
Computer Networks 233 (2023) 109868

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A MEC-IIoT intelligent threat detector based on machine learning boosted
tree algorithms
Sergio Ruiz-Villafranca a,∗, José Roldán-Gómez b,1, Javier Carrillo-Mondéjar c,1, Juan Manuel
Castelo Gómez a,1, José Miguel Villalón a,1

a University of Castilla-La Mancha, Albacete Research Institute of Informatics, Investigación 2, Albacete 02071, Spain
b Department of Computer Science, University of Oviedo, Gijón, Spain
c University of Zaragoza, Zaragoza, Spain

A R T I C L E I N F O

Dataset link: https://data.mendeley.com/datas
ets/bk73vtsrpb/draft?a=0146acec-5daa-4968-
ace3-34896ae68530

Keywords:
Cybersecurity
Multi-access Edge Computing
Machine Learning
Intrusion detection system
Industrial Internet of Things

A B S T R A C T

In recent years, new management methods have appeared that mark the beginning of a new industrial
revolution called Industry 4.0 or the Industrial Internet of Things (IIoT). IIoT brings together new emerging
technologies, such as the Internet of Things (IoT), Deep Learning (DL) and Machine Learning (ML), that
contribute to new applications, industrial processes and efficiency management in factories. This combination
of new technologies and contexts is paired with Multi-access Edge Computing (MEC) to reduce costs through
the virtualisation of networks and services. As these new paradigms increase in growth, so does the number
of threats and vulnerabilities, making IIoT a very desirable target for cybercriminals. In addition, IIoT devices
have certain intrinsic limitations, especially due to their limited resources, and this makes it impossible, in
many cases, to detect attacks by using solutions designed for other paradigms. So it is necessary to design,
implement and evaluate new solutions or adapt existing ones. Therefore, this paper proposes an intelligent
threat detector based on boosted tree algorithms. Such detectors have been implemented and evaluated in an
environment specifically designed to test IIoT deployments. In this way, we can learn how these algorithms,
which have been successful in multiple contexts, behave in a paradigm with known constraints. The results
obtained in the study show that our intelligent threat detector achieves a mean efficiency of between 95%–99%
in the F1 Score metric, indicating that it is a good option for implementation in these scenarios.
1. Introduction

Since the First Industrial Revolution until today, with Industry 4.0
or the Industrial Internet of Things (IIoT), the industrial environment
has evolved with the aim of improving the performance and efficiency
of factories. IIoT provides these factories with new emerging tech-
nologies focused mainly on data generation and management, such as
the Internet of Things (IoT), Big Data, next-generation networks with
5G, and new applications in the field of industry, such as artificial
vision, Deep Learning (DL) and Machine Learning (ML) models for the
optimisation of industrial processes [1]. All these technologies working
together has led to the appearance of new types of factories and an im-
provement in traditional industries. In addition, these new technologies
have to work together with traditional Operational Technology (OT)
services until the two have successfully converged. Some authors have

∗ Corresponding author.
E-mail addresses: sergio.rvillafranca@uclm.es (S. Ruiz-Villafranca), roldangjose@uniovi.es (J. Roldán-Gómez), jcarrillo@unizar.es (J. Carrillo-Mondéjar),

juanmanuel.castelo@uclm.es (J.M.C. Gómez), josemiguel.villalon@uclm.es (J.M. Villalón).
1 Contributing author.

proposed to start talking about Industry 5.0 [2], in which the main
goal is to solve the problems related to including IIoT technologies
in traditional industry. The main way to solve these problems is by
carrying out an independent integration for each company focused on
the advantages and functionalities of these technologies. However, it is
not only IIoT itself that has enabled factories to improve: Multi-access
Edge Computing (MEC), which is designed to bring the advantages of
cloud computing closer to companies and give support to emerging
technologies, also enables and improves the functionality of many of
the technologies that incorporate IIoT. Thanks to the amount of com-
puting and networking resources allocated in it, MEC enables the IIoT
to provide better services to factories [3]. These services are mainly
provided through virtualisation technology, which is one of the bases
of MEC, which is an evolved form of edge computing designed to give
mobility support to users and applications. MEC allows computational
vailable online 15 June 2023
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and networking resources to be closer to factories, thus providing ad-
vantages such as low-latency resource access, scalability and anywhere
access to these computational resources. In addition, MEC allows com-
munication between devices regardless of which technology, hardware,
or protocol they use for the transportation of information, thanks to the
abstraction that virtualisation provides [3].

However, IIoT and MEC also introduce some weaknesses related to
cybersecurity [4,5], mainly to the connection of traditional industrial
devices, which are not usually updated with the passing of the years,
and this is paired with the limitations that they have in terms of capa-
bilities. As a result, these devices are the perfect target for attackers,
who can gain access to them and cause huge losses to companies. This
is illustrated by the attacks recollected and detailed in [6,7]. As this
access is sometimes to critical infrastructure, the damage caused by
these attackers can lead to costs for both companies and states. Also,
this problem can be greater if the convergence between Information
Technologies (IT) and OT is not well integrated, as this leads to attack-
ers having new ways of gaining access. Thus, emerging technologies
can introduce new risks into traditional factories if the implementation
does not follow a guide of good practices. Moreover, attackers could
use the security flaws found in MEC in many ways, since the virtual
machines that are run on edge servers may include vulnerabilities of the
hypervisor or virtual operating system. The user devices that connect to
the edge applications could have some software vulnerabilities that can
cause their services to be denied, or even manipulate the application to
gain access to the MEC infrastructure [8].

A threat detector is a type of security software designed to identify
potential security threats and vulnerabilities in a computer system or
network. It works by analysing different types of data and events on the
system or network. These include network traffic, system logs, and user
behaviour. Through the use of algorithms and heuristics, it identifies
patterns and anomalies that may be indicative of a security threat. Once
a potential threat has been detected, the threat detector can take a
number of actions to mitigate it. For example, it can block network
traffic from a suspicious IP address, quarantine a compromised system,
or alert security personnel so that they can investigate further [9].

These attacks have already been carried out on some critical infras-
tructures. The main example is Stuxnext [10], one of the first pieces
of malware focused on OT topologies and devices for the control of
nuclear plants. This shows the importance of having control and contin-
uously analysing industrial topologies in order to try to reduce or avoid
the associated risks and vulnerabilities. In addition, as is mentioned
in [11], Cisco predicted that 50% of the traffic on the Internet in 2023
will correspond to Machine-to-Machine communication protocols. This
kind of traffic is the most commonly used in IIoT scenarios, suggesting
that the attackers will focus their efforts on finding new vulnerabilities
in these protocols and industrial devices exposed to external networks.

In this work, we propose an intelligent threat detector that is based
on a ML models and which uses boosted trees algorithms, as these
perform well when used on classification problems [12]. A comparison
between the different implementations of this kind of algorithm is
needed, because its performance and the requirements to run can deter-
minate which model can be implemented on the architecture. This new
intelligent threat detector implementation allows the automation of the
detection of different attacks over the industrial network. Therefore,
this approach has been deeply studied in other works such as [13,
14], the development, deployment, and implementation in industrial
environments, and the specific requirements found in the topologies
and the protocols used. Our implementation is possible thanks to the
network data generated by the industrial topology designed, this being
made up of an IIoT topology with the OT protocols used on the
network layer, and a MEC topology that provides some services to
the IIoT topology [15]. Also, to solve the problems generated by the
attackers on the network, the intelligent threat detector can either be
implemented in the scenario on the MEC topology or, depending on
the computational resources of the algorithms, on every IIoT device. In
2

accordance with the above, the contributions of this work are:
• Design a IIoT-MEC architecture. To integrate the new intelli-
gent threat detector service into the industrial topologies, it is
necessary to design a new IIoT-MEC architecture to abstract the
integration and facilitate the use and deployment of this service.

• Definition of an IIoT-MEC scenario and the related attacks.
This objective follows the modelling and deployment of an experi-
mentation scenario to obtain useful network data for the training
of the models. The implementation of different kinds of attacks
is needed to train our intelligent threat detector and perform the
classification of malicious packets.

• Elaboration of a custom-built industrial dataset. As in IIoT
topologies most traffic is generated by OT devices, it is necessary
to define and create a dataset with this characteristic, because the
main public datasets used in this kind of study are not focused on
IIoT environments, and they are generally made with IoT traffic.

• Performance analysis of the presented algorithms in threat
detection. Having accomplished the other objectives, it is nec-
essary to analyse the results of the metrics obtained with the
validation of the ML models. These results show which algo-
rithm works better with the classification of benign and malicious
packets.

The rest of this paper is organised as follows. In Section 2, an
analysis is carried out of previous studies on ML-based intelligent threat
detectors and datasets used for training and tests. Section 3 introduces
the technical background associated with the study in this paper. Sec-
tion 4 explains the modules considered in the architecture proposed
in this paper. Section 6 describes the scenario deployed for study, the
applications for each OT protocol, and the attacks implemented on the
topology. In Section 7, the experimentation is described from the data
extraction up to the model validation for each algorithm. Furthermore,
every feature of the dataset is defined together with a description of
every step and metric used for the study. At the end of this section, the
results are shown. Finally, the main conclusions and future work are
presented in Sections 8 and 9, respectively.

2. Related work

In IIoT, adding a cybersecurity system means complex and chal-
lenging tasks for the industrial network administrator. The use of an
intelligent threat detector based on ML techniques like the proposed in
this work or the related work can be run like a service in the industrial
topology or even like functionality on each device. In addition, an
intelligent threat detector must provide a good performance and avoid
errors in the specific industrial scenario. There are some recent related
studies with these solutions for IIoT and IoT scenarios.

In [16], a study is performed using five IoT datasets, two of them
being well-known ones for the benchmarking of this kind of implemen-
tation (NSL-KDD and DS2OS), while the rest are provided from Kaggle
competitions (IoTDevNet, IoTID20 and IoTBot20). These datasets are
used to benchmark different ML and DL techniques, with the ML ones
being Decision Tree (DT), Random Forest (RF), and Support Vector
Machine (SVM), and DL techniques being Deep Neural Network (DNN),
Deep Belief Network (DBN), Long Short-Term Memory (LSTM), Stacked
LSTM and Bi-LSTM. The main goal of this study is to analyse the
performance of each technique under the same conditions and obtain
the best-proposed model for intelligent threat detector implementation
in IoT scenarios. This analysis shows that heavy ML techniques are
incompatible with low-storage IoT devices as they are not able to run
this kind of implementation, a problem that can be solved using edge
computing technologies. On the other hand, the best DL technique, with
a performance of around 99% for each dataset, is Bi-LSTM, which is a
technique compatible with IoT devices. However, the authors cannot
guarantee that the model will work properly with a large amount of

data or another adverse situation in the scenario.
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In [17], the authors present a testbed for the deployment of an
Industrial Control System (ICS) water infrastructure to use for data
extraction and research. This test consists in using typical OT hardware
interconnected with a simulator that introduces different events to
the testbed, such as abnormal water waste or parameter variation.
Once the testbed is deployed, the authors extract and process the
network data generated and used them to implement an intelligent
threat detector applying supervised ML techniques, which are LR, Naive
Bayes (NB), K-Nearest Neighbour (KNN), SVM, DT and RF. The attacks
implemented in the scenario are ping scanner, Man In The Middle
(MITM) using ARP packets, and HTTP web services fuzzing. The results
show a good performance using the datasets prepared. However, the
authors do not detail how the attacks are distributed over them. The
performance of the models are 97.44%, 97.47%, 97.20%, 97.43% and
97,42% for LR, KNN, NB, RF, SVM and ANN, respectively. However,
the results returned by the DT model show overfitting with the training
data, forcing the authors to test the proposed DT model with different
parameters, obtaining a performance of 96.5% for accuracy.

In [18], an intelligent threat detector implementation for a water
critical infrastructure is presented. The intelligent threat detector is
implemented using ML techniques for packet classification, using six of
these kinds of algorithms to establish which has the best performance
for this context. The ML algorithms selected for the experimentation
are LR, Linear Discriminant Analysis (LDA), KNN, Classification And
Regression Tree (CART), NB and SVM, while the dataset used is detailed
in [19], and covers fifteen different anomaly scenarios in this context
for the training and testing of the models. In the experimentation phase,
six different situations are presented, evaluating the behaviour of the
models in each one. The results show that CART has the most consistent
performance in each situation, with a result of 94% for accuracy in the
best case and 81% in the worst. The rest of the models have problems
in terms of performance in situations in which more than one attack is
happening at the same time, reducing the performance to 31% in the
worst case for the NB model.

In [20], the authors define a new intelligent threat detector model
using multiple layers to encode the network data and establish a
decision engine, depending on the packet inserted as input into the in-
telligent threat detector network. Each layer corresponds to a different
step until the decision is made. The first step in the intelligent threat
detector model is the preprocessing stage of the network data, and then
the features extracted are provided to an LSTM network that performs
the function of feature encoder and reconstruction. After that, in the
last step the errors found in the reconstruction are calculated and used
as validation data, making it possible to determine that, if the errors
are higher than a threshold introduced into the decision engine, the
data should be considered abnormal. To validate this implementation,
the authors consider two datasets to test the implementation of this
intelligent threat detector model in an IoT and IIoT context. These
datasets are from a gas pipeline dataset defined in [21] and the well-
known dataset UNSW-NB15. The performance achieved in terms of the
accuracy rate is 97.95% and 97.62% for the gas pipeline dataset and
NSW-NB15, respectively.

In [22], the authors present a custom-built intelligent threat de-
tector that is based on the DL model and which uses a novel Sparse
Evolutionary Training (SET) prediction model, and a modified weights
evolution behaviour as reference, to make a lightweight version for the
IIoT context. To validate the performance of their proposal, the authors
make a comparison with another DL technique called Fully Connected
MultiLayer Perceptron (FC-MLP), looking to achieve better results for
precision, recall, F1 score and accuracy metrics. In addition, the num-
ber of connections between layers in the DL models is considered an
important metric to obtain a lightweight model. The results show that
the proposed SET model needs fewer connections than FC-MLP and
obtains better metrics, achieving a rate of 98%, 97%, 95%, and 95%
for accuracy, recall, precision and F1 score metrics, respectively, in
3

comparison with the DT, SVM, RF, and ANN models with validation
results around of 86% for the same metric for the DS2OS datasets. The
same metrics improve when the CICIDS2017 dataset is used, with a
performance of 99% for each metric considered.

In [23], the authors present an intelligent threat detector based
on Blockchain that is designed to keep the network data that come
from the different devices of an IIoT scenario private and secure. Also,
the intelligent threat detector is developed using an ML technique,
namely KNN, to implement a supervised classification model. The
dataset used to train and validate the proposed intelligent threat detec-
tor is the UNSWNB15 dataset [24], which contains packets from real
IIoT scenarios, including different attacks such as fuzzers, backdoors,
Denial of Service (DoS), exploit attacks, worms and shellcodes. In
the experimentation stage of the paper, the authors do not make a
comparison with other proposals or models, and the results are shown
with the accuracy rate obtained for each class of packet and attack.
Therefore, it is possible to summarise that the mean accuracy rate of the
proposed model is 76.35%. Furthermore, the Blockchain functionality
shows that the algorithm designed and implemented by the authors
does not result in high latency for the different situations included
in the experimentation. This leads to the conclusion that the solution
proposed for the Blockchain algorithm brings many advantages for
privacy and data security without resulting in a high computational
cost and avoiding latency in communications even when the data rate
introduced to the intelligent threat detector node is higher than in
normal situations.

The authors of [25] present a transfer learning based trajectory
anomaly detection (TLTAD) strategy. It is focused on Maritime Trans-
portation Systems (MTS) and IoT environments. The system is imple-
mented in two modules, where the first one performs a pre-processing
of the received trajectory data, such as the longitude, the latitude,
or the speed. In this preprocessing module, a variational autoencoder
is used to discover the correlation between trajectory data, and a
graph variational autoencoder is used to discover similarity among
normal maritime trajectories. Various pre-processing operations to ex-
tract the key features for detecting anomalies in sea trajectories are
also performed. These features, and the information extracted from
the auto-encoders, are used by the second module, which includes a
deep reinforcement learning algorithm, namely TD3, with the aim of
implementing and using the model of the trajectories anomalies. The
results obtained in comparison with the baseline proposed by other
ML techniques show that TLTAD achieves a performance of 96.1%,
95.5%, 94.6%, 95% for the metrics of accuracy, precision, recall, and
F1 score. TLTAD improves the performance of DT, iForest, SVM, LSTM,
Variational Autoencoder (VAE), and Abnormal AIS Data Screening
(AAISS) techniques between 3% and 17% in the metrics previously
detailed for the data set of the Whuhan-Shanghai section of the Yangtze
River.

Furthermore, the secure data aggregation for the new ML appli-
cations deployed in edge environments, which is an interesting topic
that is not covered in our proposal, is another key point in this area.
This feature could be benefited by using blockchain technologies, as
in the work presented in [26], which describes a blockchain-based
system for securing IoT data aggregation in the edge computing Layer.
This system carries out three important processes: the construction of
the block header with a security layer, the partitioning of the end
devices receivers, and the partitioning of the most sensitive tasks with
a focus on the prevention of privacy disclosure. Under the control of
the security layer, the system also considers the implementation of
energy-efficient data aggregation during routing generation using the
improved self-adaptive double bootstrapped deep deterministic policy
gradient (IDDPG). The results have shown that this proposal achieves
a low transaction latency and a high throughput as a strategy to
counter collusion attacks. In addition, the proposal achieves a higher
aggregation ratio with a lower energy cost when compared with other

contemporary data aggregation strategies.
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Table 1
Summary of the proposals from the research community.

Reference Algorithms Dataset Used Highlights

[16] DT, RF, SVM, DNN, DBN, LSTM, Stacked LSTM
and Bi-LSTM

NSL-KDD, DS2OS, IoTDevNet, IoTID20,IoTBot20 Test 3 new IoT-oriented datasets, and the best
model proposed for the analysis obtains an
accuracy of 99% on each dataset.

[17] LR, NB, KNN, SVM, DT, RF and ANN Custom-built dataset with Modbus/TCP and S7
protocols

Obtains a general performance for the models
of 97%.

[18] LR, LDA, KNN, CART, NB and SVM Water Custom Dataset [19] CART proposal model provides the best
performance for most of the situations and
attacks implemented on the dataset.

[20] Author proposed DL model based on LTSM Gas pipeline [21] and UNSWNB-15 The proposed model returns a performance of
98% in terms of accuracy rate.

[22] Author proposed SET-based model, FC-MLP DS2OS, CICIDS2017 The work presents a custom-built DL model for
IIoT scenarios, with an average performance of
99%.

[23] KNN UNSWNB15 Provides an intelligent threat detector solution
with ML and Blockchain technologies working
together to direct identifying and mitigating
processes and methods against attackers.

[25] DT, iForest, SVM, LSTM, VAE, AAISS and
TLTAD proposed

AIS dataset of Wuhan-Shanghai The proposed TLTAD system shows the best
performance compared with the baseline
techniques, obtaining a 95% in the F1-Score
metric.

[26] IDDPG for energy-efficiency design routes to
end-devices

None The present blockchain-based strategy in this
work achieves a low latency and a high
throughput when compared with the current
strategies for the aggregation of data.

Our work GradientBoosting, AdaBoost, XGBoost, Catboost,
LightGBM

Custom-built dataset with Modbus/TCP, OPC
UA and S7COMM protocols

XGBoost model achieves a performance of 99%
in a situation with multiple simultaneous
malicious attacks.
As a summary, Table 1 shows the algorithms, datasets, and high-
ights of the different pieces of research reviewed in this section.
inally, in our work, which is also shown in Table 1, we present an anal-
sis of the different boosted trees algorithms for the implementation
f an intelligent threat detector for MEC-IIoT scenarios, studying the
ultiple situations and possibilities for them. Moreover, the custom-

uilt dataset generated for this study contains multiple OT protocols
ith some cyberattacks that can be present in a MEC-IIoT topology.

. Background

This section introduces the fundamental concepts of MEC, OT pro-
ocols and Machine Learning algorithms, which define the context in
hich the proposal is developed.

.1. Multi-access Edge Computing

MEC is considered the natural development of the edge computing
oncept, and it has been standardised by the European Telecommuni-
ations Standards Institute (ETSI) [27]. This evolution aims to improve
he base function of edge computing by bringing the computational and
etworking capabilities provided by the cloud computing environment
loser to the end users, thus obtaining better results in latency, reducing
he bandwidth saturation of the cloud providers and the deployment of
ew services and applications for companies. In addition, MEC brings
ew advantages to the IoT and IIoT context [28] by providing support
or new network technologies such as 5G, and the management of the
eterogeneous network traffic found in this context, as well as enabling
he use of mobility for applications and users. To provide all this, MEC
ses four virtualisation technologies.

The first one is Network Function Virtualisation (NFV) [29], which
rovides support for the unified management of the heterogeneous
raffic that is present in the IIoT context. Secondly, Software Defined
etworking (SDN) [30] facilitates the definition, administration, and
ontrol of networks, especially when these grow in complexity and
4

the number of devices connected. Finally, Network Slicing (NS) and
Service Function Chaining (SFC) are implemented in MEC to allow
the slicing of network resources into multiple virtual ones, depending
on different parameters such as traffic type or application destination,
among others. SFC facilitates the transition from the original physical
network to the new virtual one defined and deployed [27].

3.2. OT protocols

The OT protocols which are considered for implementation in this
work are:

Modbus/TCP [31]. This is a specification from the serial Modbus proto-
col used by industrial devices, in which Modbus packets are embedded
in TCP segments and the port assigned is the number 502. Also, the
specification maintains the compatibility with serial Modbus with the
upper limitation of the payloads being 253 bytes. The schema of com-
munication used by Modbus protocols is the master–slave approach.

S7 communication. This is a proprietary communication protocol de-
veloped by Siemens for its industrial devices in 1995 and includes
the next updates of the protocol introduced in 2009 and 2012 for the
new generation of industrial devices [32]. The S7 protocol permits the
transfer of critical configuration and operational information, config-
uration details, data blocks with data which can be interpreted by a
Programmable Logic Controller (PLC) and diagnostic information [33].

Open Platform Communications Unified Architecture (OPC UA) proto-
col [34]. OPC UA replaces the traditional OPC standards, it is com-
patible with the traditional client–server communication approach for
information management and access. In these OPC UA applications,
only devices that use the OPC UA protocol can obtain information from
other OPC UA servers, because these servers are configured with a
machine control module from the protocol to retrieve information and

send control signals.
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3.3. Machine Learning algorithms

In this work, we consider the Ensemble Learning algorithms, specif-
ically boosted trees algorithms because , as it shows in [35,36], this
type of algorithm is recommended for the classification of tabular
data. Another relevant aspect to be considered in this experiment is
that the efficiency of these algorithms when used in the IIoT-MEC
context is yet-to-be confirmed due to the novelty of the environment.
The fundamental principle behind the boosting technique is to train
sequential weak models. Each model focuses on classifying categories
that previous models misclassified. This allows each new weak model
to be trained considering the errors of the previous ones. These weak
models are grouped together to obtain a more robust classifier that
will perform better than the weak ones would do separately [37]. The
boosted trees algorithms considered in our study are:

Gradient tree boosting (GTD) algorithm [38]. GTD algorithms integrate
multiple models based on decision trees models. As a core, these
algorithms use the negative gradient of the loss function as a possi-
ble approximation in the generation of the decision trees algorithm
and gradually reduce the loss function. The complexity of the algo-
rithm [39] is given in Eq. (1) and (2), where M is the number of trees
generated, d is the depth of the tree, and n is the size of the dataset
used.

𝐺𝑇𝐷𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑀 ∗ 𝑑 ∗ 𝑛 ∗ 𝑙𝑜𝑔(𝑛)) (1)

𝐺𝑇𝐷𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑀 ∗ 𝑙𝑜𝑔(𝑛)) (2)

XGBoosting algorithm [40]. The XGBoost algorithm is an extension of
the GTD implementation that is designed to avoid the limitations found
in the original algorithm, with the principal aim of providing the
best performance and computational speed. The implementation of this
extension algorithm is developed as an open programming package.
The algorithm complexity [41] for the training and the predition steps
are shown in Eq. (3) and (4), where t is the number of the trees
generated, d is the height of the tree, and x means the number of
non-missing data.

𝑋𝑔𝑏𝑜𝑜𝑠𝑡𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑡 ∗ 𝑑 ∗ 𝑥 ∗ 𝑙𝑜𝑔(𝑛)) (3)

𝑋𝑔𝑏𝑜𝑜𝑠𝑡𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑡 ∗ 𝑑) (4)

AdaBoost algorithm [42]. This algorithm was one of the first practical
boosting algorithms, with many applications in different fields. Over
the years, AdaBoost was established as a learning algorithm for clas-
sification and regression purposes. The complexity of the Adaboost
algorithm [43] is given in Eq. (5) and (6), where n is the size of the
dataset, p is the number of features considered, and t is the number of
trees generated.

𝐴𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑛 ∗ 𝑝 ∗ 𝑡) (5)

𝐴𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑝 ∗ 𝑡) (6)

Catboost algorithm [44]. The Catboost implementation solves the prob-
lem of using categorical features that are allocated in many datasets.
Catboost handles categorical features and uses them to obtain a better
performance during the training stage of the model. Also, it introduces
a new schema to calculate the leaf value of the trees as a way to reduce
the overfitting of the model trained. The algorithm complexity [45]
during the training and prediction is determined by Eq. (7) and (8),
5

where n is the number of features considered during the training stage t
of the model, T is the number of the trees defined, and s means the
number of samples used.

𝐶𝑎𝑡𝑏𝑜𝑜𝑠𝑡𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑇 ∗ 𝑛 ∗ 𝑠) (7)

𝐶𝑎𝑡𝑏𝑜𝑜𝑠𝑡𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑇 ∗ 𝑙𝑜𝑔(𝑛)) (8)

LightGBM algorithm [46]. This is an implementation of a GTD algo-
rithm that is designed to have higher training speeds and efficiency.
Also, LightGBM is designed to work on low-resource devices because it
has lower memory usage than other implementations, better accuracy,
and it is capable of handling large-scale data. The estimated complexity
of the LightGBM model [47] during the training and prediction phase
is presented in Eq. (9), while the prediction complexity is shown in
Eq. (10). The parameter it is the number of iterations of the algorithm,
T is the number of trees generated, l is the number of leaves of the tree,
D is the depth of the tree, and n is the number of features considered.

𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑖𝑡 ∗ 𝑙 ∗ 𝑚𝑎𝑥(𝐷)) (9)

𝑖𝑔ℎ𝑡𝐺𝐵𝑀𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑇 ∗ 𝑙𝑜𝑔(𝑙) ∗ 𝑛) (10)

. Proposed architecture

Taking into consideration the advantages provided by MEC, mainly
he computational resources for the implementation of intelligent threat
etectors based on Machine Learning models, we decided to use it as
he basis for the proposed IIoT architecture in [48]. This architecture is
three-layer definition of the different parts of an IIoT-MEC scenario,

dding a Cloud layer as a way to include the different IoT, Big Data or
torage services that could be used as well.

The proposed architecture is shown in Fig. 1, in which a Control
etwork Node is introduced into the MEC layer for the deployment
f the intelligent threat detector. This node receives a mirror of the
raffic that flows between the IIoT devices and the different MEC
odes. Thanks to the computational and networking resources that
re provided in the MEC topology, it is possible to carry out the
rocessing of the information and the deployment of the ML model for
he detection of any intrusion in real-time. In addition, a monitoring
nd warning service is implemented to use the output of the intelligent
hreat detector to advise the administrators or to activate defensive
easures to avoid possible risks in the topology.

In the IIoT layer, the IIoT devices are connected individually to the
upervisory Control And Data Acquisition (SCADA) node as a way to
stablish communication with another IIoT device or IIoT server which
s in the MEC layer. This SCADA node has the main functionality in
ur architecture of acquiring network data and storing it in a database.
his data is used during the training and testing stages of the ML model

mplemented in the intelligent threat detector.

. Threat model

Considering the IDS architecture described in Section 4, our threat
etector runs in a machine as an application in the MEC station
onnected to the IIoT network. The threat detector receives the traffic
irrored by the ICS of the IIoT topology and then analyses and classifies

he received packet based on the knowledge extracted after training.
f the detector classifies a packet as malicious, it sends an alert to the
onitoring application, which is also running in the MEC station and is

apable of starting some defensive countermeasures to avoid damages
n the IIoT network.

We assume that the node where the IDS is running is not infected
ith any malware, and that during the collection of normal traffic for
raining the model, the workload of the devices in the IIoT topology
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Fig. 1. Proposed IIoT-MEC architecture.
follows a usual behaviour, as well as that these devices are running
correctly. The model is trained with attacks that a malicious attacker
would use in the IIoT. In addition, during the preprocessing of the data,
every packet has been tagged according to the attack from which it
comes from.

With regard to the attacker’s behaviour, their main goal is to scan
the IIoT to get information about the connected devices and alter the
normal operation of the industrial devices, manipulate the information
exchanged between the devices, stop their service through DoS attacks,
and gain access through the web services of the devices. These attacks
focus on the network layer and the web application layer. In addition,
we assume that the attacker is connected to the IIoT network with a
device that has been previously compromised and that the attacks are
sent from this device.

The threat detector is limited by only being able to correctly classify
those attacks from which it has the knowledge extracted during the
training phase, providing incorrect classifications if the attacker carries
out an unknown one. Moreover, the IDS is centralised in the MEC layer,
so, if there is a disconnection between the two networks, the detector
does not work, otherwise the classification could be manipulated by the
attacker and make it possible to hide attacks running on the industrial
network if they were to gain access to the machine running the detector
and infect it.

6. Experimental setup

This section first describes the scenario deployed for the experi-
mentation in this work. Then the implementation of the Modbus/TCP,
OPC UA and S7 protocols is explained with regard to the extraction of
relevant data. Finally, the implementation of cyberattacks is described.

6.1. Scenario network design

For the design, implementation, and deployment of the IIoT-MEC
6

scenario, container technology has been used. The Docker container
engine [49] allows the design of a complete industrial network by
considering its network layer, and using the TCP/IP implementation
of the typical OT protocols. In addition, openLEON [50] is deployed
as well because it is an emulator which deploys a 3-tier data centre,
and LTE communication is possible with the appropriate hardware.
This emulator allows the deployment of infrastructures similar to the
requirements defined for MEC topologies. The use of an emulator
allows the reproducibility and rapid prototyping and design of new
experiments with different requirements, topologies, and services.

The experimental IIoT scenario deployed for this study is shown
in Fig. 2. The IIoT topology is deployed using Docker-Compose, which
is a tool developed to facilitate the deployment of multi-container
applications. For this scenario, the deployment has two S7 nodes, an
OPC UA node, and two Modbus/TCP Nodes. These nodes have been
implemented using the programming language Python to generate the
traffic for each protocol, and a Docker image for each script to easily
deploy the nodes in the IIoT network. The attacker node consists of
a custom container image from the Kali Linux container image, which
contains the most popular pentesting tools and others made specifically
for the experimentation scenario. These custom-built tools made for this
study implement the cyberattacks, which are described in Section 6.3.
Finally, the SCADA node is the host that runs the Docker-Compose
scenario, and it is where the data extraction is performed. In addition,
this node sends the corresponding messages to the OT servers allocated
in the MEC topology.

The MEC topology is deployed using the openLEON emulator, which
employs Containernet [51] and the Ryu [52] controller to provide real
functionality to the SDN controller and the edge nodes.

6.2. Scenario devices design

As is shown in Section 6.1, the implementation for each kind of

device in accordance with its protocol is as follows:
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Fig. 2. IIoT experimentation scenario.
• S7 communication. The writer device sends a random string
of twenty non-numerical characters to the S7 Edge server. This
string is sent in a period of time between one and seven seconds.
Then, the reader device tries to obtain the last message stored
in the S7 server. To properly emulate an S7 Siemens server, this
device has a web server to perform some management task.

• OPC UA. OPC UA server contains storage directories to which
the OPC UA client can connect in order to retrieve and modify
the information that is stored there. This server has only a root
route and a subroute, which contains a variable with a string of
ten alphabetical characters. The variable changes in periods of
between one and nine seconds. The OPC UA node in the industrial
topology connects to the endpoint opened by the OPC UA server
allocated in the MEC topology and obtains the data of the variable
stored.

• Modbus/TCP. The Modbus/TCP reader node reads four bits allo-
cated on the Modbus/TCP edge server. The values of these bits
can only be True, and False. The Modbus/TCP writer changes the
value of the bits for the opposite. The normal performance of this
application is to always obtain all bits with a value of one or with
zero, but never mixed in one reading.
7

As is mentioned in Section 6.1 a SCADA node is present in the IIoT
topology. This node has the functionality of monitoring the packets
that are sent to the device, or to the MEC topology. The tool used is
Wireshark, which allows users to examine the information allocated
in the packets. It also enables the extraction and export of the traffic
monitor to work with it, and with the data desired.

6.3. Cyberattacks design

Once the scenario has been designed and is ready to be deployed, it
is necessary to introduce and implement some cyberattacks to emulate
the situation when an attacker is connected to the IIoT topology.
This allows the attacker to employ different techniques to access the
resources, and information, or to trigger the denial of services in the
topology. This implementation is also necessary in order to introduce
malicious traffic for the training of intelligent threat detector models.
The attacks that are considered in this work are:

• Packet manipulation attack. In this kind of attack, the at-
tacker has the option of performing an MITM attack and sniffing
the traffic between the devices, modifying the data sent by the
devices.
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• Scanning devices. The normal first step taken by the attackers
is scanning the topology in order to find vulnerable devices to
attack. The following diverse ways of scanning for this kind of
malicious traffic:

– TCP connect scan: This is the default scan carried out by
the tools. The attacker sends an SYN request to the target
and closes the connection when the target establishes it.

– TCP SYN scan: The attackers send an SYN request and kill
the communication as soon as they receive the SYN packet
from the target.

– TCP NULL/XMAS/FIN scan: In this kind of scanning, the
attacker sends a TCP packet to the target, changing the flags
of the packet. Depending on the scan type, the flags of
the packet vary. Regardless of what scan technique is used,
if there is not any response from the target, the port is
considered filtered or open.

– UDP scan: UDP packets are sent to the device ports during
this scan. If there is a UDP response from the application,
the port is considered to be open, but if it takes more than
a certain amount of time to receive a response, or if there
is no response, the port is considered to be filtered.

• DoS. This is a typical practice for attackers to interrupt the correct
operation of the devices and services in a factory. The attacks
implemented with the Scapy library with this goal are:

– TCP flood: These attacks consist in sending a huge number
of malicious packets to saturate the interfaces of the target.

• HTTP attacks. Since S7 devices contain a web application to
manage different tasks and monitor parameters. Attacks related to
HTTP services are implemented in the scenario, with them being
the following are:

– Login Brute Force: This attack uses a dictionary of users
and passwords to make multiple login attempts to try to
access devices and services.

– ShellShock: This vulnerability has been found in sev-
eral bash-implemented web applications, some of them in
the administration web application of various Siemens in-
dustrial products. This vulnerability allows the attackers
the injection of commands in the device using malicious
payloads using bash commands.

.4. Hardware configuration

For the deployment of the scenario described in Section 6.1 a laptop
s used, which is equipped with an Intel i7-10875H 2.30 GHz CPU
nd 32 GB of RAM memory, running Windows 10 21H2. To deploy
oth parts of our MEC-IIoT, two virtual machines are launched. The
irst contains the openLEON emulator and IIoT servers to deploy the
EC topology, and the second deploys the IIoT topology using Docker
ompose. The VirtualBox 6.1.16r hypervisor is used to run the virtual
achines. Finally, both virtual machines are deployed in bridged mode,
sing the IP address that is provided by the router of the private
etwork.

. Experimentation and results

This section explains the extraction of the network traffic data from
he scenario described in Section 6.1. Then, the preprocessing stage
orresponding to the cleaning and adequacy of the network data that
s used for the training and testing stages of the model construction
tage is explained. In addition, the results obtained from the different
lassification models are presented and explained, paying special atten-
8

ion to the IIoT-MEC context and considering the different options for
implementation. Finally, this section explains how the pre-processed
data is adapted to be used in a second experiment to test whether the
algorithm can detect anomalies in the MEC-IIoT network.

7.1. Experimentation

In this study, a custom dataset is used to train the models. Firstly,
with no attacks running on the network, it is necessary to collect the
data from our scenario. Once the collection is completed, the attacks
described in Section 6.3 are launched and its traffic is acquired in
different phases in order to capture the malicious traffic and enable
experimentation. After that, a preprocessing stage is carried out to
adapt the data correctly so that they can be used in the training
stage of the different models. The most representative features are also
extracted, using a feature selection process for the detection of attacks.
When the dataset is ready, it is necessary to select the ML models to be
used and train them with the data. Once every model is trained, the last
step is to validate each one using different metrics to determine which
one has better performance for each situation. The process followed
during the experimentation is shown in Fig. 3.

7.1.1. Network deployment
The scenario described in Section 6.1 is deployed for the study. To

do this, it is necessary to deploy the OT services on one virtual machine
with the Docker-Compose tool. Also, for the MEC topology deployment,
in which the OT servers are allocated, it is necessary to initiate another
virtual machine with the implementation of openLEON [50].

7.1.2. Data extraction
When the scenario is deployed correctly, on the SCADA node Wire-

shark is run and configured to extract and export data in a format
compatible with the network data. This data contains the initial set
of features that are considered at the beginning of the training of the
models. The initial features extracted are shown in Table 2, these being
features are the common to the OPC UA, S7 and Modbus/TCP protocols,
while in Tables 3 and 4, the features described are specific to each
protocol.

7.1.3. Data preprocessing
The data extracted in the previous phases is adapted so that it can

be used by the algorithms. Moreover, it is necessary to determine which
techniques should be applied to the data and which features are more
relevant to use. Also, some features are combined and reconsidered to
earn more importance during the training of the models.

This stage is divided into the following steps:

Tagging data. It is necessary first to give the correct tag to each packet
depending on whether it is an attack packet or normal traffic. The tags
used for the study are detailed in Table 5.

Data cleaning. The extracted data have some features with empty
values, usually due to an error during their collection or because a
packet does not have this information. For example, the features that
are related to a specific protocol. In this study, the value −1 is used for
the missing features if these are numerical, and an empty string is used
for categorical features. This also serves as a method for indicating the
model that it is not a relevant feature.

We establish these criteria because some features are directly related
to a specific protocol. For that reason, deleting missing data on a feature
is not possible.

Data transformation. ML algorithms are not able to directly process
alphanumeric data. Therefore, the features that are categorical need to
be transformed. To do so, the binarization technique is used to associate

the categories to a specific number value.
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Fig. 3. Workflow of the experimentation.
Table 2
Common features of TCP/IP protocols.

Feature Description Type

Packet number Indicates the number of a
packet. It is used as index in
the dataset.

Numerical

Time Represents the specific second
in which the packet was
captured during the
extraction.

Numerical

Source IP host source of the packet. Categorical

Destination IP host destination of the
packet.

Categorical

Protocol Protocol that transports the
information of the packet.

Categorical

srcPort Source port used to send the
packet.

Numerical

dstPort Destination port used to
receive the packet.

Numerical

Length Total length in bytes of the
packet.

Numerical

Info Additional information of the
data that transport the packet
captured.

Categorical

tcp_Flags Indicates the states of the
flags of the TCP protocol in
hexadecimal encode.

Categorical

tcp_WindowSize Indicates the size of the
window of the TCP protocol.

Numerical

Delay Indicates in seconds, the
difference in time between
two packets of the same
communication.

Numerical

Feature engineering. Once this data is reviewed, outliers and extraneous
values are removed to avoid impairing model performance. It is possi-
ble to see correlations between features or even typical behaviour in
the data. In the latter case, this behaviour can generate new features
of greater importance than the base feature. These new features only
consider the values of −1 if the base value is null, 0 when the feature
9

Table 3
Specific features of OPC UA and S7 protocols.

Feature Description Type

OPC_Message_Size Message length of the OPC UA
protocol.

Numerical

OPC_Sec.Requ_ID Indicates the ID of the OPC
UA communication that
responds.

Numerical

MessageType Type of message indicated in
the OPC UA protocol.

Categorical

Message_String Content of the message
transported in the OPC UA
protocol.

Categorical

S7_ROSCTR Kind of data that the S7
protocol transports.

Categorical

S7_Data_Length Size of the S7 protocol data. Numerical

S7_Function Function performed by the S7
packet.

Categorical

S7_Message S7 data transported in the
packet encoded in base64.

Categorical

S7_Error_Code Error code from S7 protocol
communication.

Numerical

indicates that some modification or anomalous values are present, and
1 when the value in the base feature is normal according to the habitual
functionality in the scenario. Table 6 shows the features generated
during this step.

Data optimisation. After performing the data preprocessing, the
dataframes must be reviewed, and any wrong data types should be
modified in order to use the memory properly and improve the training
stage of the model.

Feature selection. Not every feature considered in the dataset has the
same importance during the model training. Some of these features
could even lower the performance of the model prediction. In this
regard, it is necessary to select the most influential feature during
prediction.
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Table 4
Specific features of Modbus/TCP and HTTP protocols.

Feature Description Type

Mod_Length Indicates the length of the
Modbus frame.

Numerical

Mod_Transa_ID Shows the Modbus transaction
id.

Numerical

Mod_Function Indicates Modbus action at
destination.

Categorical

Mod_Requ_Frame Number of Modbus packet
that corresponds to the
request.

Numerical

Mod_Req_Delay Time between Modbus
requests.

Numerical

Mod_Data Modbus message transported. Categorical

Http_user Shows the content of
User-Agent from HTTP frame.

Categorical

Http_data Shows the data transported in
the HTTP frame.

Categorical

Table 5
Categories and the tags associated.
Category Tag(s)

Normal traffic final_clean

HTTP attacks brute_http, payload_user_agent

DoS attacks ping_of_death_dos, tcp_flood_dos

Scanner scanner_ack, scanner_fin, scanner_tcp,
scanner_udp, scanner_xmas, scanner_null

Manipulation attack manipulation

Table 6
Features created from the feature engineering step.

Feature Description Type

type_packet Tag to identify whether
the packet is correct or
associated with an attack.

Categorical

Message_String_normal Indicates whether the
message sent is in
accordance with the
normal functionality of the
OPC UA service or not.

Numerical

S7_Message_normal Indicates whether the
message sent is in
accordance with the
normal functionality of the
S7 service or not.

Numerical

Mod_Data_normal Indicates whether the
message sent is in
accordance with the
normal functionality o thef
ModBus/TCP service or
not.

Numerical

Strange_user Indicates whether the
User-Agent parameter from
the HTTP frame
corresponds to a typical
value.

Numerical

Normal_ping Indicates whether the
length of ping is higher
than 98 bytes.

Numerical

7.1.4. Model training
Once the data in our study is ready to be used with the algorithms,

namely XGBoost, AdaBoost, GradientBoost, LightGBM and Catboost,
we distribute them into different dataframes. These dataframes are
prepared to store benign traffic and one type of attack or multiple
10

attacks.
Also, for model training it is necessary to follow certain steps to
improve its performance:

Training and test split dataframes. To carry out the correct training and
validation of the model, the dataframe is divided using a ratio of 70%
for the training set and 30% for the test set.

Parameter tuning. The parameters of the algorithms can be modified to
obtain better performance during the training. Because of the size of the
dataset, to obtain the best parameters for each case, RandomSearchGrid
is used. This technique search multiple times with a random starting
point, allowing to find a global optimum [53]. Once the best parameters
are obtained, they are used during the training of the model.

7.1.5. Model validation
When the training stage is finished with the training data set, and

the features have been selected, and the best parameters have been
found, it is time to validate the predictions of the final model and
see whether it correctly predicts the testing dataset. For the validation
stage, there are several metrics to consider for the evaluation of the
model. All of these use the information in the confusion matrix, which
is made up of the number of True Positive (TP), True Negative (TN),
False Negative (FN) and False Positive (FP), in accordance with the
behaviour of the classification performed by the model for each packet.
The metrics are the following:

Accuracy. This metric refers to the number of correct predictions
against all those made by the model. It is calculated as shown in
Eq. (11). This metric must be studied carefully when the dataset is
unbalanced in terms of categories, as a bad model will tend to predict
the same category over and over again, and still achieve a good value
due to one category being significantly higher than the rest. Knowing
that traffic data are normally unbalanced, it is necessary to use other
metrics to perform a better evaluation.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

(11)

Precision. This metric represents the ratio of the correct positive pre-
dictions against the total ones considered correct by the model. Eq. (12)
shows how to calculate this metric. A high score in this metric means
that the intelligent threat detector does not mismatch benign packets
with malicious ones.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(12)

Recall. This represents the ratio of predictions correctly considered
positive against all of those considered positive. This metric is calcu-
lated with Eq. (13). A high recall score means that the intelligent threat
detector detects a high number of attacks that belong to the kind that
it is trying to detect.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(13)

F1 score. This metric is considered the harmonic mean of the precision
and recall metrics, and the accuracy metric for models trained with
imbalanced datasets. This metric is normally used to validate models
trained with imbalanced datasets because the F1 score gives importance
to the ratio of correct predictions and the detection of anomalous
classes during classification. The formula for this metric is given by
Eq. (14).

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(14)

Cross validation score. This technique makes a partition of the data
into subsets of the same size. The model is validated with one of these
subsets and trained with the rest, repeating this process for each subset.
The technique ends with a summary of the accuracy score obtained in
the executions. This procedure is used to estimate the behaviour of the
model with testing data and new data that could the model receive and
avoid overfitting.
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Table 7
Results obtained for the metrics from the algorithms selected.

Attack Algorithm Precision Recall F1 score Accuracy Cross validation score Training-Test time (s)

Packet manipulation XGBoost 0.94 0.96 0.95 0.9801 0.97568 0,10867
LightGBM 0.96 0.96 0.96 0.9835 0.97696 0,03390
AdaBoost 0.96 0.96 0.96 0.9844 0.97685 3,74168
CatBoost 0.95 0.96 0.96 0.9827 0.97568 1,26268
GradientBoost 0.98 0.98 0.98 0.9833 0.97642 0.90929

Scanning XGBoost 0.92 0.99 0.94 0.9992 0.99954 53,80689
LightGBM 0.91 0.96 0.92 0.9990 0.99938 1,60220
AdaBoost 0.92 0.98 0.94 0.9991 0.9995 199,25673
CatBoost 0.91 0.98 0.94 0.9991 0.99949 24,04382
GradientBoost 1 0.89 0.91 0.9994 0.99964 105,50021

DoS XGBoost 1 0.97 0.98 0.9995 0.99983 0,39597
LightGBM 1 0.95 0.97 0.9991 0.99959 0,08143
AdaBoost 1 0.97 0.98 0.9995 0.99983 6,11796
CatBoost 1 0.97 0.98 0.9995 0.99983 1,24134
GradientBoost 1 0.97 0.98 0.9995 0.99971 2,06225

HTTP application XGBoost 1 1 1 1 1 0,25039
LightGBM 1 1 1 1 1 0,04687
AdaBoost 1 1 1 1 1 0,40935
CatBoost 1 1 1 1 1 0,09632
GradientBoost 1 1 1 1 1 0,20163

Mixed XGBoost 0.99 0.99 0.99 0.9991 0.99935 266,60198
LightGBM 0.98 0.98 0.98 0.9990 0.99925 5,34816
AdaBoost 0.82 0.82 0.82 0.9954 0.9953 442,41913
CatBoost 0.98 0.95 0.96 0.9988 0.99904 108,84218
GradientBoost 0.99 0.93 0.95 0.9980 0.99893 1144,95351
Training-test time. This metric shows how much time in seconds is
aken by each model to carry out the training phase and to make the
rediction during the test phase. The metric shows the complexity of
he algorithm of each technique of the analysis and how this affects in
he performance with the dataset that is used.

.1.6. Results
The Table 7 shows the results at the end of the model validation

or each metric and algorithm used and for each attack to be detected
y the classification model. The analysis is divided into the different
ttacks implemented and introduced in the dataset to obtain the perfor-
ance for each situation and the algorithm complexity of each model

o find the one with the best complexity/performance ratio.

acket manipulation attack. It is possible to see that the best algorithm
or this kind of attack is the GradientBoost algorithm, which achieves
8% for the Precision, Recall and F1 score metrics. Thus showing a
igh rate of detection of the manipulated packet in the scenario, with
nly 2% of missed packets, while the rest of the algorithms obtain a
ercentage of 94%–96%. This makes it possible to have an efficient
ntelligent threat detector for monitoring and advising when this attack
s occurring in the scenario. LightGBM has the better metric in the
ross-validation score, showing good behaviour against overfitting and
he reception of new data, although, the difference with Gradient-
oost for the same metric is not significant. The worst performance is
eturned by the XGBoost algorithm, with 94% for the Precision and
5% for the F1 score, which represents a difference of 4% and 3%,
espectively, with regard to the GradientBoost algorithm. However, this
ifference between the metrics is not so significant as to prevent the use
f the XGBoost model in the implementation of the intelligent threat
etector because the computational cost of XGBoost is lower than that
f GradientBoost.

canner attacks. In general, the results for Precision are between 91%
nd 92%, except for GradientBoost, which returns a result of 100% for
his metric. This could be because it is too complicated for the models
o differentiate a TCP scanner packet from a UDP scanner packet. Thus,
his makes the model generally predict that a UDP scanner packet
s a TCP scanner, returning, as a result, a wrong classification. The
ecall metric results, in comparison with the Precision metric, are very
11
different. GradientBoost obtains the lowest rate at 89%, and XGBoost
achieves the highest at 99%. This means that GradientBoost normally
detects correctly, with a lower rate than the other models if the packet
received is normal or a scanner packet, regardless of whether the
classification of the scanner type is correct or not.

DoS attacks. For this attack, there are not many significant differences
between the algorithms. In fact, XGBoost, AdaBoost, Catboost and
GradientBoost obtain the same results for the Precision, Recall, F1
Score, Accuracy and Cross-Validation Score metrics, with 100%, 97%,
98%, 99.95% and 99.98%, respectively. Furthermore, LightGBM, which
has a Recall metric result of 95%, does not have a significantly worse
performance than the rest of the algorithms, keeping in mind that this
algorithm has lower computational needs on the different devices in an
IIoT or edge environment.

HTTP application attacks. The results for the HTTP attacks imple-
mented in the scenario show that all the algorithms achieve a 100%
for all the metrics. The reason for these results is that the attacks
identified, and the parameters considered for the models make it easy
to detect the attacks, thanks to the information inside the HTTP frames
for payload attacks and the time delay between packets for brute
force attacks. Therefore, the selection of the algorithm should consider
another metric, such as the resources needed to run the model or the
training time of the models, depending on the needs of each scenario
in which the intelligent threat detector will be implemented.

Mixed attacks. This category of brings together the attacks analysed
above in order to study the behaviour of the models when multiple
types of attacks are occurring at the same time. This situation is
probably the most common in a real scenario because factories are
often being attacked by different malicious hackers at the same time,
with these introducing different kinds of malicious packets into the
network. Firstly, it should be highlighted that AdaBoost obtains the
worst performance in general, with 82% for Precision, Recall and F1
score, even though it achieves 99.54% for Accuracy. This fact shows the
importance of carefully choosing which metric is considered during the
analysis. This situation shows that AdaBoost does not correctly predict
the packets, and directly makes the prediction for the biggest category
in the dataframe. Secondly, CatBoost and GradientBoost show a very
similar performance, with a difference of 1%–2% in the Precision,
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Table 8
Results obtained for the anomaly detection.
Algorithm Precision Recall F1-Score Accuracy Cross validation score Training-Test time (s)

XGBoost 0.97 1 0.98 0.99832 0,99788 0.26340
LightGBM 0.97 1 0.98 0.99833 0,99792 0.03446
AdaBoost 0.96 1 0.97 0.99831 0,99796 0.11984
CatBoost 0.96 1 0.97 0.99833 0,99792 0.14545
GradientBoost 0.95 1 0.96 0.99830 0.99788 0.44764
Recall and F1 score metrics. However, XGBoost has the best efficiency,
with 99% in all the metrics. LightGBM obtains a performance of 98%
in the same metrics, making the difference between the algorithms 1%,
and in view of the low resources needed to run it could be considered
a good alternative.

Algorithm complexity analysis. Once the classification performance met-
ics have been analysed depending on the different situations, it is
ecessary to analyse the complexity of the defined models. It is inter-
sting to check the complexity/performance ratio of the algorithms in
rder to select the one that gives the best performance with the least
omplexity. This is even more important in a MEC-IIoT environment
ecause of the type of devices assigned in IIoT topologies and the saving
f resources in the MEC layer. The differences between the models are
ot very significant in terms of classification performance, as shown
n Table 7 and analysed previously. However, if we look at the metric
raining-Test Time, we can see that LightGBM is the best option. This
odel shows the best results in every situation of the experiment with
high margin of 1139 s in the Mixed Attack situation compared with
radientBoost. Otherwise, CatBoost shows the second best results in
eneral, without considering the case of packet manipulation, but it
lso shows a general worse classification performance than LightGBM.

Finally, the analysis of the metrics shows that XGBoost obtains
he best performance for scanning attacks and mixed attacks. Gradi-
ntBoost is better for packet manipulation attacks, while for HTTP
pplication attacks and DoS attacks there are not many differences
etween the algorithms. However, the difference between the best
nd the second-best algorithm according to the metrics is usually 1%–
%. This shows that the selection of the algorithm to use in the
mplementation of the intelligent threat detector should not only take
erformance metrics into account. The resources of the devices that are
o run the intelligent threat detector should be considered because if
he intelligent threat detector is to be deployed on a MEC edge server,
he best algorithm for each case can be implemented. However, if the
ntelligent threat detector is to be deployed on an IIoT device with a
ightweight algorithm, then LightGBM should be used as it has been
howed during the complexity analysis for its complexity/peformance
atio.

.2. Anomalies experimentation

After the classification performance analysis, it is necessary to carry
ut another experiment to prove that the models are able to detect
nomalies in the network scenario. This is important because the
etection of new or zero-day attacks, from which the model has no
nformation, is one of the most important functions that the anomaly
etector should support. In order to do so, the models are given new
raining data in a way that proves whether they are able to detect
nomalies in network traffic caused by attacks they have not been
rained for.

In this section, the experimentation follows the process explained
n Section 7.1 and the steps shown in Fig. 3. However, some modi-
ications have to be made in order to adapt the data obtained from
he MEC-IIoT scenario to the new requirements, which is described in
etail in this section, together with the results of the metrics of each
12

lgorithm.
7.2.1. Dataset elaboration
In order to prepare the dataset, we start with the collected data

and preprocessing, which has been described in detail in Section 7.1.
However, we decided to change the way in which the data is distributed
and tagged when we split the data for the training and testing phases.
With respect to the training dataset, 95% of the data is comprised
of normal traffic, with the remaining 5% being anomalous. For this
experimentation, the training dataset includes manipulation and DoS
attacks. Regarding the testing dataset, with the aim of proving that
all attacks can be detected, even the ones for which the model has not
been trained for, both normal and anomalous traffic for every attack
type present in our experimental setup are included . In addition, in
terms of data preparation, every packet that comes from an attack is
tagged as an anomaly, meaning that the detector is not aware of which
type of attack the packet comes from.

Similar to the workflow described in Section 7.1, the rest of the
process around model tuning and validation is similar.

7.2.2. Results
Table 8 shows the results obtained after performing a model val-

idation for each metric and algorithm used to detect anomalies by
the classification model. The analysis is divided into the detection
performance and the complexity of the algorithm for each of the models
that are implemented.

Anomaly detection. For this experiment, there are not many significant
differences between all the algorithms. The best general results are
provided by XGBoost and LightGBM with 97%, 100%, 98% and 99.83%
respectively in the Precision, Recall, F1 Score and Accuracy metrics.
This shows that these two models can achieve the same performance
in detecting anomalies in the network, and the main difference could
come from the complexity of the algorithm and how the model could
be deployed in the environment. Otherwise, AdaBoost, CatBoost and
GradientBoost achieve similar performance, losing only around 1%–
2% in Precision and F1-Score compared with the best models. Even for
Cross Validation Score, AdaBoost achieves the best result with 99.8%.
However, the difference in this metric with the rest of the models is
0.1%, so it can be said that there is not a huge difference.

Algorithm complexity. As far as the complexity of the models is con-
cerned, it is possible to find differences in the execution of the training
and testing steps. In this experiment, LightGBM achieves the best
results in terms of complexity. It takes it 0.03446 s to complete the
whole process. Compared with the rest of the algorithms that have a
similar classification performance but need more time to perform the
same functionality, this shows the best complexity/performance ratio.
However, it is important to highlight that each result is under one
second of execution, showing that could be possible to deploy these
models in devices with low computational devices.

8. Conclusions

The emergence of the IoT has led to the development of many areas
that did not enjoy the advantages that technology brings with it. One
of them has been the industrial environment, that has seen the IIoT as
the next step in improving the performance and efficiency of factories.
In particular, the use of MEC has been a key factor for the adoption of
emerging technologies by the IIoT. However, this partnership has raised
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some concerns with regard to cybersecurity, as there is a clear lack
of proper measures to detect and stop the attacks that are performed
in this paradigm. Unupdated firmware and software, vulnerable ser-
vices and the impossibility of executing the computational demanding
traditional protection tools are some of the issues that are giving the
opportunity to cybercriminals to cause huge damage and losses for
companies. Consequently, solutions are needed that can help ensure the
data exchanged in the IIoT, as well as the devices and systems in it, is
protected.

Under these circumstances, in this work, Docker-Compose and open-
LEON have been used to deploy an IIoT-MEC scenario with OT services
oriented to the network layer, in order to collect network data traffic
to generate a custom-built dataset. This dataset has been prepared for
use in the training and testing of intelligent threat detectors that are
based on ML algorithms, and designed to detect attacks in the network.
The algorithms selected for the intelligent threat detector implementa-
tion are boosted trees algorithms, specifically XGBoost, LigthGBoost,
CatBoost, AdaBoost and GradientBoost. A study of the performance of
these algorithms has been carried out, looking for correct classification
in the prediction of benign or malicious packets. This study shows how
the algorithms work with different sets of network traffic, with the best
overall performance being obtained by the XGBoost algorithm, which
afford perfectly to be deployed in the MEC topology. However, if the
efficiency-cost ratio is an important parameter, LightGBM is the best
option because of its implementation characteristics. This is important
in IIoT-MEC scenarios because the majority of the devices found there
have low computational resources and some models cannot be run if
they do not match the device’s requirements. The algorithms are
also used in a second experiment to show whether they are able to
detect anomalies in the network traffic resulting from different attacks
for which the models had not been trained on before. In this study,
the boosting algorithms perform equally in all metrics, showing that
these models can detect anomalous network behaviour, with the only
difference being the complexity algorithm. As in the first experiment,
LightGBM again showed the best complexity/performance ratio.

9. Future work

In this section, we discuss some additional lines of research that
could complement or extend our work:

• Increase the range of our study. IIoT not only contains traffic
from OT protocols, but also many M2M protocols. For instance,
MQ Telemetry Transport (MQTT), Constrained Application Pro-
tocol (CoAP), and Advanced Message Queuing Protocol (AMQP)
are typical in IoT environments. Therefore, a new dataset can be
made by including new protocols used in IIoT, and the algorithms
can be analysed again with the new data. Furthermore, new
attacks could be added, looking to run typical attack threads
for OT and IoT devices. These additions will add variety to the
dataset, and therefore to the training of the models, extending
the capabilities of the intelligent threat detector for detecting
new kinds of attacks and possibly obtaining more differences
between the algorithms considered in the new study. Moreover,
other ML algorithms could be added to compare with boosted
trees algorithms.

• Analyse the use of deep learning models. As has been shown
in this work, ML algorithms provide good performance in this
type of context, although the analysis of DL techniques could
introduce new ways of implementing and deploying applications
for MEC-IIoT scenarios. For this reason, it is necessary to study the
deep learning alternatives for the implementation of an intelligent
threat detector, which could apply continuous learning and obtain
better performance in dynamic scenarios where new applications
are included and a different implementation of attacks can be run.
Given the nature of the network data and the functionality of an
intelligent threat detector, an interesting proposal in this area is
13

that of using Adversarial Network models.
• Study the performance of Federated Learning in our IIoT
scenario. Thanks to the characteristics and advantages that MEC
brings to IIoT, Federated Learning could be an effective way of
implementing an intelligent threat detector on each device in
the scenario. For this implementation, the devices only have to
store the data generated and shared it with the corresponding
edge server, where the intelligent threat detector model will be
allocated for that device. Thanks to the study carried out in this
work, one of the algorithms can be used as the base model. Then,
Federated Learning can be applied to the scenario to implement
collaborative learning. Finally, the base model can be modified
with the information provided by the rest of the devices, as
mentioned, and coordinated on the MEC edge servers.

• Study the vulnerabilities associated with ML boosted trees
models. There are some vulnerabilities and malicious techniques
for manipulating the normal behaviour of a model during its
training. A study of the effectiveness of these attacks with the
boosted trees models used in this work should be carried out.
Also, different defensive proposals should be analysed in an IIoT-
MEC environment for this kind of intelligent threat detector, thus
extending the study to other tools that use ML models for their
implementation.
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