstrated using murine and ex vivo human skin models (111). 184 

GzmB also promotes endothelial barrier disruption in blood vessels. GzmB cleavage of vascular endothelial 185 

cadherin (VE-cadherin) (80), platelet endothelial cell adhesion molecule (PECAM)-1, JAM-A and ZO-1 (56) 186 

may result in multiple pathologic consequences within the vasculature ultimately leading to increased vascular 187 

permeability and inflammation. In the context of macular degeneration, GzmB-mediated cleavage of occludin 188 

was proposed to contribute to pathologic angiogenesis and microvasculature permeability (110).  189 

In the basement membrane zone, GzmB mediates disruption through cleavage of α6 and β4 integrins (109), 190 

collagen VII (109), and collagen XVII (BP180) (76, 109). Cleavage of the hemidesmosomal proteins by GzmB 191 

is proposed to contribute to the onset and progression of subepidermal blistering (pemphigoid) diseases (bullous 192 

pemphigoid, dermatitis herpetiformis, epidermolysis bullosa acquisita), whereby GzmB-mediated cleavage of 193 
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these desmosomal proteins results in the separation of the epidermis from the dermis. In a recent study by 194 

Hiroyasu et al. (76), further proof of concept and target validation was demonstrated using a combination of both 195 

GzmB knockout mice and topical GzmB inhibitor approaches in conjunction with three models of autoimmune 196 

sub-epidermal blistering. Elevated GzmB was observed in human blister fluid from patients with bullous 197 

pemphigoid and inhibition of GzmB in murine models resulted in a significant reduction in blistering that 198 

coincided with the inhibition of hemidesmosomal protein cleavage (76).  199 

CELL SURFACE RECEPTORS 200 

Cell surface receptors are key signalling mediators between extracellular and intracellular environments and are 201 

highly susceptible to extracellular protease-mediated degradation.  202 

GzmA cleaves numerous PARs, a family of G protein-coupled receptors activated by cleavage of their 203 

extracellular domain, exposing de novo N termini which function as self-activating tethered ligands to promote 204 

transmembrane signalling (115, 116). In the blood, GzmA cleaves the thrombin (PAR-1) receptor on platelets, 205 

desensitizing their response to thrombin-induced aggregation (15, 117).  However, the relevance of GzmA/PAR-206 

1 in coagulation is not well understood. In an in vivo model of sepsis, GzmA knockout mice show reduced 207 

coagulatory damage, suggesting GzmA/PAR-1 inhibition of thrombin-mediated aggregation in platelets is likely 208 

not a key mechanism during sepsis (118). Even so, GzmA may be able to mediate the effects of other ligands 209 

that interact with PAR-1, like endotoxin, which is associated with the development of sepsis (103). Differences 210 

in the cytokine profiles elicited from monocytes exposed to GzmA versus thrombin suggests that GzmA 211 

activates monocytes via a different receptor (119). Further investigation will be required to establish the 212 

conditions and cell types where GzmA/PAR-1 activation is favoured. GzmA-mediated PAR-1 cleavage has also 213 

been proposed to supress tumour progression by promoting JAK2/STAT1 signal activation-induced apoptosis 214 

(120). In hepatocellular carcinoma patients, the loss of GzmA-mediated PAR-1 cleavage is observed and this 215 

may contribute to tumor progression (120). Hence, it may be of interest to examine the levels of GzmA/PAR-1 216 

activity in other cancers and its correlation with disease severity. GzmA-mediated thrombin receptor cleavage 217 
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elicits morphological changes in neural cells, as demonstrated by detection of weakened calcium ion (Ca2+) 218 

signals (117). GzmA also cleaves the thrombin-like receptor on neurites, leading to neurite retraction and 219 

reversed stellation of astrocytes (15, 121). Hence, GzmA may play an important role in the development of 220 

nervous system impairments (121). GzmA-mediated activation of PAR-2 has been proposed; however, it has not 221 

been conclusively demonstrated (122).  222 

GzmB is capable of cleaving both PAR-1 and PAR-2 (108, 123). GzmB-mediated PAR-1 activation in neurons 223 

and was found to induce neuronal cell death/atrophy associated with multiple sclerosis (123). Conversely, in the 224 

context of asthma, extracellular GzmB was not toxic, but rather activated PAR-2 in the epithelium, resulting in 225 

IL-25 expression and secretion (108). IL-25 production was augmented by IL-13, provoking a type II immune 226 

response (108). Thereafter, both pulmonary group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells 227 

were activated, leading to subsequent eosinophilic recruitment and allergic airway disease (108). GzmB may 228 

also cleave other cell surface receptors pertaining to autoantigen generation, including the acetylcholine receptor 229 

in myasthenia gravis (124), neuronal glutamate receptor 3 in Rasmussen’s encephalitis (125), as well as 230 

fibroblast growth factor receptor 1 (FGFR1, CD331) and Notch Homolog 1 (Notch1) in prostate cancer (126).  231 

Although there is a diverse range of autoantigens predicted to be cleaved by GzmB, few have been validated. 232 

Literature pertaining to GzmB-mediated autoantigen generation has been reviewed previously (127). 233 

GzmK may also cleave PAR-1, promoting pro-inflammatory cytokine and chemokine release in cultured lung 234 

fibroblasts (IL-6, IL-8 and MCP-1) (128), endothelial cells (IL-6 and MCP-1) (129), keratinocytes (IL-6) and 235 

pro-inflammatory M1 macrophages and peritoneal macrophages (IL-1β) (70, 130). GzmK-mediated PAR-1 236 

activation also induces cell proliferation and endothelial activation (70, 128, 129). The expression of pro-237 

inflammatory cytokines IL-1β and IL-6 and chemokines IL-8 and MCP-1 are implicated in a variety of 238 

inflammation-driven processes and can contribute to local tissue inflammation (131–134). In fibroblasts and 239 

endothelial cells, GzmK-dependent production of these cytokines/chemokines requires mitogen-activated protein 240 

kinases (MAPK), extracellular-signal regulated kinase (ERK)1/2 and p38 phosphorylation (128, 129).  241 
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EXTRACELLULAR MATRIX (ECM) PROTEINS 242 

The ECM is a vital component of all tissues, providing scaffolding for cell adherence, but also plays a key role in 243 

regulating cellular behaviour and processes such as migration, proliferation, inflammation, differentiation and 244 

homeostasis. Consequently, proteolytic processing of the ECM is tightly regulated. While much attention has 245 

been focused on the ECM cleavage capacity of matrix metalloproteinases (MMPs), their activities are tightly 246 

regulated by Tissue Inhibitors of Metalloproteinases (TIMPS) (135). Further, MMPs are critical regulators of 247 

many physiologic processes and broad MMP inhibition can exacerbate inflammation by suppressing MMP-248 

mediated chemokine processing (136). Of note, it is estimated that of the twenty-four human MMPs, up to ten 249 

may exert anti-inflammatory or anti-tumorigenic roles. As such, they have been referred to as ‘anti-targets’, 250 

whereby their function should perhaps be promoted rather than inhibited (137). Conversely, there are no known 251 

endogenous extracellular inhibitors of GzmB; thus, accumulation and proteolytic activity associated with 252 

inflammation remains unregulated. While there is increasing evidence for extracellular GzmB in pathogenesis, 253 

our understanding of other granzymes in ECM cleavage, including their activity retention in the extracellular 254 

milieu and/or ECM substrates is poorly understood.  255 

As described in a review article by Butler and Overall (138) on MMPs and their respective TIMPS, the protease 256 

web is tightly regulated. Thus, it could be postulated that dysregulated proteases in the ECM could lead to 257 

disruptions of other proteases in the protease web, resulting in proteolytic amplification and/or other pathological 258 

consequences. In the context of granzymes, investigations into elevated and unimpeded granzyme activity in the 259 

extracellular space and its implications on other proteases are emerging. GzmB retains its activity in plasma 260 

(139) and none of the anti-proteases in the lung inhibit GzmB activity (140). As a consequence of this, studies by 261 

Parkinson et al. (81) suggest that aberrant GzmB activity can impact other proteases. GzmB-generated 262 

fibronectin fragments were found to induce MMP1 and MMP3 expression in dermal fibroblasts, suggesting that 263 

GzmB may disrupt the protease web by indirectly inducing other proteases (81). Moreover, Geng et al. (141) 264 

have shown that decorin binds to the surface of collagen fibrils to impede access and proteolytic cleavage by 265 
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MMP1, while Parkinson et al. (81) reported GzmB-mediated decorin cleavage rendered collagen I susceptible to 266 

MMP1-mediated cleavage. In another example of how GzmB may influence other proteases, Hiroyasu et al. (76) 267 

demonstrated that GzmB-induced macrophage inflammatory protein (MIP)-2 (mouse homolog of IL-8) 268 

expression, promoted neutrophil recruitment and neutrophil elastase expression in models of autoimmune 269 

blistering. Discussed later in this review, GzmB-mediated release of ECM-sequestered growth factors (VEGF, 270 

TGF-β) may also influence the activities of other proteases. 271 

GzmB mediates disruption of cellular interactions within the basement membrane zone through cleavage of 272 

collagens IV and VII (109, 142, 143). GzmB proteolysis of collagen IV also has implications in lymphocyte 273 

transmigration (142, 143). The contribution of collagen VII to pathomechanisms of subepidermal blistering is 274 

well-established, with therapeutic efficacy of a topical GzmB inhibitor observed in more than three different 275 

blistering disease murine models to date (144). 276 

Increasing evidence suggests proteoglycans are key proteins targeted by GzmB in aging and wound healing 277 

pathologies. Within cartilage tissue, GzmB has been shown to cleave cartilage proteoglycans including aggrecan 278 

(145). Aggrecan was also found to be cleaved by GzmA, and later, it was shown that GzmA knockout mice were 279 

less susceptible to collagen-induced arthritis than wild-type mice (146). Here, it was shown that GzmA 280 

contributed to arthritis by promoting osteoclastogenesis by the induction of tumour necrosis factor (TNF)-α 281 

release in precursor cells (146). GzmB can also cleave ECM proteins fibronectin (147), laminins-332,-511 (55, 282 

110) and vitronectin (55) as stated previously in this review. Further, GzmB cleavage of fibronectin can induce 283 

release of fibronectin-sequestered VEGF (148). Given the important pathologic role for VEGF in macular 284 

degeneration, it is exciting to speculate whether GzmB, which is elevated in aging and diseased eyes (110), 285 

contributes to the increase in VEGF that is observed in macular degeneration. 286 

The small leucine rich proteoglycan decorin is abundant in the skin and other tissues. While it is associated 287 

primarily with the collagen-matrix, decorin also interacts with and governs the activities of diverse proteins, 288 
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including fibronectin, thrombospondin-1, WNT-inducible signaling pathway protein 1, toll-like receptors (TLR) 289 

2/4 and several receptor tyrosine kinases (EGFR, HER2, MET, and VEGFR2) (149). Further, decorin plays a 290 

key role in collagen organization and fibrillogenesis. Reduced decorin is associated with increased scarring and 291 

fibrosis; thus, it follows that decorin has been investigated as an anti-fibrotic agent in vivo (150, 151). Notably, 292 

decorin is perhaps the most well-studied extracellular GzmB substrate. GzmB-mediated decorin cleavage has 293 

been observed in several in vivo models of skin conditions (age-impaired wound healing, diabetic wound 294 

healing, accelerated skin aging, photoaging, pressure injury in aged skin) and aneurysm (52, 81, 111, 152–155), 295 

the pathologies and phenotypes of which will be described in detail in a later section of this review. GzmB 296 

cleavage of decorin, biglycan and β-glycan has also been observed to sequester TGF-β1 (156).  297 

In addition to their roles in aging and wound healing, decorin and fibronectin are known to affect tumour cell 298 

survival and metastasis, prompting Arias et al. (8) to hypothesize that GzmB cleavage of these ECM substrates 299 

may also be relevant in cancer. However, this hypothesis has not been investigated experimentally. Rather, these 300 

suggestions were made on the basis that decorin and fibronectin functions underlie critical processes related to 301 

tumor progression and these ECM components are observed at reduced levels in a variety of human cancers. 302 

Decorin can facilitate cell cycle arrest, cell death, anti-angiogenic and anti-metastatic programs (157). Further, 303 

TGF-β is a known effector cytokine underlying epithelial-mesenchymal transition (EMT) and cancer progression 304 

(158). Hence, GzmB-mediated decorin cleavage may promote tumour survival signaling and metastasis. Within 305 

the tumour microenvironment, fibronectin has important functions in proliferation, angiogenesis, invasion and 306 

metastasis (159). Expression of pro-inflammatory fibronectin fragments is increased in human oral cancer and 307 

regulates cancer cell spreading, migration and invasion (160). Hence, GzmB cleavage of fibronectin may also 308 

affect tumour development. Moreover, GzmB cleavage of fibronectin releases VEGF which can enhance 309 

angiogenesis (148, 161). It is possible that GzmB-mediated release of fibronectin-sequestered VEGF could 310 

contribute to tumour angiogenesis; however, further elucidation is required. All these hypotheses and 311 

preliminary results regarding GzmB-mediated ECM remodelling in cancer need to be further experimentally 312 



Non-Cytotoxic Roles of Granzymes in Health and Disease  

15 
 

confirmed in biologically relevant in vivo models. Investigation into the relevance of additional GzmB ECM 313 

substrates to this mechanism is also warranted. In urothelial carcinoma, GzmB is expressed in the absence of 314 

perforin, retains proteolytic activity and cleaves cell-matrix substrate vitronectin, suggesting that GzmB 315 

degradation of other ECM components may contribute to oncogenesis (102). 316 

GzmB can also cleave ECM forms of fibrinogen and Von Willebrand Factor (VWF), leading to impaired platelet 317 

aggregation (162). Moreover, GzmB delays ristocetin-induced platelet aggregation and inhibited platelet 318 

adhesion and spreading (162). GzmB cleavage of  (VWF) is dependent on conformation; thus, it may not be 319 

observed in all pathophysiological settings (162). Nonetheless, while not demonstrated in vivo, GzmB has a 320 

potential role in coagulation, warranting further investigation. 321 

CYTOKINE PROCESSING & INDIRECT CYTOKINE, GROWTH FACTOR RELEASE 322 

A small number of cytokines are processed intracellularly within the cytoplasm by GzmA and GzmB into their 323 

active state for release. 324 

GzmA processes pro-IL-1β to IL-1β in macrophages; however, the mechanism remains to be confirmed, with 325 

speculation it occurs through either direct or indirect activation of caspase-1/the inflammasome (105, 163–165). 326 

Initially, GzmA was believed to cleave pro-IL-1β directly (164). Metkar et al. (165) observed GzmA to stimulate 327 

IL-1β in vitro that was then reversed by a caspase-1 inhibitor, suggesting a role for the inflammasome in this 328 

process. Further, genetic deletion of GzmA in mice decreased lipopolysaccharide (LPS)-induced toxicity, 329 

confirming the potential relevance of GzmA-mediated IL-1β release in LPS-induced shock (165). A follow up 330 

study by Hildebrand et al. (163) demonstrated that GzmA secretion mediated by the bacterial Pasteurella 331 

multocida toxin (PMT) was able to process pro-IL-1β without inducing cell death via caspase-1 and 332 

inflammasome activation. In both instances, the resulting mature IL-1β (17 kDa) is bioactive, but the functional 333 

consequences have yet to be explored. GzmA indirectly elicits the release of pro-inflammatory cytokines 334 

through the activation of TLRs which play an important role in the innate immune response. In monocytes and 335 
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macrophages, TLR signaling is required for GzmA-mediated cytokine release including IL-6 and TNF-α (92, 336 

166–168). LPS-pre-sensitized macrophages elicit GzmA cleavage of TLRs 2, 4 and 9, and release of pro-337 

inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α (165, 169). GzmA can also induce the release of cytokines 338 

from cultured human peripheral blood mononuclear cells (IL-6, IL-8 and TNF-α or IL-1β, IL-6, IL-8 and TNF-339 

α) (119, 165), purified monocytes (IL-6, IL-8 and TNF-α or IL-8 and MCP-1) (92, 119), macrophages (IL-1β) 340 

(165), plasmacytoid dendritic cells (type I interferons) (168), fibroblasts and epithelial cells (IL-6, IL-8) (170), 341 

albeit the mechanisms involved have not been fully elucidated. Current evidence supports that GzmA-mediated 342 

pro-inflammatory cytokine processing and production promotes the development of colorectal cancer (171). 343 

GzmA has been investigated in patients with ulcerative colitis, a chronic inflammatory condition closely linked 344 

to colorectal cancer, as a biomarker for response to anti-inflammatory immunotherapy as discussed in a later 345 

section (172). 346 

Several reports have described GzmB in the direct cleavage and indirect induction of pro-inflammatory 347 

cytokines. GzmB cleaves IL-1α (17 kDa) resulting in the generation of a more pro-inflammatory form of IL-1α 348 

than its precursor (173). IL-1α proteolysis by GzmB is likely involved in the activation and link between the 349 

innate and adaptive immune response (173). GzmB processes pro-IL-18 resulting in activation and subsequent 350 

release of IL-18 (111, 174, 175). IL-18 promotes T cell activation and expansion and is a critical inducer of the 351 

inflammatory cytokine IFN-γ. GzmB can indirectly promote the release of cytokines IL-8 (from keratinocytes) 352 

(76) and IL-25 (from lung epithelial cells) (108) in addition to growth factors (156), which are outlined briefly 353 

here. In a murine model of blistering disease, GzmB impeded secretion of the neutrophil chemoattractant MIP-2 354 

(mouse homolog of IL-8) (76). Correspondingly, GzmB induced IL-8 secretion from human primary 355 

keratinocytes in a dose-dependent manner in vitro (76). In a model of asthma, GzmB induced IL-25 secretion 356 

from the epithelium through activation of PAR-2 (108). GzmB is also capable of releasing ECM-sequestered 357 

growth factors, VEGF (148) and TGF-β (156). GzmB triggers the release of VEGF through fibronectin cleavage 358 

(148). Further, VEGF release leads to VEGFR2 activation (161). GzmB-mediated decorin/biglycan/β-glycan 359 
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cleavage triggers the release of active TGF-β1 (156). While the precise functional roles of GzmB-mediated 360 

ECM-sequestered growth factors require further elucidation in vivo, the implications are potentially extensive. 361 

There is also evidence supporting a role for GzmK in cytokine induction. GzmK indirectly promotes cytokine 362 

release through a PAR-1-dependent mechanism in cultured lung fibroblasts (IL-6, IL-8 and MCP-1) (128), 363 

endothelial cells (IL-6 and MCP-1) (129), skin fibroblasts and keratinocytes (IL-6) (70), and  pro-inflammatory 364 

M1 macrophages and peritoneal macrophages (IL-1β) (70, 130). GzmK also indirectly elicits the release of pro-365 

inflammatory cytokines via TLR activation. In contrast to GzmA, GzmK supports LPS-CD14 complex 366 

formation, which binds to TLR4 (169). In vitro, GzmK can enhance LPS-induced cytokine release from human 367 

primary monocytes (TNF-α) (176) and mouse peritoneal macrophages (IL-1β) (130). Similarly, GzmK can 368 

enhance TNF-α-induced cytokine release from endothelial cells (IL-6, MCP-1) (129). Also in endothelial cells, 369 

GzmK can promote the expression and secretion of soluble VEGFR1, which sequesters VEGF-A and impairs 370 

subsequent pro-angiogenic signalling (177). The underlying mechanisms remain unknown but do not appear to 371 

involve PAR-1 activation (177). In support of these findings, GzmK was observed to positively correlate with 372 

sVEGFR1 protein levels and negatively correlate with T4 intratumoural angiogenesis and tumour size in human 373 

colorectal cancer (177). 374 

GzmM is also capable of indirectly eliciting a pro-inflammatory response. In a mouse model of LPS-induced 375 

endotoxicosis, GzmM knockout mice were resistant to LPS-induced toxicity which corresponded with reduced 376 

levels of serum IL-1α, IL-1β, TNF and IFN-γ (178). This GzmM pro-inflammatory response was reasoned to 377 

operate downstream of LPS-TLR4 signaling, which may have implications is sepsis/endotoxicosis and other 378 

diseases (178).  379 

PLASMA PROTEINS 380 
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The proteolytic activity of circulating GzmA has been investigated. GzmA cleaves pro-urokinase plasminogen 381 

activator (uPA) which converts single-chain human pro-urokinase into active two-chain enzyme and plays a 382 

putative role in plasmin generation (15, 179).  383 

GzmB-mediates cleavage of clotting factors plasmin (180) and plasminogen (180). In systemic sclerosis, GzmB 384 

cleaves plasminogen which limit the pro-angiogenic function of plasmin and increased levels of antiangiogenic 385 

angiostatin (180). A potential role for GzmB in C3 and C5 processing to C3a and C5a, respectively has also been 386 

proposed (181); however, more research must be done to confirm a pathologic role for GzmB in hemostasis. 387 

GzmM cleaves both denatured and soluble plasma-derived platelet aggregation plasma protein VWF (182). This 388 

proteolysis prevents binding of VWF to coagulation factor VIII (182), affecting the VWF/coagulation factor VIII 389 

ratio which is important in the clinical management of blood coagulation. 390 

OTHER/UNDEFINED 391 

The breadth of research that granzymes have impacted is further showcased in this section as more research 392 

groups are investigating the consequences of granzyme activity. 393 

GzmA-mediated myelin basic protein (MBP) degradation results in myelin destruction and is implicated in the 394 

pathogenesis of multiple sclerosis (15, 183).  395 

GzmB is also considered an important contributor to axonal injury and neuronal death in multiple sclerosis 396 

(184). GzmB inhibition using serine protease inhibitor a3n (Serpina3n) prevents loss of myelin and overall 397 

disease severity in experimental autoimmune encephalomyelitis (EAE) and is under investigation as a potential 398 

novel therapeutic approach (184). Though not fully understood, observations that GzmB is expressed by 399 

regulatory T and B cells, both with and without perforin, in tumour microenvironments highlight potential roles 400 

for GzmB in tumour progression that are independent of ECM remodelling (reviewed in Arias et al. (8)) as 401 

discussed in a later section. 402 
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Using single cell RNA and antigen receptor sequencing, a recent study has identified a GzmK-expressing 403 

population of CD8+ T-cells as key contributors to inflammaging in humans and mice, although no GzmK 404 

substrates were directly implicated in this study (185). Termed “age-associated T-cells”, human and mouse 405 

GzmK+CD8+ T-cells shared transcriptomic and epigenetic signatures, and displayed similarities to terminal, 406 

exhausted T cells isolated from mice with chronic infection (185). The circulating GzmK+CD8+ T-cell 407 

population clonally expanded with age, was detected in all organs with age, was the primary source of GzmK 408 

detected in the aging mice, and correlated with increased levels of pro-inflammatory cytokines IL-6, IL-8, and 409 

TNF-α (185). Findings derived from immune cells in young and old mice showed that GzmK, with and without 410 

IFN-γ, enhanced the senescence-associated secretory phenotype (SASP) in fibroblasts (185). While it remains to 411 

be seen if deletion of GzmK would attenuate the observed inflammaging phenotypes in vivo, the study findings 412 

suggest that GzmK could be a key mediator in inflammaging.  413 

3. – GRANZYMES IN RELEVANT PATHOLOGIES 414 

Tissue injury, inflammation and repair are key elements underlying the pathophysiology of many conditions, and 415 

elevated protease activity is thought to be a key contributor. While granzymes are not the only proteases 416 

involved in these processes, granzyme substrates are key mediators and granzymes have been observed in 417 

diverse pathologies in multiple body systems. Putative role(s) of granzymes in disease pathology is context-418 

dependent – dependent upon the cell source, degree and site of protease accumulation, and protease access to 419 

substrates/tissues. The current understanding of the best known granzymes (Gzms A, B, K) and their established 420 

roles in various pathologies is summarized in Figures 1-4 and discussed below. 421 

GZMA IN SEPSIS 422 

Elevated extracellular GzmA is observed in plasma, serum, synovial fluid and bronchoalveolar lavage fluid in 423 

patients with inflammatory conditions, ranging from rheumatoid arthritis (186–188) gut disease (189) to sepsis 424 

(190). Granzyme release can be stimulated in NK cells by bacterial products in the absence of target cells, which 425 

could contribute to extracellular GzmA expression (191). Several detailed studies have delved into the 426 
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pathogenic role of GzmA in sepsis (103). Extracellular GzmA levels are significantly increased in severe sepsis, 427 

septic shock, and endotoxemia (190, 192). In fact, increased serum GzmA levels (relative to healthy donors) 428 

precedes sepsis onset in people with peritonitis, one of the leading disease cofounders (103). Further, GzmA was 429 

positively correlated with sequential organ failure assessment (SOFA) score, a clinical predictor of patient 430 

mortality (103). In human subjects injected with LPS, there was a transient increase in GzmA expression in 431 

plasma, corresponding to similar elevations observed in bacteremic melioidosis patients (192). Notably, GzmA 432 

release appears to be part of a general response to bacterial infection rather than being pathogen specific (192).  433 

While the non-cytotoxic mechanisms of extracellular GzmA in disease remains to be fully characterized, in vitro 434 

studies using purified, recombinant GzmA have elucidated potential pathologic roles in sepsis. Exposure to 435 

purified GzmA triggered pro-inflammatory cytokine release in cultured fibroblasts (IL-6 and IL-8), epithelial 436 

cells (IL-8), human peripheral blood mononuclear cells (IL-6, IL-8 and TNF-α), monocytes (in conjunction with 437 

LPS, IL-6, IL-8 and TNF-α) and macrophages (IL-1β, IL-6 and TNF-α) (15, 103). The inflammasome may be 438 

required for pro-inflammatory IL-1β cytokine expression as caspase-1 depletion ameliorates secretion (163), 439 

although a separate study showed GzmA activates IL-1β directly by cleaving the precursor form (164). 440 

Studies involving a mouse model of sepsis have identified an influx of GzmA-positive cells. In vivo, GzmA is 441 

predominantly expressed by NK cells, which mediates macrophage expression of IL-6 and TNF-α through a 442 

TLR4-dependent mechanism (103, 118). A recent study by Hu et al. (68) identified GzmA-expressing 443 

intraepithelial γδ lymphocytes in Crohn’s disease which is characterized by an enteric bacteria invasion similar 444 

to sepsis (68). After a fatal challenge with mouse pathogen Brucella microti, GzmA knockout mice displayed 445 

increased survival, which correlated with reduced expression of IL-1α, IL-1β and IL-6 (118). In a model of E. 446 

coli-induced sepsis, there was increased survival in GzmA knockout mice, along with a lower sepsis score and 447 

reduced expression of IL1-α, IL-β and IL-6 (193). In a cecal ligation and puncture model, both GzmA knockout 448 

mice and wild-type mice treated with an extracellular GzmA inhibitor exhibited increased survival compared to 449 

untreated wild-type mice (166). Notably, the loss of GzmA activity in these mice ameliorated infection-related 450 
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pathology (inflammation) but not bacterial clearance, suggesting the protease may be a therapeutic target for the 451 

prevention of bacterial sepsis without affecting immune control of the pathogen (103, 118, 193). Interestingly, 452 

some studies suggest that the contribution of GzmA to sepsis might depend on the type of bacterial infection. 453 

Bronchoalveolar lavage fluid from patients with pneumococcal pneumonia presented increased levels of GzmA 454 

and GzmA knockout mice showed increased resistance to pneumosepsis induced by Streptococcus pneumonia 455 

infection (194). In contrast, GzmA deficiency did not affect the susceptibility to Klebsiella pneumoniae-induced 456 

sepsis (195). Again, in both cases, the immune control of the pathogen was unaffected in the absence of GzmA. 457 

Collectively, GzmA is an emerging therapeutic target for inflammation in bacteria-mediated sepsis with potential 458 

application of GzmA as a biomarker of peritoneal sepsis development and severity (103).  459 

GZMA IN ULCERATIVE COLITIS & COLORECTAL CANCER 460 

The development of colorectal cancer is strongly linked to chronic inflammation observed in ulcerative colitis 461 

(196), and the current literature suggests GzmA could be a key mediator of inflammation underlying both 462 

conditions. High GZMA expression has been detected in tumour samples from human colorectal cancer patients 463 

co-expressed with genes encoding inflammatory markers IFN-γ, TNF-α, and IL-2 (171), as well as from tissue 464 

obtained from the intestinal mucosa of patients with active Crohn’s disease or ulcerative colitis (197). 465 

Mechanistically, extracellular GzmA was reported to induce IL-6 in macrophages through the NFκB pathway, 466 

and in turn activate oncogenic STAT3 signaling in colon cancer cells (171). Genetic ablation of GzmA or 467 

pharmacological inhibition with GzmA inhibitor Serpinb6b in mouse models attenuated severity of colitis, 468 

inflammatory cytokine levels, as well as colorectal cancer development (171), suggesting that GzmA could be a 469 

key therapeutic target for both inflammatory bowel disease and colorectal cancer. Furthermore, a study on 470 

ulcerative colitis patients revealed GzmA to be a robust marker of treatment response with novel, efficacious 471 

therapeutic, etrolizumab, supporting the utility of GzmA as a potential predictive biomarker (172). 472 

GZMB IN CARDIOVASCULAR INJURY 473 
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A role for extracellular GzmB in disease, independent of perforin, was first observed in a mouse model of 474 

abdominal aortic aneurysm using both GzmB and perforin knockout mice (51). Here, GzmB was abundant in 475 

both mouse and human disease (51). Further, GzmB deficiency decreased aortic aneurysm, reduced rupture, and 476 

increased overall survival, perforin-deficient mice exhibited no improvement in survival compared to controls, 477 

suggesting a perforin-independent role for GzmB in aortic aneurysm (51). In this initial study, fibrillin-1 was 478 

identified as a substrate that was cleaved by GzmB in the medial layer, leading to medial disruption (51). GzmB 479 

deficiency reduced fibrillin-1 cleavage, medial disruption, aortic rupture and mortality (51). In a follow-up study 480 

by Ang et al. (52), decorin was identified as a key GzmB substrate that was cleaved in the adventitia. Decorin 481 

plays an important role in collagen organization and fibrillogenesis; hence, the loss of decorin was predicted to 482 

reduce overall circumferential strength of the aorta. Indeed, GzmB-mediated cleavage of decorin led to reduced 483 

collagen organization, aneurysm and rupture, which most likely was attributed to a loss of sustained 484 

circumferential tensile strength in the adventitia (52). Intravenous injection of Serpina3n, a potent, irreversible, 485 

non-specific, systemic inhibitor of GzmB, prevented the loss of decorin, resulting in increased collagen 486 

organization, aneurysmal rupture and survival in a dose-dependent manner (52). As such, current evidence 487 

suggests an important role for GzmB-mediated decorin cleavage in models of impaired vascular wound healing. 488 

The contributions of GzmB activity to degradation of ECM substrates have also been linked to microvascular 489 

damage. In addition to the cleavage of cell-cell adhesion proteins, it was demonstrated that GzmB disrupts 490 

endothelial adhesion, migration, and capillary tube formation through degradation of fibronectin (148, 161). 491 

GzmB has also been shown to promote vascular permeability through the proteolytic release of fibronectin-492 

sequestered VEGF (161). In studies performed by Hendel et al, GzmB-mediated fibronectin cleavage triggered 493 

the release of ECM-sequestered pro-angiogenic VEGF (198), leading to VEGFR2 activation (161). While the 494 

link between GzmB and VEGF in vivo requires further elucidation, anti-VEGF treatment was able to attenuate 495 

GzmB-induced microvascular permeability in a murine model of oxazolone-induced dermatitis (111). More 496 
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recently, using prematurely aged mice, GzmB reduced levels of fibronectin, increased VEGF and enhanced 497 

microvascular hemorrhage in a murine model of pressure injury (199).  498 

The GzmB/perforin pathway was originally investigated in the context of allograft vasculopathy, an accelerated 499 

form of arteriosclerosis and major cause of chronic solid organ rejection (54, 200).  Reduced luminal narrowing 500 

was observed in both murine GzmB and perforin knockout models, supporting a role for the GzmB/perforin-501 

apoptosis pathway in this accelerated form of transplant arteriosclerosis (54, 200). Of note, albeit separate 502 

studies, greater protection was observed in the perforin knockout mice, suggesting that other granzymes could 503 

also be involved. Subsequently, as elevated circulating GzmB was observed in patients with unstable plaques 504 

and increased cerebrovascular events (201) as well as following acute myocardial infarction (202), the role of 505 

GzmB and perforin in native atherosclerosis was investigated in an apolipoprotein E (ApoE)-knockout model 506 

(152). In this study, perforin and GzmB knockout mice exhibited distinct roles in atherogenesis. ApoE/perforin-507 

deficient mice exhibited greater protection versus ApoE/GzmB-deficient mice, suggesting a role for other 508 

granzymes in atherogenesis (155). However, ApoE/GzmB-deficient mice exhibited reduced decorin and 509 

increased collagen in plaques, suggesting a potential role for GzmB in plaque instability and rupture (155).  510 

A role for GzmB in cardiac fibrosis has also been proposed. GzmB was elevated in fibrotic human heart sections 511 

as well as fibrotic murine hearts isolated from an angiotensin II-induced model of cardiac fibrosis (80). In vivo, 512 

independent of perforin, GzmB deficiency or Serpina3n administration led to reduced angiotensin II-induced 513 

cardiac hypertrophy and fibrosis, microhemorrhage, inflammation as well as fibroblast recruitment (80). These 514 

observations were hypothesized to be dependent on GzmB cleavage of VE-cadherin, resulting in subsequent 515 

vessel wall permeability, inflammation and fibroblast activation (80). Of note, GzmB-mediated decorin cleavage 516 

did not appear to be involved in this purported mechanism of action. 517 

GZMB IN INFLAMMATORY SKIN CONDITIONS 518 
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Elevated GzmB is documented in multiple inflammatory dermatological conditions and skin injury, including 519 

atopic dermatitis (111, 203), autoimmune blistering disease bullous pemphigoid (76, 109), Stevens-Johnson 520 

syndrome/toxic epidermal necrolysis (204, 205), diabetic wounds (147, 153), pressure injuries (199), and aged 521 

skin (152, 154, 199), with dysregulated GzmB contributing to pathogenic roles through proteolytic degradation 522 

of substrates within the epidermis, dermal-epidermal junction (DEJ), and dermis. It is important to emphasize 523 

that the impact of extracellular GzmB on skin pathology is determined by the cell source, area of accumulation 524 

(e.g., epidermis, DEJ, dermis, etc.), and substrates/cleavage site exposure to GzmB, which appears to vary 525 

between these skin conditions.  526 

Epidermis 527 

Recent discoveries uncovering the role of extracellular GzmB in skin afflicted with atopic dermatitis have 528 

revealed novel mechanisms underlying the pathogenesis of the disease. GzmB is elevated in atopic dermatitis 529 

lesional skin compared with healthy and non-lesional tissue, and is detected both within the epidermis and 530 

dermis (111, 206). GzmB detection in the plasma of atopic dermatitis patients is correlated with pruritus 531 

(itchiness) and disease severity (203). Extracellular GzmB, predominantly secreted from mast cells, was 532 

demonstrated to cleave the epidermal barrier proteins filaggrin, E-cadherin, desmoglein-1 and desmoglein-3 533 

(111). GzmB further disrupts cell junctions through the cleavage of cell junction proteins leading to a loss of 534 

barrier function in vitro. ZO-1 and JAM-A were also identified as GzmB substrates in the skin in vitro (56, 111). 535 

Using an in vivo model of hapten-induced dermatitis, GzmB knockout mice exhibited reduced inflammation, 536 

epidermal thickness, lesion formation, epithelial barrier dysfunction, erosions (an indicator of scratching and 537 

indirect measure of pruritus) as well as overall disease severity (111). Furthermore, topical administration of a 538 

potent, small molecule inhibitor of GzmB (VTI-1002, viDA Therapeutics, Vancouver, Canada) also reduced 539 

dermatitis severity compared to controls, providing further target validation (111).  540 

Xerosis and pruritus are common features of atopic dermatitis as well as aging skin and some preliminary 541 

investigations have been performed in the context of GzmB (111, 203). As GzmB directly cleaves structural 542 
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proteins key to epidermal barrier function which could contribute to the development of xerosis and pruritus, 543 

further investigations into GzmB-mediated xerosis and pruritus are warranted. In the aging population, xerosis 544 

and pruritus are among the most common skin health concerns due to aging-related declines in functions of the 545 

epidermal barrier, immune system and nervous system (207, 208). Particularly, the epidermal barrier 546 

composition is altered with age, and the capacity for barrier repair is reduced (207, 209). In support of this, 547 

GzmB has been reported to be elevated in aged skin (81, 199). Strikingly, in a murine model of accelerated aging 548 

and skin aging, ApoE/GzmB double knockout mice exhibited significantly decreased erosions compared to the 549 

control ApoE-/- mice (152). Whether reduced erosions were due to reduced pruritus requires further elucidation. 550 

Taking into account that GzmB is elevated in skin aging (81, 199), correlated with increased pruritus severity 551 

(203) and inhibition reduces transepidermal water loss in a murine dermatitis model (111), there is evidence to 552 

support a role for GzmB in age-related xerosis and pruritus (112). 553 

Beyond the skin, extracellular GzmB activity has been implicated in barrier dysfunction in other tissues. Tight 554 

junctional proteins, JAM-A and occludin, as well as fibronectin, laminin-332, and collagen IV have been 555 

identified as substrates of GzmB in retinal pigment epithelial cells, with implications for age-related macular 556 

degeneration (110). Furthermore, as dysregulated extracellular GzmB activity has been noted to play key roles in 557 

pathological inflammation of the airway epithelium (108) and the gut epithelium (68), the role of GzmB in 558 

promoting epithelial barrier dysfunction in other tissues could be speculated.  559 

Dermal-epidermal junction (DEJ) 560 

A study by Russo et al. (109), identified GzmB to be elevated at the DEJ in multiple autoimmune blistering 561 

diseases: human bullous pemphigoid, dermatitis herpetiformis, and epidermolysis bullosa acquisita. GzmB, but 562 

not perforin, is abundantly expressed along the DEJ in SJS/TEN (210). GzmB cleaves key basement membrane 563 

substrates present in the DEJ including collagen XVII, collagen VII, and α6β4 integrins (109). Laminin-511 564 

(previously known as laminin-10), highly expressed in the basement membrane, is also identified as a GzmB 565 
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substrate (55), but its cleavage in the context of GzmB and blistering has not been reported. GzmB knockout 566 

mice displayed reduced disease severity in two models of epidermolysis bullosa acquisita and a bullous 567 

pemphigoid model (76). In this study, GzmB was found to contribute to skin blistering through the cleavage of 568 

collagen XVII and α6-integrin (76). Similarly, topical application of the GzmB inhibitor VTI-1002 reduced 569 

degradation of anchoring proteins collagen XVII and α6-integrin, neutrophil infiltration, and histological 570 

blistering score (76). While these studies provide evidence and focus on the disruption of the DEJ/basement 571 

membrane zone in skin, lessons from these findings could be applied to other tissues where GzmB levels may be 572 

elevated in the basement membrane zone. 573 

Dermis 574 

GzmB accumulation in skin has been observed in conditions impacted by aging, chronic inflammation and/or 575 

impaired wound healing. Similar to our observations in vessel wall injury and repair, decorin degradation has 576 

also been observed in several skin pathologies. Decorin is a key proteoglycan that associates with collagen in the 577 

skin, providing tensile strength, binding to growth factors such as TGF-β and protecting collagen from cleavage 578 

by MMPs and other proteases. Decorin is the best characterized GzmB substrate in the dermis. Elevated GzmB 579 

and decorin degradation has been detected primarily in the dermis of human and/or murine skin exhibiting 580 

accelerated aging (152, 154), pressure injuries in aged skin (199), ultraviolet (UV) light exposure (81), as well as 581 

impaired wound healing from pressure injuries (199) and diabetic wounds (153). In a mouse model of 582 

accelerated skin aging, GzmB deficiency ameliorated decorin degradation, loss of dermal collagen density, 583 

collagen disorganization and skin thinning (152). As approximately 80-90% of premature skin aging can be 584 

attributed to sun/UV radiation exposure, referred to as photoaging, the role of GzmB in photoaging was 585 

investigated in mice using a 20-week, chronic model in which mice were exposed every other day to low level (1 586 

MED) UVA/UVB radiation (81). In this model, mast cells were identified as a major source of GzmB and the 587 

absence of GzmB prevented cleavage of decorin, loss of collagen integrity, and wrinkle formation (81). In an in 588 

vivo mouse model of impaired diabetic burn wound healing and scarring, inhibition of GzmB activity using 589 
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topical GzmB inhibitor VTI-1002 prevented the loss of decorin, augmented collagen organization, and improved 590 

overall wound quality and tensile strength (153). In support of these observations, fibrotic scars from diverse 591 

tissues exhibit reduced decorin levels (211, 212), whilst mouse studies indicate decorin administration to wounds 592 

reduces fibrosis (213, 214). Most recently, GzmB was also shown to be elevated in the dermis of pressure injury 593 

wounds in humans and mice (199). In the latter study, decorin levels and tensile strength were significantly 594 

increased in an aging mouse model of pressure injury when GzmB was absent (199). As wounds typically heal 595 

with reduced tensile strength, especially in the elderly or diabetic populations, previous exposure to pressure 596 

injuries is a predictive risk factor for subsequent pressure injuries. As such, this work shows promise as a 597 

potential therapeutic option to reduce the risk of future pressure injuries by increasing tensile strength.  598 

The mechanisms of GzmB in the pathogenesis and exacerbation of inflammatory skin conditions are rapidly 599 

emerging and better understanding of the consequences of its uninhibited, dysregulated proteolytic activity in the 600 

skin will shed light on its efficacy as a novel therapeutic target as well as other therapeutic opportunities. 601 

GZMB IN NEUROINFLAMMATION 602 

Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by demyelination of the central 603 

nervous system and axonal damage caused by infiltrating immune cells, including T cells (215). While  604 

intracellular GzmB accumulates in the neural soma (216) and studies have suggested that it induces cytotoxicity 605 

through the classical, perforin-dependent mechanism (217, 218), accumulating evidence also indicates that 606 

GzmB contributes to neuronal damage independent of perforin. In the absence of perforin, recombinant GzmB 607 

induces toxicity in neurons cleaving caspase-3 and α-tubulin in vitro (216, 219), gaining entry through mannose-608 

6-phosphate receptor (216). GzmB is also reported to cleave intracellular substrate transaldolase, the loss of 609 

which is found in myelinating cells oligodendrocytes at sites of demyelination, along with loss of myelin basic 610 

protein (220).  611 
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Predominantly released by activated CD8+ T cells, GzmB is expressed at high levels in active lesions (216) and 612 

cerebrospinal fluid of patients with MS (123). This extracellular GzmB induces neurotoxicity through cleavage 613 

of cell surface receptor, PAR-1 (221), whereby inhibition of PAR-1 prevented GzmB-mediated toxicity (123). In 614 

further support of a GzmB-PAR-1-mediated mechanism, using a murine model of late/chronic EAE, siRNA 615 

specifically targeting GzmB significantly reduced the cumulative EAE disease severity scores compared to 616 

controls (222). In the same study, the proposed mechanism involved Eomes+ CD4+ T cell-mediated secretion of 617 

GzmB which facilitated neurotoxicity through a process that could be attenuated using a PAR-1 antagonist 618 

(222).  619 

More recently, a role for GzmB in a non-apoptotic mechanism that may underlie the pathogenesis of multiple 620 

sclerosis has been uncovered. As CD4+ T cells derived from MS patients are resistant to suppression by 621 

regulatory T cells (223), the authors questioned whether extracellular GzmB, which has been linked to 622 

autoimmunity, may play a role (223). Extracellular GzmB was shown to inhibit suppression of non-regulatory, 623 

responder T cells by regulatory T cells without decreasing viability of regulatory T cells (223). Importantly, 624 

extracellular GzmB inhibitor Serpina3n has shown efficacy in reducing axonal and neuronal injury in a mouse 625 

model of EAE (184). In the latter study, Serpina3n-treated mice exhibited a significant reduction in myelin loss 626 

and cumulative EAE scores (184). Given that extracellular GzmB is a key contributor in mediating inflammation 627 

in other tissues, further investigation may reveal other non-cytotoxic roles for extracellular GzmB in 628 

neuroinflammatory disease. 629 

GZMB IN CANCER PROGRESSION 630 

The role for the GzmB/perforin pathway in cytotoxic lymphocyte-mediated tumour cell apoptosis is well-631 

documented and described elsewhere. However, it is recognized that immune cells possess multiple mechanisms 632 

in their arsenal with respect to tumour cell killing (eg. Fas/CD95/FasL/CD95L, TRAIL, other granzymes, etc.). 633 

As such, loss of GzmB alone does not augment tumorigenesis (224). In light of the emerging non-cytotoxic 634 

mechanisms of GzmB, such as ECM remodelling and manipulating immune homeostasis/tumour escape 635 
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programs, GzmB is now also appreciated for its roles in promoting tumour progression (reviewed in Arias et al. 636 

(8) and Tibbs and Cao (225)).  637 

Elevated GzmB has been observed in various cancers, where GzmB may contribute to pathology through 638 

cleavage of substrates within the surrounding tumour microenvironment. Emergent discoveries on the role of 639 

ECM remodeling/degradation in cancer have underscored a putative role for extracellular GzmB in urothelial 640 

cancer promotion. A study by D’Eliseo et al. (102) identified GzmB, in the absence of perforin, to be elevated in 641 

neoplastic urothelial cancer cells undergoing EMT at the cancer invasion front. In vitro, GzmB expressed by 642 

tumour cell lines cleaved vitronectin which is a vital component of the ECM and GzmB inhibition suppressed 643 

bladder cancer cell invasion (102). In urothelial cancer, GzmB expression was detected in T cells, with 644 

negligible levels of perforin (226), supporting potential roles for GzmB in invasion and metastasis. It is likely 645 

that GzmB cleavage of other known ECM substrates, such as decorin and fibronectin, is also relevant to the 646 

progression of other solid tumours (8).  647 

Another mechanism by which tumours promote survival and invasion is through manipulating immune 648 

homeostasis and escape mechanisms. In healthy individuals, regulatory cells employ various mechanisms 649 

involved in downregulating the pro-inflammatory activities of T cells, known as immune checkpoints (227). 650 

During cancer development, tumour cells can activate these host mechanisms, establishing an 651 

immunosuppressive microenvironment which dampens anti-tumour T cell responses to promote tumour survival 652 

and invasion (228). GzmB has been found within pro-tumourigenic regulatory cells, mainly CD4+ Treg and 653 

IL21-dependent Breg cells (8). Here it was found in mice in vivo cancer models that GzmB-positive CD4+ Treg 654 

cells favour tumour development by mediating elimination of effector anti-tumoural NK and CD8+ T cells by a 655 

mechanism dependent on perforin (229). Few studies to date have examined GzmB expression and activity in 656 

regulatory cells infiltrating solid carcinomas in vivo (230–232) and more research is required to validate the role 657 

of GzmB in cancer immunosurveillance. Finally, though the key roles of GzmB in mediating inflammatory 658 

responses from diverse immune and non-immune cells has been demonstrated in recent years as described 659 
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elsewhere in this review, its relevance in the context of tumour progression is also unclear and warrants further 660 

investigation. Our understanding of granzymes and their contributions to tumour development is at its infancy. 661 

As current findings support both pro-tumour and anti-tumour effects of granzymes in tumour environments, not 662 

unlike other pathologies, the roles of granzymes appear to be influenced by their cell source, sub-cellular 663 

location, microenvironment, as well as access to substrates. As such, the relative tumourigenicity of cells 664 

transplanted into GzmB-deficient mice compared to wild-type mice is unresolved and may be dependent on cell 665 

type (reviewed in Arias et al. (8)) 666 

GZMK IN SKIN INFLAMMATION 667 

Expressed at negligible levels in healthy skin, GzmK is elevated in response to tissue injury and inflammation, 668 

localizing with the inflammatory cell infiltrate predominantly in the dermis. In acute burns, GzmK expression 669 

was demonstrated to be predominantly expressed by pro-inflammatory M1 macrophages (70).  670 

GzmK knockout mouse models and mechanistic in vitro studies have further delineated GzmK-specific roles, 671 

particularly involving inflammation of the skin. Exposure to purified GzmK induces pro-inflammatory cytokine 672 

secretion: IL-6 from keratinocytes (70), IL-6 and IL-8 from skin fibroblasts (70, 128) and IL-1β from pro-673 

inflammatory M1 macrophages and peritoneal macrophages (70, 130). GzmK also increases expression of MCP-674 

1 in fibroblasts and endothelial cells as well as VCAM-1 and ICAM-1 in endothelial cells, adhesion molecules 675 

that facilitate immune cell recruitment (70, 129). In the presence of GzmK, THP-1 monocyte attachment to 676 

endothelial cells in culture was elevated (129), which further supports a role for GzmK in promoting immune 677 

cell infiltration. Using a murine model of thermal skin injury, GzmK contributed to a prolonged pro-678 

inflammatory stage of wound repair (70). Moreover, GzmK knockout mice with thermal injury showed reduced 679 

expression of IL-1β, IL-6, MCP-1, ICAM-1 and VCAM-1, corresponding to decreased detection of macrophages 680 

(70). GzmK knockout mice also exhibited improved keratinocyte migration, re-epithelialization, matrix 681 

organization and wound closure (70).  682 
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GZMK IN SEPSIS 683 

A role for GzmK in sepsis is also a current area of investigation. Plasma GzmK levels are elevated in patients 684 

with putative diagnoses of sepsis compared to healthy individuals while physiological inhibitors of GzmK, inter-685 

alpha inhibitor proteins, are significantly decreased in patients with sepsis (233). Using in vivo models of 686 

bacterial sepsis, a key role for GzmK in exacerbation of sepsis was implicated, with GzmK-deficient mice 687 

displaying  lower sepsis scores than wild-type mice (193).  688 

4. – CURRENT KNOWN GRANZYME INHIBITORS & FUTURE THERAPEUTIC OPPORTUNITIES 689 

It has been estimated that approximately five to ten percent of all pursued drug targets are proteases (234). The 690 

unique, non-cytotoxic, pathologic roles that granzymes exert make this family of proteases suitable drug targets. 691 

In particular, the identification of granzymes in the extracellular space and the emergence of their roles in 692 

disease in recent years have significantly increased their potential as druggable targets. This could explain why 693 

few granzyme inhibitors were developed when granzyme function was solely believed to be linked to perforin 694 

and intracellular functions. Perhaps the most attractive and best studied target at present is GzmB, with many 695 

studies supported by in vitro, ex vivo and in vivo studies validating extracellular GzmB as a target for certain 696 

cardiovascular, neurologic and cutaneous conditions. Recent studies using a combination of knockout, Serpin, 697 

siRNA and small molecule approaches to validate granzymes (GzmB in particular) as a target have demonstrated 698 

proof-of-concept and support further advancement towards the clinic. To our knowledge, viDA Therapeutics 699 

(Vancouver, Canada) is the only industrial group that is actively developing pharmacologic inhibitors against 700 

granzymes, with a focus on GzmB and GzmK. The development of inhibitors of other granzymes is still in its 701 

infancy. Known naturally occurring and synthetic inhibitors of granzymes are listed in Table I.  702 

GzmA is detectable in circulation with activity tightly regulated by extracellular inhibitors aprotinin, anti-703 

thrombin III (ATIII)/Serpinc1, α2-macroglobulin and CI esterase inhibitor (235–237). GzmA inhibition involves 704 

the formation of a stable covalent ester linked complex through the active site of the serine protease, blocking 705 

the active site from substrate-binding. These non-specific inhibitors are known to modulate systemic 706 
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inflammation associated with multiple cardiac events (238). However, inhibitor levels are reduced in sepsis 707 

patients, which may explain why increased active GzmA levels are observed in the blood and correlates with 708 

disease severity (166). Serpin family inhibitors Serpine2/Protease Nexin-1 and Serpinb12 are slow binding 709 

inhibitors of GzmA and hepsin found in the blood and tissues (239, 240). Serpinb6b has also been identified as 710 

an inhibitor of mouse GzmA but not human GzmA (241). Administration of Serpinb6b by intraperitoneal 711 

injection to mice induced with a model of bacterial sepsis improved survival and reduced serum IL-6 levels 712 

(193). 713 

Serpinb9, also known as protease inhibitor 9, PI-9, is an intracellular inhibitor of human GzmB that exists only 714 

in the cytoplasm (242, 243). Thought to serve as a layer of protection for cytotoxic lymphocytes against GzmB 715 

leakage from granules (244), Serpinb9 is the only known endogenous inhibitor of human GzmB (242). There is 716 

currently no known endogenous inhibitor of extracellular human GzmB. Serpina3n is a naturally occurring, non-717 

specific extracellular inhibitor of GzmB that is only found in mice (245, 246). Serpina3 is a family of thirteen 718 

related inhibitors from the same gene locus in mice that are all orthologues of human antichymotrypsin (ACT) 719 

(247) though Serpina3n is the only orthologue that inhibits GzmB and human ACT is not a GzmB inhibitor (9). 720 

Though Serpina3n is not a specific inhibitor of GzmB and can inhibit other proteases, in vivo administration has 721 

been used as a means of inhibiting extracellular GzmB activity in vivo to demonstrate proof-of-concept. 722 

Serpina3n has demonstrated efficacy in murine models of abdominal aortic aneurysm, whereby Serpina3n 723 

attenuated decorin cleavage, prevented rupture and increased survival (52). Serpina3n has also been assessed in a 724 

murine EAE model whereby Serpina3n was found to attenuate GzmB-mediated axonal and neuronal injury 725 

compared to the vehicle-treated controls. Further, Serpina3n also prevented the loss of myelin and reduced 726 

disease severity (184). VTI-1002 (viDA Therapeutics, Vancouver, Canada) is a potent and highly specific 727 

extracellular GzmB inhibitor that has demonstrated efficacy in a topical formulation for scarring (153), atopic 728 

dermatitis (111), and autoimmune blistering disease (76).  729 
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Identification of inhibitors against the orphan granzymes have trailed behind those targeting GzmA and GzmB, 730 

though some studies have emerged. To date, Serpinb1 is the only intracellular inhibitor for human GzmH that 731 

has been identified (248). Inter-alpha-inhibitor protein (IαIP) is a natural physiological inhibitor of human and 732 

mouse GzmK found in plasma, mediated by the second Kunitz-type domain of its bikunin subunit (249). Levels 733 

of IαIP are inversely correlated with levels of free extracellular GzmK (26 kDa) in the blood and disease severity 734 

in human patients with sepsis (233), suggesting that in addition to inducing inflammation, elevated levels of 735 

GzmK may contribute to the onset and/or progression of sepsis. However, to our knowledge, no pharmacologic 736 

studies using GzmK inhibitors have been performed in any in vivo models to validate GzmK as a target. An 737 

irreversible GzmM-specific tetrapeptide chloromethylketone inhibitor has been designed against the catalytic 738 

cleft of human GzmM (250). Serpinb4 is also an intracellular inhibitor of human GzmM, in addition to GzmB 739 

(251). In vitro, Serpinb4 inhibited GzmM cleavage of substrates α-tubulin and nucleophosmin while 740 

overexpression of Serpinb4 in human HeLa tumour cells inhibited recombinant GzmM and NK cell-mediated 741 

cell death (251). 742 

Apart from GzmB, most of the granzyme inhibitors identified to date are non-specific, large protein molecules, 743 

rendering them less than ideal for pharmacologic development due to synthesis and manufacturing costs among 744 

other challenges. With respect to GzmB, topically applied VTI-1002 has demonstrated efficacy in preclinical 745 

models of scarring, dermatitis, and autoimmune blistering. Given the recent explosion in studies demonstrating 746 

novel mechanistic roles for granzymes in different pathologies, further therapeutic developments in this area are 747 

inevitable.  748 



Non-Cytotoxic Roles of Granzymes in Health and Disease  

34 
 

GRANTS 749 

This study was funded by the Canadian Institutes of Health Research, Michael Smith Foundation for Health 750 

Research, the Cancer Research Society, Eczema Society of Canada, LEO Foundation, Mitacs Canada, Rick 751 

Hansen Institute (to D.J.G.) and by Canadian Institutes of Health Research (to K.C.R). 752 

DISCLOSURES 753 

D.J.G. serves as a co-Founder and Chief Scientific Officer of viDA Therapeutics. No conflicts of interest, 754 

financial or otherwise, are declared by the authors. 755 

AUTHOR CONTRIBUTIONS 756 

K.C.R. prepared figures; K.C.R., K.J., and C.T.T. drafted the manuscript; K.C.R., K.J., J.P., C.T.T., and D.J.G. 757 

edited and revised the manuscript; K.C.R., K.J., J.P., C.T.T., and D.J.G. approved the final version of the 758 

manuscript. 759 

  760 



Non-Cytotoxic Roles of Granzymes in Health and Disease 

35 
 

Table I: Human Granzyme Family Substrate Specificity, Biological Functions & Inhibitors 

ECM, extracellular matrix; PAR, protease-activated receptor; SASP, senescence-associated secretory phenotype 
  

 Chromosome Type Cleavage 
Specificity  

(Amino Acid 
Abbreviation) 

Original 
Concept 

Emerging  
Concepts 

Inhibitors 

GzmA 5q11-12 Tryptase Basic residues  
(Arg, Lys) 

Caspase-
independent 

cell death 

· Carcinogenesis 
· ECM Degradation 
· PAR Activation  
· Pro-inflammatory Cytokine  
  Release 
· Osteoclastogenesis 

Extracellular 
· Antithrombin III 
· Aprotinin 
· α2-macroglobulin 
· CI esterase 
...inhibitor 
· Nexin 1 
· Serpinb12 
Intracellular  
· Serpinb6b  
  (mice only) 

GzmB 14q11.2 Asp-ase Acidic residues 
(Asp, Glu) 

Apoptosis · Antibacterial 
· Autoimmunity  
· Barrier Dysfunction 
· Basement membrane  
  Disruption 
· ECM Degradation 
· Impaired Remodelling  
· PAR Activation 

Intracellular  
· Serpinb9/PI-9 
· Compound 20 
Extracellular 
· Serpina3n  
  (mice only) 
· VTI-1002 

GzmH 14q11.2 Chymase Aromatic residues 
(Phe, Trp, Tyr) 

Cell Death · Antiviral Intracellular 
· Serpinb1 

GzmK 5q11-12 Tryptase Basic residues  
(Arg, Lys) 

Necrosis · Endothelial  
  Activation/Dysfunction 
· PAR Activation 
· Pro-inflammatory Cytokine  
  Release 
· SASP 

Extracellular 
· Inter-alpha          
..inhibitor proteins 
· Bikunin 

GzmM 19p13.3 Met-ase Aliphatic residues 
(Leu, Met) 

Unknown · Innate Immunity Intracellular 
· Serpinb4 
Extracellular 
· Tetrapeptide 
..chloromethylketone 
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Table II: Non-Cytotoxic Human Granzyme Substrates, Arranged by Biological Significance 
Gzm Substrate Perceived Consequence of Cleavage Reference(s) 
Cell Junction Proteins  
GzmB α6β4 integrin Loss of dermal-epidermal adhesion; implicated in BP and EBA pathogenesis (109) 

Collagen XVII 
(BP180) 

Loss of dermal-epidermal adhesion, implicated in BP and EBA pathogenesis; 
production of collagen XVII fragments (~97 kDa) may be autoantigenic with 
possible implication in linear IgA bullous disease 

(76, 109) 

Desmoglein-1 Epidermal barrier dysfunction; implicated in atopic dermatitis pathogenesis (111) 
Desmoglein-3 Epidermal barrier dysfunction; implicated in atopic dermatitis pathogenesis (111) 
E-cadherin Epidermal barrier dysfunction; implicated in atopic dermatitis pathogenesis; 

production of sE-cadherin fragments (~80 kDa) impairs epithelial barrier 
function 

(111) 

 Filaggrin Epidermal barrier dysfunction, implicated in atopic dermatitis pathogenesis (111) 
 JAM-A Loss of cell-to-cell contact integrity leading to reduced endothelial and retinal 

barrier function and an increase in vascular permeability and leukocyte 
extravasation, leading to inflammation and fibrosis 

(56, 110) 

 Occludin Loss of cell-to-cell contact integrity leading to reduced retinal barrier function (110) 
 PECAM-1 Loss of endothelial cell-to-cell contact integrity leading to reduced endothelial 

barrier function and an increase in vascular permeability and leukocyte 
extravasation, leading to inflammation and fibrosis 

(56) 

 RPE-derived tight 
junctions 

Loss of cell-to-cell contact integrity leading to reduced retinal barrier function (110) 

 VE-Cadherin (CD144) Loss of endothelial cell-to-cell contact integrity leading to reduced endothelial 
barrier function and an increase in vascular permeability and leukocyte 
extravasation 

(56, 80) 

 ZO-1 Loss of cell-to-cell contact integrity leading to reduced epidermal and retinal 
barrier function 

(56, 110, 111) 

Cell Surface Receptors  
GzmA PAR-1, thrombin and 

thrombin-like receptor 
Competitively interacts with PAR-1 against thrombin; desensitizes response to 
thrombin-induced aggregation by platelets; in hepatocellular carcinoma, low 
expression of GzmA and PAR-1 in tumour tissues is correlated with aggressive 
clinicopathological characteristics and poor prognosis; mechanistically, GzmA 
activates PAR-1 on tumor cells to induce tumor suppression and cell death via 
the activation of the JAK2/STAT1 pathway; elicits morphological changes in 
neural cells, as demonstrated by detection of weakened Ca2+ signals; leads to 
neurite retraction and reversed stellation of astrocytes; may be implicated in 
nervous system impairments 

 
(117, 120, 121, 

170, 252) 

GzmB Acetylcholine 
Receptor 

May be autoantigenic; implicated in myasthenia gravis (124) 

FGFR1 (CD331) May be autoantigenic; implicated in prostate cancer (126) 
Neuronal Glutamate 
Receptor 3 

May be autoantigenic; implicated in Rasmussen’s encephalitis (severe form of 
pediatric epilepsy) 

(125) 

Notch1 May be autoantigenic; implicated in prostate cancer (126) 
PAR-1 Neuronal death (123) 
PAR-2 IL-25 release (with IL-13) in epithelial cells and promotes type II immune 

response 
(108) 

GzmK PAR-1 Endothelial dysfunction; releases IL-6, MCP-1 (128, 129) 
Extracellular Matrix Proteins 
Collagen Fibres 
GzmA Collagen IV Lymphocyte transmigration through basement membrane remodeling  (53, 253) 

GzmB 
Collagen IV Lymphocyte transmigration (142, 143) 
Collagen VII Loss of dermal-epidermal adhesion; implicated in sub-epidermal, autoimmune 

blistering, EBA pathogenesis 
(109) 

Proteoglycans 
GzmA Aggrecan Major constituent of cartilage; implicated in arthritis pathogenesis (254) 
GzmB Aggrecan Cartilage degradation; implicated in arthritis pathogenesis  (145) 
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β-glycan (soluble) Sequesters TGF-β1; implicated in cardiovascular disease pathogenesis (156) 
Biglycan Sequesters TGF-β1; implicated in cardiovascular disease pathogenesis (156) 
Decorin ECM remodelling; decreases structural integrity and strength; disrupts collagen 

fibrillogenesis/collagen organization/thick bundle formation; sequesters TGF-
β1; implicated in atopic dermatitis, age-impaired wound healing, diabetic 
wound healing, ApoE aging, photoaging, aneurysm and cardiovascular disease 
pathogenesis 

(52, 81, 111, 
152–156) 

Other 
GzmB Fibrillin-1 Loss of elastic lamellae, medial degeneration, vessel wall instability; 

implicated in Marfan syndrome and abdominal aortic aneurysm pathogenesis 
(51) 

Fibrinogen (matrix 
form) 

Impairs platelet integrin to mediate platelet adhesion; forms platelet-platelet 
bridges; contributes to thrombus growth; putative role in local coagulation 
during inflammation 

(162) 

Fibronectin Impairs integrin-mediated cell-matrix adhesion/signaling leading to cell 
detachment and death, vasomotor dysfunction, increased inflammation; 
implicated in vascular disease pathogenesis and diabetic wounds; production of 
fibronectin fragments (various ~80-230 kDa) increases vascular permeability 
and induces MMP-1/3 expression in fibroblasts; implicated in photoaging 

(54, 55, 81, 110, 
147, 148) 

Laminin-332 
(previously Laminin-
5), Laminin-511 
(previously Laminin-
10) 

Impairs integrin-mediated cell-matrix adhesion/signaling leading to cell 
detachment and death 

(55, 110) 

Vitronectin Impairs integrin-mediated cell-matrix adhesion/signaling leading to cell 
detachment and death 

(55) 

VWF (matrix form) Interferes with VWF-platelet interaction (delays ristocetin-induced platelet 
aggregation and inhibits platelet adhesion and spreading); putative role in local 
coagulation during inflammation 

(162) 

Cytokine Processing 
GzmA pIL-1β Produces cytokine IL-1β; Dysregulated inflammation (163, 164)
GzmB IL-1α Enhances IL-1α activity; Dysregulated inflammation (173)

pIL-18  Produces cytokine IL-18; Dysregulated inflammation (111, 174, 175)
Plasma Proteins 
GzmA uPA Generates plasmin during T-cell mediated processes (179) 
GzmB C3 Produces anaphylatoxin C3a; activates the complement system (181) 

C5 Produces anaphylatoxin C5a; activates the complement system and neutrophil 
chemoattractant  

(181) 

Plasmin Produces angiostatin fragments; antiangiogenic activity (180) 
Plasminogen Produces angiostatin fragments; antiangiogenic activity (180) 

GzmM VWF Inhibits platelet aggregation and destabilizes coagulation factor VIII in plasma; 
putative role in local coagulation during inflammation 

(182) 

Other/Undefined 
GzmA MBP Damages myelin; implicated in neurodegenerative disease pathogenesis (e.g., 

multiple sclerosis) 
(183) 

GzmK Unidentified  Senescence-associated inflammation (SASP: IL-6, CCL2, CXCL1) (185) 
GzmM Ezrin Inhibits activation of AKT and MAPK survival pathways; putative role in cell 

death; inhibits tumor metastatic progression 
(255) 

PAK2 Unknown (256) 
BP, bullous pemphigoid; CCL, CC chemokine ligand; CXCL, chemokine (C-X-C motif) ligand; EBA, 
epidermolysis bullosa acquisita; E-cadherin, epithelial cadherin; FGFR1, fibroblast growth factor receptor 1; 
IL, interleukin; JAK/STAT, janus kinase/signal transducer and activator of transcription; JAM-A, junctional 
adhesion molecule A; MAPK, mitogen-activated protein kinase; MBP, myelin basic protein; MMP, matrix 
metalloproteinases; Notch1, notch homolog 1; PAR, protease-activated receptor; PECAM-1, platelet endothelial 
cell adhesion molecule 1; RPE, retinal pigment epithelium; SASP, senescence-associated secretory phenotype; 
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TGF-β, transforming growth factor beta; PAK2, P21 activated kinase; uPA, pro-urokinase plasminogen 
activator; VE-cadherin, vascular endothelial cadherin, VWF, von Willebrand factor; ZO-1, zonula occludens  
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FIGURE LEGENDS 

Figure 1: GzmB and GzmK in endothelial dysfunction. GzmB contributes to endothelial permeability through 
the release of fibronectin-sequestered VEGF, which may promote endothelial permeability. Secondly, GzmB 
cleaves key cell adhesion proteins (e.g., VE-cadherin) resulting in reduced cell-cell adhesion. GzmB cleavage of 
fibronectin disrupts endothelial adhesion, migration and capillary tube formation. GzmB contributes to anoikis 
through cleavage of fibronectin, laminin and vitronectin. In a tumour microenvironment, cleavage of these 
matrix proteins may discourage tumour cell survival and metastasis, which may be enhanced or impeded by 
VEGF-mediated pro-angiogenic signaling. GzmK may promote endothelial dysfunction through a process 
involving PAR-1 activation leading to pro-inflammatory cytokine release as shown. 

Figure 2: GzmB in atherosclerosis. GzmB accumulates with increased atherosclerotic severity. GzmB may 
contribute to plaque instability and rupture via the cleavage of decorin in the atherosclerotic cap region resulting 
in reduced collagen stability and rupture. GzmB may also contribute to smooth muscle cell death via 
apoptosis/anoikis. 

Figure 3: GzmB in abdominal aortic aneurysm. GzmB elevation has been observed in lymphocytes in the 
intraluminal thrombus, deep intima, media and adventitia. GzmB may contribute to medial disruption through 
the cleavage of fibrillin-1, a key component of microfibrils, and further disruption to the elastic lamellae. GzmB 
accumulation in the adventitia is proposed to contribute to the cleavage of decorin, an important mediator of 
collagen fibrillogenesis and organization. Loss of decorin contributes to impaired adventitial collagen 
remodeling leading to reduced circumferential strength resulting in dilatation and rupture. Decorin also binds to, 
and retains TGF-β. At present, while GzmB has been shown to release TGF-β from decorin and biglycan in 
vitro, the significance of these findings in vivo is unknown. 

Figure 4: GzmB and GzmK in aging and/or inflammatory skin conditions. The role of GzmB in skin is context-
dependent based on the location, cell source, and substrates exposed to proteolysis. In the epidermis, GzmB 
contributes to reduced epithelial barrier function through the cleavage of cell-cell junction proteins. GzmB also 
induces IL-8 release from keratinocytes resulting in neutrophil recruitment and may augment neutrophil elastase 
activity, as demonstrated in autoimmune blistering. The impact of GzmB on epithelial dysfunction is an area of 
active study in other epithelial tissues where GzmB may augment a Th2 immune response (asthma), cleave 
desmosomal proteins in the retinal pigment epithelium (macular degeneration) or promote epithelial shedding 
(Crohn’s disease). In the basement membrane (dermal-epidermal junction), GzmB accumulation results in 
cleavage of hemidesmosomal proteins (collagen VII and XVII as well as a6b4 integrin) leading to separation and 
sub-epidermal blistering in bullous pemphigoid, dermatitis herpetiformis and epidermolysis bullosa acquisita. 
While GzmB-mediated laminin cleavage has been observed in vitro, to date, its cleavage has not been 
investigated in vivo. GzmB accumulation in the dermis has been observed in extrinsic skin aging (e.g., 
photoaging) and chronic wound healing (e.g., diabetic, age-impaired) and scarring (thermal injury). In the 
dermis, GzmB-mediated cleavage of decorin contributes to impaired collagen remodeling and reduced tensile 
strength. Decorin can also impede MMP-1-mediated collagen cleavage while GzmB-generated fibronectin 
fragments promote dermal fibroblast MMP-1/3 expression. GzmB-mediated decorin cleavage also increases 
TGF-β release and scarring. Ultraviolet light induces GzmB expression in keratinocytes and increases GzmB+ 
mast cells in the dermis. GzmK appears to act on PAR-1 in the epithelial cells and possibly the dermal 
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microvasculature via PAR-1 to induce proinflammatory cytokine production. GzmK also impedes re-
epithelialization of keratinocytes. 
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