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ABSTRACT
TheH-function of communication theory plays an important role in
the error rate analysis in digital communication with the presence
of additive white Gaussian noise (AWGN) and generalized multipath
fading conditions. In this paper we investigate several convergent
and/or asymptotic expansions ofHp(z, b, η) for some limiting values
of their variables and parameters: large values of z, large values of
p, small values of η, and values of b → 1. We provide explicit and/or
recursive algorithms for the computation of the coefficients of the
expansions. Some numerical examples illustrate the accuracy of the
approximations.
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1. Introduction

TheH-function of communication theory is defined by means of the integral [1, Equation
(4.12)]:

Hp(z, b, η) := (1 − b2)p

2π

∫ η

0

1
1 + x2

1
(1 + b2x2)p

exp
(

−z2

2
1 + x2

1 + b2x2

)
dx, (1.1)

for p ≥ 0, z ≥ 0, η ≥ 0, and 0 ≤ b2 ≤ 1. It may be equivalently written in the form [2,
Equation (2.3)]:

Hp(z, b, η) := (1 − b2)p

2π
exp

(
− z2

2b2

)

×
∫ η

0

1
1 + x2

1
(1 + b2x2)p

exp
(

z2

2b2
1 − b2

1 + b2x2

)
dx. (1.2)

This function arises in the error rate analysis in digital communication with the presence
of additive white Gaussian noise (AWGN) and generalized multipath fading conditions
(see [1,2]). Chapter 4 of monograph [1] is completely devoted to the study of this function.
In [1, Section 4.3], the author provides basic relations and algebraic properties of the H-
function. For example, recurrence relations at b �= 1 and recurrence relations at z = 0 and
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p = n and p = n + 1/2 for n ∈ N are given. Expansions in terms of other special func-
tions are also derived: i) a Fourier series in terms of the generalized Laguerre polynomials
Lpn(z) [3],

Hp(z, b,ϕ) = (1 − b2)p

4π
exp

(
−z2

2

) ∞∑
n=0
(1 − b2)nLp−1

n

(
z2

2

)
Bϕ

(
n + 1

2
, p + 1

2

)
,

where ϕ := arctan(η) and Bz(a, b) is the incomplete beta function [4, Equation (8.17.1)];
ii) a series expansion in terms of the incomplete modified Bessel function In(z,ψ) [1, p.
368] at n ∈ N ∪ {0} and b �= 0,

Hp(z, b,ϕ) = (1 − b2)n

22n+2 exp
(

−1 + b2

4b2
z2

)
Rn(z, b,ϕ),

where

Rn(z, b,ϕ) :=
n−1∑
k=0

(
2n
k

) ∞∑
m=0

εm

(
1 − b
1 + b

)m [
In−k−m

(
1 − b2

4b2
z2, 2ϕ

)

+In−k+m

(
1 − b2

4b2
z2, 2ϕ

)]
+

(
2n
n

) ∞∑
m=0

εm

(
1 − b
1 + b

)m

× Im
(
1 − b2

4b2
z2, 2ϕ

)
,

with ϕ := arctan(bη), ε0 = 1 and εm = 2 for m>0. It is indicated in [1] that these series
are the starting point to establish certain connections between the H-function and other
special functions, such as the generalized Q-function of Marcum, the Owen T-function,
the Gaussian and Nicholson functions and the generalized circular function. The author
also obtains limiting cases of some of the variables and parameters and their application in
problems of calculation of error probability; infinite series containingH-functions; upper
and lower bounds, among others. In [2], new relations for this function are considered,
including differentiation formulas with respect to z, η and b and integration formulas with
respect to z; integral representations, recurrence relations or generating functions. With
regard to series expansions, the authors provide the following expansion in powers of z [2,
p. 4] (convenient for small z):

Hp(z, b, η) = (1 − b2)pη
2π

√
1 + b2η2

∞∑
k=0

(−1/2)k

k!
F1

×
(
1
2
; 1 − k,

1
2

− p;
3
2
;
(b2 − 1)η2

1 + b2η2
,

b2η2

1 + b2η2

)
z2k, (1.3)

where F1(α;β ,β ′; γ ; x, y) is the first Appell function [4, Equation (16.13.1)]. Expan-
sion (1.3) is valid if b2 > (η2 − 1)/(2η2) and may be extended by using formula [5].
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A representation in terms of the confluent Lauricella function is also given [2, Equation
(4.1)],

Hp(z, b, η) = (1 − b2)pη e−z2/2

2π
√
b2η2 + 1



(3)
D

×
(
1
2
,
1
2

− p, 1,
3
2
,

b2η2

b2η2 + 1
,
(b2 − 1)η2

b2η2 + 1
,
(b2 − 1)η2z2

2(b2η2 + 1)

)
, (1.4)

where the function
(3)D is the confluent Lauricella function defined in [6]. Formula (1.4) is
valid if b2 > (η2 − 1)/(2η2), but it may be extended by analytic continuation outside this
region, region of interest in applications [2, p. 5].

In this paper, we investigate new asymptotic approximations of the H-function,
Hp(z, b, η), in certain regions of its variables and parameters. As these variables and param-
eters are related to theRice-Nakagami probability density function (see [1, Chapter 4]) used
in communication theory, in principle, it is of interest to approximate theH-function for
the range of values specified below formula (1.1), that is the range of values with a statis-
tical meaning. In particular, we obtain new analytical expressions in broad regions of the
parameters, and asymptotic approximations in certain limits: large values of z, large values
of p, small values of η and values of b → 1. These expansions, unlike those provided previ-
ously, are given in terms of simpler special functions, many of them, elementary functions.
We provide explicit and/or recursive algorithms for the computation of the coefficients of
the expansions. Some numerical examples illustrate the accuracy of the approximations.

2. Asymptotic expansion for large values of z

We seek for an asymptotic expansion ofHp(z, b, η) for large values of z and fixed p, b and
η. Then, it is convenient to write (1.2) in the form of a Laplace-type integral,

Hp(z, b, η) = (1 − b2)p

2π
exp

(
− z2

2b2

) ∫ η

0
e−z2f (x)g(x) dx, (2.1)

with

f (x) := b2 − 1
2b2

1
1 + b2x2

, g(x) := 1
1 + x2

1
(1 + b2x2)p

.

The absolute minimum of the phase function f (x) on the integration interval is located
at x = 0. Following the standard Laplace asymptotic method, we substitute f (x)− f (0) =
1
2 f

′′(0)t2, with sign(t) = sign(x), which leads to

x = t√
1 − b2t2

.

This substitution let us write (2.1) in the standard form

Hp(z, b, η) = (1 − b2)p

2π
e−

z2
2

∫ η√
1+b2η2

0
e−z2 1−b2

2 t2h(t) dt,

h(t) := (1 − b2t2)p−
1
2

1 + (1 − b2)t2
.

(2.2)
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Now, we consider the MacLaurin series expansion of h(t),

h(t) =
∞∑
n=0
(−1)n(1 − b2)nhn(b, p)t2n, hn(b, p) :=

n∑
k=0

(
p − 1

2
k

) (
b2

1 − b2

)k

. (2.3)

Introducing (2.3) into (2.2) and interchanging sum and integral we obtain

Hp(z, b, η) ∼ (1 − b2)p−
1
2

2
√
2π

e−
z2
2

∞∑
n=0

(−2)n

z2n+1 hn(b, p)γ
(
n + 1

2
,
(1 − b2)η2

2(1 + b2η2)
z2

)
, (2.4)

where γ (a, z) is an incomplete gamma function [4, Equation (8.2.1)]. From Laplace’s
method we know that the right hand side of (2.4) is an asymptotic expansion ofHp(z, b, η)
for large z and fixed and moderate values of p, b and η. Moreover, using that [4, Equations
(8.2.3), (8.11.2)], when z → ∞,

γ

(
n + 1

2
,
(1 − b2)η2

2(1 + b2η2)
z2

)
∼ �

(
n + 1

2

)
+ exponentiallysmallterms,

we derive the following Poincaré-type asymptotic expansion ofHp(z, b, η) for large z and
fixed and moderate values of p, b and η given in terms of inverse powers of z:

Hp(z, b, η) ∼ (1 − b2)p−
1
2

2
√
2π

e−
z2
2

∞∑
n=0
(−2)nhn(b, p)

�
(
n + 1

2
)

z2n+1 . (2.5)

In particular, the first-order asymptotic approximation for large z is given by the following
formula:

Hp(z, b, η) ∼ (1 − b2)p−
1
2

2
√
2π

e−
z2
2

z
. (2.6)

The right hand side of (2.4) is an asymptotic expansion ofHp(z, b, η) for large z. But more-
over, it is convergent, and then constitutes an analytic representation ofHp(z, b, η), when
η2(1 − 2b2) < 1. This can be proved as follows: the radius of the disk of convergence of
the expansion of h(t) in (2.2) at t = 0 is r = min{1/b, 1/√1 − b2}.When η2(1 − 2b2) < 1,
this disk contains the integration interval [0, η/

√
1 + b2η2]. Then, from uniform conver-

gence, when we introduce (2.3) into (2.2) and interchange sum and integral, the equality
in (2.2) remains valid.

In Table 1, we illustrate the accuracy of approximation (2.5) for some large values of z
and moderate values of p, b and η.

Remark 2.1: As indicated in [1,2], theOwenT-function is a special case of theH-function
for b = 0:T(z, η) = Hp(z, 0, η). Then, as a particular case of (2.5), we obtain an asymptotic
expansion of T(z, η) for large values of z and moderate values of η by replacing b = 0
into (2.5):

T(z, η) ∼ e−
z2
2

2
√
2πz

∞∑
n=0
(−2)n

�
(
n + 1

2
)

z2n
,

that was previously obtained in [7, Equation (2.1)].
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Table 1. Relative errors in the computation of Hp(z, b, η) for
p = 3, b = 0.45, η = 1.3 and several values of z by using expan-
sion (2.5) with terms up to n = 4.

z = 5 z = 10 z = 20 z = 40

n = 0 0.62e−01 0.16e−01 0.41e−02 0.10e−02
n = 1 0.75e−02 0.51e−03 0.33e−04 0.21e−05
n = 2 0.14e−02 0.25e−04 0.41e−06 0.64e−08
n = 3 0.37e−03 0.17e−05 0.71e−08 0.28e−10
n = 4 0.13e−03 0.15e−06 0.16e−09 0.16e−12

3. Asymptotic expansion for large values of p

3.1. Asymptotic expansion for large values of p in terms of Gauss hypergeometric
functions

In order to approximateHp(z, b, η) for large values of p and fixed z, b and η, we consider
the integral representation (1.1) written in the form

Hp(z, b, η) = (1 − b2)p

2π

∫ η

0

f (x)
(1 + b2x2)p

dx,

f (x) := 1
1 + x2

exp
(

−z2

2
1 + x2

1 + b2x2

)
.

(3.1)

The maximum of the factor (1 + b2x2)−p = exp{−p log(1 + b2x2)} on the integration
interval in (3.1) is attained at x = 0. Then, following the ideas of Laplace’s method, we
expect that an expansion of the other factor f (x) at x = 0 can provide an asymptotic expan-
sion ofHp(z, b, η) for large p. Then, for N = 1, 2, 3, . . ., we consider the Taylor expansion
of f (x) at x = 0 with the Lagrange form for the Taylor remainder,

f (x) =
N−1∑
n=0

cn(z, b)x2n + rN(x, z, b), rN(x, z, b) = f (2N)(ξ , z, b)
(2N)!

x2N , ξ ∈ (0, η), (3.2)

with

cn(z, b) := (−1)n
n∑

k=0

(−1)kak(z, b), (3.3)

and the coefficients ak(z, b) satisfy, for k = 0, 1, 2, . . ., the recurrence relation

⎧⎨
⎩
2(k + 2)ak+2 + [4b2(k + 1)+ (1 − b2)z2]ak+1 + 2kb4ak = 0,

a0 = e−
z2
2 , a1 = −1 − b2

2
z2 e−

z2
2 .

This recurrence relation can been obtained from the differential equation (1 +
b2x2)2f ′1(x)+ (1 − b2)z2f1(x) = 0 satisfied by the function f1(x) := exp(− z2

2
1+x2
1+b2x2 ).
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Introducing expansion (3.2) into (3.1) and interchanging sum and integral we find

Hp(z, b, η) = (1 − b2)p

2π

N−1∑
n=0

cn(b, z)
η2n+1

2n + 1 2F1

×
(
n + 1

2
, p; n + 3

2
;−b2η2

)
+ RN(p, z, b, η), (3.4)

wihere 2F1(a, b; c; z) is the Gauss hypergeometric function [4, Equation (15.2.1)], and

RN(p, z, b, η) := (1 − b2)p

2π(2N)!

∫ η

0
f (2N)(ξ , z, b)

x2N

(1 + b2x2)p
dx. (3.5)

Since f ∈ C∞([0, η]), we have that |f (2N)(ξ , z, b)| ≤ M̄N(z, b, η) for ξ ∈ (0, η) with
M̄N(z, b, η) > 0 independent of x (and of course of p). Then, we have that [4, Equation
(15.6.1)]

|RN(p, z, b, η)| ≤ M̄N(z, b, η)
(1 − b2)pη2N+1

2π(2N + 1)!

∣∣∣∣2F1
(
N + 1

2
, p;N + 3

2
;−b2η2

)∣∣∣∣ .
From [8, Equation (12.0.6)] and [8, Equations (12.2.1), (12.2.20), (12.1.11)], when p → ∞,

2F1
(
n + 1

2
, p; n + 3

2
;−b2η2

)
∼ �

(
n + 3

2
)

(ηb)2n+1pn+
1
2
. (3.6)

This formula shows that the terms of the expansion (3.4) constitute an asymptotic sequence
for large p. Moreover, it also shows that the remainder term RN(p, z, b, η) can be bounded
in the form

|RN(p, z, b, η)| ≤ MN(z, b, η)

pN+ 1
2

,

withMN(z, b, η) independent of p. Therefore, the right hand side of (3.4) is an asymptotic
expansion ofHp(z, b, η) for large p and fixed and moderate values of z, b and η.

The right hand side of (3.4) is an asymptotic expansion of Hp(z, b, η) for large p. But
moreover, it is convergent, and then constitutes an analytic representation of Hp(z, b, η),
when η < 1. This can be proved as follows: the radius of the disk of convergence of the
expansion of f (x) in (3.1) at x = 0 is r = min{1/b, 1} = 1. When η < 1, this disk contains
the integration interval [0, η]. Then, from uniform convergence, when we introduce (3.2)
into (3.1) and interchange sum and integral, the equality in (3.1) remains valid.

In particular, the first-order asymptotic approximation ofHp(z, b, η) for large p is given
by the following formula:

Hp(z, b, η) ∼ (1 − b2)p e−
z2
2

4b√πp . (3.7)

Table 2 shows the accuracy of approximation (3.4) for different large values of p and
moderate values of z, b and η.
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Table 2. Relative errors in the computation of Hp(z, b, η) for
z = 1.5, b = 0.65, η = 2.6 and several values of p by using expan-
sion (3.4) with terms up to N = 6.

p = 50 p = 100 p = 500 p = 1000

N = 1 0.38e−01 0.19e−01 0.39e−02 0.20e−02
N = 2 0.35e−02 0.89e−03 0.36e−04 0.90e−05
N = 3 0.50e−03 0.62e−04 0.49e−06 0.62e−07
N = 4 0.95e−04 0.57e−05 0.90e−08 0.56e−09
N = 5 0.23e−04 0.67e−06 0.20e−09 0.73e−11
N = 6 0.68e−05 0.94e−07 0.58e−11 0.96e−12

3.2. Asymptotic expansion for large values of p in terms of inverse powers of p

The expansion derived in the previous subsection is given in terms of hypergeometric func-
tions. In this subsection we derive a different asymptotic expansion ofHp(z, b, η) for large
values of p and fixed z, b and η, this time in terms of elementary functions. The key point
is an appropriate change of the integration variable in the integral representation (1.1) that
transforms this integral into a Laplace transform.We consider the change of variable x → t
given by 1 + b2x2 = et , obtaining

Hp(z, b, η) = (1 − b2)pb
4π

e−
z2
2b2

∫ log(1+b2η2)

0

e−pt
√
t
h(t) dt, (3.8)

with

h(t) := 1
1 − (1 − b2) e−t

√
t

et − 1
exp

(
z2

2b2
(1 − b2) e−t

)
. (3.9)

Then, following Watson’s lemma, when we are interested in an asymptotic expansion of
this integral for large p, we must consider the power series expansion of h(t) at t = 0:

h(t) =
∞∑
n=0

en(b, z)tn, (3.10)

where the coefficients en(b, z) are given by

en(b, z) :=
n∑
j=0

⎛
⎝ j∑

k=0

ak(b)cj−k

⎞
⎠ dn−j(b, z), (3.11)

with the coefficients an(b), cn and dn(b, z) satisfying the following respective recurrence
relations for n = 1, 2, 3, . . . ,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(n + 1)b2an+1 + (n + 1 − b2)an +

n−2∑
k=0

k + 1
(n − k)!

ak+1 = 0,

a0 = 1
b2

, a1 = 1
b2

− 1
b4

,
⎧⎪⎪⎨
⎪⎪⎩
cn = − 1

2n

n−1∑
k=0

n + k
(n + 1 − k)!

ck,

c0 = 1,

⎧⎪⎪⎨
⎪⎪⎩
dn = − (1 − b2)z2

2b2n

n−1∑
k=0

(−1)n−1−k

(n − 1 − k)!
dk,

d0 = e
(1−b2)z2

2b2 .
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We have obtained these recurrence relations from the differential equations: (et −
(1 − b2))h′

1(t)+ (1 − b2)h1(t) = 0, with h1(t) := (1 − (1 − b2) e−t)−1; 2t(et − 1)h′
2(t)

− (et − 1 − t et)h2(t) = 0, with h2(t) :=
√
t/(et − 1); h′

3(t)+ z2
2b2 (1 − b2) e−th3(t) = 0,

with h3(t) := exp(z2(1 − b2) e−t/(2b2)).
Introducing expansion (3.10) in (3.8) and interchanging summation and integration we

obtain

Hp(z, b, η) ∼ (1 − b2)pb
4π

e−
z2
2b2

∞∑
n=0

en(b, z)
γ

(
n + 1

2 , p log(1 + b2η2)
)

pn+1/2 . (3.12)

FromWatson’s lemma we know that the right hand side of (3.12) is an asymptotic expan-
sion ofHp(z, b, η) for large p and fixed and moderate values of z, b and η. Moreover, from
[4, Equations (8.2.3), (8.11.2)] we have that, when p → ∞,

γ

(
n + 1

2
, p log(1 + b2η2)

)
∼ �

(
n + 1

2

)
+ exponentiallysmallterms.

Then we finally obtain the Poincaré-type asymptotic expansion

Hp(z, b, η) ∼ (1 − b2)pb
4π

e−
z2
2b2

∞∑
n=0

en(b, z)
�

(
n + 1

2
)

pn+1/2 . (3.13)

The right hand side of (3.13) is an asymptotic expansion ofHp(z, b, η) for large p. Butmore-
over, it is convergent, and then constitutes an analytic representation ofHp(z, b, η), when
(1 + b2η2)(1 − b2) < 1. This can be proved as follows: the radius of the disk of conver-
gence of the expansion of h(t) in (3.9) at t = 0 is r = − log(1 − b2). When (1 + b2η2)(1 −
b2) < 1, this disk contains the integration interval [0, log(1 + b2η2)]. Then, from uniform
convergence, when we introduce (3.10) in (3.8) and interchange sum and integral, the
equality in (3.8) remains valid.

The first-order asymptotic approximation provided by this formula is the same as the
one provided by formula (3.6) given in (3.7).

Remark 3.1: The asymptotic sequence in expansion (3.13), inverse powers of p, is simpler
than the asymptotic sequence (3.6), that consists of hypergeometric functions. As a coun-
terpart, the computation of the coefficients en(b, z) in expansion (3.13) is a little bit more
involved than the computation of the coefficients cn(b, z) in expansion (3.7).

Table 3 illustrates the accuracy of approximation (3.13) for different large values of p
and moderate values of z, b and η.

4. Asymptotic expansion for small values of η

For small values of η we consider the integral representation (1.2) of Hp(z, b, η) and just
compute the MacLaurin series of Hp(z, b, η) at η = 0. Then, we obtain the following
asymptotic expansion ofHp(z, b, η) for small values of η and fixed p, z and b in odd pow-
ers of η, that is convergent for |η| < min{1, 1/b} = 1, and therefore constitute an analytic
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Table 3. Relative errors in the computation of Hp(z, b, η) for
z = 1.5, b = 0.65,η = 2.6 and several values of pby using expan-
sion (3.13) with terms up to n = 5.

p = 50 p = 100 p = 500 p = 1000

n = 0 0.30e−01 0.15e−01 0.31e−02 0.16e−02
n = 1 0.21e−02 0.53e−03 0.22e−04 0.55e−05
n = 2 0.20e−03 0.27e−04 0.22e−06 0.28e−07
n = 3 0.27e−04 0.18e−05 0.30e−08 0.19e−09
n = 4 0.43e−05 0.15e−06 0.50e−10 0.19e−11
n = 5 0.85e−06 0.14e−07 0.94e−12 0.31e−12

Table 4. Relative errors in the computation of Hp(z, b, η) for
p = 3, z = 5.6, b = 0.25 and several values of η by using expan-
sion (4.1) with terms up to n = 3.

η = 0.35 η = 0.1 η = 0.01 η = 0.005

n = 0 0.53e−00 0.53e−01 0.53e−03 0.13e−03
n = 1 0.42e−00 0.26e−02 0.26e−06 0.16e−07
n = 2 0.21e−00 0.10e−03 0.10e−09 0.16e−11
n = 3 0.87e−01 0.33e−05 0.25e−013 0.72e−14

representation ofHp(z, b, η) for |η| < 1,

Hp(z, b, η) = (1 − b2)p

2π
e−

z2
2

∞∑
n=0

cn(p, z, b)
η2n+1

2n + 1
, (4.1)

where the coefficients cn(p, z, b) are given by

cn(p, z, b) :=
n∑
j=0

⎛
⎝ j∑

k=0

(−1)j−k
(−p

k

)
b2k

⎞
⎠ an−j(b, z), (4.2)

and an(b, z) satisfy, for n = 2, 3, 4, . . ., the recurrence relation⎧⎨
⎩
2nan + (

4b2(n − 1)+ z2(1 − b2)
)
an−1 + 2b4(n − 2)an−2 = 0,

a0 = 1, a1 = − (1 − b2)z2

2
.

This recurrence relation can be obtained from the differential equation satisfied by the
function f (x) = exp( z2

2b2
1−b2
1+b2x2 ): (1 + b2x2)2f ′(x)+ z2(1 − b2)xf (x) = 0.

In Table 4 we illustrate the accuracy of approximation (4.1) for different small values of
η and moderate values of p, z and b.

Remark 4.1: As in Remark 2.1, from (4.1) we can obtain a convergent expansion of the
Owen T-function for |η| < 1. Replacing b = 0 into (4.1), we find

T(z, η) = e−
z2
2

2

∞∑
n=0

c̃n(z)
η2n+1

2n + 1
, c̃n(z) :=

n∑
j=0
(−1)jãn−j(z), (4.3)
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where ãn(z) satisfy, for n = 2, 3, 4, . . ., the recurrence relation
⎧⎪⎨
⎪⎩
an = − z2

2n
an−1,

a0 = 1, a1 = −z2

2
.

Using formulas [4, Equations (18.9.1), (18.9.2)] it is straightforward to show that c̃n(z) =
L−n−1
n (z2/2), where Lαn(x) is the Laguerre polynomial. Then, the asymptotic expan-

sion (4.3) is just a reformulation of the one obtained in [7, Equation (5.3)] in terms of
Laguerre polynomials.

5. Asymptotic expansion for b → 1

In order to derive an asymptotic expansion ofHp(z, b, η) for values of b near 1, we consider
the integral representation (1.2) and write

Hp(z, b, η) = (1 − b2)p

2π
exp

(
− z2

2b2

) ∫ η

0
f (x, z, b)

1
1 + x2

1
(1 + b2x2)p

dx, (5.1)

with

f (x, z, b) := exp
(

z2

2b2
1 − b2

1 + b2x2

)
. (5.2)

For b → 1, the argument of this exponencial function becomes small and then it seems
reasonable to expand (5.2) in powers of the argument of the exponential function,

f (x, z, b) =
N−1∑
n=0

z2n

2nb2n
(1 − b2)n

(1 + b2x2)nn!
+ rN(x, z, b), (5.3)

where rN(x, z, b) is the Taylor remainder that we write in the Lagrange form

rN(x, z, b) := eξ

N!
z2N

2Nb2N
(1 − b2)N

(1 + b2x2)N
,

z2

2b2
1 − b2

1 + b2η2
< ξ <

z2

2b2
(1 − b2). (5.4)

Introducing expansion (5.3) into (5.1) and interchanging sum and integral we obtain

Hp(z, b, η) = (1 − b2)p

2π
exp

(
− z2

2b2

) [N−1∑
n=0

z2nη
2nb2n

(1 − b2)n

n!

×F1
(
1
2
; n + p, 1;

3
2
;−b2η2,−η2

)
+ RN(z, b)

]
, (5.5)

where F1(a; b1, b2; c; z1, z2) is the first Appell function [4, Equation (16.13.1)], and

RN(z, b) :=
∫ η

0
rN(x, z, b)

1
1 + x2

1
(1 + b2x2)p

dx. (5.6)
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Table 5. Relative errors in the computation of
Hp(z, b, η) for p = 1, z = 2.1, η = 1.5 and small
values of 1−b by using expansion (5.5) for n = 0,
1, 2, 3.

b = 0.9 b = 0.99 b = 0.999

n = 0 0.35e−00 0.35e−01 0.35e−02
n = 1 0.72e−01 0.66e−03 0.66e−05
n = 2 0.11e−02 0.87e−05 0.85e−08
n = 3 0.12e−03 0.88e−07 0.85e−11

Fix an arbitrary value b0 with 0 < b0 < 1. As the function (1 − b2)/b2 is a decreasing
function of b, we have from (5.4) that, for b ∈ [b0, 1],

0 < ξ < ξ0 := z2

2b20
(1 − b20).

Then, for 0 < b0 < b < 1, we can bound eξ ≤ M1(z) in (5.4), withM1(z) independent of
b, and we find

|RN(z, b)| ≤ M1(z)
z2Nη
2Nb2N

(1 + b)N

N!

∣∣∣∣F1
(
1
2
;N + p, 1;

3
2
;−b2η2,−η2

)∣∣∣∣ (1 − b)N . (5.7)

Then, for 0 < b0 < b < 1,

|RN(z, b)| ≤ MN(z, η, p, b0)(1 − b)N , (5.8)

with MN(z, η, p, b0) > 0 independent of b. On the other hand, it is clear that the terms
of the expansion (5.5) constitute and asymptotic sequence for b → 1. Therefore, the right
hand side of (5.5) is an asymptotic expansion ofHp(z, b, η) when b → 1.

In Table 5, we illustrate the accuracy of approximation (5.5) for different small values of
1−b and moderate values of p, z and η.

6. Conclusions

In this paper, we add some more information to the study of theH-function of communi-
cation theoryHp(z, b, η) given in [1,2], introducing new asymptotic expansions in certain
regions of its variables and parameters: large values of z, large values of p, small values of
η and values of b → 1. These expansions are given in terms of simpler special functions,
many of them, elementary functions. Approximations for small p and b are still unknown
and are subject of further investigation.
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