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Abstract

The elicitation of the elasticity of intertemporal substitution (EIS), discount fac-

tor and risk attitude parameters in dynamic models is of central importance to

economics, finance and public policy. This paper suggests an alternative method

to jointly elicit and estimate these three parameters using experimental data.

We employ a new model based on dynamic quantile preferences, where individ-

uals maximize the stream of future τ-quantile utilities, for τ� 0,1ð Þ. These pref-
erences are simple, dynamically consistent and monotonic. In the quantile

model, the risk attitude is captured by the quantile τ of the payoff distribution,

while the EIS and the discount factor are related to the utility function describ-

ing individual's intertemporal behaviour, hence allowing for complete separa-

bility between risk, EIS and discount factor. The estimation of the parameters

of interest uses a structural maximum likelihood method. Individual's risk

aversion is estimated below the median. The discount factor is marginally

smaller than estimates reported in the literature, and the EIS is slightly larger

than one, which suggests that utility over time is concave. The estimates for

the elasticity contrast with those reported by the existing studies using observa-

tional disaggregated data, which in general find an elasticity smaller than one.
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1 | INTRODUCTION

Elasticity of intertemporal substitution (EIS), discount
factor and risk attitude are central to many branches of
economics, finance and public policy. See, among many
others, Bansal and Yaron (2004), Guvenen (2006),
Epstein et al. (2014), Brown and Kim (2014), Havranek
(2015), Thimme (2017), Crump et al. (2019), Meissner
and Pfeiffer (2022) and references therein, for some
recent contributions. These three parameters are relevant

to characterize individuals' preferences over risk and
time, and affect how consumers transfer wealth across
periods and respond to monetary and fiscal policies.

Given their importance, eliciting their values has
attracted the effort of many researchers in macroeconom-
ics, econometrics and experimental economics. For
instance, the metanalysis conducted by Havranek (2015)
included 169 articles with 2735 estimates of the EIS using
consumption Euler equations. The experimental litera-
ture on the topic is already sizable and continues to grow
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at a fast pace. This includes, among others, Von Gau-
decker et al. (2011), Brown and Kim (2014), Masatlioglu
et al. (2023), Andersen et al. (2018), Nielsen (2020) and
Meissner and Pfeiffer (2022).

Many (but not all) of those articles use the Espein-
Zin-Weil model of dynamic choices (see Epstein and Zin
(1989) and Weil (1989)), instead of the more familiar
dynamic expected utility (EU) model with exponential
discount. The reason for this choice is the fact that in the
EU model, risk aversion and the EIS cannot be
disentangled, a drawback that has been at the centre of
economists' attention at least since Hall (1978, 1988).
Epstein-Zin-Weil preferences are able to separate those
parameters, but may seem complex and fail to satisfy
desirable properties, such as monotonicity.1 Epstein et al.
(2014) investigate the magnitude of timing premia in the
Epstein-Zin (EZ) model adopted by Bansal and Yaron
(2004) and conclude that the implied levels of timing pre-
mia ‘seem implausible’ (p. 2693). Meissner and Pfeiffer
(2022) confirm with an experiment that the time premia
for EZ is not realistic.

This paper contributes to this growing experimental
literature by adopting an alternative framework based on
dynamic quantile preferences (QP) to elicit and estimate
the time discount factor, risk aversion and EIS using
experimental data. Under QP, individuals maximize the
stream of future τ-quantile utilities, for τ� 0,1ð Þ.2 To
understand how QP work, consider a random stream of
consumption ec¼ ec1,ec2,…,ect,…ð Þ that, for simplicity, the
ct 's are independent (but not necessarily identically dis-
tributed).3 Consumption in period t is evaluated through

a utility function, say, U ectð Þ¼ ectð Þ1�γ

1�γ . While an expected

utility maximizer evaluates this stream of consumption
according to

P∞
t¼0β

tE U ectð Þ½ �, a τ-quantile maximizer

evaluates this as
P∞

t¼0β
tQτ U ectð Þ½ �, where Qτ X½ � the

τ-quantile of X , that is, Qτ X½ � ¼F�1
X τð Þ for FX denoting

the cumulative distribution function (c.d.f.) of X .
QP are simple, dynamically consistent and monotonic.

In the QP setting, one can disentangle individuals' risk atti-
tude from their intertemporal preferences, which are jointly
determined by a diminishing marginal utility function and
a positive time preference parameter.4 Thus the risk attitude
is entirely captured by the single-dimensional parameter τ,
whereas in most models it depends on the whole utility
function. The EIS is determined by the concavity of the
instantaneous utility function, and individuals' time pref-
erence is determined by the discount factor.

Rather than devising a new experiment to elicit the
parameters of interest, we take advantage of the field
experiment conducted by Andersen et al. (2008) and use
their data.5 The experiment has two parts. In the first,
participants engage in decisions between two risky

lotteries using a multiple price list (MPL) design.
This experimental design was originally introduced in
Holt and Laury (2002). The second part of the experiment
corresponds to the basic experimental design for eliciting
individual discount introduced in Coller and Williams
(1999) and Harrison et al. (2002), where participants
engage in multiple horizon treatment binary decisions. It
is important to notice that the same subjects perform
both parts of the experiment. Hence, we employ the ter-
minology ‘joint elicitation’ for all three parameters.

We first discuss the identification of the risk aversion,
the discount factor and the EIS using QP. The identification
of these three parameters use variations on both parts of
the experiment. The first part of the experiment described
above—decisions between two risky lotteries—allows us to
elicit the risk attitude parameter, which is given by the rep-
resentative quantile. We are able to identify the quantile
because of the variability in the MPL probabilities and pay-
offs. We use the second part of the experiment to identify
the discount factor and EIS. It is possible to identify these
two parameters because there are variations on both time-
horizon and interest rates, but no uncertainty. In particular,
these variations allow us to elicit the time preferences
together with the intertemporal substitution by considering
different interest rates and time horizons across tasks.6

To estimate the parameters of interest, we adapt the
structural estimation methods of Holt and Laury (2002) (see
also Moffatt, 2016) to the quantile setting. We specify a
parametric functional form for the underlying latent choice
models from an index defined by the ratio of the lifetime
utilities of each option offered to the individual in the differ-
ent experiments. In addition, we specify an isoelastic utility
function for modelling time preferences. Estimation is then
implemented using a maximum likelihood estimator.

The empirical results show a risk attitude estimate,
which is captured by the quantile τ, of 0:45. Hence, the
result reveals evidence of mild risk aversion of individ-
uals participating in the experiment. The estimate of the
discount rate δ is 0:075, which implies a discount factor
1= 1þδð Þ of 0:93. These estimates suggest that individuals
are patient and discount similarly income received in dif-
ferent instances into the future.7 The discount rate (fac-
tor) estimate obtained in this paper is slightly smaller
(larger) than the estimate obtained in the related litera-
ture. Andersen et al. (2008) report a discount rate of
0:101 (0:908), which is computed using a standard EU
model and likelihood function that estimate jointly the
relative risk aversion coefficient and the discount factor,
while Andersen et al. (2018) find a discount rate of 0:114
(0:898) using a weakly separable nonadditive intertem-
poral utility function.

In addition, the QP model also identifies the EIS coeffi-
cient that is not necessarily the reciprocal of the coefficient
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of relative risk aversion, but related to the curvature of the
utility function. The QP model reports an estimate of the
EIS coefficient of 1:083. This EIS estimate suggests that
the instantaneous utility is somewhat close to linear, but
significantly concave. Such finding is consistent with sim-
ilar results regarding concavity of the utility, using differ-
ent experimental data, such as Andreoni and Sprenger
(2012a) and Cheung (2020). Moreover, this elasticity esti-
mate has important implications to the debate. On the
one hand, it is in line with recent empirical literature on
long-risks asset pricing models, but on the other hand, it
contrasts with estimates reported by studies using obser-
vational disaggregated data, which in general, find an
elasticity smaller than one—see, for example, Thimme
(2017) for a survey of the literature on the EIS coefficient.

The empirical estimates are robust to variations in
several parameters of the intertemporal consumption
experiment. We find that small changes in background
income and the number of periods defining the intertem-
poral consumption problem do not affect the estimation
of risk aversion. Similarly, the EIS and discount factor
estimates show only small changes with respect to the
benchmark model. Following the literature, we also con-
sider potential heterogeneity of preferences due to indi-
viduals' observable characteristics; in particular, we focus
on gender and age. Overall, the three parameter esti-
mates show little variation with respect to the benchmark
model once individuals' observable characteristics are
accounted for. The empirical results in this paper high-
light the importance of considering QP as an alternative
paradigm to the EU model in dynamic settings.

The remainder of the paper is structured as follows.
Section 2 reviews the QP model. Section 3 summarizes the
experiments. Section 4 discusses the use of the QP model to
separately identify risk aversion, time preferences and the
EIS using data from these experiments. Section 5 introduces
the methodology to estimate the model using structural
maximum likelihood procedures. Section 6 presents the
empirical results. Finally, Section 7 concludes. We conclude
this introduction with a literature review, below.

1.1 | Literature review

Economists have developed different empirical methods to
elicit dynamic preferences' parameters, and in different
ways to estimate risk aversion, discount factor and EIS,
although in most cases not all of them jointly. We focus
here only on dynamic models, and we do not review the
very extensive literature on estimating risk aversion in static
models.

Among the many techniques employed recent studies
have favoured multiple price lists (MPL) with monetary
payments to elicit discount rates; see Harrison et al. (2002),

Harrison et al. (2005), Andersen et al. (2008, 2014, 2018),
Cheung (2015, 2020) among many others. Sources and
types of data used in the different papers vary from field
experiments (such as Andersen et al. (2008, 2014, 2018)) to
lab experiments (such as Andreoni and Sprenger (2012a,
2012b)).

Despite the relative success of the MPL methodology,
Andreoni and Sprenger (2012a) note that experimentally
elicited discount rates from MPLs are frequently higher
(implying lower discount factors) than what seems rea-
sonable for economic decision making and propose to
use convex time budgets.8 Cheung (2015) investigates the
robustness of this result to the experimental design and
finds that the effect disappears when a MPL instrument
is used instead of a convex time budget design. In a
related study, Andreoni et al. (2015) compare the predic-
tive ability of convex time budgets (CTB) with double
multiple price lists (DMPL) for eliciting time preferences.
These authors find that each method performs equally
well within sample, however, the CTB significantly out-
performs the DMPL on out-of-sample measures.

A related issue in dynamic models is the separation
between the discount factor and the EIS. Both parameters
together determine the consumer's willingness to substi-
tute consumption over time. However, each parameter has
a different role and interpretation as discussed above. This
separation is of major importance for disentangling the
effect of individual's impatience, which is given by the pre-
sent value of future consumption and characterized by the
discount factor, from the marginal rate of substitution as a
result of individual's preferences over time. Similarly, risk
aversion in dynamic models is usually identified as the
inverse of the EIS. However, imposing the same utility
function under risk and over time, that is, fixing the EIS as
the reciprocal of risk aversion, may not only bias the esti-
mates of risk aversion but also the estimation of the dis-
count factor. To correct this, Von Gaudecker et al. (2011),
Brown and Kim (2014) and Meissner and Pfeiffer (2022)
estimate the three parameters using a EZ model, although
the last paper also presents results that are ‘model free’. In
contrast, Andersen et al. (2018) try to perform a similar
task using a generalized expected discounted utility
(GEDU) model, which is discussed in more detail in
Appendix A. However, the GEDU preference is not
dynamically consistent and the preference at any given
point in time depends on past consumption. Thus, given
these significant shortcomings, empirical results using this
preference are difficult to interpret and compare. In a
related setting, Kapteyn and Teppa (2003) disentangle the
discount factor from the EIS, but do not consider risk in
their experimental setup. Other experimental papers have
investigated the preference for the resolution of uncer-
tainty and the timing of information, such as Masatlioglu
et al. (2023) and Nielsen (2020).
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2 | DYNAMIC QUANTILE MODEL

This section describes the quantile model. Section 2.1
reviews the economic model of intertemporal allocation
of consumption considering a QP framework. Section 2.2
describes the measure of risk attitude under dynamic
QP. In Section 2.3, we briefly discuss the separation of
risk attitude and elasticity of intertemporal substitution
(EIS) under QP.

2.1 | Dynamic model for quantile
preferences

Before describing the economic model, recall the defi-
nition of the quantile function. Let X be a random vari-
able and FX (or simply F) denote its cumulative
distribution function (CDF) such that FX αð Þ�Pr X ≤ α½ �.
The quantile is the generalized inverse of FX ; more
formally:

Qτ X½ � � inf α�ℝ : FX αð Þ⩾ τf g, if τ� 0,1ð �
sup α�ℝ :FX αð Þ¼ 0f g, if τ¼ 0:

�

It is clear that if F is invertible, Qτ X½ � ¼F�1
X τð Þ. For

convenience, throughout the paper we will focus on
τ� 0,1ð Þ, unless explicitly stated otherwise.

A well-known and useful property of quantiles is
‘invariance’ with respect to monotonic transformations,
that is, if g :ℝ!ℝ is a continuous and strictly increasing
function, then

Qτ g Xð Þ½ � ¼ g Qτ X½ �ð Þ: ð1Þ

In the dynamic QP setting, the economic agent
decides on the intertemporal consumption and savings
(assets to hold) over an infinity horizon economy, subject
to a budget constraint. Let ct denote the amount of con-
sumption in period t. At the beginning of period t, con-
sumer has xt units of the risky asset, which produced real
rate of return rt. With wealth 1þ rtð Þxt at the beginning
of period t, the consumer decides how many units of the

risky asset xtþ1 to save for the next period and her con-
sumption ct .

9

The dynamic problem of interest for the consumer is
to choose a sequence xtð Þ∞t¼1 to maximize the following
recursive equation:

V xt,rtð Þ¼ max
xsð Þ∞s¼tþ1

U ctð ÞþβQτ V xtþ1,rtþ1ð ÞjΩt½ �f g, ð2Þ

subject to

ctþxtþ1 ⩽ 1þ rtð Þ �xt,
ct,xtþ1⩾0:

ð3Þ

In this problem, V � , �ð Þ is the value-function, the
quantile-τ is given, β� 0,1ð Þ is the discount factor,
U :ℝþ !ℝ is the utility function, and Ωt is the informa-
tion set at time t.

The interpretation of the recursive problem in (2) is
very similar to the standard expected utility model. The
value function at time t is equal to the utility of consump-
tion at time t plus the discounted value of the τ-quan-
tile—instead of the expectation—of the value function at
time tþ1. An alternative representation for the quantile
model uses recursive substitution as following. The value
function at t¼ 0 is given by

V x0,r0ð Þ¼U c0ð ÞþβQτ V x1,r1ð ÞjΩ0½ �, ð4Þ

and at t¼ 1

V x1,r1ð Þ¼U c1ð ÞþβQτ V x2,r2ð ÞjΩ1½ �: ð5Þ

By substituting (5) into (4)

V x0,r0ð Þ¼U c0ð ÞþβQτ U c1ð ÞþβQτ V x2,r2ð ÞjΩ1½ �jΩ0½ �
¼Qτ Qτ U c0ð ÞþβU c1ð Þþβ2V x2ð ,r2ÞjΩ1

� �jΩi0
� �

,

where we can move the terms U c0ð Þ and U c1ð Þ into
Qτ � jΩ1½ � because they are constant given the conditioning
information. By recursively repeating this procedure, we
obtain

V x0,r0ð Þ¼U c0ð ÞþβQτ U c1ð ÞþβQτ U c2ð Þþ � � �½½
þ� � �þβQτ U cT�1ð ÞþβQτ V xT ,rTð ÞjΩT�1½ �jΩT�2½ � j � � � jΩ1� jΩ0�
¼Qτ Qτ � � � Qτ U c0ð ÞþβU c1ð Þþβ2U c2ð Þþ �� �����
þ���þβT�1U cT�1ð ÞþβTV xT ,rTð Þ jΩT�1� jΩT�2� j � � � jΩ1� jΩ0�: ð6Þ

4 de CASTRO ET AL.
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At this point, it is convenient to use the notation
introduced by de Castro and Galvao (2019). We refer the
reader to their paper for details. Let QT

τ �½ � denote T appli-
cations of the quantile operator, conditioned on the infor-
mation sets ΩT�1, ΩT�2, …, Ω1, Ω0, consecutively, as
above. With this notation, (6) can be written as

V x0,r0ð Þ¼QT
τ

XT�1

t¼0

βtU ctð ÞþβTV xT ,rTð Þ
" #

: ð7Þ

It should be noted that in the case that shocks rt are
independent, the successive conditional quantiles in
(6) and (7) become simple quantiles and can be applied
directly to each term U ctð Þ. Therefore, in the case of inde-
pendent shocks the right hand side of Equation (7) sim-

plifies to
PT�1

t¼0 β
tQτ U ctð Þ½ �þβTQτ V xT ,rTð Þ½ �.

Notice that as T!∞, βTV xT ,rTð Þ! 0 if V is
bounded. In fact, the right side of (7) also converges to a
function that is denoted using the notation Q∞

τ �½ �, that is,

V x0,r0ð Þ¼Q∞
τ

X∞
t¼0

βtU ctð Þ
" #

� lim
T!∞

QT
τ

XT�1

t¼0

βtU ctð ÞþβTV xT ,rTð Þ
" #

:

ð8Þ

This recursive substitution problem is the exact ana-
logue to that of the expected utility model with two main
differences. First, differently from the expectation, the
quantile is not a linear operator, and second, the law of
iterated expectations is not valid for quantiles. If shocks
are independent, however, the expression in the right
hand side of (8) simplifies to

P∞
t¼0β

tQτ U ctð Þ½ �.
The general theoretical properties of the quantile

maximization model are established in de Castro and
Galvao (2019). They show that the QP are dynamically
consistent, monotone and that the optimization problem
leads to a contraction, which therefore has a unique fixed
point. This fixed point is the value function of the prob-
lem and satisfies the Bellman equation. They also prove
that the value function is concave and differentiable, thus
establishing the quantile analogue of the envelope theo-
rem. Additionally, they derive the corresponding Euler
equation.

2.2 | Risk attitude in the dynamic
quantile model

Before we discuss the separation between risk attitude
and EIS in the dynamic quantile model, we present the

notion of risk attitude. Risk attitudes in the static
quantile model were first studied by Mendelson (1987),
Manski (1988) and Rostek (2010). de Castro and Galvao
(2022) provide a discussion of the risk attitude in
dynamic quantile models.

In order to discuss the risk attitude under QP, let us
introduce the concept of quantile-preserving spreads,
as introduced by Mendelson (1987). This is related to
(and inspired by) the familiar Rothschild and Stiglitz
(1970)'s mean-preserving spreads, which captures the
notion of ‘added noise’. That is, the intuition that Y is
equal to X plus noise can be formalized either as Y is a
mean-preserving spread of X or that Y is a quantile-pre-
serving spread. The choice of the formalization is a sub-
jective matter. We follow Mendelson (1987) and define:

Definition 2.1. (Quantile-preserving spread).
We say that Y is a τ-quantile-preserving spread
of X if Qτ Y½ � ¼Qτ X½ � ¼ q and the following
holds:

i. t< q)FY tð Þ⩾FX tð Þ;
ii. t> q)FY tð Þ⩽FX tð Þ.

Y is a quantile-preserving spread of X if it
is a τ-quantile-preserving spread of X for
some τ� 0,1ð Þ.

Figure 1 below illustrates the c.d.f.'s of random vari-
ables Y and X when Y is a τ-quantile-preserving spread
of X . This figure suggests that the choice of a τ-quantile
maximizer or τ-decision maker (τ-DM) depends on
whether τ is below or above the quantile τ where the two
c.d.f.'s cross. That is, when τ< τ as in Figure 1, a τ-DM
prefers the safer asset X , Qτ X½ �⩾Qτ Y½ �. On the other
hand, if τ> τ, a τ-DM prefers the riskier asset Y ,
Qτ X½ �⩽Qτ Y½ �. Note that if Qτ Y½ � ¼ q and X is equal to q
with probability 1, then Y is a τ-quantile-preserving
spread of X . In other words, any risky asset Y with
τ-quantile q is a quantile-preserving spread of any riskless
asset X that takes the value q (with certainty).

Mendelson (1987) formalizes other four conditions
and shows that they are all equivalent to the above defi-
nition; see his paper for further discussion and intuition.
Notice that this definition captures the notion that Y is
riskier than X , since it puts weight in more extreme
values than X . Manski (1988) uses a different terminol-
ogy for the same concept referring to the property of ‘sin-
gle crossing from below’: FX crosses FY from below
when Y is a quantile-preserving spread of X . The follow-
ing result formalizes this intuition for the simple
static case.

de CASTRO ET AL. 5
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Proposition 2.2. (Manski). Let Y be a
τ-quantile-preserving spread of X for
τ� 0,1ð Þ. Then:

i. τ⩽ τ )Qτ X½ �⩾Qτ Y½ �, that is, a τ-DM
prefers the less risky asset X if τ⩽ τ;

ii. τ⩾ τ )Qτ X½ �⩽Qτ Y½ �, that is, a τ-DM
prefers the riskier asset Y if τ⩾ τ.

In other words, risk-attitude can be related to the
quantile rather than to the concavity of the utility func-
tion. However, the static model does not have the con-
cept of intertemporal substitution. Risk attitudes are
shown similarly in the dynamic model by de Castro and
Galvao (2022). To fix ideas, consider QP �i, i� 1,2f g and
a¼ a0,a1ð Þ�A a consumption path, so that they are
represented by Vi satisfying the following recursive
equation:

Vi að Þ¼ u a0ð ÞþβQτi V
i a1ð Þ� �

:

As Epstein and Zin (1989), de Castro and Galvao
(2022) adapt definition in Rostek (2010) from the static to
the dynamic case as follows: we say that �1 is more risk
averse than �2 if, for all c∞ �C∞ and a�A,

c∞�2a ) c∞�1a: ð9Þ

Observe that if Y is a deterministic prospect, it crosses
from below any other distribution. Since c∞ is a deter-
ministic prospect, this justifies (9). We have the
following:

Lemma 2.3. (de Castro & Galvao, 2022). �1

is more risk averse than �2 if and only if
Qτ1 �½ �≤Qτ2 �½ �, which is equivalent to τ1 ≤ τ2.

Hence, as in Manski (1988) and Rostek (2010),
the dynamic quantile model admits a notion of com-
parative risk attitude, which is captured by τ. This
implies that an agent with a quantile given by τ1 is more

risk averse than another agent with quantile given by
τ2 if τ1 < τ2, independently of the functional form of the
utility. Thus, a decision maker that maximizes a lower
quantile is more risk averse than one who maximizes a
higher quantile. In other words, the risk attitude is
defined by the quantile rather than by the concavity of
the utility function. Moreover, this definition of risk
allows for the risk attitudes to be disentangled from
the degree of intertemporal substitutability, as we
discuss next.

2.3 | Separation of EIS and risk attitude

It is illustrative to compare the quantile maximization
model in Equation (2) with its counterpart from the
expected utility maximization. It is well known that
the value function for the expected utility has the follow-
ing recursive representation:

V xt,rtð Þ¼U ctð ÞþβE V xtþ1,rtþ1ð ÞjΩt½ �: ð10Þ

When comparing Equations (2) and (10), one can
notice that these equations share similarities and differ-
ences. Regarding the similarities, both equations describe
recursive models, and both expressions are similar. First,
naturally, a conditional quantile function captures uncer-
tainty in the quantile model, while a conditional expecta-
tion captures uncertainty in the expected utility case.
Second, the expressions inside the conditional quantile
and conditional expectation are essentially the same.
Regarding the differences, whereas the standard expected
utility model (10) is not able to separate the EIS from the
risk aversion (see, e.g. Hall (1988)), the quantile utility
model is able to do this. Since the seminal works of Kreps
and Porteus (1978) and Epstein and Zin (1989), it is well
understood that a separation between risk and intertem-
poral attitudes is possible only if the timing of the resolu-
tion of uncertainty matters. More recently, Bommier
et al. (2017, Proposition 3) show that scale-invariant cer-
tainty equivalents generate what they call restricted indif-
ference towards the timing of resolution of uncertainty.
This is, in a sense, the weakest form of indifference
towards the timing of the resolution of uncertainty that
still accommodates the separation between risk and inter-
temporal substitution attitudes. Thus, it is important to
note that since the quantile certainty equivalent operator
is scale-invariant, it belongs to this selected class and thus
allows for this separation.

Here we briefly illustrate how this separation can be
achieved with the quantile model. Consider an isoelastic
utility function U cð Þ¼ c1�γ . When γ � 0,1ð Þ we have the
case of risk aversion in the standard expected utility

FIGURE 1 Y is a τ-quantile-preserving spread of X .
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model. In particular, when γ1 > γ2, individual 1 is more
risk averse than individual 2, in the sense that individual
1 has a higher coefficient of relative risk aversion. How-
ever, under static QP, any γ >0 leads to exactly the same
choices, as discussed above, since Qτ c1�γ

1

� �¼ Qτ c1½ �ð Þ1�γ

by (1). In other words, the parameter γ does not capture
any aspect of the decision maker attitude towards risk for
the static QP.10 On the other hand, under a multiperiod
horizon the parameter γ plays an important role. In fact,
consider the quantile recursive Equation (2) with the
same utility index above, that is,

V c0,c1ð Þ¼ c1�γ
0 þβQτ c1�γ

1

� �
: ð11Þ

Applied to a deterministic prospect, this yields
V c0,c1ð Þ¼ c1�γ

0 þβc1�γ
1 being an intertemporal isoelastic

utility function. Recall that EIS measures the elasticity of
the ratio c1=c0ð Þ to a change in the marginal rate of sub-
stitution between c0 and c1, that is
MRSc1,c0 ¼U 0 c1ð Þ=U 0 c0ð Þ, with U 0 �ð Þ denoting marginal
utility. Hence, using the standard definition,
EIS¼�d ln c1=c0ð Þ=d lnMRSc1,c0 , it is easy to see that
the EIS in this case is simply 1

γ. The EIS measures how
willing individuals are to substitute intertemporally
between consumption this period and consumption next
period.11

It is useful to compare this quantile method with the
most widely used method to separate risk aversion and
the EIS, which is the following specification of Epstein
and Zin (1989) and Weil (1990), with γ �¼ 0, α �¼ 0:

VEZ c0,c1ð Þ¼ cα0 þβ E c1�γ
1

� �� � α
1�γ

� �1
α
,

where the parameter α determines the EIS, given by
1=1�α, and the parameter γ captures risk aversion, with
larger values of γ, other things equal, implying a stronger
aversion to risk. As observed by Bommier et al. (2017),
this model satisfies monotonicity if and only if γ¼ α, in
which case the model collapses to the standard expected
utility model and fails to satisfy the separation of risk
aversion and EIS. For achieving its goal the popular
Esptein-Zin-Weil preferences are necessarily non-
monotonic as previously discussed.

In sum, the simple standard expected utility model in
(10) is not able to separate the EIS from risk aversion,
Epstein-Zin preferences are able to do so at the expense
of violating the condition of monotonicity of preferences.
In contrast, the simple QP is able to disentangle the EIS
from risk attitude as well as preserving the monotonicity
of preferences.

3 | EXPERIMENTAL PROCEDURES

The experimental procedures used in this paper are docu-
mented in detail in both Harrison et al. (2005) and
Andersen et al. (2008).12 In this section we just review
the basics. In summary, the experiment is divided into
two parts. In the first part each subject was asked to
answer to static tasks related to risk attitude. In the sec-
ond part subjects respond to intertemporal tasks, which
are related to discount factor and the elasticity of inter-
temporal substitution (EIS).13 Each such task involved a
series of binary choices that we will use to infer risk, EIS
and time preferences.

The first part of the experiment involves multiple
price list (MPL) risky lotteries with immediate reward
and contributes to identify the risk aversion coefficient
for an isoelastic utility function. Each subject is presented
with a choice between two lotteries, which we can call A
or B. Table 1 illustrates a basic payoff matrix presented to
subjects in the experiments. The first row shows that lot-
tery A offered a 10% chance of receiving 2000 Danish kro-
ner (DKK) and a 90% chance of receiving 1600 DKK.
Similarly, lottery B in the first row has chances of payoffs
of 3850 and 100 DKK. The columns Q0:5 A½ � and Q0:5 B½ �
show the quantile τ¼ 0:5 for lotteries A and B, respec-
tively, although these columns were not presented to sub-
jects. The two lotteries have a relatively large difference
in median values.

The subject chooses A or B in each row, and one
row is later selected at random for payout for that
subject. The logic behind this test for risk attitude is
that, for a fixed quantile, τ¼ 0:5 for example, subjects
would take lottery B for the last six rows and only would
take lottery A in the first four rows. Now, by varying the
probabilities in the MPL we are able to identify the
underlying quantile. We take each of the binary choices
of the subject as the data, and estimate the latent quantile
parameter that explains those choices using an appropri-
ate error structure to account for the panel nature of the
data. For a candidate value of the τ parameter, we can
construct the quantile of the two gambles and then use a
linking function to infer the likelihood of the observed
choice. We discuss statistical specifications in more detail
below.

The second experiment uses lotteries and tasks that
involve no risk and pay off at different periods that are
rewarded after a few months. This part of the experiment
was introduced in Coller and Williams (1999) and Harri-
son et al. (2002) for eliciting individual discount rates.
Table II in Andersen et al. (2008) – which we reproduce
below as Table 2 for completeness—presents an example
of the payoffs for the discount rate experiment when the

de CASTRO ET AL. 7
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time horizon is 6 months. Subjects are presented with a
payoff table with 10 symmetric intervals that provides
the annual and annual effective interest rates of each
different payment option. This is important because it
introduces changes in the interest rates. Moreover, the
experiment uses multiple-horizon treatment, where
the subjects are presented with six discount rate
tasks, corresponding to six different time horizons:
1 month, 4 months, 6 months, 12 months, 18 months
and 24 months. In each task, subjects are provided two
future income options rather than one ‘instant income’
option and one future income option. The experiment
uses a delay of 1 month to the early income option in
all tasks. Thus, there is variation on the time horizon that
subjects face. Subjects were asked to choose between two
options for each of the 10 payoff alternatives. We highlight
that these two types of variation—on both interest rates

and time horizon—are very important for our purposes
of identifying the discount rate and EIS because
they allow us to identify both discount factor and
EIS, see also Barsky et al. (1997) for a similar identifi-
cation strategy.

4 | IDENTIFYING RISK, EIS AND
THE DISCOUNT RATE

In this section we present the methods used to disentan-
gle risk attitude from the elasticity of intertemporal sub-
stitution (EIS) and discount factor under QP. We
compare our methodology with that in Andersen et al.
(2008) for the standard EU model. Under the EU frame-
work, the parameters of interest—risk aversion and dis-
count rate—characterize the following time separable

TABLE 1 Typical payoff matrix in the risk aversion experiments.

Lottery A Lottery B

Q0:5 A½ � Q0:5 B½ �
Difference

p DKK p DKK p DKK p DKK Q0:5 B½ ��Q0:5 A½ �
0.1 2000 0.9 1600 0.1 3850 0.9 100 1600 100 �1500

0.2 2000 0.8 1600 0.2 3850 0.8 100 1600 100 �1500

0.3 2000 0.7 1600 0.3 3850 0.7 100 1600 100 �1500

0.4 2000 0.6 1600 0.4 3850 0.6 100 1600 100 �1500

0.5 2000 0.5 1600 0.5 3850 0.5 100 2000 3850 1850

0.6 2000 0.4 1600 0.6 3850 0.4 100 2000 3850 1850

0.7 2000 0.3 1600 0.7 3850 0.3 100 2000 3850 1850

0.8 2000 0.2 1600 0.8 3850 0.2 100 2000 3850 1850

0.9 2000 0.1 1600 0.9 3850 0.1 100 2000 3850 1850

1 2000 0 1600 1 3850 0 100 2000 3850 1850

TABLE 2 Payoff table for 6 month time horizon in the discount rate experiments.

Payoff
alternative

Payment option A
(Pays amount
below in 1 month)

Payment option B
(Pays amount
below in 7 months)

Annual interest
rate (AR in person)

Annual effective
interest rate
(AR in person)

Preferred payment
options (Circle A and B)

1 3000 DKK 3075 DKK 5 5.09 A B

2 3000 DKK 3152 DKK 10 10.38 A B

3 3000 DKK 3229 DKK 15 15.87 A B

4 3000 DKK 3308 DKK 20 21.55 A B

5 3000 DKK 3387 DKK 25 27.44 A B

6 3000 DKK 3467 DKK 30 33.55 A B

7 3000 DKK 3548 DKK 35 39.87 A B

8 3000 DKK 3630 DKK 40 46.41 A B

9 3000 DKK 3713 DKK 45 53.18 A B

10 3000 DKK 3797 DKK 50 60.18 A B

8 de CASTRO ET AL.
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intertemporal utility function to describe individuals'
preferences over their lifetime:

VEU
t ¼

X∞
i¼0

1

1þδð Þi E U Mtþið Þ½ �, ð12Þ

where δ is the discount rate, Mtþi denotes income
received by the individual at period tþ i, and U �ð Þ is a
period utility function. The risk aversion parameter is
captured by the curvature of the utility function in (12),
for instance, for the isoelastic utility function
specification,

U Mð Þ¼M1�γ

1� γ
, ð13Þ

the risk aversion is γ.
In this paper, we use the QP model, as discussed in

Section 2.1, to elicit and identify individual's risk attitude,
EIS and associated discount rate. Individuals with QP
have the following intertemporal objective function

VQP
t ¼Q∞

τ

X∞
i¼0

1

1þδð Þi U Mtþið Þ
" #

,

where Q∞
τ is defined in (8). For ease of notation, we use

the same parameter δ to denote the discount rate under
QP. Thus, under independence of the sequence of shocks
the intertemporal objective function can be expressed as

VQP
t ¼

X∞
i¼0

1

1þδð Þi Qτ U Mtþið Þ½ �: ð14Þ

In the QP case, we have three parameters of interest.
First, the quantile τ captures the risk attitude. Second,
the discount rate is δ. Finally, as discussed in
Equation (11), Section 2.3, the EIS is given by the curva-
ture of the utility function, which under the isoelastic
utility is 1=γ.

The first multiple price list contains tasks that involve
some risk and are immediately rewarded, and the second
list is defined by tasks that involve no risk and are
rewarded with at least a one-month delay. With an
appeal to the dual-selves model of choice (Benhabib and
Bisin (2005), Fudenberg and Levine (2006)), the
responses to the first set of tasks are probably temptation
driven, while the responses to the latter set are probably
self-controlled. In this setting, the two different behav-
iours given by risk aversion and discounting are revealed
in the responses to each list.

4.1 | Decision between pairwise risky
lotteries

We consider the first experiment (risk aversion) and
describe the decision of an agent when making a pairwise
choice between two risky lotteries A and B, and how it
relates to the risk attitude parameter τ.

The payoffs of both lotteries are paid immediately so
individuals' decision is driven by temptation. First, to fix
ideas, we present the condition determining indifference
between A and B under a EU setting. The objective func-
tion (12) reduces to a single-period utility function and
the EU preference can be defined as

A�B,EUA �E U MA
� �� �

⩾E U MB
� �� ��EUB, ð15Þ

with MA and MB the payments from the risky lotteries A
and B. The agent maximizing EU prefers B to A when the
expected value of lottery B is larger than A, that is,
when ΔEU ¼EUB�EUA >0.

The decision of an agent with QP differs. In this set-
ting, the agent maximizes a given quantile τ of the distri-
bution of the risky lotteries A and B. To show this, we
note a very important feature of the static model that is
the invariance property with respect to the utility func-
tion. Let U Xð Þ, where U :ℝ!ℝ, be an increasing utility
function describing an individual's preferences. Then, for
a given quantile τ� 0,1ð Þ, the optimization problem is

max
X �ℛ�Qτ U Xð Þ½ �, ð16Þ

where ℛ� �ℛ is the subset of random variables (lotter-
ies) available. Given the invariance property described in
(1) it can be directly seen that the maximization argu-
ment x� solves (16) if and only if it solves

max
X �ℛ�Qτ X½ �: ð17Þ

Equations (16) and (17) show that the quantile opti-
mization problem, for a given utility function, is equiva-
lent to maximizing the quantile of the distribution of the
random variable X . Hence, the optimal choice under QP
does not depend on any particular specification of the
utility function. Within the class of QP models, an agent's
choices are determined by the characteristic quantile,
that is,

A�B,QPA
τ �Qτ U MA

� �� �
⩾Qτ U MB

� �� ��QPB
τ

,Qτ MA
� �

⩾Qτ MB
� �

:

de CASTRO ET AL. 9
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Thus, the agent maximizing a given quantile τ prefers
B to A when, for that τ, the quantile of lottery B is larger
than A. That is,

ΔQ τð Þ�Qτ MB
� ��Qτ MA

� �
>0: ð18Þ

We now explore the suitability of the QP methodol-
ogy for the experimental data in Harrison et al. (2005).
There are two lotteries, A and B, each of them have two
possible payoffs, MA ¼ a1,a2f g and MB ¼ b1,b2f g, and
corresponding outcome probabilities p and q. As an illus-
trative example, one of the pairs of risky payoffs that
these authors consider are a1 ¼ 1600, for 0< τ≤ p, and
a2 ¼ 2000, for p< τ≤ 1, and b1 ¼ 100, for 0< τ≤ q, and
b2 ¼ 3850, for q< τ≤ 1. The choice between lotteries A
and B for a τ�individual is as follows;

• Lottery A yields a1 ¼ 1600 with probability p, and
a2 ¼ 2000 with probability 1�p.

• Lottery B yields b1 ¼ 100 with probability q, and
b2 ¼ 3850 with probability 1�q.

This lottery can be represented graphically, as illus-
trated in Figure 2.

The calculation of ΔQ τð Þ¼Qτ MB
� ��Qτ MA

� �
depends on the quantile τ, the payoffs a1,a2,b1,b2f g, and
the probabilities p,qð Þ. Specifically,

ΔQ τð Þ¼

b1�a1, if τ⩽ min p,qf g
b1�a2, if p< τ⩽ q

b2�a1, if q< τ⩽ p

b2�a2, if τ> max p,qf g:

8>>><>>>: ð19Þ

To make the example more specific, fix the quantile
at the median, τ¼ 0:5, and the outcome probabilities at
p¼ 0:3 and q¼ 0:1. The quantile functions of lotteries A
and B are plotted in the left panel of Figure 3. Lottery A
(solid line) pays a1 ¼ 1600 with probability 0:3 and
a2 ¼ 2000 with probability 0:7, and lottery B (dashed line)
pays b1 ¼ 100 with probability 0:1, and b2 ¼ 3850 with

probability 0:9. The solid vertical line at 0:5 represents the
quantile of interest. To complete the example of an agent
maximizing the median, τ¼ 0:5, and choosing between
lotteries A and B, we compute ΔQ τð Þ. The calculation is
simple and only requires one to subtract the quantile of
A from that of B. From the left panel in Figure 3, we can
see that ΔQ 0:5ð Þ¼Q0:5 B½ ��Q0:5 A½ � ¼ 3850�2000¼ 1850.
Therefore, the agent chooses lottery B.

Suppose now that we modify the lotteries by changing
the probability q in lottery B, so that we have:

• Lottery A: a1 ¼ 1600 with probability p¼ 0:3, and
a2 ¼ 2000 with probability 1�p¼ 0:7;

• Lottery B: b1 ¼ 100 with probability q¼ 0:8, and
b2 ¼ 3850 with probability 1�q¼ 0:2.

The quantile functions of the new A and B lotteries
are displayed in the right panel of Figure 3. Lottery A
(solid line) pays a1 ¼ 1600 with probability 0:3 and
a2 ¼ 2000 with probability 0:7, and lottery B (dashed line)
pays b1 ¼ 100 with probability 0:8, and b2 ¼ 3850 with
probability 0:2. In this case, we can see that the calcula-
tion of ΔQ 0:5ð Þ for the median (solid vertical line) is
ΔQ 0:5ð Þ¼Q0:5,t B½ ��Q0:5,t A½ � ¼ 100�2000¼�1900, and
hence, the agent chooses lottery A.

This subsection shows a very important difference
between the QP and the EU models. The risk attitude in
the QP is captured by the quantile τ and does not depend
on the parameters of the utility function U �ð Þ. But in the
EU model, risk is described by the parameters of the util-
ity function, in particular, for an isoelastic utility func-
tion, the risk parameter is the curvature of the utility
function, which captures simultaneously both risk and
EIS by construction. The next section clarifies this point.

4.2 | Decision between pairwise certain
lotteries in different time periods

The second experiment discussed in Andersen et al.
(2008) is to elicit the discount factor. In this case, we con-
sider the decision problem of an agent with QP when
making a pairwise choice between options A and B, and
how it relates to the parameters of interest, the discount
factor and the EIS. There is no uncertainty in this part of
the experimental design so individuals know exactly the
income received in each period. The absence of uncer-
tainty implies that the objective function of EU and QP
are equivalent, that is, Equations (12) and (14) are equal
under no uncertainty. Nevertheless, it is important to
highlight that both equations are characterized by the
discount rate δ and the parameter of the utility func-
tion U �ð Þ.

FIGURE 2 Example of lottery choice task as in Table 1.

10 de CASTRO ET AL.
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In this experiment individuals have to choose
between Options A and B. In Option A the individual
receives an amount MA (with a front end delay of
1month with respect to the risk aversion task), while in
Option B it receives an amount MB with a T period delay
with respect to Option A. Let the parameter λ define the
number of periods over which the two monetary amounts
are integrated with background consumption ω. Let the
time t be the time period where the individual would
receive the first payment from Option A. Then the stream
of non-random incomes of the first option is

A¼ ωþMA
t
λ ,…,ωþMA

tþλ�1
λ ,ω,…,ω

� �
and the stream of non-

random incomes of the second option is

B¼ ω,…,ω,ωþMB
tþT
λ ,…,ωþMB

tþTþλ�1
λ

� �
. For this experiment

MA
t ¼MA and MB

t ¼MB for all t. Furthermore, if λ¼ 1,
then the period of assumed consumption is the same of
the received payment.

The discounted utility of Option A is then given by

PVA ¼
Xtþλ�1

i¼t

1

1þδð Þ i�tð ÞU ωþMA=λ
� �

þ
XtþTþλ�1

i¼tþλ

1

1þδð Þ i�tð ÞU ωð Þ
ð20Þ

and the discounted utility of Option

B ðisÞ

PVB ¼
XtþT�1

i¼t

1

1þδð Þ i�tð ÞU ωð Þ

þ
XtþTþλ�1

i¼tþT

1

1þδð Þ i�tð ÞU ωþMB=λ
� �

,

ð21Þ

where the utility function is assumed to be stationary
over time. The condition determining the indifference

between Options A and B is, as before, given by the con-

dition VEU
t

� �A ¼ VEU
t

� �B
in (12) or, equivalently,

VQP
t

� �A ¼ VQP
t

� �B
in (14). Simple algebra shows that, for

λ¼ 1, this condition can be expressed as

U ωþMA

λ

	 

þ 1

1þδð ÞT U ωð Þ¼U ωð Þ

þ 1

1þδð ÞT U ωþMB

λ

	 

,

ð22Þ

where T denotes the time of the delayed payoff MB of
Option B with respect to Option A.

Now we illustrate the equality condition in (22), and
relate it to the results on separability between EIS
and risk attitude in Section 2.3. We assume a more famil-
iar language and consider the income pairs ωþMA

λ ,ω
� �

and ω,ωþMB

λ

� �
to be the optimal intertemporal con-

sumption choices of individuals under Options A and B,
respectively.14 Equation (22) shows that an individual is

indifferent between consuming the pair ct,ctþTð Þ�
ωþMA

λ ,ω
� �

and the pair ct,ctþTð Þ� ω,ωþMB

λ

� �
. The

equality condition in (22) implies that both consumption
paths lie on the same indifference curve describing the
individuals' optimal consumption choices at periods t
and tþT. First, notice that the left hand side (or the right
hand side) of Equation (22) is same as Equation (11)
applied to deterministic prospects. Therefore, as dis-
cussed in Section 2.3, it follows that the EIS for a isoelas-
tic utility function is 1

γ. Second, the choice between

Options A and B is driven by the individuals' willingness
to substitute consumption across the two periods, which
is determined from the first order conditions

U ctð Þ∂ctþβTU ctþTð Þ∂ctþT ¼ 0 obtained from Equa-
tions (10) and (11), that are equal under no uncertainty,
yielding the condition:

FIGURE 3 Quantile function of

lotteries A (solid line) and B (dashed

line). The left plot considers p¼ 0:3 and

q¼ 0:1. The right plot considers p¼ 0:3

and q¼ 0:8.
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∂ctþT

∂ct
¼� 1

βT
U 0 ctð Þ

U 0 ctþTð Þ : ð23Þ

This marginal condition relates the curvature of the
utility function, the discount rate β¼ 1

1þδ, and the differ-
ences between the short term and the long term, given by
T, in the intertemporal experiment. For individuals with
isoelastic preferences, as in (13), the curvature of the util-
ity function is characterized by the parameter γ, hence,
the willingness to substitute consumption across periods
ct and ctþT is determined by the condition

∂ctþT

∂ct
¼� 1

βT
ct
ctþT

	 
�γ

: ð24Þ

Replacing with the figures above, the willingness to
substitute consumption across periods for individuals in

the intertemporal experiment is ∂ctþT
∂ct

¼� 1
βT

ωþMA
λ

ω

	 
�γ

under Option A and ∂ctþT
∂ct

¼� 1
βT

ω
ωþMB

λ

	 
�γ

under Option

B, which are functions of the EIS and discount factor.

It is important to notice that this argument holds
under both EU and QP theories. The willingness to sub-
stitute consumption/income across periods is determined
by the combination of the discount rate and the marginal
rate of substitution across periods as discussed in Freder-
ick et al. (2002) and illustrated in (23) and (24).

5 | ESTIMATION METHODS

We estimate the parameters of interest for the QP model
using structural estimation. As mentioned above, and fol-
lowing recent experimental studies (see, e.g. Andersen
et al. (2008), Andreoni and Sprenger (2012a, 2012b) and
Cheung (2015)), we assume an isoelastic utility function
U xð Þ¼ x1�γ= 1� γð Þ. The variable x is the monetary payoff
and γ is the curvature of the utility function.

ΔVAB θð Þ¼ VB
� �1=θ

VA
� �1=θþ VB

� �1=θ : ð25Þ

For the risk aversion (RA) experiment, using
Equation (25), we define the latent index

ΔVAB
RA τ,μð Þ¼ Qτ B½ �1=μ

Qτ A½ �1=μþQτ B½ �1=μ
, ð26Þ

where μ is a structural noise parameter used to allow ran-
domness in the model.15 The index ΔVAB

RA is in the form
of a cumulative probability distribution function defined
over Qτ �½ � of the two lotteries and the noise parameter μ.
For empirical estimation, instead of using the latent
index in Equation (18), we directly employ the ratio form
in (26), which is already in the form of a probability
between 0 and 1. Hence, we avoid taking the probit or
logit transformation. The risk aversion coefficient is char-
acterizing Equation (26).

Similarly, for the second experiment, analysing the
discount rate (DR) and the elasticity of intertemporal
substitution (EIS), the latent index (25) together with
Equations (20)–(21) is equivalent to

ΔVAB
DR,EIS γ,δ,νð Þ¼ PVB

� �1=ν
PVA
� �1=νþ PVB

� �1=ν , ð27Þ

with PV defined above, and ν> μ a structural noise
parameter introducing randomness in the specification.
As before, the index ΔVAB

DR,EIS is a cumulative probability
distribution function defined over Qτ �½ � of the two
options and the noise parameter ν. The parameters δ and
γ are related through Equation (27).

We estimate the parameters by maximum likelihood
from expressions (26) and (27)16:

lnL γ,δ,τ,μ,νð Þ¼ℓRA τ,μð ÞþℓDR,EIS γ,δ,νð Þ, ð28Þ

where ℓRA τ,μð Þ and ℓDR,EIS γ,δ,νð Þ can be defined by the
following general expression:

ℓ� ¼
Xn
i¼1

Xm�
i

j¼1

1 yij ¼B
h i

ln ΔVAB
i,�

� �"
þ 1 yij ¼A

h i
ln 1�ΔVAB

i,�
� �

þ 1 yij ¼ I
h i 1

2
ln ΔVAB

i,�
� �þ1

2
ln 1�ΔVAB

i,�
� �	 
#

,

ð29Þ

where we should substitute �¼RA or �¼DR,EIS and
have omitted the parameters τ,μð Þ and γ,δ,νð Þ. In (29), yij
is the choice variable of individual i¼ 1,2,…,n in task
j¼ 1,2,…,mi. Each individual receives tasks in a random
order, where each task may be of the RA or (DR,EIS)
type, and within those, it has several variations. In both
cases, the choices available for each task option are to
choose either A, B or being indifferent, denoted by I. Let
mRA

i be the number of tasks of individual i of the RA type
and mDR,EIS

i the number of tasks of individual i of the
(DR,EIS) type, and mi ¼mRA

i þmDR,EIS
i .
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The MLE of τ is simply the value of τ that maximizes
the log-likelihood function in Equation (29). The
log-likelihood function ℓDR,EIS γ,δ,νð Þ is the same of the
expected utility (EU) case because that experiment does
not involve randomness. It is important to note, however,
that in contrast to the EU case, we can separate the esti-
mation of the risk aversion coefficient that is obtained
from ℓRA τ,μð Þ, from the estimation of γ and δ, that are
obtained from ℓDR,EIS. This implies that even if we use
the same likelihood function for the EU and QP exercises
for the DR-EIS component, the estimates of γ, δ and ν
will be different. The reason for this is that γ is obtained
from the joint likelihood for EU case and is obtained
from the marginal likelihood ℓDR,EIS γ,δ,νð Þ for the
QP case.

We remark that the log-likelihood function
lnL γ,δ,τ,μ,νð Þ in (28) is not smooth. Nevertheless, there
is a large existing literature in econometrics establishing
the asymptotic properties—consistency, asymptotic nor-
mality and bootstrap inference—for this class of semi-
parametric estimators (as the MLE), where the criterion
function does not obey standard smoothness conditions.
The theories allow for non-smooth objective functions of
finite-dimensional unknown parameters (e.g. Pakes and
Pollard (1989) and Newey and McFadden (1994,
section 7)) and both finite-dimensional and infinite-
dimensional parameters (e.g. Chen et al. (2003)). In addi-
tion, Chen et al. (2003) show that bootstrapping for these
methods provides asymptotically correct confidence
regions for finite-dimensional parameters. Throughout
the paper, we apply bootstrap procedures to compute the
standard errors of the parameters of interest.

6 | EMPIRICAL RESULTS

In this section we report the maximum likelihood estima-
tor (MLE) results for the QP approach. The discontinuity
of the log-likelihood function ℓRA τ,μð Þ in (29) with
respect to τ implies that a closed-form solution cannot be
obtained from the corresponding score function. Instead,
we apply a numerical grid search method and maximize
the likelihood over a fine grid of τ� 0:01,0:02,…,0:99f g.

6.1 | Estimating individual's risk
aversion, the discount factor and the EIS

We compute estimates for pooled data, treating the entire
sample as one ‘representative’ participant. The main
results for the QP estimates are presented in Table 3
below. The table reports estimates along with the corre-
sponding bootstrap standard errors and confidence inter-
vals clustered by individuals.

The point estimate for the risk aversion coefficient, τ,
is 0:455 with standard error of 0:006, such that the esti-
mate is statistically different from zero at standard levels
of significance.17 As discussed above, the risk parameter
is obtained from the risk experiment. Moreover, the risk
attitude in QP is relative, and a value of τ below the
median can be considered, following Manski (1988), as
risk aversion. Thus, the empirical evidence suggests a
mild risk aversion of individuals participating in the
experiment.

As discussed previously, estimation of the discount
rate, δ and the EIS coefficient, 1

γ, is achieved from the
marginal likelihood function ℓDR,EIS γ,δ,νð Þ. This is an
interesting feature of the QP model that is due to the sep-
aration between risk and time preferences. The estimate
of the discount factor, δ, assuming background consump-
tion ω¼ 118 and λ¼ 1 as in Andersen et al. (2008) isbδ¼ 0:075 with corresponding standard error of 0:0038
(reported in Table 3). This discount rate estimate implies
a discount factor, β¼ 1= 1þδð Þ, of 0.93. These estimates
suggest that individuals are patient and discount simi-
larly income received in different instances into the
future. The discount rate (factor) estimate obtained in
this paper is slightly smaller (larger) than the estimate
obtained in the related literature.

The results in Table 3 also include the EIS estimate.
The QP model identifies the EIS coefficient, which is not
related to risk aversion as it happens in the standard EU
model. The model reports an estimate of the EIS coeffi-
cient of 1:083 with standard error of 0:034. The EIS is the
reciprocal of the γ parameter, and its standard error is
calculated using the delta method clustered by individ-
uals. The results in this paper using experimental data
provide empirical evidence that the EIS is slightly above
one. To test the hypothesis that the instantaneous utility
is linear, one simply tests the null that γ¼ 0 against γ >0.
The test statistic is 32:2 implying the rejection of the null
hypothesis at standard levels of significance. Hence, the
result suggests that the instantaneous utility is somewhat
close to linear, but significantly concave. Similar results

TABLE 3 Estimates of risk, EIS and discount factor assuming

exponential discounting. ω¼ 118, λ¼ 1.

Parameter Estimate Std. Err.
Lower 95% Upper 95%
CI CI

τ 0.455 0.0059 0.443 0.467

γ 0.923 0.0287 0.866 0.979

EIS 1=γð Þ 1.083 0.0340 1.018 1.150

δ 0.075 0.0038 0.067 0.082

μ (for RA) 0.859 0.0200 0.821 0.898

ν (for DR) 0.005 0.0220 0.001 0.010
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regarding concavity of the utility, using different experi-
mental data, are documented by Andreoni and Sprenger
(2012a) and Cheung (2020).

Consider now the estimates presented in Table 3
above in comparison with others in the literature. Our
estimate of risk aversion is different from the estimate
reported in Table III of Andersen et al. (2008). These
authors find a relative risk aversion coefficient equal to
0:74 and a discount rate δ¼ 0:101; Andersen et al. (2018)
obtain a discount rate of 0:114, which implies a very low
discount factor (1= 1þδð Þ¼ 0:898) and might be related
to the dynamic inconsistency of the generalized expected
utility preferences. In contrast, we find a δ of 0:075,
which implies a discount factor of 0:93. Kapteyn and
Teppa (2003), in contrast to Andersen et al. (2008), are
able to separately estimate the discount factor and the
EIS coefficient. These authors, based on information
from direct questions about hypothetical intertemporal
consumption choices rather than using revealed prefer-
ence approaches, find a negative discount rate that
ranges between �0:094 and �0:11, depending on
whether individuals' preferences are modelled with a iso-
elastic utility function or an habit formation model.
Finally, regarding the EIS coefficient, Kapteyn and Teppa
(2003) provide estimates of the EIS coefficient in the
range 0:51,0:57ð Þ. Andersen et al. (2018) report an EIS
estimate of 2:85, which is large relative to the existing
estimates in the literature using aggregated and
disaggregated data.

Overall, the results we provide in this paper are
important for the ongoing debate on the value of EIS.
Thimme (2017) discusses several recent advances of the
theory and highlights challenges for the estimation. An
estimate of the EIS slightly above 1 is in contrast with the
evidence found in some areas of economics. For example,
the evidence that emerges from microeconomic studies,
as surveyed for instance in Attanasio (1999) and Attana-
sio and Weber (2010), which use an isoelastic specifica-
tion of preferences (such as Attanasio and Weber (1993,
1995) and Blundell et al. (1994)) together with observa-
tional data, is that the EIS of consumption is just below
1. Early work (see, e.g. Hall (1988)) finds EIS close to
zero. Although the general discussion still seems to be
prevailed by Hall's early EIS estimates close to zero, the
literature shows that several deviations from the time-
additive constant relative risk aversion model speak in
favour of considerably higher values. In macroeconomic
studies, Lucas (1990), based on average consumption and
interest rates in the United States, rules out an EIS below
0:5. Work by Kydland and Prescott (1982) set up equilib-
rium business cycle models and argue that an EIS
between 0:8 and 1 gives the best fit to the data. More
recently, a key assumption of the long-run risks asset

pricing model developed by Bansal and Yaron (2004) is
an EIS above 1. Standard choices in the long-run risks lit-
erature are 1:5 or 2, see also Ai (2010) and Drechsler and
Yaron (2011). Ortu et al. (2013) obtain estimates of the
EIS that range between 2:09 and 5:54 based on different
samples. Importantly, these authors argue that using dis-
aggregated consumption data is key to finding a value for
the EIS greater than one. Our results using QP show that
after separating risk from intertemporal substitution,
there is empirical evidence from the experimental data
on the Danish population that the EIS is slightly above 1.

6.2 | Empirical evidence on the quantile
choice

A simple way to assess if individuals' responses in the
experiment are rational from a QP perspective is to com-
pute the number of individuals that respond according to
the QP model discussed above. Figure 4 reports, for each
τ� 0,1ð Þ, the share of individuals' actual responses to the
risk experiment that coincide with the responses pro-
vided by the QP model shown above. That is, for each τ,
we calculate QPA

τ and QPB
τ for all lotteries available to

choose and evaluate the fraction of responses where the
individual chose A if QPA

τ >QPB
τ , B if QPA

τ <QPB
τ and I

if QPA
τ ¼QPB

τ .
The maximum value of the function in Figure 4 is

achieved at τ� 0:31,0:40½ � with a fraction of correct
responses around 80%. Using a bootstrap procedure clus-
tered by individuals we find that the limits of the interval
range between 0.31 and 0.33 for the minimum and
between 0.38 and 0.40 for the maximum. This prelimi-
nary analysis suggests that individuals' responses are
most consistent with a τ�QP model, with τ in this range.
The figure also shows that the lotteries used in the RA
exercise do not have enough granularity to identify τ

FIGURE 4 Fraction of individuals that choose the lottery

predicted by quantile preferences across values of τ� 0,1ð Þ in the

risk experiment.
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other than within those coarse intervals. Note that this
value is different from the value of τ that maximizes the
likelihood function that lies in the interval 0:41,0:50½ �,
and for which we take the average τ¼ 0:455 as the repre-
sentative value. The differences arise because of the spe-
cific form of the likelihood, and the form of weighting
the differences between the two lotteries, that is, the logit
form. The estimate τ is robust to different likelihood
implementations. Although not reported, the same value
is achieved if we use a Gaussian model as in Harrison
et al. (2002).

6.3 | Robustness exercises

Now we implement different exercises to assess the
robustness of the estimates in the previous section. In
particular, we consider variation in background con-
sumption (ω) and number of periods for integrating pay-
ments into consumption (λ), as well as heterogeneity of
preferences across individuals' observable characteristics.
The analysis of the other robustness measures—such as
heterogeneity of preferences and unobservable character-
istics, as well as a statistical specification that allows each

observation to potentially be generated by more than one
latent data-generating process—is similar and omitted
for space constraints.

Table 4 reports the estimates of risk aversion, EIS
and discount factor for different values of the number
of periods receiving income (λ) and background con-
sumption (ω). In the QP setting, the risk aversion coeffi-
cient is estimated from the marginal likelihood ℓRA τ,μð Þ,
hence, this parameter is not affected by changes in λ. It
could potentially be affected by ω but we note that differ-
ent values of background consumption produce the same
τ estimates, not affecting the quantile interval where the
maximum is achieved. In contrast, the discount factor
and the EIS exhibit some slight variation in the estimates
across values of ω and λ, with δ varying between 0:064
and 0:129, and the EIS varying between 1:093 and 1:268.
These results are similar to the estimates obtained under
the benchmark model and confirm empirically the quan-
tities obtained under the exponential discounting model.

Table 5 reports the estimates of the robustness exer-
cise that considers heterogeneity of preferences and indi-
viduals' observable characteristics. We estimate the
model separately for men and women, and for individ-
uals under 50 years old (‘Under 50’ group) and above or

TABLE 4 Robustness exercises

varying ω. Parameter Estimate Std. Err.
Lower 95% Upper 95%
CI CI

ω = 118, λ = 7

τ 0.455 0.0059 0.443 0.467

γ 0.864 0.0388 0.788 0.940

EIS (1/γ) 1.157 0.0520 1.056 1.259

δ 0.129 0.0047 0.120 0.138

μ (for RA) 0.864 0.0200 0.825 0.903

ν (for DR) 0.0076 0.0023 0.003 0.012

ω = 50, λ = 1

τ 0.455 0.0064 0.441 0.466

γ 0.915 0.0052 0.905 0.925

EIS (1/γ) 1.093 0.0062 1.081 1.105

δ 0.064 0.0041 0.056 0.072

μ (for RA) 0.977 0.0220 0.933 1.021

ν (for DR) 0.006 0.0005 0.005 0.007

ω = 200, λ = 1

τ 0.455 0.0072 0.443 0.470

γ 0.789 0.0080 0.773 0.804

EIS (1/γ) 1.268 0.0129 1.242 1.293

δ 0.103 0.0058 0.092 0.114

μ (for RA) 0.750 0.0160 0.718 0.782

ν (for DR) 0.017 0.0009 0.149 0.018
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equal to 50 years old (‘Above 50’ group). In both exer-
cises the full sample is split into two subsamples of
approximately equal size. Except for the subsample cov-
ering individuals under 50 years old the other groups
report a risk aversion coefficient τ of 0:455. This is an
interesting result that suggests that under QP the ‘Under
50’ group is more risk averse than the ‘Above 50’ group
independently of gender. In particular, the parameter τ
for the ‘Under 50’ group lies in the range 0:31,0:40½ �. This
result, despite appearing counter-intuitive at a first
glance, reflects individuals' attitude towards the mone-
tary payments of the risky options. Younger individuals
may assign a larger value to the payoffs of both strategies
than older individuals, hence, the larger risk aversion of
this group with respect to the ‘Above 50’ group of

individuals. The estimation of the EIS coefficient also
reveals differences in terms of age but not of gender. Thus,
for the group of men the EIS is 1:084 and for women the
EIS coefficient is 1:082. In contrast, for the group of indi-
viduals under 50 years old the EIS estimate is 1:144 and
for the ‘Above 50’ group the EIS is 1:087, suggesting that
‘Above 50’ individuals are (slightly) less willing to shift
income (proxying consumption) across periods under
small changes in interest rates. Finally, the analysis of
the discount rate shows similar findings. The parameter δ
is the same across men (0:074) and women (0:075), and is
also very similar for the group of individuals under 50
years old. We observe a slightly higher discount rate
(0:082) for the ‘Above 50’ group suggesting more impa-
tience with regards to future income by these individuals.

TABLE 5 Robustness exercises for

different sample restrictions.Parameter Estimate Std. Err.
Lower 95% Upper 95%
CI CI

Men

τ 0.455 0.0078 0.440 0.467

γ 0.923 0.0091 0.905 0.940

EIS (1/γ) 1.084 0.0110 1.006 1.105

δ 0.074 0.0040 0.066 0.082

μ (for RA) 0.785 0.0250 0.737 0.833

ν (for DR) 0.005 0.0008 0.004 0.007

Women

τ 0.455 0.0217 0.431 0.467

γ 0.924 0.0380 0.850 0.999

EIS (1/γ) 1.082 0.0450 0.995 1.169

δ 0.075 0.0050 0.065 0.085

μ (for RA) 0.919 0.0300 0.861 0.977

ν (for DR) 0.005 0.0029 0.000 0.011

Under 50 years old

τ 0.355 0.0420 0.342 0.455

γ 0.874 0.0090 0.855 0.892

EIS (1/γ) 1.144 0.0123 1.120 1.169

δ 0.076 0.0039 0.068 0.083

μ (for RA) 0.845 0.0240 0.801 0.894

ν (for DR) 0.010 0.0009 0.008 0.012

Above 50 years old

τ 0.455 0.0119 0.444 0.468

γ 0.920 0.0090 0.902 0.937

EIS (1/γ) 1.087 0.0106 1.066 1.108

δ 0.082 0.0045 0.073 0.091

μ (for RA) 0.952 0.0350 0.882 1.021

ν (for DR) 0.005 0.0007 0.004 0.007
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7 | CONCLUSION

Risk aversion, time preferences and elasticity of intertem-
poral substitution (EIS) are intertwined implying that
identifying each parameter separately is a difficult task in
dynamic settings. This paper elicits these parameters that
characterize the three dimensions of intertemporal utility
functions using dynamic QP theory. Under this approach,
individuals exhibit preferences such that their risk atti-
tude coefficient is driven by the quantile parameter
τ� 0,1ð Þ. This distinct feature of the QP model of individ-
ual's behaviour allows for the separation between the
three parameters of interest.

Using experimental data from Harrison et al.
(2005), we have estimated these parameters. Our
results provide interesting insights that reveal similari-
ties and differences with the standard expected utility
paradigm. We find a slightly lower discount rate than
in most of the related literature. These estimates sug-
gest that individuals are patient and discount similarly
income received in different instances into the future.
The risk aversion coefficient, which is captured by the
quantile τ, reveals mild risk aversion of individuals par-
ticipating in the experiment given by a quantile τ¼ 0:45.
The estimate of the EIS is slightly larger than one, sug-
gesting that the curvature of individual's utility over time
is somewhat close to linear, but statistically significantly
concave, as shown in recent experimental studies. This
estimate for the elasticity of intertemporal substitution is
in line with recent empirical literature on long-risks asset
pricing models, but contrasts with values reported by
studies using observational disaggregated data, which in
general, find an elasticity smaller than one—see,
e.g. Thimme (2017) for a survey of the literature on the
EIS coefficient.

The empirical results in this paper highlight the
importance of considering QP as an alternative paradigm
to the EU model in dynamic settings. These empirical
findings obtained from applying QP to a widely explored
experimental study provide further insight into individ-
uals' discount factors and the EIS in models in which the
latter parameter is not mechanically linked to the con-
cavity of the utility function.

Of course, the QP model needs more investigation by
the empirical community. To this date, only de Castro,
Galvao, Kim, Montes-Rojas and Olmo (2022) and de
Castro, Galvao, Noussair, and Qiao (2022) study QP in a
lab setting. It would be desirable to make a more com-
prehensive analysis of these preferences using experi-
mental procedures, especially comparing them to other
preferences like rank-dependent utility (RDU) and pros-
pect theory (PT). We leave those comparisons for future
research.
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ENDNOTES
1 Indeed, those preferences are monotonic only in special cases—
see details on Bommier et al. (2017). These authors also discuss a
particular class of monotonic recursive utility models given by
the risk-sensitive preferences introduced in Hansen and Sargent
(1995). An early strategy to differentiate between risk aversion
and EIS is found in Selden (1978). This author introduces the
idea of ordinal certainty equivalent that departs from
the EU. This strategy is, however, criticized by Epstein and Zin
(1989) by noting that this approach is not dynamically consistent
and the estimated equations are applicable only to a naive con-
sumer who continually ignores the fact that plans formulated at
any given time will generally not be carried out in the future.

2 See de Castro and Galvao (2019, 2021) for a discussion of
dynamic QP models. Manski (1988) was the first to study the
properties of QP, which were later axiomatized by Chambers
(2009), Rostek (2010) and de Castro and Galvao (2021). Recently,
models of QP have been attracting attention, see e.g. Bhattacharya
(2009) and Giovannetti (2013), Baruník and Čech (2021), Long et al.
(2021), and Chen et al. (2021), Baruník and Nevrla (2022). From an
experimental point of view, de Castro, Galvao, Noussair, and Qiao
(2022) show evidence that the behaviour of between 30% and 50% of
the individuals in their experiment can be better described with QP
rather than EU.

3 Independence is assumed here just for simplicity of exposition,
but not required in the general model below.

4 Virtually, all analyses of intertemporal choice assume both
diminishing marginal utility function and positive time prefer-
ence. These two assumptions create opposing forces in intertem-
poral choice: diminishing marginal utility motivates spreading
consumption over time, while positive time preference motivates
concentrating consumption in the present. Since economic
agents do, in fact, spread consumption over time, the assumption
of diminishing marginal utility seems strongly justified. This
assumption is equivalent to considering an instantaneous utility
function that is concave. Unfortunately, in standard EU models,
an instantaneous concave utility function also reflects the degree
of individuals' risk aversion in an atemporal setting.
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5 This experiment considers binary choices characterized by small
sooner/large later payoffs and does not allow subjects to express
any preference for mixtures of strategies. This approach yields
corner solutions where utility and discounting are maximally
confounded, hence our interest in this experimental setup.
Andreoni and Sprenger (2012a) propose an alternative methodol-
ogy that allows the selection of mixtures of choices and, in turn,
the estimation of the curvature of the utility function reflecting
intertemporal substitution.

6 Variation in interest rates and time horizons for identification of
the discount factor and the EIS is also considered in early work
by Barsky et al. (1997).

7 The summary of published discount rates reported in Table 1 of
Frederick et al. (2002) suggests that an estimate of the discount
rate of 0.075 can be considered as indicative of a patient attitude
and is well below the majority of estimates found in the literature
using experimental and field data.

8 Such large rates are often attributed to present-biased discount-
ing and are at odds with aggregate models of discounting. The
latter models imply much lower annual discount rates
(Cagetti, 2003; Gourinchas & Parker, 2002).

9 The variables xt and rt are, respectively, the state and the shock
in period t, both of which are known by the decision maker at
the beginning of the period.

10 As discussed in Section 2.2, the attitude towards risk is captured
by τ in the quantile model.

11 Another interpretation of the EIS is that it measures the sensitiv-
ity of consumption growth to changes in the interest rate (the
return of investment opportunities).

12 The data used in this paper is available at https://www.
econometricsociety.org/publications/econometrica/2008/05/01/
eliciting-risk-and-time-preferences.

13 Data are collected in the field in Denmark to obtain a sample
that offers a wider range of individual sociodemographic charac-
teristics than usually found in subject pools recruited in colleges,
as well as a sample that can be used to make inferences about
the preferences of the adult population of Denmark.

14 Cohen et al. (2020) note the differences between considering con-
sumption and income as arguments of the period utility function.
Nevertheless, these authors acknowledge that because of the
methodological simplicity of using monetary outcomes, the latter
framework remains the most widely used paradigm for estimat-
ing time preferences.

15 For the first experiment in Andersen et al. (2008), which analyses
static risk aversion for the EU case, this expression is equivalent

to ΔVRA
AB γ,μð Þ¼ EUBð Þ1=μ

EUAð Þ1=μþ EUBð Þ1=μ.
16 Notice that, for the time discount factor and EIS, the relevant

expression to obtain the likelihood function is (27) in the QP do
not affect the PV problem where there is no uncertainty in the
options. The joint likelihood function is obtained from the sum
of the likelihoods as

17 Since the objective function is non-smooth, the value of τ that
maximizes the likelihood function lies in the interval 0:41,0:50½ �,
we report the middle point (mean or median) of the interval as a
point estimate.
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APPENDIX A: On the generalized expected utility
model.

In this appendix, we discuss in more detail the model
used by Andersen et al. (2018), which is named general-
ized expected utility model by DeJarnet et al. (2020). In
order to describe their model in a simple setting, let us
consider consumption ct and ct0 in the dates t and t0 > t.
This consumption is evaluated by a utility function
given by:

U ct,ct0ð Þ � φ Dtu ctð ÞþDt0u ct0ð Þð Þ½ �, ð30Þ

where  �½ � is an operator (further discussed below), Dt is
the discounting factor for time t and φ :ℝ!ℝ and
u :ℝ!ℝ are functions.

In most of their paper, Dt ¼ δt, for some constant dis-
counting rate δ>0, that is, they adopt the standard expo-
nential discounting. However, in their Section 5.4 they
discuss other forms of discounting, including hyperbolic.
Similarly, most of the paper considers  �½ � as the expecta-
tion, but in Section 5.5, they discuss  �½ � as an operator
distorting probabilities in such a way that (30) becomes a
variation of rank dependent utility. This is a variation of
the rank dependent utility model because the function
φ :ℝ!ℝ is not necessarily the identity (or a linear func-
tion). Indeed, (30) does not lead to expected utility or
rank-dependent utility if φ is not linear. However, (30) is
dynamically consistent only if φ is linear, as we show in
section 8.1 below. On the other hand, if φ is linear, then
(30) cannot separate risk aversion from the elasticity of
intertemporal substitution (EIS). In other words, (30) does
not allow dynamic consistency and the separation of risk
aversion and EIS at the same time.

The shortcomings of the model (30) is not restricted
to dynamic consistency. In the more familiar case in
which  is just the expectation, Epstein and Zin (1989,
p. 951–2) discuss several problems with these preferences.
For instance, the preference ordering at time t0 would
depend upon past consumption t< t0 in such a way that
‘the dependence is greater as the past becomes more dis-
tant’ (emphasis in the original). These problems were
used by Epstein and Zin (1989) to support the advantages
of their model.

We make those observations to warn the experimen-
tal community that the study of the three parameters of
interest (discounting rate, risk aversion and elasticity
of intertemporal substitution) can be made with either
the Epstein and Zin (1989) model or the de Castro and
Galvao (2019) model, but the problems discussed above
suggest that it is better to refrain from using model
(30) for this task.

A.1. | Dynamic consistency

In this section, we provide a direct proof that model
(30) is dynamically consistent only if φ is linear. For sim-
plicity, we focus on the case that  is just the standard
expectation.

Let ℱ¼ ℱtf gt¼0,1,…,T be a filtration in Ω, with
ℱ0 ¼ ;,Ωf g, and let ℱt ωð Þ�Ω denote the element of ℱt

containing ω. Let C�ℝ be a nontrivial interval, repre-
senting the set of relevant consumption. Let C denote the
set of random consumption streams c :Ω!CT , which
are adapted to the filtration ℱ. Let ¼ 1,…,Tf g. Con-
sider a set of preferences over C denoted by �t,ω, for each
t� and ω�Ω. The following is the standard definition
of dynamic consistency, as can be found in Epstein and
Schneider (2003) and Maccheroni et al. (2006):

Definition A1. (Dynamic consistency). We
say that �t,ωf g t,ωð Þ � 	Ω is dynamically consis-
tent if the following property holds: for any
t<T, ω�Ω, and c,c0 � C, if ið Þ cs ωð Þ¼ cs0 ωð Þ
for all s⩽ t and ω�Ω; and iið Þ
c�tþ1,ωc0,8ω�ℱ ωð Þ, then c�t,ωc0.

Dynamic consistency is a very desirable property of
models of intertemporal utility. Under time inconsistent
preferences the ranking between two consumption bun-
dles c and c0 may vary over time as these bundles are
evaluated at different points of the filtration. See, among
others, Epstein and Le Breton (1993), Epstein and
Schneider (2003). Its failure can lead to a number of
problems highlighted in the behavioural economics liter-
ature such as the presence of hyperbolic discounting,
ambiguity aversion, see, for instance, Al-Najjar and
Weinstein (2009), or present bias. These empirical phe-
nomena are usually modelled using alternatives to the
specification of the intertemporal utility function
(30) such as hyperbolic and geometric discounting func-
tions. In what follows, we show that the class of GEDU
functions also describes time inconsistent preferences
under general settings, in contrast to what the recent lit-
erature seems to suggest, see, for example, Andersen
et al. (2018).

For simplicity, let Ω be a finite set and φ :ℝþ !ℝ a
real-valued function defined as φ xð Þ¼ xα, for some α �¼ 0.
Furthermore, for each c� C, define the version of the
intertemporal utility function (30) conditional on the fil-
tration ℱt�1 ωð Þ. Then,

Vt,ω cð Þ�E φ
XT
s¼t

1

1þδð Þs�t u csð Þ
 !

jℱt�1 ωð Þ
" #

, ð31Þ
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where u :C!ℝþ is a utility function such that
0,m½ � �u Cð Þ for some m>0. Under these conditions, we
obtain the following result.

Proposition A2. Assume that ℱ is not trivial,
that is, there exists p� 0,1ð Þ and A�ℱT such
that Pr Að Þ¼ p. Define �t,ωf g t,ωð Þ � 1,…,Tf g	Ω by

c�t,ωc
0 ,Vt,ω cð Þ⩾Vt,ω c0ð Þ: ð32Þ

Then, �t,ωf g is dynamically consistent if
and only if α¼ 1, that is, φ is the identity.

Proof. If α¼ 1, then (31) is an expected utility model
and is, therefore, dynamically consistent. Conversely,
assume that �t,ωf g t,ωð Þ � 1,…,Tf g	Ω defined by (32) is
dynamically consistent. For simplicity, we will assume
that T¼ 2; alternatively, consider below only the last and
penultimate periods.

For each y� 0,m½ � �u Cð Þ, consider the lottery Ly that
pays y utils if the event A occurs and 0 otherwise. Let e yð Þ
denote the certainty equivalent of this lottery, that is,

φ e yð Þð Þ¼ pφ yð Þþ 1�pð Þφ 0ð Þ
) e yð Þ¼ pyαð Þ1α ¼ p

1
αy:

Let x � 0,m½ � � u Cð Þ and consider the lottery that pays
x utils in the first period and the lottery Ly in the second
period. Dynamic consistency implies that the utility of
this lottery must be equal to the utility of the lottery that
pays x in the first period and e yð Þ for sure in the second
period. That is, for any x � u Cð Þ,

φ xþ e yð Þ
1þδ

	 

¼ pφ xþ y

1þδ

	 

þ 1�pð Þφ xþ 0

1þδ

	 

) xþ p

1
αy

1þδ

 !α

¼ p xþ y
1þδ

	 
α

þ 1�pð Þ xð Þα:

Since x and y were arbitrary members of
0,m½ � � u Cð Þ, we can take x¼ ky

1þδ for any k�ℝþ and
obtain:

kþp
1
α

� �α
¼ p kþ1ð Þαþ 1�pð Þkα: ð33Þ

It is easy to see that (33) can be satisfied for all k�ℝþ
if and only if α¼ 1.

22 de CASTRO ET AL.

 10991158, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijfe.2879 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [05/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Joint elicitation of elasticity of intertemporal substitution, risk and time preferences
	1  INTRODUCTION
	1.1  Literature review

	2  DYNAMIC QUANTILE MODEL
	2.1  Dynamic model for quantile preferences
	2.2  Risk attitude in the dynamic quantile model
	2.3  Separation of EIS and risk attitude

	3  EXPERIMENTAL PROCEDURES
	4  IDENTIFYING RISK, EIS AND THE DISCOUNT RATE
	4.1  Decision between pairwise risky lotteries
	4.2  Decision between pairwise certain lotteries in different time periods

	5  ESTIMATION METHODS
	6  EMPIRICAL RESULTS
	6.1  Estimating individual's risk aversion, the discount factor and the EIS
	6.2  Empirical evidence on the quantile choice
	6.3  Robustness exercises

	7  CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	Endnotes
	REFERENCES
	APPENDIX A On the generalized expected utility model.
	  Dynamic consistency



