
Citation: Martinez-Baselga, D.;

Riazuelo, L.; Montano, L. Long-

Range Navigation in Complex and

Dynamic Environments with Full-

Stack S-DOVS. Appl. Sci. 2023, 13,

8925. https://doi.org/10.3390/

app13158925

Academic Editors: Juan Jesús

Roldán-Gómez and Mario Andrei

Garzón Oviedo

Received: 8 June 2023

Revised: 25 July 2023

Accepted: 29 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Long-Range Navigation in Complex and Dynamic
Environments with Full-Stack S-DOVS †

Diego Martinez-Baselga * , Luis Riazuelo and Luis Montano

Engineering Research Institute of Aragon (I3A), University of Zaragoza, 50018 Zaragoza, Spain;
riazuelo@unizar.es (L.R.); montano@unizar.es (L.M.)
* Correspondence: diegomartinez@unizar.es
† This paper is an extended version of our paper published in ROBOT2022: Fifth Iberian Robotics Conference:

Advances in Robotics, Zaragoza, Spain, 23–25 November 2022.

Abstract: Robotic autonomous navigation in dynamic environments is a complex problem, as tradi-
tional planners may fail to take dynamic obstacles and their variables into account. The Strategy-based
Dynamic Object Velocity Space (S-DOVS) planner has been proposed as a solution to navigate in such
scenarios. However, it has a number of limitations, such as inability to reach a goal in a large known
map, avoid convex objects, or handle trap situations. In this article, we present a modified version
of the S-DOVS planner that is integrated into a full navigation stack, which includes a localization
system, obstacle tracker, and novel waypoint generator. The complete system takes into account
robot kinodynamic constraints and is capable of navigating through large scenarios with known map
information in the presence of dynamic obstacles. Extensive simulation and ground robot experi-
ments demonstrate the effectiveness of our system even in environments with dynamic obstacles and
replanning requirements, and show that our waypoint generator outperforms other approaches in
terms of success rate and time to reach the goal when combined with the S-DOVS planner. Overall,
our work represents a step forward in the development of robust and reliable autonomous navigation
systems for real-world scenarios.

Keywords: autonomous navigation; dynamic environment; waypoint generation; real-world navigation

1. Introduction

Autonomous navigation in dynamic environments is a challenging problem that has
received significant attention in robotics research. Traditional planners have been successful
in navigating in static environments where the robot is aware of the location of all obstacles
and can plan a collision-free path to its destination. However, in dynamic environments
where obstacles can move, the task becomes much more difficult. Dynamic obstacles have
non-zero velocity and can change their position and orientation, which means that the robot
needs to take into account their trajectory and predict their future movements to avoid
collisions. Failure to do so can result in suboptimal behavior or even catastrophic outcomes.

One approach for solving the problem of autonomous navigation in dynamic envi-
ronments is the use of the Dynamic Object Velocity Space (DOVS) [1], which provides a
representation of the environment in terms of the position and velocity of objects. The
Strategy-based Dynamic Object Velocity Space (S-DOVS) planner uses DOVS to plan the
robot’s trajectory taking into account its kinodynamic constraints and the movement of
dynamic obstacles. While S-DOVS has shown promise in aiding robot navigating in dy-
namic environments, it has limitations in navigating through large maps with unknown
environments, avoiding convex objects, and handling trap situations, and is reliant on
perfect knowledge of the environment.

To address these limitations, we propose an improved version of the S-DOVS plan-
ner which is integrated into a full navigation stack that includes an existing localization

Appl. Sci. 2023, 13, 8925. https://doi.org/10.3390/app13158925 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158925
https://doi.org/10.3390/app13158925
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2029-2851
https://orcid.org/0000-0002-6722-5541
https://orcid.org/0000-0002-0449-2300
https://doi.org/10.3390/app13158925
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158925?type=check_update&version=1

Appl. Sci. 2023, 13, 8925 2 of 15

system and global planner, a modified obstacle tracker, and a new waypoint generator.
Our waypoint generator connects the global planner with S-DOVS, enabling the robot to
navigate through large scenarios using known map information while considering robot
kinodynamic constraints and the movements of dynamic obstacles. This provides greater
freedom to the local motion planner to avoid obstacles while following the global path,
and has replanning capability. We compare the waypoint generator to other state-of-the-
art approaches and evaluate our system through extensive quantitative and qualitative
experiments in simulation and with a ground robot, as seen in Figure 1, to demonstrate its
effectiveness in real-world scenarios.

Figure 1. Scenario in which a ground robot must avoid pedestrians while using the map to navigate
and reach a goal that has been sent. RVIZ shows what the robot senses, with the tracked obstacles as
red and green circles, laser measurements in red, the previous trajectory of the robot as a red line, the
costmap in shaded gray and the next waypoint as the yellow arrow.

The contributions of this work are:

• Modification of a state-of-the-art local motion planner used in dynamic environments
(S-DOVS) to improve it and enable it to work in real-world scenarios.

• A novel intermediate waypoint trajectory generator designed to be used with motion
planners in dynamic environments to enhance their capabilities and enable long-
range navigation.

• Adaptation of an existing obstacle tracker for use with S-DOVS, along with a new way-
point generator, a localization system, and an ROS adaptation of all of the components
into a full navigation stack.

• Extensive qualitative and quantitative navigation results that show the system’s
performance in both simulated and real situations.

This paper is an extended version of [2]. Compared to the previous version, the
definition of the system and its theoretical development are more comprehensive. The
proposed novel waypoint generator is greatly improved here by introducing a spatial
horizon to publish the goals that the S-DOVS planner must follow. Moreover, this spa-
tial horizon is variable depending on the importance of the points of the global path.
Furthermore, we have refined and improved the criteria necessary for replanning and
to avoid situations in which the robot is prevented from reaching its goal. In addition,
we have conducted new experiments. In the simulations, we carried out new replan-
ning experiments and used a more challenging scenario. We performed new quantita-
tive experiments to demonstrate our waypoint generator, then compared it with other
the state-of-the-art approaches and with our previous generator presented in [2]. Fi-
nally, we included a new real-world experiment that explicitly required long-range nav-
igation to be combined with dynamic obstacle avoidance. The discussion section is
expanded to include these new results. The repository for this the work can be ac-
cessed at https://github.com/dmartinezbaselga/dynamic_waypoint_generator (accessed
on 29 July 2023).

The paper is organised as follows. Section 2 details the background of the work,
including the related work in Section 2.1 and the basis of the S-DOVS planner in Section 2.2.

https://github.com/dmartinezbaselga/dynamic_waypoint_generator

Appl. Sci. 2023, 13, 8925 3 of 15

Section 3 analyzes the methodology followed to address the problem and the main compo-
nents of the proposed system. Section 4 presents a complete evaluation of the proposed
method, with quantitative and qualitative results in both simulation and the real world,
and discusses the obtained results. Finally, Section 5 concludes the work.

2. Background

In this section, we provide an overview of the current state of navigation in dynamic
environments, the need for further study to address the challenges it faces, and a brief
summary of the model that is the basis of this work.

2.1. Related Work

The complexity of autonomous navigation increases when the environment changes.
Conventional global planning algorithms such as RRT [3] or A∗ [4] and their subsequent
improvements [5,6] compute a plan that the robot should follow regarding the map infor-
mation. Then, a local planner uses the information from the robot’s sensors to consider the
changes in the environment and follow the global plan. An example of a local planner is
the Dynamic Window Approach (DWA) [7], which iteratively computes the velocity of the
robot considering its kinodynamic constraints, the sensed distance to obstacles, and the
position of the goal. This approach was extended in [8] to consider high-velocity motion.
The problem with the DWA is that it does not consider the velocity and trajectories of the
obstacles, only taking into account their current position. Alternative methods to control
the movement of the robot have been proposed. For instance, the robot’s movement can
be represented as the outcome of potential forces, such as the artificial potential fields
proposed in [9]. Other methods model the environment as a spring–mass system (i.e., an
elastic band), as in [10].

Dynamic environments pose a significant challenge for navigation planning, as they
require real-time adaptation to constantly changing surroundings. Planners have been
developed to address this issue, such as those presented in [11–13]. Several of the previously
mentioned approaches for navigating in static environments have been extended to adapt
to changing environments. The DWA can be improved by predicting the future trajectories
of obstacles using holonomic controllers [14] or by adapting the DWA parameters for each
situation using a deep neural network [15]. The Time Elastic Band (TEB) approach [16]
proposed modeling the changes in the environment over time as elastic bands.

Including dynamic obstacles in the model requires a more complex representation
than simply using their positions, as in the static case. A wide range of methods use the
velocity of the obstacles in the model to achieve better performance. Two models that
have been widely used in the literature are the inevitable collision states (ICS) and the
Velocity Obstacle (VO). ICS, introduced in [17], uses the dynamics of the system and the
obstacles to compute future states where a collision is inevitable. This model considers
the time it would take for the robot to stop or avoid the obstacle, which can be essential
in fast-changing environments. On the other hand, VO, introduced in [18], is defined by
the trajectories that the dynamic obstacles have in time. It computes those velocities that
could cause a collision with the robot, after which the velocities that are not inside the
velocity obstacles are available to be chosen by the robot. The VO model ensures that
the robot dynamics are respected, making it a suitable choice for scenarios with complex
obstacle dynamics.

The VO was extended in [1] with Dynamic Object Velocity Space (DOVS), representing
the dynamism and future of the environment. A local planner called S-DOVS that includes
the robot’s kinodynamic constraints was developed. The S-DOVS strategy-based planner
identifies various situations based on the relative variables between the robot and moving
objects, then applies a different action for each situation in order to balance the time to goal
and robot safety.

In recent years, motion planning in dynamic environments has been tackled by learn-
ing approaches such as reinforcement learning, as demonstrated in various works, includ-

Appl. Sci. 2023, 13, 8925 4 of 15

ing [19–21], as well as by [22,23], which also incorporated the DOVS model. However, these
methods face limitations due to the complexity of the real world and the large number
of variables involved. Although they attempt to address the limitations of model-based
approaches, there remains a large gap between the simulators used for training and real-
world scenarios. Simulators do not precisely reproduce the physics and randomness of
real environments, resulting in biased interactions. Furthermore, such approaches assume
that robots do not have acceleration constraints and may choose any velocity at any time,
which is not practical in real life, and often assume that the robot is holonomic or has
perfect knowledge of the environment, which is rarely the case in reality. Several works
have analyzed and explained the limitations of Deep Reinforcement Learning (DRL) in
the real world [24,25], including inability to deal with environmental constraints, the lim-
itations involved in gathering real-world training data, and partial observability. In this
work, we use a modified version of S-DOVS as the local planner to avoid the limitations of
reinforcement learning.

Navigating in highly dynamic environments requires a local planner with the flexibility
to reactively avoid obstacles, which may cause deviations from the original path. To enable
long-range navigation, a global planner must be integrated into the system. The work
of [26] has demonstrated promising results by subsampling the original path generated
by the global planner. In Refs. [27,28], the authors further improved upon this approach
by introducing spatial horizon subgoals and replanning capabilities. Our proposed work
presents a waypoint generator that utilizes subsampling and other criteria to decrease the
path’s density, as well as replanning capabilities and spatial horizon subgoal generation for
the areas where the intermediate plan is sparse.

2.2. Dynamic Object Velocity Space (DOVS)

The Dynamic Object Velocity Space (DOVS) [1] is a model used in robotic autonomous
navigation to compute safe motion commands within a time horizon. It is based on
the velocity space (VS), which is defined as the set of velocities a robot can reach while
respecting the constraints of the maximum and minimum velocities. DOVS abstracts the
dynamic environment by representing safe and unsafe velocities that the robot can choose
in every sampling period. The model defines the Dynamic Object Velocity (DOV) as the set
of velocities that can lead to a collision with moving obstacles within a time horizon. The
DOVS uses this information to compute safe motion commands for the robot.

To represent moving obstacles, the robot’s size is reduced to a point and the obstacles
are enlarged by the robot radius. The collision band is then defined as the area swept by
the obstacle while it moves. The intersection of the robot’s trajectory with the collision
band defines the possible collision points, as seen in Figure 2. From these points, the
maximum and minimum velocities that lead to collision are computed for every obstacle,
then a dynamic window is used to select safe velocities within the robot’s kinodynamic
constraints for the next step. The DOVS is graphically represented in Figure 3a, with safe
velocities shown in white, unsafe velocities in dark, the dynamic window represented with
a green rhombus, velocities that lead to the goal following a circular path with a magenta
line, and safe velocities that lead to the goal with a green line. The robot can choose from
a set of only eight possible velocities, which include: the current velocity of the robot (1);
the velocities of the extremes of the rhombus, which are the velocities reachable in the next
control period at maximum linear or angular acceleration from the current velocity (2, 3, 4,
5); the minimum and maximum velocities that lead to the goal (6, 7); and the velocity that
leads to the goal when using the current linear velocity (8). These actions are represented
in Figure 3b, with the numbers having the meanings noted above. In our original work, a
planner (S-DOVS) was developed by which the robot selects a velocity based on predefined
strategies designed to balance safety and maximum robot velocity.

Appl. Sci. 2023, 13, 8925 5 of 15

Figure 2. The figure shows how the robot is reduced to a point (red point); the obstacle is enlarged
with the robot radius (gray), its collision band is drawn for its current trajectory, and the intersection
points between two possible trajectories (green) and the collision band are computed in blue.

(a) (b)

Figure 3. Graphical representation of the DOVS model and its action space: (a) DOVS with forbidden
velocities and (b) representation of the action space.

3. Approach

This section outlines the design and analysis procedures followed in this work, the
methodology, and the main components of the designed system.

3.1. Navigation Stack

The algorithm developed in the original program of the work presented in [1] has been
adapted in this work to make it usable on a real robot by using the Robotic Operating System
(ROS), which is an open-source framework for robotic applications. A representation of
the ROS navigation stack is presented in Figure 4, with the main ROS components and
the waypoint generator integrated before the motion planner. The stage simulator [29]
integrated into the ROS was used, which can realistically simulate the robots’ dynamics
and kinematics as well as their sensors and the world’s physics. Two types of agents were
developed: active agents, which use the S-DOVS algorithm for navigation, and passive
agents, which act as dynamic obstacles.

Appl. Sci. 2023, 13, 8925 6 of 15

Simulator or real world

Map

Sensors Odometry
estimation

Laser scan

AMCL

Waypoint
generator

Localization

Velocity
commands Motion planner

Figure 4. Representation of the ROS navigation stack with a waypoint generator.

The modified simulator detects collisions and allows agents to be teleported to start
a new episode without restarting the simulation. The launching of agents and the en-
vironment is performed with an automatic script. This makes conducting qualitative
experiments and comparative navigation systems possible in maps such as the ones shown
in Figure 5a,b. The proposed modifications enabled the program to be usable on a real
robot, making it more practical and realistic.

(a) (b) (c)

Figure 5. Two maps used for quantitative experiments: (a) Single room map, (b) Multi-room map. In
(c), RVIZ shows the AMCL robot estimated pose with a red arrow, the covariance of the estimation in
magenta, the laser scans in red, and the tracked obstacles in red and green circles.

To navigate in a scenario, a robot needs to know its location; however, unlike in
simulations using a centralized program, in the real world the robot’s position is not
known. Therefore, the active agents in our study use sensor data such as 2D LIDAR and
wheel encoders to estimate their location. To achieve localization, we employ Adaptive
Monte Carlo Localization (AMCL) [30] from the ROS navigation stack, which involves
updating and sampling a large number of particles based on laser scans and the odometry
estimation to converge on the robot’s current position. The AMCL requires a static map of
the environment, laser scans, an initial position, and encoder measurements as inputs, and
outputs the robot’s position in the map frame. An example of the AMCL estimated pose of
the robot is seen in Figure 5c.

3.2. Obstacle Tracker and S-DOVS Adaptations

The DOVS model uses the current position, radius, and velocity of obstacles to predict
their trajectory and collision band. The information must be gathered from the LIDAR
sensor. The approach presented in [31] is utilized, which uses laser measurements grouped
to form circles or segments, while an Extended Kalman Filter is used to track measurements

Appl. Sci. 2023, 13, 8925 7 of 15

in time. The approach is extended such the orientation and angular velocity of obstacles
are computed using the direction of the obstacle’s trajectory and tracking of the change in
orientation at a high frequency (25 Hz). Several factors such as spurious measurements
and occlusions make these measurements erroneous or unreliable in particular moments,
specially in the real world. Assuming that dynamic obstacles as people or robots tend
to follow smooth trajectories with no sudden velocity changes, we use the median value
over the few last estimations to reduce the perception errors. The time interval used for
this median filter (applied for both linear and angular velocities) is configurable and set to
0.4 s during the experiments. In this work, we use this approach to track the size, position,
linear velocity, orientation, and angular velocity of obstacles over time, enabling the DOVS
model to predict obstacle behavior accurately. The obstacles tracked by the robot and the
localization estimated by AMCL may be seen in Figure 5c.

We introduced modifications to the original S-DOVS algorithm. The modified S-DOVS
model improves on the initial model by including segment obstacles and removing strate-
gies that lead to trapping situations or small margins to react. The modified model calculates
forbidden velocities for static obstacles differently, considering only trajectories that have a
distance traveled greater than the distance required for the robot to brake multiplied by a
safety factor, following the equation

vsa f e ≤
√

2 · amax · dist, (1)

where amax is the maximum linear acceleration of the robot and dist is the distance from
the robot to the static obstacle following a particular trajectory radius. Thus, the modified
model calculates forbidden velocities for static obstacles less restrictively, allowing the robot
to take more velocities, leading to greater maneuverability and easier obstacle avoidance.

The inclusion of segment obstacles in the DOVS model improves accuracy and elimi-
nates the curvy nature of the initial obstacle model, which needs to fuse circle obstacles in
order to consider walls. The modified model saves the points of the extremes and forbids
any velocity leading to a trajectory that intersects with a point between the extremes. Ad-
ditionally, the behaviors of certain strategies have been changed. When there are no safe
velocities in DOVS, the robot applies maximum deceleration to avoid risky situations that
could lead to running over pedestrians; the previous behavior was to accelerate towards
the closest previous gap. A conservative velocity threshold is set when considering whether
an obstacle is static or dynamic in order to account for estimation errors. Therefore, an
obstacle is considered static if its sensed linear velocity is lower than a threshold, instead of
expecting it to have a complete null velocity.

3.3. Trajectory Waypoint Generator

Reactive planners designed to navigate in dynamic environments use information
about obstacles and their trajectories to avoid obstacles and reach a goal. They are typically
designed to navigate in scenarios where the initial position and goal are connected by a
straight line. However, to navigate in the real world it is useful to have access to a known
map. The robot may encounter large walls that could surround it, or it may become trapped.
A global planner can be used to overcome such problems, enabling long range navigation.
While we used S-DOVS as the local planner here, our approach could be used jointly with
other deep reinforcement learning-based or model-based planners designed to navigate in
dynamic environments. S-DOVS only requires one point as a goal, which can be far from
the initial pose, and plans the trajectory in advance using estimated obstacle velocities.
Moreover, the goal should be far enough to ensure that the local planner has the freedom
to perform collision avoidance maneuvers. Additionally, the original static map may be
updated while the robot navigates. If the robot senses static obstacles, it should take them
into account in the new global map. For example, the robot may attempt to enter a room
through a door, find the door closed, and replan to find an alternate path.

This work uses the A* implementation of the ROS standard move base as a preliminary
global planner, computing an initial global path. The map is kept up to date, with the global

Appl. Sci. 2023, 13, 8925 8 of 15

cost map taking newly seen static obstacles into account and the A* algorithm planning
accordingly. The cost map’s inflation ratio is set to twice the robot’s size, ensuring that the
S-DOVS has adequate space to choose its direction.

In our approach, we consider a spatial horizon dahead to send the next waypoint to
the local motion planner. When the distance from the robot to the current subgoal is less
than dahead, the next subgoal is followed, allowing the motion planner space to maneuver
and deviate from the original path in order to avoid dynamic obstacles. Therefore, the
waypoint generator saves the initial global plan computed by A* as pathg and keeps
sending waypoints regarding the spatial horizon.

Nevertheless, there is a problem with this approach. If dahead is too low, the motion
planner may not maneuver properly, as the robot may not deviate from the global plan. If
dahead is too high, the motion planner may not benefit from the map information and may
not avoid convex obstacles. To solve this problem, our approach computes an auxiliary
path pathaux ⊆ pathg, which selects important waypoints that should not be overlooked.
The value of dahead is high for the points of pathg that do not belong to pathaux and low for
the ones that belong to pathaux; thus, that the robot explicitly reaches the points that make
it navigate through sharp corners or rooms.

To compute pathaux, the waypoint generator performs a downsampling operation,
selecting one point per square meter, ensuring that the path followed is sparse. Intermediate
points in a straight line are removed, as they do not provide any extra information for
motion planning and reaching them would result in suboptimal performance compared to
computing the velocities required to reach the final point. For each set of three points, if
they are in the same line, the point in the middle is removed. This is determined by testing
whether the slope of the line passing through the first and second points is similar to that
of the line passing through the first and third points, using the following equation:

y1 − y2

x1 − x2
≈ y1 − y3

x1 − x3
=⇒ |(y1 − y2)(x1 − x3)− (y1 − y3)(x1 − x2)| < ε, (2)

The robot keeps track of a costmap with the area occupied by the static obstacles,
which is updated with the information received by the sensors. It is initialized using the
static map of the environment. This costmap is dinamycally updated as the robot navigates
and senses the environment. On the one hand, if the LIDAR measurements sense a static
obstacle that had not been previously considered, it is added to the costmap, so that the new
proposed trajectories and waypoints do not intersect with the obstacles. On the other hand,
if no obstacle is detected in a place where an obstacle was supposed to be, the costmap in
that positions is cleared, so that the robot may navigate there. This functionality allows
the robot to, for example, detect whether a door is open or closed and to choose that path
or an alternative one. If there is not any possible path at all, the waypoint generator does
not generate any point. In addition, this algorithm assumes that the static map is known
in advance, but it may work when there is a significant difference between the map and
the environment. The static map is used to initialize the costmap, but, as discussed before,
this costmap is dinamycally updated if the environment is not the same as the costmap.
Thus, as the robot navigates in the environment, the costmap will be more precise and
the performance will improve. Furthermore, the approach could be easily adapted when
the map is unknown, by replacing the map and AMCL localization combination with a
Simultaneous Localization and Mapping (SLAM) algorithm, such as Gmapping [32], which
is publicly available as a ROS node, to build the whole map while the robot navigates.

We provided replanning capabilities to the waypoint generator to ensure that a new
plan is generated if the robot is too far away from the global planner’s plan. This is detected
by measuring the distance from the robot to the segment pathaux joining the last point
reached and the next to be reached. In addition, a new plan is produced if the robot is stuck.
The criteria followed to decide whether the robot is stuck is to check whether its linear
velocity is null for some number of timesteps. Moreover, replanning is conducted the first
time the robot reaches a velocity lower than the threshold. If the robot keeps the same low

Appl. Sci. 2023, 13, 8925 9 of 15

velocity, it does not perform additional replanning, as there are situations in which low
velocities are necessary to avoid collisions. This is intended to avoid situations in which
the robot is completely stuck before they can occur. It is important to note that the new
plan may be similar to the previous one. Therefore, if the robot reaches a low velocity due
to dynamic obstacles which are not included in the cost map, the new plan sent will not
influence the current trajectory of the robot. Furthermore, if it deviates from the original
path due to dynamic obstacles, the new plan recomputed would be similar to the previous
one, except now accounting for the new starting position of the robot in order to adapt the
waypoints to it.

With this approach, the robot follows points that adapt to the S-DOVS trajectory and
replans when the map is updated with new static obstacles that block its way. A high-level
algorithm of the design of the waypoint generator is shown in Algorithm 1.

Algorithm 1: Waypoint generator
Input: Global path pathg, robot distance to goal dgoal
Output: Next subgoal g
Data: dlong,dshort /* Long and short lookahead distances */
pathaux ← subsample_and_remove_straight(pathg)
g← get_ f irst_point(pathg)
while g 6= get_last_point(pathg) do

if g ∈ pathaux then
dahead ← dshort

else
dahead ← dlong

end
if dgoal ≤ dahead then

g← get_next_point(pathg)
end
if robot_is_stuck() ∨ robot_deviates(pathaux) ∨ robot_low_velocity() then

pathg, pathaux ← generate_new_path()
end

end

In Algorithm 1, the robot_is_stuck() function checks whether the robot is completely
stopped due to being trapped. It has a timeout to send a new plan every few time steps until
the robot can move again due to a change in the environment. The function robot_deviates()
checks whether the robot is too far from pathaux; if this is true, a new plan is generated
that better fits the robot’s current position. The function robot_low_velocity() returns a true
value if the robot’s velocity is below the threshold, updating its state in an internal variable
to check whether this is the first time this has occurred. If it passes the threshold again
in subsequent timesteps, the function is returned as false due to the saved internal state.
When the robot’s linear velocity surpasses the threshold again, the internal state is reset
and the function may be returned as true if the condition is fulfilled.

4. Experiments and Discussion

This section analyzes the experiments we conducted to test and validate our system. Videos
of every quantitative and qualitative experiment are provided in Supplementary Video S1.

We test and compare the use of the complete integrated system with the S-DOVS
planner on its own in different maps, our proposed waypoint generator with others of the
state of the art and extensively evaluate the system in both simulation and the real world.
Note that we don’t compare the S-DOVS planner with other local reactive planners such as
RL-DOVS [22], as developing a local planner is not the goal of the paper, and any other
local reactive planner could be used in the system instead of S-DOVS. Common reactive

Appl. Sci. 2023, 13, 8925 10 of 15

planners, by themselves, are limited to handling only a few meters of navigation within
a single room in the real world. As a proof of concept, our experiments demonstrated
paths of up to 15 meters in length, both in simulations and the real world. However, it is
not limited to this distance, as the waypoint generator enables us to generate paths of any
desired length.

4.1. Quantitative Experiments

Our quantitative experiments aimed to evaluate the effectiveness of the global planner
in helping S-DOVS to avoid collisions by utilizing the previous static map information and
adding new static obstacles to the cost map that are avoided with the global plan.

The first experiments compared the use of the waypoint generator in a simple 4 × 4 m2

room as the scenario and in a map with multiple rooms, as shown in Figure 5. Static and
dynamic obstacles were randomly placed, and the robot had to navigate to a goal. Quanti-
tative experiments were performed to measure the differences between navigating with
the S-DOVS by itself and the S-DOVS with the waypoint generator in sets of 200 scenarios
for any number of obstacles in the range of 1 to 15.

The results of the experiments are presented in Table 1. The robot can reach the goal in
more episodes when using the complete navigation stack, even in the map with only one
room. This is because obstacles on the way to the goal can remain static; the global planner
adds them to the cost map, assisting the S-DOVS. In the nine-room map the benefits are
clear, as the S-DOVS has to reactively navigate through the rooms and is unable to, falling
into trap situations from which it is not able to escape. The intersections of the walls are
convex obstacles that a reactive planner may not be able to avoid by itself. Nevertheless,
the intermediate goals sent by the waypoint generator help S-DOVS to avoid the walls
properly. The approaches perform similarly in terms of time on both the single-room map
and multi-room map, although the full system is evidently safer and more successful. The
time comparison is somewhat unfair, as only the successful scenarios are accounted for in
the metrics, and longer scenarios were almost always solved by only the system with the
waypoint generator, meaning that its mean time to reach the goal is much higher.

Table 1. Comparison of success rates (number of success complete system
number of success S-DOVS only) and mean time to reach the goal

(mean time complete system
mean time S-DOVS only) in a map with a single room and a map with nine rooms for the same 200

random scenarios for each number of obstacles.

Map Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Single
Success 1.02 1.12 0.99 1.05 1.02 1.19 1.19 1.02 1.16 1.06 1.23 1.06 1.06 1.29 1.39

Time 1.02 1.01 0.97 0.99 0.98 1.09 1.05 1.00 1.06 1.08 0.93 1.03 0.89 1.06 1.11

Multi
Success 3.09 2.89 3.41 2.84 3.09 4.16 4.11 3.08 3.67 3.21 3.73 2.86 3.93 3.52 3.53

Time 1.09 1.32 1.11 1.07 1.21 1.08 1.13 1.07 0.95 1.11 1.25 1.24 1.10 1.10 1.11

Our approach proposed for the waypoint generator was compared with other state-of-
the-art approaches. We randomly generated 200 scenarios with 5, 10, and 15 obstacles in the
multi-room environment, and gathered success and time metrics using different planners,
plotting the results in Figure 6. The approaches compared here used several alternatives:
using only the final goal and no intermediate waypoints; a simple subsampling of the
original path, as in [26]; using only space–horizon goals, as in [27]; our previous approach
in [2], which did not use importance-varying spacial horizon goals, but included selection
of the points of pathaux of Algorithm 1; and our improved approach presented in this work.
We included replanning with the same criteria in every method; thus, the only difference
was in the selection of the waypoints and the look-ahead distance. The scenarios in which
every approach led to a collision were discarded, as the randomness involved in scenario
generation may have made them unsolvable.

Appl. Sci. 2023, 13, 8925 11 of 15

(a) (b)

Figure 6. Comparison of the performance of different waypoint generators: (a) success rates and
(b) mean time to reach the goal.

The experiments showed that our improved approach outperforms the original version
on both metrics, showing the benefits of the added modifications. The proposed approach
outperforms the other alternatives as well, as it combines their various attributes with
several additional features. In terms of success rate, the improvement is clear. The mean
navigation time was only gathered for the successful episodes in every method, meaning
that the navigation time metrics are influenced by the success rates. On the one hand, when
a method has a low success rate this means that it fails to find a solution in a significant
portion of the trials. Thus, the episodes in which it reaches the goal are the simplest ones,
which leads to shorter average time to reach the goal. On the other hand, planners with
high success rates may spend more time on difficult episodes, leading to higher average
time to reach the goal for successful trials. Even with this caveat, our improved approach
shows lower navigation times than the two approaches with the most similar success rates.
In addition, the results show that the improvements presented in this work clearly improve
on the approach presented in our original conference paper [2].

4.2. Qualitative Experiments

We tested the system in a variety of simulated scenarios. In Figure 7, a scenario was
used in which the system was forced to replan. The robot was placed in the middle of the
central room of a multi-room environment and the goal was placed in a room next to it
blocked by three static obstacles. The robot senses the blocked route and adds it to the
cost map, then the S-DOVS planner reduces its velocity, as it may not be able to avoid the
three obstacles and the walls (i.e., the robot senses that it may become trapped). After the
robot reduces its velocity and before it becomes completely stuck, the waypoint generator
computes a new plan that the robot must follow to be able to reach the goal. In addition to
this scenario, more experiments were performed in a newly designed environment to test
the robot’s navigation in a scenario with differently shaped rooms, narrow corridors, and
moving obstacles, as seen in Figure 8. This scenario poses challenges to the robot that it has
not experience before; nonetheless, the system is able to navigate successfully.

The system was tested on a Turtlebot 2 platform equipped with a Hokuyo 2D-LIDAR
sensor and an NUC with an Intel Core i5-6260U CPU and 8 GB of RAM. The replanning
capability in a real-world scenario was tested in a room connected to a corridor with two
doors. The robot was sent to a goal, then encountered a closed door on the original path.
The system replanned and navigated by an alternative path through the other door, as
shown in Figure 9.

The robot was then tasked to navigate autonomously in a room with human occupants
acting as dynamic obstacles. The robot successfully completed the task by using the whole
integrated system. The goals were dynamically placed in the corners of the window, and
the robot needed to avoid collisions with the humans to reach the goals. An image of this
experiment can be seen in the previously shown Figure 1. In addition, an experiment was
conducted in which the robot was forced to navigate through the corridor, enter the room,

Appl. Sci. 2023, 13, 8925 12 of 15

exit the room, and navigate again through the corridor while avoiding pedestrians in order
to explicitly show a combination of the global planner with the S-DOVS. The intermediate
waypoints sent by the waypoint generator are shown in the visualization in Figure 10.
Videos of every described experiment can be found in Supplementary Video S1.

The successful integration of various components, including the local planner, global
planner, waypoint generator, localization system, and obstacle tracker, was demonstrated
in both simulated and real-world experiments, underscoring the effectiveness of this
integrated approach. The S-DOVS local planner efficiently computes safe motions while
maintaining high velocities whenever possible, enabling it to navigate through moving
obstacles while adhering to the kinodynamic constraints of the robot. This aspect sets
it apart from existing state-of-the-art systems, which often overlook such constraints.
Moreover, S-DOVS adopts a strategy-based planning approach, significantly reducing
the sim2real gap by eliminating the need for real-world data during training, which is a
substantial challenge in the field of robotics.

(a) (b)

Figure 7. Experiment in which the robot senses that the path is blocked and computes a new path:
(a) Before replanning and (b) after replanning. In (a), the robot is accelerating to reach the goal by
moving towards the blocking obstacles. The cost map is updated with the three sensed obstacles that
are blocking its trajectory. After reducing its velocity to avoid collision with the three static obstacles
and the walls, a new path is sent that follows a new trajectory through free space, as seen in (b). This
is the new plan the robot follows to reach the goal.

Figure 8. Here, the robot is navigating in a different map among moving obstacles; it must face
various challenges to reach the goal in the shortest time possible. The goal is located at the square
red point, the green line is the global trajectory planned towards the goal in the workspace, and the
velocity space (VS) depicts the DOVS at the instant in which the robot is at the arrow’s location in
the workspace. The dark area in VS represents the velocities leading to collision with the right wall,
and the green line shows the velocities to move the robot towards the next waypoint on the planned
trajectory from the current velocity, i.e., the center of the rhombus.

Appl. Sci. 2023, 13, 8925 13 of 15

Figure 9. The moment before the robot senses the closed door, adds it to the cost map, and computes
a new path. In the subsequent time steps, it detects that the way is blocked and computes a path
through the other door, which is open.

Figure 10. Experiment in which the robot has to avoid collisions with dynamic obstacles and follow
intermediate waypoints to reach the goal. The path denoted in Algorithm 1 as pathaux is shown in
red, while the green point in pathaux is the current waypoint that the robot is following.

The waypoint generator is a critical component, as it allows the robot to navigate
through multiple rooms and scenarios with different shapes while avoiding static obstacles
and blocking situations, which can frequently occur when using only a local planner.
Additionally, the proposed design allows the local planner to fully exploit its capabilities
by allowing it freedom to maneuver. Our approach outperforms other state-of-the-art
approaches in terms of success rate and time to reach the goal, and is able to work correctly
in real-world situations.

5. Conclusions

This work presents an approach for autonomous navigation in complex and dynamic
environments. The proposed approach integrates the strategies-based S-DOVS method
designed for dynamic scenarios as the local planner, and uses a waypoint generator for
long-range navigation. S-DOVS takes into account the robot’s kinodynamics and the
velocity and position of obstacles to plan the robot’s motion within a time–space horizon,
avoiding dynamic obstacles while balancing safety and ensuring high robot velocities
whenever possible. The waypoint generator generates a set of waypoints based on a static

Appl. Sci. 2023, 13, 8925 14 of 15

environment map, significantly improving the success rate and time to reach the goal with
respect to the case in which the generator is not used. Multiple experiments in simulation
and real-world scenarios demonstrate the effectiveness of our approach. Our system is able
to navigate dense and dynamic scenarios with different shapes while avoiding both static
and dynamic obstacles, performing better than the state-of-the-art techniques used for
comparison. The results of our experiments demonstrate the effectiveness of this approach
for use in real-world applications and populated scenarios.

Future work will include exploring the use of different local planners based on deep
reinforcement learning approaches to further improve the performance of the system.
Moreover, the work could be extended to 3D navigation for use with autonomous drones
that are able to navigate in the presence of people or other drones moving in the vicinity.
Furthermore, approaches as [33,34] could be used to have the actual shape of obstacles on
the environment and improve the robot navigation and obstacle avoidance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13158925/s1, Video S1: supplementary.mp4.

Author Contributions: Conceptualization, D.M.-B., L.R. and L.M.; methodology, D.M.-B., L.R. and
L.M.; software, D.M.-B.; validation, D.M.-B., L.R. and L.M.; formal analysis, D.M.-B., L.R. and L.M.;
investigation, D.M.-B., L.R. and L.M.; resources, D.M.-B.; data curation, D.M.-B.; writing—original
draft preparation, D.M.-B.; writing—review and editing, D.M.-B., L.R. and L.M.; visualization,
D.M.-B.; supervision, L.R. and L.M.; project administration, L.M.; funding acquisition, L.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Spanish projects MCIN/AEI/PID2019-105390RB-
I00 and Aragon Government_FSE-T45_20R.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ROS package corresponding to the waypoint generator imple-
mentations can be accessed at https://github.com/dmartinezbaselga/dynamic_waypoint_generator
(accessed on 29 July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lorente, M.T.; Owen, E.; Montano, L. Model-based robocentric planning and navigation for dynamic environments. Int. J. Robot.

Res. 2018, 37, 867–889. [CrossRef]
2. Martínez, D.; Riazuelo, L.; Montano, L. Full-stack S-DOVS: Autonomous Navigation in Complete Real-World Dynamic Scenarios.

In Proceedings of the ROBOT2022: Fifth Iberian Robotics Conference: Advances in Robotics, Zaragoza, Spain, 23–25 November
2022; Volume 2, pp. 14–25.

3. LaValle, S.M.; Kuffner, J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
4. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
5. Noreen, I.; Khan, A.; Habib, Z. Optimal path planning using RRT* based approaches: A survey and future directions. Int. J. Adv.

Comput. Sci. Appl. 2016, 7, 97–107. [CrossRef]
6. Fareh, R.; Baziyad, M.; Rahman, M.H.; Rabie, T.; Bettayeb, M. Investigating reduced path planning strategy for differential

wheeled mobile robot. Robotica 2020, 38, 235–255. [CrossRef]
7. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.

[CrossRef]
8. Brock, O.; Khatib, O. High-speed navigation using the global dynamic window approach. In Proceedings of the 1999 IEEE

International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 1,
pp. 341–346.

9. Warren, C.W. Global path planning using artificial potential fields. In Proceedings of the 1989 IEEE International Conference on
Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; pp. 316–317.

10. Quinlan, S.; Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the 1993 IEEE International
Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 802–807.

https://www.mdpi.com/article/10.3390/app13158925/s1
https://www.mdpi.com/article/10.3390/app13158925/s1
https://github.com/dmartinezbaselga/dynamic_waypoint_generator
http://doi.org/10.1177/0278364918775520
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.14569/IJACSA.2016.071114
http://dx.doi.org/10.1017/S0263574719000572
http://dx.doi.org/10.1109/100.580977

Appl. Sci. 2023, 13, 8925 15 of 15

11. Stachniss, C.; Burgard, W. An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic en-
vironments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland,
30 September–4 October 2002; Volume 1, pp. 508–513.

12. Minguez, J.; Montano, L. Sensor-based robot motion generation in unknown, dynamic and troublesome scenarios. Robot. Auton.
Syst. 2005, 52, 290–311. [CrossRef]

13. Hsu, D.; Kindel, R.; Latombe, J.C.; Rock, S. Randomized kinodynamic motion planning with moving obstacles. Int. J. Robot. Res.
2002, 21, 233–255. [CrossRef]

14. Missura, M.; Bennewitz, M. Predictive collision avoidance for the dynamic window approach. In Proceedings of the 2019
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8620–8626.

15. Dobrevski, M.; Skočaj, D. Adaptive dynamic window approach for local navigation. In Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020;
pp. 6930–6936.

16. Rösmann, C.; Hoffmann, F.; Bertram, T. Integrated online trajectory planning and optimization in distinctive topologies. Robot.
Auton. Syst. 2017, 88, 142–153. [CrossRef]

17. Fraichard, T.; Asama, H. Inevitable collision states—A step towards safer robots? Adv. Robot. 2004, 18, 1001–1024. [CrossRef]
18. Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 1998, 17, 760–772.

[CrossRef]
19. Shi, H.; Shi, L.; Xu, M.; Hwang, K.S. End-to-End Navigation Strategy with Deep Reinforcement Learning for Mobile Robots.

IEEE Trans. Ind. Inform. 2020, 16, 2393–2402. [CrossRef]
20. Lei, X.; Zhang, Z.; Dong, P. Dynamic path planning of unknown environment based on deep reinforcement learning. J. Robot.

2018, 2018, 5781591.
21. Chen, C.; Liu, Y.; Kreiss, S.; Alahi, A. Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep

reinforcement learning. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20–24 May 2019; pp. 6015–6022.

22. Mackay, A.K.; Riazuelo, L.; Montano, L. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic
Environments. Sensors 2022, 22, 3847. [CrossRef] [PubMed]

23. Martinez, D.; Riazuelo, L.; Montano, L. Deep reinforcement learning oriented for real world dynamic scenarios. arXiv 2022,
arXiv:2210.11392.

24. Ibarz, J.; Tan, J.; Finn, C.; Kalakrishnan, M.; Pastor, P.; Levine, S. How to train your robot with deep reinforcement learning:
Lessons we have learned. Int. J. Robot. Res. 2021, 40, 698–721.

25. Dulac-Arnold, G.; Levine, N.; Mankowitz, D.J.; Li, J.; Paduraru, C.; Gowal, S.; Hester, T. Challenges of real-world reinforcement
learning: Definitions, benchmarks and analysis. Mach. Learn. 2021, 110, 2419–2468. [CrossRef]

26. Guldenring, R.; Görner, M.; Hendrich, N.; Jacobsen, N.J.; Zhang, J. Learning local planners for human-aware navigation in indoor
environments. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las
Vegas, NV, USA, 24 October–24 January 2020; pp. 6053–6060.

27. Kästner, L.; Buiyan, T.; Jiao, L.; Le, T.A.; Zhao, X.; Shen, Z.; Lambrecht, J. Arena-Rosnav: Towards deployment of deep-
reinforcement-learning-based obstacle avoidance into conventional autonomous navigation systems. In Proceedings of the 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October
2021; pp. 6456–6463.

28. Kästner, L.; Bhuiyan, T.; Le, T.A.; Treis, E.; Cox, J.; Meinardus, B.; Kmiecik, J.; Carstens, R.; Pichel, D.; Fatloun, B.; et al. Arena-
bench: A benchmarking suite for obstacle avoidance approaches in highly dynamic environments. IEEE Robot. Autom. Lett. 2022,
7, 9477–9484. [CrossRef]

29. Gerkey, B.; Vaughan, R.T.; Howard, A. The player/stage project: Tools for multi-robot and distributed sensor systems. In
Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, 30 June–3 July 2003; Volume 1,
pp. 317–323.

30. Fox, D. KLD-sampling: Adaptive particle filters and mobile robot localization. Adv. Neural Inf. Process. Syst. (NIPS) 2001,
14, 26–32.

31. Przybyła, M. Detection and tracking of 2D geometric obstacles from LRF data. In Proceedings of the 2017 11th International
Workshop on Robot Motion and Control (RoMoCo), Wasowo Palace, Poland, 3–5 July 2017; pp. 135–141.

32. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans.
Robot. 2007, 23, 34–46. [CrossRef]

33. Khan, A.H.; Li, S.; Luo, X. Obstacle avoidance and tracking control of redundant robotic manipulator: An RNN-based
metaheuristic approach. IEEE Trans. Ind. Inform. 2019, 16, 4670–4680. [CrossRef]

34. Wu, Q.; Shen, X.; Jin, Y.; Chen, Z.; Li, S.; Khan, A.H.; Chen, D. Intelligent beetle antennae search for UAV sensing and avoidance
of obstacles. Sensors 2019, 19, 1758. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.robot.2005.06.001
http://dx.doi.org/10.1177/027836402320556421
http://dx.doi.org/10.1016/j.robot.2016.11.007
http://dx.doi.org/10.1163/1568553042674662
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1109/TII.2019.2936167
http://dx.doi.org/10.3390/s22103847
http://www.ncbi.nlm.nih.gov/pubmed/35632257
http://dx.doi.org/10.1007/s10994-021-05961-4
http://dx.doi.org/10.1109/LRA.2022.3190086
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/TII.2019.2941916
http://dx.doi.org/10.3390/s19081758
http://www.ncbi.nlm.nih.gov/pubmed/31013782

	Introduction
	Background
	Related Work
	Dynamic Object Velocity Space (DOVS)

	Approach
	Navigation Stack
	Obstacle Tracker and S-DOVS Adaptations
	Trajectory Waypoint Generator

	Experiments and Discussion
	Quantitative Experiments
	Qualitative Experiments

	Conclusions
	References

