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Productivity and flexibility improvement of
assembly lines for high-mix low-volume production.

A white goods industry case.

Adrián Miqueo Delgado

Abstract

The global trends of mass customisation and mass personalisation drive high-
mix low-volume industrial production, characterised by high variety of products
in low quantities each. Thus, mass customisation requires that assembly systems
are simultaneously highly productive and flexible, contrary to the traditional di-
chotomy between them. The so called 4th industrial revolution brings several key
enabling technologies which could help to address this. However, implementation
methodologies for assembly 4.0 are still an open issue. In fact, to benefit from all
the potential advantages brought by Industry 4.0, a previous level of operational
excellence is required along with a holistic analysis of the system. In consequence,
this thesis aims to understand and define how to improve the productivity and
flexibility of assembly operations under high-mix low-volume demand.

The overarching aim is divided into three objectives. First, understanding the
relationship between Industry 4.0 and assembly operations, as well as its implica-
tions for the human operators. Second, developing a methodology and the tools to
evaluate the performance of different flexible assembly line configurations. Finally,
to design assembly systems that improve their productivity by at least +25% un-
der high-mix low-volume demand by introducing a combination of automated and
manual workstations.

To address the understanding stage, a systematic literature review was carried
out and a conceptual framework for Assembly 4.0 was developed. Two assembly
systems performance evaluation tools—an analytical mathematical model and sev-
eral discrete events simulation models—were developed, validated and verified. A
real industry study case from a global white goods manufacturer was employed for
verification and as starting point for further analysis. Design of experiments and
multiple simulation scenarios were used to investigate three key issues.

First of all, the most critical factors affecting the performance of manual multi-
model assembly lines were identified. Secondly, the performance of semiautomatic
parallel walking-worker lines was compared to semiautomated and manual fixed-



ii

worker lines. Finally, the use of milkrun trains for in-plant logistics of multi-model
assembly lines under severe disturbances was investigated.

The simulation results showed that parallel walking-worker lines can outper-
form fixed-worker lines in all demand scenarios, achieving at least the +25% pro-
ductivity goal. They also allow to seamlessly reduce the number of operators
without compromising the line balancing, therefore enabling efficient low-volume
production. In-plant logistics simulation results indicate that milkruns can be a
great way to protect assembly lines from disturbances originated in upstream pro-
cesses.

Further research following the results obtained in this thesis may include ex-
panding and integrating the current simulation models to analyse parallel walking-
worker lines incorporating logistics, breakdowns and maintenance, and quality con-
trol problems and rework policies. Another avenue for research would be the use
of other performance evaluation tools, such as scheduling techniques, to assess
the operational performance of different semiautomated walking-worker line con-
figurations both in terms of automation and layout. Incorporating Industry 4.0
technologies—such as cobots for assembly or material handling tasks, augmented
reality for operator cognitive support, or AGVs for driving the milkrun trains—to
the simulation models to evaluate their global impact. Finally, the work presen-
ted in this thesis encourages the actual implementation of semiautomated parallel
walking-worker assembly lines in an industrial context.
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Mejora de productividad y flexibilidad de líneas de
montaje para producción en serie corta y variada.

Un caso de estudio de la industria de los
electrodomésticos.

Adrián Miqueo Delgado

Resumen

Las tendencias globales de la personalización e individualización en masa im-
pulsan la producción industrial en serie corta y variada; y por tanto una gran
variedad de productos en pequeñas cantidades. Por ello, la customización en masa
precisa de sistemas de ensamblaje que sean a la vez altamente productivos y flexi-
bles, a diferencia de la tradicional oposición entre ambas características. La llamada
cuarta revolución industrial trae diversas tecnologías habilitadoras que podrían ser
útiles para abordar este problema. Sin embargo, las metodologías para implementar
el ensamblaje 4.0 todavía no han sido resueltas. De hecho, para aprovechar todas
las ventajas potenciales de la Industria 4.0, es necesario contar con un nivel previo
de excelencia operacional y un análisis holístico de los sistemas productivos. Esta
tesis tiene como objetivo entender y definir cómo mejorar la productividad y la
flexibilidad de las operaciones de montaje en serie corta y variada.

Esta meta se ha dividido en tres objetivos. El primer objetivo consiste en com-
prender las relaciones entre la Industria 4.0 y las operaciones de ensamblaje, así
como sus implicaciones para los operarios. El segundo objetivo consiste en desarro-
llar una metodología y las herramientas necesarias para evaluar el rendimiento de
diferentes configuraciones de cadenas de ensamblaje. El último objetivo consiste en
el diseño de sistemas de ensamblaje que permitan incrementar su productividad al
menos un 25 %, produciendo en serie corta y variada, mediante la combinación de
puestos de montaje manual y estaciones automatizadas.

Para abordar la fase de comprensión y definición del problema, se llevó a cabo
una revisión bibliográfica sistemática y se desarrolló un marco conceptual para
el Ensamblaje 4.0. Se desarrollaron, verificaron y validaron dos herramientas de
evaluación del rendimiento: un modelo matemático analítico y varios modelos de
simulación por eventos discretos. Para la verificación, y como punto de partida para
los análisis, se ha utilizado un caso de estudio industrial de un fabricante global de
electrodomésticos. Se han empleado múltiples escenarios de simulación y técnicas
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de diseño de experimentos para investigar tres cuestiones clave.

En primer lugar, se identificaron los factores más críticos para el rendimiento
de líneas de montaje manuales multi-modelo. En segundo lugar, se analizó el ren-
dimiento de líneas de montaje semiautomáticas paralelas con operarios móviles en
comparación con líneas semiautomáticas o manuales con operarios fijos, empleando
diversos escenarios de demanda en serie corta y variada. Por último, se investigó el
uso de trenes milkrun para la logística interna de líneas de ensamblaje multi-modelo
bajo la influencia de perturbaciones.

Los resultados de las simulaciones muestran que las líneas paralelas con ope-
rarios móviles pueden superar a las de operarios fijos en cualquier escenario de
demanda, alcanzando como mínimo el objetivo de mejorar la productividad en un
25 % o más. También permiten reducir cómodamente el número de operarios traba-
jando en la línea sin afectar negativamente al equilibrado de la misma, posibilitando
la producción eficiente de bajo volumen. Los resultados de las simulaciones de lo-
gística interna indican que los milkrun pueden proteger las líneas de ensamblaje de
las perturbaciones originadas en procesos aguas arriba.

Futuras líneas de investigación en base a los resultados obtenidos en esta tesis
podrían incluir la expansión e integración de los modelos de simulación actuales
para analizar las cadenas de montaje paralelas con operarios móviles incorporando
logística, averías y mantenimiento, problemas de control de calidad y políticas de
gestión de los retrabajos. Otra línea podría ser el uso de diferentes herramientas
para el análisis del desempeño como, por ejemplo, técnicas de programación de
la producción que permitan evaluar el desempeño operacional de diferentes con-
figuraciones de cadenas de montaje con operarios móviles, tanto en términos de
automatización como de organización en planta. Podrían incorporarse tecnologías
de la Industria 4.0 a los modelos de simulación para evaluar su impacto operacional
global –como cobots para ensamblaje o para la manipulación de materiales, reali-
dad aumentada para el apoyo cognitivo a los operarios, o AGVs para la conducción
de los trenes milkrun. Por último, el trabajo presentado en esta tesis acerca las
líneas de ensamblaje semiautomáticas con operarios móviles a su implementación
industrial.
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CHAPTER 1

Introduction

Assembly operations face a traditional dichotomy between the high productivity
brought by automation and the superior flexibility of manual assembly lines. The
white goods production global context is characterised by high product customisa-
tion demand trends and the new possibilities brought by the new smart technolo-
gies.

Despite the near-unlimited potential benefits of introducing disruptive digital
technologies to assembly lines, the actual implementation methodologies and the
operational maturity required for successfully digitalising the assembly operations
remain an open issue.

This thesis aims to understand and define assembly lines capable of flexibly
dealing with highly customised products while achieving high productivity, and
therefore are ready for the so-called fourth industrial revolution: Industry 4.0.

This chapter presents the thesis background and motivation, followed by the
research problem, the research aims and questions, the scope, and finally outlines
the structure of the document.

1.1 Background and motivation

The first industrial revolution took place during the 18th to 19th centuries in
Western countries. It was enabled by steam engines and the mechanisation of
labour, and it allowed a steep increase in the production of crafted goods. In a
simple market paradigm where demand for industrial products vastly outweighed
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supply, there was a stable driving force for production volume growth [1, p.17–20].

The second industrial revolution took place at the end of the 19th century or
early 20th century, depending on the geographical region. It was brought by tech-
nological advances—interchangeable parts, electricity, Bessemer process for steel,
among others—as well as organisation and management innovations, such as sci-
entific management and production lines. It enabled mass production, which be-
came the dominant production system paradigm until the 1980s. Mass production
allowed manufacturing in large volumes at low cost, by standardising products (i.e.,
reducing product variety) to benefit from economies of scale and labour specialisa-
tion. This led to more and more people being able to afford industrially crafted
products, which fuelled the cycle of increasing production volume and further re-
duction of costs [1, p.21–32].

In the second half of the 20th century, the development of electronics and
computers brought automation and robotic production as well as much faster in-
formation flows. Low-cost standard products were not sufficient anymore, resulting
in product variety and delivery time becoming the new major goals of production
systems, which defined the volatile market conditions [2]. Developed in Japan in
the 1950s and 1960s, the Toyota Production System (TPS, [3]) emerged as the
best way to achieve the aforementioned goals. Its global expansion (named Lean
production [4, 5]) in the 1980s was concurrent with the appearance of another
key development: Flexible Manufacturing Systems (FMS), which integrate com-
puters, numerically controlled machines and automated material handling devices
[6, p.158]. Both Lean and FMS, which are not mutually exclusive, aim at processing
medium-sized volumes of products featuring a certain degree of variety. This pro-
duction paradigm, covering approximately from the 1980s until the present, is
characterised by the volatile market, widespread information technologies, Lean
production and FSM. It has been named Industry 3.0 [2, 7], to signify the ex-
pected next production paradigm: the 4th industrial revolution or Industry 4.0,
enabled by several digital technologies [8].

To better understand the potential impact of this so-called 4th industrial re-
volution on assembly systems, several basic concepts need to be introduced: indus-
trial assembly, automation, productivity and flexibility and the mass customisation
and mass personalisation demand trends.

Assembly is the part of a production process where various components and
sub-assemblies are joined together so that the product acquires its final form, be-
coming finished. Industrial assembly is, following the definition by Nof et al., “the
aggregation of all processes by which various parts and sub-assemblies are built
together to form a complete, geometrically designed assembly or product (such as
a machine or an electronic circuit) either by an individual, batch or a continuous
process” [9, p.2]. The assembly system utilised is of critical importance since it
greatly affects productivity, product quality and cost.
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The assembly line introduced by Henry Ford is considered the first modern
assembly system and proved very effective for producing large quantities of a single,
standard product. Assembly lines can be defined as “an arrangement of workers,
machines and equipment in which the product being assembled passes consecutively
from one specialised operation to the next until completed. It is also called a
production line” [9, p.2].

Regarding the agent implementing the assembly action, “the manipulative op-
erations may be performed by robots, people, or combinations of both” [6, p.148].
Depending on the degree of automation, the basic types of assembly are three:

Assembly systems are utilized in virtually all types of durable goods
manufacturing. There are three basic types of assembly systems: (1)
manual assembly, which is carried out by human assemblers, usually
with the aid of simple power tools . . . (2) Assembly systems that com-
bine human assemblers and automated mechanisms . . . (3) Fully auto-
mated assembly systems for mass-produced parts, and particularly in
hazardous environments [6, p.167].

Automated and hybrid systems employ industrial robots to carry out parts
or all the assembly steps, which rises productivity and reduces labour costs. One
of the key enabling technologies for the 4th industrial revolution is collaborative
robotics, which present significant advantages over conventional assembly robots in
terms of safety, cost and ease of implementation and reconfiguration [10, 11]. This
focus on automated systems reconfigurability is closely related to the traditional
dichotomy between productivity and flexibility.

Productivity—i.e. efficiency, the quantity of input resources necessary to pro-
duce a certain output—cannot alone express the actual capability of a production
system to address market demand and to adapt to its successive changes [12]. In-
creasing focus on product variety and customisation requires that assembly systems
are designed and operated with flexibility in mind [13]. However, this approach
may make it difficult to benefit from the productivity advantages resulting from
economies of scale and process specialisation. Traditional dedicated assembly sys-
tems leverage computers and automated machinery to achieve very low production
costs for standard, non-customised products. Nonetheless, they require very high
investments and therefore high production volumes to become profitable. Opposed
to dedicated automated systems, fully manual assembly continues to exist despite
its low productivity because of its extremely high flexibility. This makes it viable
for addressing niche markets and specialist products (Figure 1.1).

Occupying the middle ground between both, flexible assembly systems are
capable of integrating automated and manual assembly stations so that a certain
variety of products can be produced efficiently, even in medium-size production
volumes.

Assembly systems flexibility “can be viewed as the capacity of a system to
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Figure 1.1: Traditional dichotomy between highly productive but inflexible automated systems,
and manual assembly lines which are very flexible but are less productive.

change and assume different positions or states in response to changing require-
ments with little penalty in time, effort, cost, or performance” [14, p.262] (based
on [15]). Out of the ten types of flexibility identified by ElMaraghy et al. [14,
p.263] (based on Browne et al. [16] and Sethi and Sethi [17]), this thesis focuses
on the following four:

• Product Flexibility: “Ease (time and cost) of introducing products into an
existing product mix. It contributes to agility.”

• Volume Flexibility: “The ability to vary production volume profitably within
production capacity.”

• Expansion Flexibility: “Ease (effort and cost) of augmenting capacity and/or
capability, when needed, through physical changes to the system.”

• Production Flexibility: “Number of all part types that can be produced
without adding major capital equipment.”

The increasing consideration for flexibility is closely related to the evolution of
global demand trends. Although traditionally there existed a clear segmentation
between mass-produced goods and made-to-order products, the markets have been
shifting towards the customisation of mass-produced items. Although this was not
economically viable in the past; technological advances have made it possible. In
the near future, mass customisation could not only become desirable but expected
of any manufacturing company wanting to remain competitive [2].

Mass customisation is trending since the 1980s, characterised by the change in
demand variety and volume per product reference: “Compared to mass production
(that peaked in 1955), the variety of each product in mass customisation is large
and the volume per product variant is relatively small” [6, p.126].

The industrial production shift from mass production to mass customisation
was already forecasted in 1987. The ability to produce customised products that
meet each consumer’s requirements at near mass production costs is the ulti-
mate goal of mass customisation. Giving customers the chance to have a product
wherever they want it, any way they want it, and whenever they want it, resonates
well with customers. The quantity of mass customised products is gradually in-
creasing as are the customised services. This kind of production paradigm is called



1.1. Background and motivation 5

mass personalisation [18, p.313].

Mass customisation and mass personalisation lead to a particularly challenging
production demand problem: high-mix low-volume [19]. It is characterised by a
large number of items being demanded, in small amounts each one, and with vari-
ation not depending on seasonal trends, making its forecast difficult and inefficient.

Increasingly smaller production lot sizes or even fully personalised singular
products stress the necessity for manufacturers to design and operate the produc-
tion systems, and assembly operations in particular—being the last part of the pro-
duction chain—with a clear goal of being able to thrive in a high-mix low-volume
demand context, for which flexibility is a key characteristic. To stay competitive
in such a context, manufacturing companies will need to increase their productiv-
ity while becoming more flexible. Fortunately, several new digital technologies are
expected to prove useful in achieving this [8].

In the last decades, digital technological advances have opened new possibilit-
ies for a variety of economic sectors. Service providers were the first to benefit from
them. Later, the potential advantages of implementing such solutions in the man-
ufacturing business in Europe were recognised by the German government, who
coined the expression ‘Industrie 4.0 ’ [20] to conceptualise the projected 4th indus-
trial revolution: a manufacturing paradigm change which would leverage digital
technologies allowing Germany—and Europe—to maintain a leadership position in
the manufacturing landscape, by becoming more agile and efficient, and focusing
in high-value high-tech production [21]. Other leading manufacturing countries,
such as the USA, China, Japan and India have also established similar strategic
plans that stress the importance of leveraging new digital technologies to drive
their industries [22].

Figure 1.2: Industry 4.0 technologies could help address the dichotomy between productivity and
flexibility of assembly lines.

Industry 4.0, smart industry, smart manufacturing or smart factories, among
others [22], are terms used interchangeably to describe the same vision: increased
flexibility and automation; data and information flow across processes, functions
and companies; enhanced quality achieving zero-defect production; leveraging big
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data, neural networks, machine learning and Artificial Intelligence, among other
technologies, to maximise efficiency and responsiveness [23]. However, the imple-
mentation road to materialise the 4th industrial revolution to assembly operations—
Assembly 4.0 [24], depicted by Figure 1.2—is far from being established. In fact,
to profit from the potential benefits of smart technologies it would be necessary to
develop assembly systems to a level of operational excellence and Lean maturity
that is rarely found in most industries.

As Figure 1.3 illustrates, it seems clear that applying new technologies to digit-
alise assembly operations can only cause a disruptive advantage if the operational
performance of the underlying systems in its entirety—including conventional ele-
ments such as machinery, hardware, people or organisational policies—have solid
foundations. As Rüttiman and Stöcki put it “if the manufacturing system is poorly
conceived, digitalisation will only be able to optimise a bad design” [25].

Figure 1.3: Interaction between factory digitalisation and Lean production.
Figure: Buer et al. [26], CC BY 4.0.

To date, finding effective methodologies for the deployment of Industry 4.0
technologies into assembly operations with a systemic view—in opposition to small,
isolated projects with limited productivity gains—remains an open issue. The prize
of bridging this gap, however, could be the actual realisation of flexible and pro-
ductive systems that can cope and even thrive under the most challenging demand
conditions.

1.2 Research aim, objectives and questions

The central aim of this thesis is to understand and define how to design assembly
operations to improve flexibility and productivity under high-mix low-volume de-
mand. To address this goal, three main research objectives were defined, each one
providing the groundwork for the following one:

1. Understand the state of the art of the 4th industrial revolution assembly
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operations.
• What is the relationship between assembly and mass customisation, lean

production and Industry 4.0?
• How could Industry 4.0 technologies improve the flexibility and pro-

ductivity of assembly operations?
• What role does the human operator play in relation to Assembly 4.0

digital technologies?
2. Develop a method and the tools necessary to characterise and evaluate the

performance of different flexible assembly line configurations.
• How can semiautomated flexible assembly operations performance be

evaluated?
• What combination of input parameters, disturbances and Key Perform-

ance Indicators are to be used for such evaluation?
• What are the key drivers for multi-model assembly line performance

under high-mix low-volume demand?
3. Design assembly systems that increase their productivity by at least +25%

while facing high-mix low-volume demand, by incorporating a combination
of automated and manual workstations.

• How can semiautomatic assembly lines be configured to achieve large
productivity gains and maintain high flexibility when facing high-mix
low-volume demand?

• What key factors need to be taken into account when designing such
assembly lines so that digitalisation initiatives can further improve their
performance?

• What technologies could be applied to this particular study case?

1.3 Scope

This thesis is structured in three top-level stages, each one looking into one research
objective, as shown in Figure 1.4.

The first stage—Problem definition—defines and delimits the problem, allow-
ing us to gain a better understanding of manual and semiautomatic assembly lines.
It also lays the foundation conceptual framework upon which the following stages
are built.

The second stage—Analysis tools—introduces, validates and verifies two per-
formance evaluation tools, and uses them in a preliminary study to identify the
most critical factors for flexible assembly lines.

The third stage—Improvement—studies the performance of parallel walking-
worker line configurations compared to traditional fixed-worker lines. It then ex-
pands the simulation models to study the use of milkrun trains for the internal
logistics of multi-product assembly lines as a means to deal with disturbances.
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Figure 1.4: Thesis research aim, objectives, scope and outcomes.

1.3.1 Problem definition stage

Derived from the overarching research aim—understanding and defining how to
design assembly operations to improve flexibility and productivity under high-mix
low-volume demand—comes the first stage of this thesis: Problem definition. First,
it focuses on gaining insight into the assembly operations’ current state of the
art regarding five key areas: the mass customisation and mass personalisation
demand trends; the new possibilities brought by Industry 4.0 digital technologies;
the indicators to be used to evaluate the impact of new technology; the relationship
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of Industry 4.0 with the Lean Production paradigm; and the role of people in this
transformation. A systematic literature review is employed to ascertain the lack of
Assembly 4.0 implementation methodologies.

Resulting from the key findings of the literature review, a conceptual frame-
work is presented, which organises the different layers taking part in assembly
operations and highlights their relationships, revealing which Industry 4.0 digital
technologies could be deployed and the specific layers affected by them. The meth-
odical implementation of new, disruptive, digital technology to enhance assembly
operations require careful evaluation of their potential impact on the system’s per-
formance. This would enable digitalisation projects to actually transform the op-
erational performance of the whole system and to avoid only achieving partial or
minor gains. To set the foundations of such analysis, the basic definitions and
concepts of assembly systems performance evaluation are introduced, and a real
industry case is presented, which will be used in the following stages. Derived
from the research aim, the scope of such performance evaluation is specifically ad-
dressed to manual and semiautomatic assembly systems. The performance metrics
focus on measuring productivity and lead time, while the flexibility is assessed by
the response of the system to disturbances and challenging high-mix low-volume
demand conditions. Both of them contribute to bringing the mass customisation
paradigm into the analysis scope. Thus, this paradigm stresses the importance of
two key elements: product model changeovers and stochastic variability, which will
be integrated into the performance evaluation tools thereafter.

1.3.2 Analysis tools stage

The second stage, Analysis tools, is directly related to the second research object-
ive of this thesis: “developing a method and the tools to characterise and evaluate
assembly operations for high-mix low-volume production”. To do so, two analysis
tools are developed. Firstly, a simplified mathematical model is presented. Des-
pite its limitations, related to the complexity of integrating stochastic variables,
this parametric model’s low computational cost allows carrying out preliminary
estimations quickly. It is used to find the most important factors affecting the per-
formance of the industrial study case’s assembly systems, thus reducing the number
of variables under study. To overcome the limitations of the mathematical model,
discrete events simulation modelling is then introduced. To ensure that this mod-
elling approach is suitable for further analysis, as well as to support the findings of
the preliminary analysis, both models—parametric and simulation—are then valid-
ated and verified against empirical data from the industrial study case. Therefore,
this stage provides two analysis tools suitable for evaluating the performance of
high-mix low-volume assembly lines, including the potential impact of Industry 4.0
technologies, since the framework presented in the previous stage already identified
where would each digital technology sits and which elements would be affected.
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1.3.3 Improvement stage

Once the tools for analysis have been developed and tested, the third stage, Im-
provement, addresses the last key research objective—designing assembly systems
that increase their productivity by at least +25% under high-mix low-volume de-
mand by introducing a combination of automated and manual workstations. Build-
ing on top of the preliminary analysis’ previous findings, parallel walking-worker
assembly lines are presented. To test the potential gains enabled by this type of as-
sembly line configuration, especially in terms of the duple productivity-flexibility,
a comparison is made between fixed- and walking-worker semiautomated lines,
measuring their performance against that of a traditional fixed-worker manual line
configuration. To broaden the scope of the analysis in terms of the model layers
involved in it, further simulation is carried out to analyse the use of a proven Lean
tool, milkrun trains, to feed components to multi-model assembly lines. The goal
of this study is to assess whether the in-plant logistics would present additional
performance constraints to parallel multi-model line configurations, notably when
facing high-mix low-volume demand and are subject to disturbances from different
sources.

1.4 Structure outline

Following the presented scheme, and to sum up the structure of the thesis, the
document is organised as follows:

In Chapter 1, the background and motivation of the thesis have been explained.
The research aims, goals and questions have been made explicit, and the scope of
the thesis has been outlined.

Chapter 2 presents the state of the art through a systematic literature review
to understand the relationship between productivity, flexibility and the new di-
gital technologies for assembly operations. In particular, the review looks into four
closely related topics: assembly for mass customisation; Industry 4.0 and perform-
ance evaluation; Lean production as a starting point for smart factories; and the
implications of Industry 4.0 for people in assembly operations.

Chapter 3 introduces the research framework. Firstly, an operator-centred
conceptual model for Assembly 4.0 is proposed. The model organises the com-
ponents of the assembly operations system along with their interactions among
themselves and with new Industry 4.0 technologies. Then, basic definitions and
concepts of flexible assembly performance evaluation are explained. Finally, this
chapter presents The Cooktop Company industry case study, which will be used
across the remaining chapters.

In Chapter 4, a mathematical analytical model which focuses on product
changeover of assembly lines is introduced. The model is then employed along
with design of experiments techniques for investigating the most critical factors to
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flexible assembly systems performance. Finally, one of the key modelling assump-
tions is validated.

In Chapter 5, discrete events simulation models are developed to overcome
the limitations of the previous chapter’s analytical tool. This chapter covers the
main features of the simulation models used in the thesis, the method employed
to gather empirical data from The Cooktop Company, and the models’ validation
and verification against empirical data from the industrial study case.

In Chapter 6, previous insight on flexible assembly lines and the simulation
tools already developed are used to study parallel walking-worker lines, which
present several key advantages over traditional semiautomated line configurations.
This chapter includes a specific, in-depth literature review on the topic of paral-
lel and walking-worker assembly lines, followed by the modelling assumptions and
simulation model description. Six scenarios are used to explore the effect of various
mass customisation demand conditions as well as the degree of automation intro-
duced to the different line configurations. Four additional simulation scenarios look
into different elements for fine-tuning the parallel walking-worker line concept.

Chapter 7 broadens the scope of the analysis by looking into assembly lines
in-plant logistics using milkrun trains. Once again, a chapter-specific literature
review is included. The milkrun model is detailed, and four simulation scenarios
are used to analyse the effect of product mix and three different sources of variability
disturbances.

Finally, Chapter 8 summarises the key findings and the contributions of the
thesis. It also discusses the main avenues for future research.
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CHAPTER 2

State of the Art

This chapter presents a revision of the state of the art by means of a systematic
literature review to understand the relationship between productivity, flexibility
and new digital technologies for assembly operations.

Figure 2.1: Literature review co-occurrence map for the keyword Industry 4.0.
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The literature review explores the relationship between six key concepts: as-
sembly, mass customisation, Industry 4.0, key performance indicators, Lean and
human operators. Figure 2.1 maps the co-occurrence for the keyword Industry 4.0
with any other keyword, grouping the closer concepts by colours and depicting the
frequency of each keyword using the circle sizes. This facilitates understanding
how each pair of concepts are related, as will be detailed later in this chapter.

The content of this chapter was published as an article [27], which was part of
the Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) of
the journal Applied Sciences. Each section of this chapter corresponds to an article
section: Introduction (2.1), Materials and Methods (2.2), Results (2.3), Discussion
(2.4) and Conclusion (2.5). Finally, Section 2.6 includes the chapter summary and
main contributions.

Article title:

Lean Manual Assembly 4.0: A Systematic Review

Article abstract:

In a demand context of mass customisation shifting towards the mass
personalisation of products, assembly operations face the trade-off between
highly productive automated systems and flexible manual operators.
Novel digital technologies – conceptualised as Industry 4.0 – suggest
the possibility of simultaneously achieving superior productivity and
flexibility. This article aims to address how Industry 4.0 technologies
could improve the productivity, flexibility and quality of assembly op-
erations. A systematic literature review was carried out, including 239
peer-reviewed articles from 2010-2020. As a result, the analysis was
structured addressing four sets of research questions regarding (1) as-
sembly for mass customisation; (2) Industry 4.0 and performance eval-
uation; (3) Lean production as a starting point for smart factories, and
(4) the implications of Industry 4.0 for people in assembly operations. It
was found that mass customisation brings great complexity that needs
to be addressed at different levels from a holistic point of view; that
Industry 4.0 offers powerful tools to achieve superior productivity and
flexibility in assembly; that Lean is a great starting point for imple-
menting such changes; and that people need to be considered central
to Assembly 4.0. Developing methodologies for implementing Industry
4.0 to achieve specific business goals remains an open research topic.

2.1 Introduction

The current situation of assembly operations is characterised by an increasingly var-
ied demand (mass customisation) while the production faces a trade-off between
the superior productivity of automated assembly systems and the absolute flex-
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ibility and adaptability of manual assembly. Therefore, high-volume production
of discrete goods received heavy investments for automation, while low volume,
made-to-order or engineer-to-order products were typically assembled manually
[13, 28]. In this context, Lean Production (a generalisation of the Toyota Produc-
tion System) expanded from its origin—Automotive—to many other sectors, and
was adapted as necessary to the particularities of each industry or company [5].
Lean Production typically focuses on value as perceived from the customer’s point
of view, thus it considers that the flexibility to quickly adapt to market demand
is critical. For Lean, rigid automation can be seen as a hindrance rather than an
advantage, and seeks to incorporate the human factor to automation: jidoka, or
‘automation with a human touch’ [29].

The term Industry 4.0, initially adopted by a German strategic program [22],
is used nowadays to express the relationship between different elements of the
current manufacturing sector and the new digital technologies. These Key Enabling
Technologies are according to [8]: Big Data and Analytics, Autonomous robots,
Simulation, Horizontal and vertical system integration, the industrial Internet of
Things (IoT), Cybersecurity, The Cloud, Additive Manufacturing and Augmented
Reality. Recent research on Industry 4.0 tends to focus on the possibilities brought
by a certain new digital technology, or develops a framework to understand what
would be the effect of incorporating such new technologies [24]. The arrival of the
new digital technologies could address the aforementioned dichotomy of highly-
productive yet rigid automation vs flexible but less-productive manual assembly.
The quickly developing fields of Human-Robot Collaboration, Virtual/ Augmented
Reality and Automated Quality Control, to cite some examples, show promise in
bringing forward actually flexible and adaptable automation that has the best of
both worlds.

Scarcely explored is the development of implementation methodologies that
bridge Industry 4.0 conceptual frameworks with the current state of industrial
environments, and the process to successfully deploy new digital technologies that
bring the expected returns of investment. Additionally, if the Lean production
approach and its techniques are also related to this implementation, the concept
of Lean 4.0 could be used as shown in the literature [30]. Since Lean Production
and Industry 4.0 certainly have some commonalities [31], Lean could prove useful
in providing a starting point for the implementation of Industry 4.0 technologies
that improve assembly operations in a mass customisation demand context.

In order to assess the impact of any changes, careful evaluation systems are
needed to ensure that technological investments are implemented to solve the prob-
lems and address the businesses goals, and not just because they are available or
they bring some cosmetic advantage. The 4th Industrial Revolution is expected
to transform the role of the people, but to what extent will assembly operators be
affected – are humans to be replaced by machines, or empowered by new techno-
logy?
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The issue that this literature review aims to address is: How could Industry 4.0
technologies improve the flexibility, productivity and quality of assembly operations?
To look into it, we aim to answer the following questions:

1. What are the characteristics and implications of mass customisation for as-
sembly operations?

2. What new Industry 4.0 digital technologies are relevant to assembly opera-
tions? How to make the most out of their potential, and how to measure the
improvement?

3. Is Lean Production the best starting ground for implementing Industry 4.0
assembly operations?

4. How would Industry 4.0 affect people in assembly? How to support people
transitioning to Assembly 4.0?

To answer these questions, a systematic literature review was carried out.
From these four sets of questions, six key concepts are extracted, as shown in
Figure 2.2: The scope of this article is limited to Assembly operations, particu-
larly focusing on Mass customisation demand. Neither fully automated systems
nor manual assembly deal comfortably with mass customisation demand, since
one lacks flexibility and the other’s productivity falls short. Industry 4.0 aims to
address this gap by providing superior connectivity between machines and people.
Lean Production might serve as a foundation for Assembly 4.0, transversally provid-
ing a framework to analyse and conceptualise the new role of Human operators.
Finally, to evaluate the efficiency of assembly systems, Key Performance Indicators
are commonly used.

Figure 2.2: Key concepts used for the systematic literature review.

This article is structured in the following manner: Section 2.2 – Materials and
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Methods – describes the methodology used for the review, which focuses on the
6 key concepts related to the issue being addressed. This section also includes a
brief bibliometric analysis of the references used for the analysis. Section 2.3 –
Results – includes the Analysis of Literature, grouped into four main subsections:
(2.3.1) Assembly operations, (2.3.2) Industry 4.0, (2.3.3) Lean, and (2.3.4) People.
Each subsection focuses on one of the questions that this article aims to answer.
Section 2.4 – Discussion – gathers the main conclusions found in the previous
analysis and addresses the main issue stated before.

2.2 Materials and Methods

In order to address the issue introduced in the previous section, and to answer
the aforementioned questions, a systematic literature review was conducted. This
section firstly describes the methodology employed in such review, and secondly
offers a brief bibliometric analysis of the results.

The literature review was carried out in four stages – see Figure 2.3: database
search, screening, eligibility and literature analysis.

Figure 2.3: Search process and results, adapted from PRISMA [32].

The databases used for the initial stage were SCOPUS (Elsevier) and Web of
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Science, and only included relevant publications belonging to the following fields:
Manufacturing Engineering, Industrial Engineering, Generalist Engineering, Oper-
ations and Management Science. Since the topic under study is the conjunction
of several broad subjects, we decided to conduct a systematic literature review
that specifically targets their intersections. The 6 key concepts that were used are:
Assembly, Mass Customisation, Key Performance Indicator (KPI), Lean Manu-
facturing, Industry 4.0 and Operator. These concepts were chosen for the search
because they are the key ideas in the posed research questions – ‘Key Performance
Indicators’ being used for measuring improvement. The following keywords were
used to perform the database search: (1) Lean: Lean Manufacturing, Lean Pro-
duction; (2) Mass Customisation: Mass Customisation, Mass Customization; (3)
Industry 4.0: Industry 4.0, Industrie 4.0, Smart Factories; (4) KPI: “KPI”, Key
Performance Indicator ; (5) Assembly: Assembly ; (6) Operator: Operator, People,
Person. The keywords were used for Title, Author Keyword and Keyword Plus
(in WOS); except for KPI, which was also searched for in the Abstract field. From
these 6 key concepts, 15 search groups were defined by intersecting each possible
combination of two concepts, as shown in Table 2.1. Duplicates were removed at
this point, resulting in 1,026 publications identified.

Table 2.1: Search groups created by intersection of each pair of key concepts, and number of
publications found.

Search group Publications
WOS

Publications
SCOPUS

Publications
without duplicates

Assembly & Mass Customisation 58 52 97
Assembly & KPI 20 19 33
Assembly & Lean 81 106 168
Assembly & Industry 4.0 47 10 55
Assembly & Operator 83 196 268
Industry 4.0 & Lean 48 8 55
Industry 4.0 & Operator 33 16 45
Industry 4.0 & Mass Customis. 17 2 19
Industry 4.0 & KPI 11 2 12
Lean & Mass Customisation 14 19 32
Lean & KPI 31 58 74
Lean & Operator 10 33 40
Operator & Mass Customisation 4 15 15
Operator & KPI 13 98 108
Mass Customisation & KPI 4 3 5

The publications resulting from this search were then screened – based on
title, abstract, publication and year – to assess which of them met the inclusion
and exclusion criteria shown in Table 2.2, resulting in 741 records being excluded
and 285 articles being included.

Finally, the 285 articles were reviewed within each one of the 15 search groups
and assessed for eligibility, resulting in 51 articles being excluded because they
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Table 2.2: Eligibility and exclusion criteria.

Inclusion criteria Exclusion criteria

Peer-reviewed publications Book chapters
Recent: published on 2010 or later Regarding construction, continuous production

(e.g. petrochemical), energy efficiency
Language: publications
in English

Regarding mathematical models or algorithms for
scheduling, line sequencing, or line balancing
Regarding product design

were not relevant to the key concept being analysed. The resulting 234 articles
were analysed, and the outcome of such analysis can be found in Section 2.3 –
Results.

The number of articles included in the analysis shows an increasing trend over
time, as shown in Figure 2.4. It should be noted that the database search was
performed in June 2020, therefore the results shown in this analysis only include
articles published up until the first half of 2020. It can be seen that the number
of articles related to some key concepts remain constant or grow slightly over time
– Assembly, Mass Customisation and Operator – while others grow significantly –
Lean and KPI. The number of articles related to Industry 4.0 is rising since 2015,
which is consistent with the fact that the term “Industry 4.0” was coined in 2011
[22]. Of the 234 articles included in this review, 54 are conference or proceedings
articles (23%) and 180 are journal articles (77%). The articles were published in a
total of 117 publications; with 18 journals including 50% of the total articles and
83 publications contributing with just one article to this review. This is consistent
with the database search strategy, which looks at the intersections of six different
concepts.

Figure 2.4: Publications related to each key concept, by year.
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2.3 Results

This section shows the outcome of the systematic literature review carried out
following the methodology described in the previous section, and that addresses
the issue of improving assembly operations in terms of productivity, flexibility and
quality by using novel digital technologies of Industry 4.0. To look into this ques-
tion, four specific questions were presented in the first section of this article. In
consequence, this section is composed of four parts made of the search key con-
cepts most closely related to each one of the questions, as shown in Figure 2.5.
Firstly, looking into ‘the characteristics and implications of mass customisation for
assembly operations’, the key concepts used are ‘Assembly’ and ‘Mass Custom-
isation’ (2.3.1). Secondly, to identify ‘the new Industry 4.0 technologies, how to
make the most out of them and how to measure the improvement’, the key con-
cepts used are ‘Industry 4.0’ and ‘Key Performance Indicators’ (2.3.2). Then, the
key concept ‘Lean’ is employed to determine whether Lean Production is the best
starting ground for implementing the aforementioned technologies (2.3.3). Finally,
to explore ‘the effect of Industry 4.0 on people in assembly and to find out how
to support them in transitioning to Assembly 4.0, the search key concept used is
‘Operator’ (2.3.4).

Figure 2.5: Research questions, search key concepts and their relationship to the literature review
analysis topics.
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2.3.1 Assembly operations for mass customisation

In order to answer the first question “What are the characteristics and implications
of mass customisation for assembly operations?”, the systematic literature review
publications related to the key concepts ‘Assembly’ and ‘Mass Customisation’ were
analysed. After a brief introduction, the five main topics to be considered will be
presented, as shown in Figure 2.6: Modularity and product clustering; Mixed-model
assembly optimisation; Customer involvement and postponement strategies; The
implications of complexity; and Mass customisation impact on operators. Finally,
the key conclusions will be summarised.

Figure 2.6: Key aspects of assembly operations for mass customisation and main conclusions of
the analysis.

Introducing assembly operations for mass customisation

Mass Customisation demand is characterised by a combination of high variety,
shorter product life cycles, and variable production volumes (medium or high for
platform products, very low for personalised products); compared to Industry 2.0’s
Stable Market and Industry 3.0’s Volatile Market – in terms of product volume,
product variety and delivery time. In this new context, Toyota Production Sys-
tems (TPS) may prove limited, and its advantages and disadvantages with regards
to seru have been analysed by Yin et al. al. [2]. The usage of new key digital
technologies will bring forward the 4th Industrial Revolution (Industry 4.0), ad-
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dressing many of the challenges of production systems for mass customisation [2,
33]. However, looking at isolated systems may not be enough, since increased com-
plexity requires a holistic approach to respond successfully and cost effectively to
shifting market demands [34]. Assembly is the final process to create a product,
where component sub-assemblies come together into the final product. Demand
driven increasing product variety adds complexity, production cost and lead time
to Assembly Operations, which goes against its goals. In the mass-customisation
landscape, key assembly topics need to be reviewed, evaluated and adapted [13]:
assembly representation and sequencing, especially non-sequential assembly; as-
sembly system design – considering line balancing, delayed product differentiation
and performance evaluation; assembly system operations –with a focus on exploring
reconfigurable assembly planning, mixed-model assembly scheduling, and dealing
with complexity resulting from different sources; and the changing role of human
operators.

In conclusion, mass customisation brings increased complexity that needs to
be addressed at multiple levels and taking a holistic point of view to ensure that
optimising a sub-system does not affect negatively another sub-system.

Modularity and product clustering

In order to flexibly assemble many different product variants using the same re-
sources (such as people, equipment, management systems) to keep manufacturing
costs down and productivity high. Efficient grouping products into clusters or
families is of paramount importance. The variables selected for clustering will
depend on the Assembly Operation objectives, for instance: quality and cost to de-
termine product family design [35]; product variety to determine assembly system
layout [36]; assembly and disassembly for configuring product variants [37]; pro-
cedure, equipment and parts [38]; or involving worker’s perspective for actual ease
of assembly [39]. Modular production systems would also benefit from automated
planning based on individual products CAD files [40].

In conclusion, product clustering, modularisation, reconfigurable assembly
systems and delayed product differentiation are valuable tools to maintain compet-
itive assembly in a mass customisation context.

Mixed-model assembly optimisation

Another area affecting greatly the efficiency of assembly lines is its sequencing and
balancing. Similarly to clustering and modularisation, different approaches are
used depending on the focused goals of the optimisation: cooperative sequencing or
workstation analysis for assembly material consumption waviness, setup time and
lead time [41, 42]; multi-agent systems analysis for reducing the negative impact
of material handling complexity [43]; monitoring manufacturing complexity for
workload balancing [44]. New approaches have been also developed to optimise
assembly line sequencing [45, 46].
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In conclusion, mixed-model assembly is needed to deal with mass custom-
isation while remaining competitive, since it allows to address various operational
goals depending on the business needs.

Customer involvement and postponement strategies

Mass customisation may be leading towards mass personalisation, where individual
products made to match the exact preferences of each customer are produced in
large numbers [28]. Integrating the customer in the design phase could be done us-
ing web-based platforms [47]; while Industry 4.0’s Cyber Physical Systems (CPS)
and a tailored assembly architecture would enable efficient mass personalisation
[48]. An alternative strategy is Postponement, which could help with dealing with
high assembly complexity [49]. However, it requires designing the assembly line
layout for delayed product differentiation [50, 51], and would benefit from recon-
figurable assembly stations [52].

In conclusion, assembly operations need to consider the increasing expect-
ations of mass customisation heading towards mass personalisation. In order to
adapt to it, Industry 4.0 Cyber Physical Systems could be used to develop re-
configurable assembly stations that can deal with high assembly complexity while
maintaining high productivity.

The implications of complexity

Mass customisation brings a great deal of complexity to assembly operations, which
affect key elements of the system as well as other nearby areas, such as Quality,
Supply Chain or Maintenance. Assembly complexity has can been evaluated from
different perspectives: number of product variants [53], induced task differences [54]
or product configuration [55]. Complexity has a negative effect on quality, which
could be minimised by using cognitive automation [56]. The increasing number
of product features to be controlled makes necessary new advanced quality man-
agement systems [57]. Supply chain implications of mass customisation assembly
range from assembly line feeding problems [58] and modularity-specific issues [59]
to assembly supply chain configuration [60] and whole manufacturing networks [61].
Using Automated Guided Vehicles (AGVs) can be used efficiently to feed mixed-
model assembly lines [62, 63]. Maintenance resources allocation also needs to be
prioritised to minimise the negative effects of increased complexity [64].

In conclusion, assembly complexity reaches outside the boundaries of as-
sembly operations and needs to be considered jointly with supply chain, quality,
maintenance and IT/IS.

Mass customisation impacts operators

Fully automated assembly systems bring increased productivity for high-volume
production, but lack the flexibility and adaptability of human operators. People



24 Chapter 2. State of the Art

are better equipped for assembly tasks with small and frequent variations, but their
potential for higher productivity is limited. In a context of market demand charac-
terised by mass customisation which heads towards mass personalised production,
reconfigurable assembly systems that incorporate both machines and people can
lead to cost effective systems that are flexible and scalable [13]. Automation needs
to consider both physical and cognitive abilities of the human operators it supports
[65].

In order to improve the yield of assembly operations, providing support to
human workers is necessary. Augmented Reality (AR) could be used, reducing
the number of engineering/production management resources needed to provide
assembly operators with cognitive support to perform their tasks [66, 67]; as well
as cognitive/ handling skills transfer systems [68], self-adapting automatic Quality
Control [69] or cognitive automation strategies [70]. Automation needs to ensure
human safety, which led to research on Human-Robot Collaboration (HRC) plan
recognition and trajectory prediction [71], and the concept of “safety bubble” [72].
When employing novel digital technologies for enhancing assembly systems per-
formance, one cannot underestimate the strategic importance of IT/IS systems
[73].

In conclusion, in a context of market demand characterised by mass custom-
isation which heads towards mass personalised production, reconfigurable assembly
systems that incorporate both machines and people can lead to cost effective sys-
tems that are flexible and scalable. Industry 4.0 digital technologies have a critical
role to play in making possible mass customisation assembly systems that do not
compromise on quality and cost, and that do not achieve increased performance by
affecting human operators negatively.

Assembly and mass customisation: conclusions

In a context of market demand characterised by mass customisation which heads
towards mass personalised production, the increased complexity reaches the bound-
aries of assembly operations and needs to be considered jointly with other areas
(e.g. supply chain, quality, maintenance, IT/IS) and taking a holistic point of view
to ensure that optimising a sub-system does not affect others negatively. To main-
tain assembly operations competitive despite the increased complexity, product
clustering, modularisation, delayed product differentiation, mixed-model assembly,
and reconfigurable assembly systems are valuable tools. Reconfigurable assembly
systems in which human operators work effectively alongside machines or robots,
made possible with Cyber Physical Systems, can lead to cost effective systems that
are flexible and scalable. It seems clear that Industry 4.0 digital technologies have
a critical role to play in making possible mass customisation assembly systems.
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2.3.2 New digital technology available: Industry 4.0

In order to answer the previously presented questions “What new Industry 4.0 di-
gital technologies are relevant to assembly operations?”, “How to make the most
out of them?” and “How to measure the improvement?”; the systematic literature
review publications related to the key concepts ‘Industry 4.0’ and ‘Key Perform-
ance Indicators’ were analysed. After a brief introduction on Industry 4.0 (I4.0),
the eight main topics to be considered will be presented, as shown in Figure 2.7:
I4.0 technology for improving processes and decisions; I4.0 technology for mass
customisation; I4.0 technology for supporting human operators; I4.0 for mass cus-
tomisation; Key Performance Indicators for assembly; Key Performance Indicators
for I4.0; and Small and Medium Enterprises (SMEs) in the I4.0 era. Finally, the
key conclusions will be summarised.

Figure 2.7: Key aspects of Industry 4.0 technologies for assembly operations and Key Performance
Indicators (KPIs), and main conclusions of the analysis.
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Introducing “Assembly 4.0”

According to Yin et al., industrial revolutions are related to distinct technologies,
market demands and production systems. The 4th industrial revolution differs
from industry 1.0 - 3.0 because it is expected to happen in the near future, as
opposed of the previous three. The deep and intertwined changes in available
technology and market demand paradigms create new possibilities; however, the
industry 4.0 production systems are expected to be an evolution from the previously
existing systems (characterised by seru, flow lines, Toyota Production System or
TPS, job shops, cellular manufacturing and Flexible Manufacturing Systems or
FMS) enhanced by the novel digital technologies [2].

Bortolini et al. investigated in [23] the impact of the 4th industrial revolu-
tion on assembly systems design. The dimensions to consider are six: balancing,
sequencing, material feeding, ergonomic risk, equipment selection and learning ef-
fect. The evolution of the industrial environment in European countries leads to
an aging workforce, re-shoring of production facilities and more efficient and dis-
tributed communication networks. In this environment, nine are the enabling tech-
nologies of Industry 4.0 that have the most potential to affect assembly systems:
Big Data, IoT, real-time optimisation, cloud computing, cyber physical systems,
machine learning, augmented reality, cobots and additive manufacturing. The in-
tegration of these technologies in the design and management of assembly processes
leads to what Bortolini et al. define as “AS40”: Assembly Systems 4.0. The main
characteristics of AS40 are assembly control systems, aided assembly, intelligent
storage management, late customisation, product & process traceability and self-
configured workstation layout [23].

Cohen et al. looked into how assembly system configuration would be af-
fected by Industry 4.0 principles, understood as four incremental stages or steps to
achieve the 4th revolution: connectivity, information, knowledge and smart, which
involves “predictive and automated decision making processes, with possible self-
adjustments and reconfiguration of the production system”. The new paradigm
would reduce the costs of assembly automation; reduce setup costs and learning
curves; enable the assembly of small quantities of large products in flow lines; en-
able the assembly of very different products in the same system; better traceability
of failures and defects; and smarter material handling. In the last stage of Industry
4.0 (smart), assembly systems would be Self-Adapting Smart Systems (SSAS),
and together with continuous support to operators (OSS), flexibility, agility and
productivity would be greatly increased [74].

According to Cohen et al. in [24], the main goal of flexible assembly systems
in the Industry 4.0 era is to address the mass customisation demand paradigm.
At this moment, operational, tactical and strategical issues remain unsolved for
implementing “Assembly 4.0”. A key aspect is the social effect of Assembly 4.0:
the assembly workforce is expected to shrink – at least, in Western countries- but
additional technological job positions will appear, partially offsetting the operator
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reduction. The workforce would experiment a net decrease, thus increasing the
productivity per employee. Therefore, the role of people in A4.0 will be increas-
ingly important, which calls for future research that considers human operator back
at the centre of the production systems of the future [24]. When looking ahead
in the evolution of assembly systems into the 4th Industrial revolution, Cohen et
al. identify challenges when integrating new and existing technologies: uncertainty
on the synergies of the I4.0 key enabling technologies; the human-automation col-
laboration; incorporating Artificial Intelligence into assembly systems; and finding,
developing and keeping the Assembly 4.0 human specialists. On top of the tech-
nical knowledge, Industry 4.0 operators will need a new set of non-technical skills,
so education centres and companies will need to work together to meet this demand
[11].

Developing an Assembly 4.0 system in a controlled environment, such as a
Learning Factory, allows to better understand the complexity of such system. The
drone factory developed by Fast-Berglund et al. “focuses on the interaction and
cooperation between humans and cobots to create collaborative applications in
final assembly tasks”. It was built with operator involvement form the start, and
it incorporates a modular and event-driven IT architecture that creates a digital
twin of both product and production system, allowing automated planning and
preparation of operations [75].

Facing a mass customisation demand, late customisation is a strategy allowing
customers to make changes to their orders even when the production has started.
Industry 4.0 digital technologies bring additional tools for developing an assembly
system able to cope with resequencing the production process [45]. Identifying
information and data needs is a key step in the design of smart assembly factories, to
ensure that the increased complexity associated to addressing mass customisation
production can be managed by the human operators [76]. Additionally, strategies
for improving the use of IT/IS systems in assembly need to consider the whole
digital strategy of the organisation [73]. Optimising the design of any Industry
4.0-enabled system at early stages is critical for SMEs in the manufacturing sector.
Axiomatic design and Acclaro software has proven useful [77].

The analysis of literature allowed organise Industry 4.0 technologies in four
main categories depending on their goals in assembly operations: improving pro-
cesses and decisions, gathering information on human operators, supporting people
in assembly, and enabling mass customisation. Table 2.3 summarises the references
of technologies employed for each goal.

Industry 4.0 technologies for improving processes and decisions

Novel Industry 4.0 technologies can be used to improve processes and gather mean-
ingful data which allows better informed decisions. Big Data can be used to max-
imise yield and machine uptime in precision assembly processes, by detecting long
term errors and enabling predictive maintenance [78]. Sensors from across the
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Table 2.3: Technologies of Industry 4.0 by usage.

Industry 4.0
technologies1

Improving
processes

& decisions

Gathering
information on

human operators

Supporting
people in
assembly

Enabling mass
customisation

Big Data [78] [79]
IoT [80–83] [84] [85] [86]
Real-time
optimisation

[87] [88] [45]

Cloud computing [89]
Cyber-Physical
Systems

[90, 91] [86]

Augmented/
Virtual Reality

[92–101] [102]

Additive
manufacturing

[102, 103]

Digital Twin [104–106] [88]
Other [107, 108] [70, 109–111]
1 Industry 4.0 Key Enabling Technologies based on [23].

shop-floor can be used in conjunction with an IT/IS service to provide critical in-
formation about the processes in the white goods industry [61][80]. RFID can be
used to track assembly execution and then to derive guidelines for smart assembly
line development [81] and Web based system (saas) to control smart internal lo-
gistics using mobile robots [87]. Motion Analysis System (MAS) to monitor and
evaluate manual production processes [82, 112]. The Human Factor Analyser is
a software/hardware architecture that can be used for manual work motion and
time measurement employing depth cameras and automatic data processing aim-
ing to evaluate work performance quantitatively [83]. Digital Twin of assembly
processes can be used to analyse the efficiency of the line [104]; and it would also
enable product-centric assembly [105]. Festo’s Cyber Physical Factory can be used
to implement an Industry 4.0 Digital Twin framework [106].

Industry 4.0 technologies for gathering information on human operators

Industry 4.0 technologies allow new ways of gathering information about human
assembly operators that are less intrusive, more accurate or more capable than
previously existing techniques: Mattson et al. propose a method of measuring the
wellbeing and performance of operators at assembly stations [107]. Krugh et al.
measure human-machine interaction using the Internet of Things (IoT) to under-
stand the impact of people on Industry 4.0 assembly systems [84]. Eye tracking
can be used to analyse the user experience of engineering design & manufacturing
[108]. A theoretical human-centred framework for Operator 4.0 using Digital Twin
based simulation and real-time human data capture can be used to provide insights
on operator ergonomics and mental workload [88].
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Industry 4.0 technologies for supporting people in assembly

Cyber-Physical Systems (CPS) for improving operator ergonomics [90]; vision sys-
tems for measuring and providing feedback on operator performance [109]; cognitive
assistance for rework area [110]; strategies for cognitive automation that allow op-
erators to deal with increased complexity [70]; Augmented Reality (AR) to assist
manual assembly [92]; operator training using digital assistance [111]; training us-
ing Virtual Reality & process mining allowing to replace traditional inter-personal
demonstration and repetition [94] and real-time interface using data from many
devices and an algorithm allowing manual assembly operators to deal with requests
and report faults [85].

Industry 4.0 technologies for mass customisation

Manufacturing flexibility is a strategic orientation for high-wage countries, and In-
dustry 4.0 technologies bring solid benefits to Operations Management, especially
in terms of technology management and Just-In-Time (JIT) production [113]. One
technology in particular – Additive Manufacturing, can break the flexibility vs cost
trade-off which most industrially developed countries face [103]. Compared to the
volatile market of Industry 3.0, characterised by product variety, the smart mar-
ket of industry 4.0 involves customer participation in individual customisation of
products [2]. Industry 4.0 KET enable mass personalisation through short product
development cycles [102] and individual customers’ input [18, 86]. Rossit et al.
propose an approach based on tolerance planning strategies and re-sequencing cap-
abilities to allow changes to the product to be made even after production has
started [45]; while Chung et al. envisage a dynamic supply chain design for con-
nected factories through cloud-based information systems as a way to achieve mass
personalisation [89].

In conclusion, Industry 4.0 not only offers new alternatives for cost-competitive
mass customisation but also opens the door to mass personalisation, where the cus-
tomer is involved in individual customisation of the product.

Key Performance Indicators for assembly

Key Performance Indicators (KPIs) are employed widely to assess the outcome
of assembly systems. New concepts for novel assembly systems need to use KPIs
to evaluate their potential performance. In most cases, traditional KPIs are used
[114]: cost (investment, labour), quality (first pass yield, final yield) [115–117],
throughput time, quantity and lot size; inventory costs [118], line productivity
(e.g. OEE – Overall Equipment Effectiveness) [119], energy consumption, cycle
time and service level [120, 121].

Integrating KPIs that link design, production and quality goals through the
product & process development has proven useful to limit late engineering changes
which delay the assembly system development [122]. A combination of economic
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and structural KPIs can be used to evaluate the adaptability of Reconfigurable
Manufacturing Systems [123]. Yang et al. propose that KPI selection for the smart
automation of manufacturing systems needs to be company and location specific,
and that the KPIs variation and sensitivity to the introduction of new Industry 4.0
technology needs to be a key driver for developing a strategy for smart assembly
automation [124]. For evaluating the performance of Line-less Mobile Assembly
Systems (LMAS), Hüttemann et al. developed a set of 11 specific KPIs, 6 of which
are adapted from conventional KPIs to account for the wide variety of products
being made in the assembly system, and 5 are specific to LMAS (e.g. overall
travelled distance, number of station configuration reconfigurations) [125].

In conclusion, to evaluate assembly systems, standard KPIs need to be ad-
apted in order to include both traditional metrics (e.g. cost, quality, through-
put, inventory, lead time, productivity) and new indicators that are specific to the
products, operations context and business goals.

Key Performance Indicators for Industry 4.0

Manufacturing flexibility is a strategic orientation for high-wage countries, and In-
dustry 4.0 Key Enabling Performance measurement is a necessary management tool
in any factory transformation. Traditional KPIs are valid to evaluate the impact of
Industry 4.0 on production systems. However, new IT-related KPI classes will be
required to assess Data management (e.g. IT efficiency, Availability of IT, Correct-
ness of data, Completeness of data), Transparency & connectivity (e.g. Degree of
interconnectivity, Digital coverage, Proportion of virtually controllable resources),
and Product management [126]. Industry 4.0 technologies bring the possibility of
using IoT devices to gather real-time data from an immense number of devices in
real time, enabling rapid responses to changing conditions [127]. KPIs for smart
factories need to be reliable and targeting the right goals to support Operational
objectives. Therefore, correctly identifying the smart factory stakeholders and un-
derstanding their requirements is crucial [128]. Transforming a traditional factory
—using legacy machines– into a smart factory is possible without buying expensive
new machines, employing a continuous improvement approach, the IoT as enabling
technology and establishing visible KPIs from the beginning so that the path to
Industry 4.0 is clear to all stakeholders [129]. The increased network complexity
and data traffic increases the probabilities of IoT failure. To address this, a data
anomaly response model was proposed by Hwang et al. [130]. The changes brought
by Industry 4.0 could affect people greatly. To make this impact on people more
visible, human-centric KPIs have been proposed [131].

In conclusion, traditional and new IT-related KPIs classes (e.g. Data man-
agement, Transparency and connectivity, Product management) would be used to
assess and control the impact of Industry 4.0 on production systems. Identify-
ing the smart factory stakeholders and their requirements is critical for obtaining
meaningful KPIs. The Internet of Things is the Key Enabling Technology that
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allows gathering data from multiple sources to produce real-time KPIs that allow
rapid responses to fast changes in the smart factories.

Small and Medium Enterprises in the Industry 4.0 era

Although large corporations are more likely to benefit from adopting Industry 4.0
technologies, Small and Medium Enterprises (SMEs) could also obtain a compet-
itive edge from lean-digital manufacturing systems [132]; for example, improving
the communication between shop-floor and the top-floor [133]. SMEs have differ-
ent needs and requirements, which should be taken into account when designing
smart manufacturing systems [134]. SMEs have started their digitalisation jour-
ney, but further Industry 4.0 developments need to align with the particularities
of SMEs, and their organisational structures need to fully embrace and support
digitalisation in order to benefit from its implementation [135]. Fast-berglund et
al. looked at 40 SME and 8 OEMs in order to establish collaborative robot (co-
bots) implementation strategies and to determine what KPIs to use for this cases
[136]. The increasing penetration of intelligent machines to work alongside people
and the benefits of agile production will turn SME operators into ‘Makers’, skilled
workers whose main activities are no longer assisting or monitoring machines but
creative tasks involving a wealth of information, alternatives, criteria and possible
solutions [137].

In conclusion, Small and Medium Enterprises (SMEs) operators will be af-
fected differently by I4.0 compared to corporate workers; but it is clear that I4.0
can bring competitive benefits for SMEs.

Assembly 4.0: conclusions

The 4th Industrial revolution demand paradigm means mass customisation of
products, made possible by new digital technology. Conversely, production systems
are most likely to experiment an evolution rather than a revolutionary change. Two
key areas will be subject to change: the role of people in assembly operations –
especially in terms of responsibility and skills; and the possibility of automated or
hybrid assembly for low-volume production, including multi-mixed model assembly.

To evaluate the performance of assembly systems, standard KPIs need to be
adapted in order to include both traditional metrics (e.g. cost, quality, throughput,
inventory, lead time, productivity) and new indicators that are specific to the
products, operations, stakeholders and business goals. The Internet of Things
is the Key Enabling Technology that allows gathering data from multiple sources
to produce real-time KPIs that allow rapid responses to fast changes in the smart
factories. The smart factory will need to consider also IT-related KPIs to ensure
its smooth computer-dependant operations.

There are plenty of examples of new possibilities due to novel technologies
applied to final assembly: improving processes, gathering data and obtaining valu-
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able information, measuring human operator performance and supporting human
operators’ work. However, research articles mostly focus on what the new techno-
logy can do, but few relate to following a methodology to assess the operational
needs or opportunities in final assembly and finding or developing an Industry 4.0
solution to them.

In order to ensure that the solutions enabled by Industry 4.0 technologies are
aimed in the right direction, it is important to keep the focus on Adding Value.

2.3.3 Focusing on delivering value: Lean

In order to answer the third question “Is Lean Production the best starting ground
for implementing Industry 4.0 assembly operations?”, the systematic literature re-
view publications related to the key concept ‘Lean’ were analysed. After a brief
introduction, the 9 main topics to be considered will be presented, as shown in
Figure 2.8: Lean tools for assembly operations; Internal logistics; Ergonomics; As-
sembly operations layout; Teaching Lean; Evaluating performance; Lean and In-
dustry 4.0 interaction; Lean tools for Industry 4.0; and Lean management. Finally,
the key conclusions will be summarised.

Introducing Lean in the era of Industry 4.0

According to Yin et al., one key characteristic of the Industry 3.0 market –product
variety– changed is to change in the Industry 4.0 era to mass customisation (cus-
tomer participate in individual customisation). However, the existing production
systems will not change in a great way, as Flow lines, Lean Production, cells and
Flexible Manufacturing Systems remain up to date when facing Mass Customisa-
tion [2]. On the other hand, Stump et al. propose that despite the fact that Lean
Production can be applied easily to manufacturing situations with low levels of
customisation (i.e. product variety, Yin’s Industry 3.0 market conditions) but in-
creasing levels of customisation make difficult to directly apply Lean principles of
establishing flow and keeping low inventory levels [138].

Gunasekaran et al.’s review concludes that Agile manufacturing (which shares
with Lean its focus on product value as defined by the customer) is key for sustain-
able competitive advantages; and identifies five enabling competencies that need
to be deployed jointly to achieve its goals: transparent customisation, agile supply
chains, intelligent automation, total employee empowerment and technology integ-
ration [139]. To cope with mass customisation with Lean objectives of continuous
mixed-model flow, Chatzopoulos presented an production system design algorithm
that employs production modules connected by Kanban [140].

Lean Production tools for assembly operations

Lean Manufacturing offers an array of tools and techniques to deal with increasing
demand complexity and variability which could benefit assembly operations in a
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Figure 2.8: Key aspects of Lean assembly for Industry 4.0, and main conclusions of the analysis.

context of mass customisation. Although Lean, a generalisation of the Toyota Pro-
duction System (TPS), originated in the automotive industry, it has expanded to
many other manufacturing sectors - e.g. aeronautical, which demand characteristics
are not similar to automotive [141]. One classic Lean tool is SMED (Single Minute
Exchange of Die), which is still a trending topic according to a recent review [142].
Looking at balancing manual assembly lines with high number of product variants
(mixed model assembly), kaizen events and complexity reduction have proven use-
ful since they fill the gap between mathematical balancing models developed by
academia, and actual techniques used in industry [143]. Mixed-model assembly
lines throughput rate can be increased by using Lean in conjunction with simu-
lation [144]. To increase productivity and reduce the necessary shop floor space,
continuous flow can be achieved through the use of Standardised Work, U-shape
assembly lines and material handling systems [145]. Continuous improvement tools
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can be applied to increase throughput and reduce buffer capacity [146]. To address
the increasing complexity of Standardised Work (SW) for mixed-model assembly,
a reconfigurable approach to SW sheets and Control and Fabrication Instructions
has proven useful [147]. Value Stream Mapping (VSM), another classic Lean tool,
has been evolved into Value Stream Management at the University of Luxembourg
Lean Manufacturing Laboratory [148]. A different approach to VSM is combin-
ing electronic-VSM with simulation, resulting in reduced lead times and non-value
add activities [149]. Three new methods were proposed to identify non-obvious
constraints of mature production process, where traditional Theory of Constraints
methods fall short [150].

In conclusion, research on the application of Lean techniques and tools for
assembly operations is still an open topic. The digitalisation of some of the tools,
such as Value Stream Mapping, has shown some success.

Internal logistics

A key adjacent area to Lean assembly operations is Logistics, which makes the
necessary components or materials available for assembly at the right time with
minimum waste. Lean supply chain uses 6 classic KPIs: lead time, costs, invent-
ory level, delivery service level and quality [118]. To increase the assembly line’s
value-add time and ergonomics, and to reduce waste and necessary space, using
plastic containers instead of cardboard has been found an interesting option [151].
Looking in to minimising Work in Progress stock (WIP) and the required number
of assembly operators, pre-kitting offers advantages as well as challenges [152, 153].
Usta et al. propose a methodology for assessing the best design for part feeding
system for lean assembly, considering that the problems of pure kitting could be
countered by hybrid systems (human & machine) [154]. Yamazaki et al. present
a design method to reduce the cost of flexible automation of material handling
systems [155]. In-house logistics for lean assembly require evaluating and selecting
from different transportation alternatives in order to feed part supermarkets [156].

In conclusion, internal logistics are tightly associated to assembly, and there-
fore both should be analysed together since changes to one will affect the other as
well.

Ergonomics

Lean production’s (LP) impact on ergonomics and psychosocial risks have been
studied for decades, and the focus of the studies has varied over time, with a
current view that considers that management style can make LP effects either
negative or positive [157]. Da Silva et al. develop an index to assess the LP’s
assembly cell work in terms of ergonomics and psychophysical demand [158]. The
impact of line and assembly cells on breaks and worker’s health has been assessed,
finding that assembly cells tend to have higher Cycle Times, which increase the
physicality of the work; while assembly lines posed no risks [159]. A different
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approach to evaluating the impact of LP on ergonomics is utilising simulation: (1)
for analysing the effect of physical overload on assembly line performance, finding
that Cycle Times too close to TAKT (i.e. low catch back time) leads to operator
overload, which means absenteeism and low productivity in the long term [160]; (2)
or for designing efficient hybrid assembly lines that are ergonomically safe [161].

In conclusion, Lean production can affect ergonomics negatively depending
on management style.

Assembly operations layout

A key aspect of Lean assembly operations is the production layout. Classic Lean
assembly is done in assembly lines or assembly cells. Assembly cells offer various
advantages with regards to assembly lines; and a methodology for reconfiguring an
assembly line into a cell is proposed by Carmo-Silva et al. [162]. The efficiency of
Lean manufacturing production systems can be better analysed when considering
assembly as a macro-activity instead of a series of stations; and the wastes iden-
tification is fine-tuned to assembly operations [163]. Lean assembly lines typically
use Kanban to pull production and create material flow. In his paper, Savino et al.
propose a method for using semi-automated parts feeding in O-shaped assembly
lines [164].

Yin et al. analysed in [165] the similarities and differences between Lean
Assembly (lines and cells), agile manufacturing (Quick Response Manufacturing,
QRM) and seru manufacturing. They found, based on two key industrial cases
(Canon and Sony), that a production system that focuses primarily on responding
to quick changes in demand and product instead of prioritising waste reduction (i.e.
Lean Production) can be very competitive in high-cost environments. As a result,
of this priority, seru focuses on “reconfigurability, resource completeness within
cells, worker responsibility and buffering as needed to accommodate dimensions of
demand variability”. However, the applicability of seru assembly systems outside
of high-cost, high variability, high innovation, short product development cycles
remains to be seen [165].

In conclusion, Lean Production systems typically employ assembly lines or
cells layouts to establish pull and create material flow. For certain context involving
high-cost, high-variability, short product development cycles, seru assembly sys-
tems are particularly competitive because they are focused on adaptability.

Teaching Lean for assembly operations: Learning Factories

Since operator engagement is at the core of Lean Production, Lean assembly fo-
cused training has been explored over the past decades. Academia-driven teaching
methods have not always been adequately adapted for non-students. Recreating
industrially relevant environments for teaching Lean at Learning Factories aim to
bridge this gap [166]. Lean techniques themselves have been used to design a
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Learning Factory, using a manual assembly line as starting point, and employing
theoretical knowledge as well as industrial experience for evolving the line into a
Learning Factory [167].

Learning factories are incorporating Industry 4.0 technologies to their edu-
cation & research facilities, focusing on dealing with complexity [168], intelligent
logistics [169] or intelligent manufacturing in full-scale simulations [170]. Virtual
Reality (VR) and Augmented Reality (AR) can be used to enhance the student’s
experience when learning Lean Manufacturing. Using VR for training and AR for
visualising the assembly instructions improved the lessons [171].

In conclusion, Lean Learning Factories need to mimic real-life scenarios to
become useful for non-academic learners with industrial backgrounds, such as as-
sembly operators. Industry 4.0 technologies could be used to enhance the training
environment of Learning Factories.

Evaluating performance from a Lean perspective

Lanza et al. propose a simulation-based method for assessing the performance im-
provement of production systems due to Lean techniques. As Key Performance
Indicators (KPIs), either direct measures or monetary equivalents are used to com-
pare initial vs future scenarios. To relate cost-savings over time, cost-time profile
charts can be employed [172]. Complex coefficient KPIs derived from delivery date
and balanced production can be used to assess small-batch mixed-model schedul-
ing models better than simple KPIs, although the potential use of such KPIs in to
manage real operations is reduced [46]. Multi-criteria KPIs can be used not only
for management and control of operations but at earlier stages of flow planning
projects [173]. For practical results, leading indicators are preferred over lagging
KPIs [174] so Cyber-Physical Systems (CPS) which lead to intra-logistics evalu-
ation tools that use a wealth of data collected automatically, could be preferred
over relying on human input [175].

Evaluating the operational performance of Lean organisations can be done us-
ing tree-like KPI structures [176] or integrated performance assessment frameworks
[177, 178]. Cortes et al. proposed a “Lean & SixSigma Framework” [179] to eval-
uate leanness in order to justify future investment – in a similar fashion to Lanza
et al.’s [172], and focus on a methodology for a solid KPI definition that allows
and enables strategic-operational alignment. Kovacs et al. studied the relationship
between lean maturity, operational performance and investment; and concluded
that implementing and sustaining Lean practices pays off because new technology
cannot improve performance if the processes are not under control in the first place
[180].

In conclusion, KPIs and performance assessment frameworks are used to
measure the effects of changes in Lean production systems. Establishing a set of
KPIs needs to take into account multiple stakeholders and to align the strategic
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and operational goals of the organisation. Simulations and case studies show the
beneficial effects of lean methods, and allow to estimate the economic return of
investment of Lean management decisions.

The interaction between Lean Production and Industry 4.0

Lean production is a key characteristic of the 3rd industrial revolution production
systems. While other aspects have evolved (e.g. technology, from computers to
smart digital devices) or radically changed (e.g. market focus from variety and
lead time to customisation and personalisation), Lean is still up to date in the
era of Industry 4.0 [2]. Moreover, the relationship between Lean and Industry 4.0
technologies is catching increasing attention from academia in the last decade [181].

The question posed by Mrugalska et al. [182] has been addressed by many
authors, both theoretically and analysing use cases across many countries: “Can
Lean and Industry 4.0 coexist and support each other, and if so, how?” There are
four main lines of thought when answering this question: (1) Lean techniques and
Industry 4.0 technologies interact in a positive way, and there are many cases to
illustrate this [30, 31, 183, 184]; (2) Lean facilitates the change towards Industry
4.0 [185, 186]; (3) Industry 4.0 supports Lean, i.e. makes the factory Lean [187–
191]; (4) although Lean and Industry 4.0 aim for the same goals, their approach is
essentially different regarding digital technology [192].

Five articles looked at answering Mrugalska et al.’s question [182] by surveying
the industrial reality of different countries, all of them finding positive interactions
between Lean and Industry 4.0 technologies. Dombrowski et al. analysed 260 in-
dustrial companies in Germany, and found Lean as an enabler of Industry 4.0 [186].
Tortorella et al. looked into 110 user cases in Brazil, and found a positive Lean-
Industry 4.0 correlation, as well as increased benefits of new digital technologies
where Lean was also present [193]. Rossini et al. analysed 108 cases of European
manufacturers, concluding that Lean allows achieving higher levels of Industry 4.0,
while lacking Lean production techniques makes it more difficult to change towards
Industry 4.0 [194]. Chiarini et al. investigated 200 cases in Italy, and found that
most strategic operational areas benefit from implementing Industry 4.0, such as
design-to-cost, supply chain integration or machinery-electronics-database integra-
tion [195]. Lorenz et al. analysed user cases in Switzerland, and found that Lean
maturity allows greater performance improvements from implementing Industry
4.0 [196].

In conclusion, there is a wealth of evidence showing that Lean Manufacturing
is a valid approach to improve assembly operation in a context of mass customisa-
tion, and that Lean and Industry 4.0 can benefit from synergies because each one
enhances the other. However, according to some authors [192], Industry 4.0 and
Lean have essentially different approaches regarding the role digital technologies
should have.
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While some authors deem that TPS considers robots, machines and computers
in the opposing side of jidoka (‘automation with a human touch’), it should be
noted that TPS’s lack of enthusiasm towards digital technologies could have been
influenced by the current digital technologies of that era (1950-1980s). Since the
rate changes in digital technology has been particularly remarkable in the past 4
decades, it seems bold to assume that TPS’s views on computers in the second half
of the 20th century still apply.

Lean tools for the Industry 4.0 era

The arrival of the 4th industrial revolution could mean changes in the role or the
value of existing Lean Production tools. For example, Value Stream Mapping
(VSM) could no longer be a sustainable tool, since it might lack flexibility when
dealing with digital processes; although evolutionary improvements to this tool
could correct this shortcoming [197]. On the other hand, Lean Automation aims
at achieving the best possible combination of Lean and Industry 4.0 automation
[198]. Industry 4.0 will create new forms of waste, digital waste, and Romero et
al. conclude that future research would need to focus on new techniques developed
to eliminate it [199, 200]. Using simulation of Lean production environment can
be used to find clustering alternatives that reduce the waiting time without com-
promising the business productivity [201]. Malik and Bilberg proposed a method
for assigning tasks to robots or people in Human-Robot Collaborative (HRC) as-
sembly, based on the physical properties of the components, HRC safety, and the
dynamics of the HRC environment such as part presentation and feeding [10].The
IoT and simulation could be used to support expert-less decision making, in a
similar way to the classic Andon tool does [202]. In any case, systems integration
will be needed to ensure that Lean Manufacturing Systems meet the Industry 4.0
requirements [203].

In conclusion, classic Lean tools – e.g. Value Stream Map – might need to
change in order to remain useful for analysing digital processes. The appearance
of “digital waste” should be taken into account, but in general terms, Industry 4.0
technologies are expected to support the ability of people to make Lean-oriented
decisions.

Lean Management affected by the 4th industrial revolution

The evolution of Lean Management in the context of Industry 4.0 leads to risks and
opportunities. According to Rother et al. [204], the success factors of the coming
transformation are three: management engagement, involvement and interaction.
Therefore, the proposed approach is to use the technological advances to free up
manager time and use it to focus on the human relationships: sharing knowledge,
developing the workforce’s skills and managing progress [205]. Total Quality Man-
agement will need to evolve as Quality planning, Quality Control, Quality Assur-
ance and Quality Improvement are different in a digital manufacturing framework
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compared to the previous human-capabilities-based era [206].

In conclusion, Management has a key role to play in the successful transition
to Industry 4.0. From the Lean perspective, changes brought by Industry 4.0 could
be used to free up manager time to be invested focusing on the human relationships.

Lean and Industry 4.0: conclusions

Research on Lean tools for assembly operations is still an open topic. Firstly, it
should be noted that since internal logistics are tightly associated to assembly,
both should be analysed together because changes to one will affect the other as
well. Lean Production systems typically employ assembly lines or cells layouts
to establish pull and create material flow. For certain context involving high-
cost, high-variability, short product development cycles, seru assembly systems are
particularly competitive because they are focused on adaptability. KPIs and per-
formance assessment frameworks are used to measure the effects of changes in Lean
production systems. Establishing a set of KPIs needs to take into account multiple
stakeholders and to align the strategic and operational goals of the organisation.
Simulations and case studies show the beneficial effects of Lean methods, and allow
to estimate the economic return of investment of Lean management decisions.

The Toyota Production System (TPS) considers robots, machines and com-
puters in the opposing side of jidoka (‘automation with a human touch’), but it
should be noted that their lack of enthusiasm towards digital technologies could
have been influenced by the current digital technologies of that era (1950-1980s).
Since the rate changes in digital technology has been particularly remarkable in
the past four decades, it seems bold to assume that TPS’s views on computers in
the second half of the 20th century still apply. Currently, there is a wealth of evid-
ence showing that Lean Manufacturing is a valid approach to improve assembly
operation in a context of mass customisation, and that Lean and Industry 4.0 can
benefit from synergies because each one enhances the other. Some classic Lean
tools –e.g. Value Stream Map– might need to change in order to remain useful for
analysing digital processes. In general terms, Industry 4.0 technologies are expec-
ted to support the ability of people to make Lean-oriented decisions. Management
has a key role to play in the successful transition to Industry 4.0. From the Lean
perspective, changes brought by Industry 4.0 could be used to free up manager
time to be invested focusing on the human relationships. Learning Factories could
be a great tool to share the vision of Lean 4.0 assembly, but they need to mimic
real-life scenarios to become useful for non-academic learners with industrial back-
grounds, such as assembly operators. Industry 4.0 technologies could also be used
to enhance the training environment of Learning Factories. Since both Lean and
Industry 4.0 stress the importance of people, it seems only natural that supporting
human capabilities becomes a priority in Lean 4.0 assembly.
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2.3.4 Focusing on people

In order to answer the fourth and last set of questions “How would Industry 4.0
affect people in assembly?” and “How to support people transitioning to Assembly
4.0?”, the systematic literature review publications related to the key concept ‘Op-
erator’ were analysed. After a brief introduction, the 6 main topics to be considered
will be presented, as shown in Figure 2.9: Line balancing, sequencing and job ro-
tation; Lean: operators at the centre; Frameworks for operators in Industry 4.0;
Automation and Human-Robot Collaboration; Supporting operators with Industry
4.0 technology; and Implications of smart factories for operators. Finally, the key
conclusions will be summarised.

Figure 2.9: Key aspects of Operators in Industry 4.0, and main conclusions of the analysis.

Introducing People in assembly operations

Human operators are critical for competitive assembly systems when considering
information flows, competence needs and the requirements for effectively making
use of automation. In such an environment, human teams –rather than individuals,
are key [207]. The role of operators depends strongly on the type of production
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system (e.g. high volume production vs low-volume high-variety). Traditional
automation allows increased productivity but it lacks the adaptability of human
operators. The design of reconfigurable assembly systems by incorporating both
machines and people can lead to cost effective system flexibility and scalability.
However, the collaboration between people and robots can create safety issues.
These can be addressed in two clearly separated ways, according to Hu et al.: (1)
employing vision systems to stop robots; (2) robots so light and low force that
they can be stopped safely by people. Safely increasing flexibility and efficiency in
mixed-model assembly lines is one of the problems that Industry 4.0 technologies
seek to address [74].

In conclusion, the role of operators depends on the type of production sys-
tem, and there is usually a trade-off between the increased productivity of auto-
mation and the adaptability of human operators. Reconfigurable, hybrid assembly
systems that incorporate machines and people could lead to cost-effective flexibil-
ity and scalability. However, the collaboration between people and robots can also
create safety issues.

Line balancing, sequencing and job rotation

Having a flexible and cross-trained workforce is a recurrent approach to deal with
the complexity and changing demand conditions of mass customisation [208–210].
Operator job allocation can also be adjusted to address an array of situations: one-
of-a-kind production [211], minimising costs in seru production systems [212], high
turnover and slow learning processes [213], heterogeneous workforce with varying
degrees of absenteeism [214], or remarkable ergonomics and walking costs [215],
or operator-intensive assembly optimisation –along with sequencing [216]. Altern-
atively, sequencing algorithms can be used for minimising operator headcount in
reconfigurable assembly systems [217]. Although line reconfiguration is a com-
mon approach in mixed-model assembly, output can be increased in peak demand
without it [218].

Analysing the human operator characteristics and the process complexity can
be used to maintain the process KPIs [219], to predict operator overload [220],
or to assess human-originated quality problems [221]. Operator walking distances
are a key input for kitting vs line stocking decisions [222]; and JIT kitting can be
optimised by incorporating hybrid HRC systems [223].

In conclusion, a flexible and cross-trained work force is key for dealing with
changing demand conditions, allowing dynamic job assignation and efficient line
balancing and sequencing.

Automation and Human-Robot Collaboration

Human-Robot Collaboration (HRC) expects to obtain the best of both human
and automation worlds. Costa Mateus et al. developed a methodology for trans-
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itioning from manual to HRC assembly: (1) operation decomposition, (2) resource
evaluation, (3) resource allocation, (4) collaborative assembly operation. [224].
However, HRC brings quality and reliability problems associated with robots and
human operators separately, on top of their interactions, which needs to be ad-
dressed when establishing Quality Control [225]. Additionally, collaborative work
with a robot has been found to cause stress in operators [226]. Moreover, operator
safety remains a key concern for HRC systems. A safety strategy for HRC should
consider the following key design areas: human-robot collaboration spaces, robot
safety systems, vision monitoring of safety conditions, and an operation control
system that coordinates human-robot interaction [227]. Regarding the vision mon-
itoring of safety conditions, Anton et al. used depth sensors so that robots avoid
collisions with operators [228]. Another way of ensuring human operator safety in
HRC would be the “safety bubble” concept, which is based on live data sharing
between reconfigurable assembly systems [59].

In conclusion, Human-Robot Collaboration aims to obtain systems that are
both flexible and highly productive. However, quality, and safety concerns are yet
to be solved.

Lean: operators at the centre

One key aspect of Lean Production Systems (LPS) implementation is respect for
people, which has been typically overseen [229]. Worker development define the
Toyota Production System (TPS) culture of respect and teamwork, and although
it does not directly relate to bottom-line results, it is an integral component of
the TPS implementation of kaizen (continuous improvement) [230]. There are
simple ways to involve operators and supervisors in the continuous improvement
journey, and they are built on showing the importance and effect of everyone’s
actions towards addressing the problems together [231]. One-point lessons have
been found effective in sustaining the standardisation and optimisation in LPS
[232].

There must be a balance between worker autonomy and creativity versus pro-
cess and cost control, and De Haan et al. found that “challenging and enabling
workers to creatively use their talent and skills in daily work will most likely lead
to positive results” [233]. Another tension exists related to judgement-based oper-
ator adjustments to processes, which could be considered as tampering from the
Statistical Process Control (SPC) point of view. Operator adjustment is not always
bad, but a necessity in real production plants, and there are methods to determine
whether the operator judgement was appropriate or not [234].

Romero et al. looked towards Jidoka (or “automation with a human touch”)
when analysing the future relationship of people and machines in the emerging 4th
Industrial Revolution. They stress that Jidoka needs to be understood not only
as an approach to automation, but also as a “learning system” in which machine
and human benefit from each other [4]. ‘Employee Development System’, as tool of



2.3. Results 43

Lean Production Management can be used to enhance problem solving capabilities
of the workforce, which leads to improved results measured by KPIs [235].

New frameworks consider people as the cornerstone of LPS: either depicting
them as one of the fundamental pillars –alongside Process and Tools [236]; or
directly as the centre of a layered model for lean factory design [237].

In conclusion, ‘Respect for people’ –a core principle of Lean production–
should be considered a cornerstone of Lean production process design. There must
be a balance between worker’s autonomy and process control, keeping in mind that
operators’ involvement in the Continuous Improvement journey is necessary for
success in the long term.

Frameworks for operators in Industry 4.0

The concept of Industry 4.0 appeared to provide cohesion to different visions of
regarding the future of manufacturing, connected by Key Enabling Technologies
(KET). Alongside the development of such technologies, recent research has focused
on theoretical frameworks to conceptualise the use of the KET and its impact on
human operators. Lindblom et al. [238] studied how to evaluate the Human-Robot
Collaboration in terms of safety, trust and operator experience; Golan et al. [239]
looked into the future Industry 4.0 interaction between operator and workstation,
composed of three subsystems: observation, analysis and reaction.

The key role of operators in the era of the 4th Industrial Revolution has been
identified by numerous authors, coining the term Operator 4.0 [240]. Industry
4.0 technologies should support operators in their tasks, either by directly helping
them or by providing meaningful information to assembly system design engineers.
Peruzzini et al. developed a theoretical human-centred framework for Operator
4.0 using Digital Twin based simulation and real-time human data capture can
be used to provide insights on operator ergonomics and mental workload [88]. In
a similar way, Mattson et al. propose a method of measuring the wellbeing and
performance of operators at assembly stations using electro-dermal activity [107].
Industrial IoT is another technology that can be used for capturing of human and
machinery data for understanding human impact on Industry 4.0 assembly systems
[84]. Understanding the operator’s information needs is vital for the design of smart
assembly factories [76].

In conclusion, new operator-centred frameworks are appearing to concep-
tualise the role of people in the 4th Industrial Revolution era. The key role of
operators has been identified by numerous authors, coining the term Operator 4.0
[240]. Industry 4.0 technologies should support operators in their tasks, either by
directly helping them or by providing meaningful information to assembly system
design engineers.
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Supporting operators with Industry4.0 technologies

Industry 4.0 technologies offer new ways to support human operators in their duties
– see Table 2.3: training can be made easier with Virtual Reality (VR), Augmented
Reality (AR) and motion tracking [94–96]; instructions can be generated in real-
time and displayed using AR [97–99]; or projection AR can be used to provide
process information [100], assembly assistance [101], safety in HRC ‘chaotic’ smart
warehouses [241], shipyard worker assistance [242] or to enhance the operator’s
capabilities and competencies [93]. In general, human operators are positive about
the use of AR for assembly support [243]. The technology-enhanced operator is a
growing field of research, with many other Industry 4.0 KET involved to achieve
varied goals: IoT-based Human-Cyber Physical Systems for providing feedback to
operators working in an intelligent space [91]; reducing Big Data to Smart Data
to assist people [79]; software robots (softbots) to interface between machines and
computer information systems [244]; mobile devices in order to allow dynamic
job rotation in multi-variant assembly lines [245]; verbal and visual prompts for
assisting workers with intellectual disabilities [246]; wearables for audio commands
[247] or detecting potentially hazardous or risky situations [248]; or a combination
of many technology-enabled tools [249–251].

In conclusion, varied Industry 4.0’s Key Enabling Technologies can be used
to support production operators to obtain different benefits. In particular, Virtual
and Augmented Reality and wearable devices have attracted great attention. Op-
erators can be supported with assembly instructions, Quality Control, assembly
details prompts or enhanced training programmes; which can be provided in a way
that is satisfactory for the users.

Implications of smart factories for human operators

Digital technologies progressive presence in factories will change the role of hu-
man operators, which will shift from work-focused activities towards coordinating
tasks, supervision and decision activities [252]. Operators will therefore need more
information than ever before, and this requirements need to be carefully assessed
[76]. Considering the operator at the centre, human activities with Cyber-Physical
Systems (CPS) have been modelled, and new KPIs proposed to make visible how
business and operational decisions affect operators [131]. Empowering operators
seems one possible way of making Smart factories happen, and such empowerment
will make visual computing technologies necessary, according to Segura et al. [253].

Digital technologies can also be used to obtain insights into human-machine
interactions [84] or worker’s wellbeing [107], which then lead to forming strategies
for cognitive automation [70]. Despite recent advances, digital maturity in manu-
facturing companies has a long way to go, and most operator-machine interaction
is done by mouse and keyboard hardware instead of by using CPS [254].

In conclusion, human operators will need to receive and manage more in-
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formation than ever before, make decisions and supervise instead of focusing on
mechanical work related activities. Therefore, empowering operators to act more
autonomously and supporting them accordingly seems necessary. To understand
the situation of Industry 4.0 operators can be done using new digital technologies,
obtaining meaningful data in ways that were not possible before.

Focusing on people: conclusions

The role of operators depends on the type of production system, and there is usually
a trade-off between the increased productivity of automation and the adaptability
of human operators. Reconfigurable, hybrid assembly systems that incorporate
machines and people could lead to cost-effective flexibility and scalability. How-
ever, the collaboration between people and robots can also create safety issues.
There must be a balance between worker’s autonomy and process control, keeping
in mind that operators’ involvement in the Continuous Improvement journey is
necessary for success in the long term. ‘Respect for people’ –a core principle of
Lean production– should be considered a cornerstone of Lean production process
design. A flexible and cross-trained work force is key for dealing with changing
demand conditions, allowing dynamic job assignation and efficient line balancing
and sequencing. New operator-centred frameworks are appearing to conceptualise
the role of people in the 4th Industrial Revolution era. The key role of operators
has been identified by numerous authors, coining the term Operator 4.0. Industry
4.0’s Key Enabling Technologies can be used to support production operators to ob-
tain different benefits. In particular, Virtual and Augmented Reality and wearable
devices have attracted great attention. Operators can be supported with assembly
instructions, Quality Control, assembly details prompts or enhanced training pro-
grammes; which can be provided in a way that is satisfactory for the users. Human
operators will need to receive and manage more information than ever before, make
decisions and supervise instead of focusing on mechanical work related activities.
Therefore, empowering operators to act more autonomously and supporting them
accordingly seems necessary.

2.4 Discussion

This section outlines the key ideas of the four areas considered in the previous
section, organised as answers to the four sets of questions posed in the introduction.

Assembly & Mass Customisation

The question related to Assembly and Mass customisation is: “What are the char-
acteristics and implications of mass customisation for assembly operations?”

Mass customisation brings increased complexity that needs to be addressed
at multiple levels and taking a holistic point of view to ensure that optimising a
sub-system does not affect negatively another sub-system. Assembly complexity
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reaches outside the boundaries of assembly operations and needs to be considered
jointly with supply chain, quality, maintenance and IT/IS. Industry 4.0 digital
technologies have a critical role to play in making possible mass customisation
assembly systems that do not compromise on quality and cost.

Industry 4.0 & Key Performance Indicators

The set of questions related to Industry 4.0 and KPIs are: “What new Industry
4.0 digital technologies are relevant to assembly operations?”, “How to measure the
improvement?” and “How to make the most out of them?”

There are many examples of new technologies applied to final assembly –
see Table 2.3: the Internet of Things, Big data and Digital Twins for improving
processes and decisions as well as for gathering data and obtaining valuable in-
formation; Cyber-Physical Systems and Augmented/Virtual Reality for measuring
human operator performance and supporting human operators’ work; and a mix of
technologies to support different aspects that enable mass customisation. However,
assembly operations are likely to experiment an evolution rather than a revolution,
by gradually incorporating these technologies. Two key areas will be of particular
interest: enhancing the role of people in assembly operations –especially in terms
of responsibility and skills; and making possible human-machine hybrid systems,
capable of efficient low-volume high-variability production.

To evaluate the performance of assembly systems, a KPI system is employed.
Standard KPIs need to be adapted in order to include both traditional metrics (e.g.
cost, quality, throughput, inventory, lead time, productivity) and new indicators
that are specific to the products, operations, stakeholders, business goals and IT-
related aspects of the smart factory.

Despite the wealth in literature about what new technology can do, few re-
late to methodologies to assess the operational needs and opportunities in final
assembly, and then finding or developing an Industry 4.0 solution to them.

Lean Assembly for Industry 4.0

The question related to Lean Production is: “Is Lean Production the best starting
ground for implementing Industry 4.0 assembly operations?”

Lean Manufacturing offers an array of tools and techniques to deal with the
increasing demand complexity and variability, and which could benefit assembly
operations in a context of mass customisation. While most authors consider Lean
Manufacturing as a valid approach for increased complexity of Mass Customisation,
others claim that Lean cannot be applied straightforwardly in the Industry 4.0 era.
Lean might not be necessarily the best possible starting ground for smart assembly
in every situation. However, it clearly has a positive synergy with Industry 4.0
because new technologies can enhance Lean assembly, and Lean maturity supports
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the implementation of new technology. Moreover, both Industry 4.0 and Lean
consider that people have a central role to play in assembly operations.

Assembly operators in Industry 4.0

The questions related to human operators are: “How would Industry 4.0 affect
people in assembly?” and “How to support people transitioning to Assembly 4.0?”

Industry 4.0 is expected to shift the assembly operators’ main functions from
direct labour activities to managing information and making decisions, supported
by technology. A flexible and cross-trained work force would be key for dealing with
changing demand conditions, allowing dynamic job assignation, line balancing and
sequencing. Learning factories are a great way to train operators in the new digital
manufacturing skills needed for smart factories, and to gain a deeper understanding
of how new technologies affect them.

2.5 Conclusion

This article looked at the issue of how Industry 4.0 technologies could improve
the flexibility, productivity and quality of assembly operations. To do so, a sys-
tematic literature review was carried out, and 239 articles were analysed. The
resulting analysis was structured into four main topics, each one addressing one of
the questions posed in the introduction.

It was found that mass customisation brings complexity into assembly opera-
tions, which need to be looked at from a holistic point of view –joining assembly,
supply chain, quality, maintenance and IT. New technologies –such as Big Data,
the Internet of Things, Real-time Optimisation, Cloud Computing, CPS, Virtual/
Augmented Reality, Additive Manufacturing and Digital Twins– allow obtaining
meaningful information in real time about the assembly operations, making better
decisions and supporting human operators in their activities. A combination of
conventional and new KPIs, to evaluate IT-related aspects of the smart factory,
will be needed to measure the impact of these technologies. Although it might not
necessarily be the best starting point in each and every situation, Lean is defin-
itely a great starting ground for smart factories. Since both Industry 4.0 and Lean
consider that people have a critical role to play in assembly operations, frame-
works that place human operators at the centre of Lean 4.0 have started to appear.
This focus will need to be translated into supporting people to acquire the digital
manufacturing skills they will need. Learning Factories are great to this end.

The literature analysis also uncovered the relative lack of methodologies for
implementing Industry 4.0 technologies in assembly operations to address concrete
business goals, which remains an open question. There is also room for devel-
oping operator-centred frameworks for Industry 4.0 that are specific to assembly
operations in the demand context of mass customisation.
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2.6 Summary

In this chapter, a systematic literature review uncovered several key findings for
improving the flexibility, productivity and quality of assembly operations with new
digital technologies: (1) Mass customisation brings complexity to assembly sys-
tems, which need to be analysed holistically; (2) new digital technologies allow
to have better, real-time information to support decisions made by people; (3)
new KPIs, linked to digital aspects, may be needed along conventional perform-
ance metrics; (4) Lean is a great starting point for deploying the 4th industrial
revolution technologies; (5) both Industry 4.0 and Lean consider people as a key
element of production systems; and (6) there is a lack of specific methodologies for
implementing Industry 4.0 digital technologies on assembly operations.

Resulting from these findings, it seems that the increasing focus on mass
customisation and complexity leads to high-mix low-volume demand conditions
dominance over other aspects. In consequence, assembly systems would need to
be adapted, designed and/or optimised to be flexible. Specifically, they need to
be capable of performing efficiently under high product variety, frequent product
changeovers and small batch sizes. Flexible assembly systems would also need to
stress the Lean-to-Industry 4.0 journey, a relationship that focuses on firstly im-
plementing and sustaining operational excellence initiatives before a digitalisation
strategy can be deployed holistically –i.e., at a systemic level, and not just as a
collection of small disconnected projects.

It is worth noting that although the period considered for the systematic review
was 2010–2020, the interest in the topic keeps growing. Industry 4.0 and Assembly
4.0 are no longer key subjects by themselves but have become the foundations for
a fast-growing field. The capital importance of people is highlighted in the newly-
coined term Industry 5.0 [255], proposed by the European Commission to stress
the human-centric orientation of European industry.

The main contributions of this chapter are two key findings about state-of-
the-art assembly systems 4.0 :

1. The systematic literature review carried out evidences a lack of specific meth-
odologies for the implementation of Industry 4.0 digital technologies on as-
sembly systems.

2. Key literature on the topic shows that mass customisation and personalisa-
tion demand trends lead to more complex assembly systems. These systems
include many different layers that need to be addressed holistically. To gain
perspective from multiple angles of how the several layers affect one another,
sets of performance measures ought to be used.

Resulting from these key conclusions, the following Chapter 3 includes Sec-
tion 3.1, which presents an assembly-specific operator-centred conceptual frame-
work for implementing Industry 4.0 digital technologies. Section 3.2 expands on
the available tools for evaluating the performance of flexible assembly operations,



2.6. Summary 49

a crucial step for assembly systems design. Later, Chapter 4 presents a system-
atic approach using design of experiments to uncover the most critical factors to
flexible manual assembly systems for high-mix low-volume demand, a first step to-
wards designing flexible assembly systems that are capable of benefiting from new
digital technologies.
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CHAPTER 3

Framework

This chapter introduces the conceptual framework to be used in the rest of the
thesis. It is composed of three clearly differentiated elements.

Resulting from the main conclusions of the previous chapter, Section 3.1 intro-
duces an operator-centred Lean assembly 4.0 conceptual framework, which allows
us to delimit the scope of the following chapters’ analysis tools and studies. It also
leads to conclusions on the type of Industry 4.0 digital technologies that could be
used to enhance the performance of each layer of an assembly system.

Section 3.2 presents general definitions, an assembly line classification tax-
onomy, and the basic concepts of manual and semiautomatic assembly performance
evaluation, which will be used in the following chapters of this thesis.

Section 3.3 introduces The Cooktop Company industrial study case. This
study case, which will one of the fundamental pillars of the analysis developed
in this thesis, presents a classic situation of mass customisation demand to which
the assembly operations need to adapt. This section describes the starting situ-
ation, explains the study case main characteristics, analyses the demand to identify
mass customisation patterns, and describes the product changeover situation to de-
termine which product-mix assumptions need to be used later for modelling the
performance of the system.

Finally, Section 3.4 features the chapter summary and key contributions.
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3.1 Operator-centred Lean assembly 4.0 framework

The conceptual model presented in this section, which was presented at the 54th
CIRP Conference on Manufacturing Systems (Athens, Greece/online, 2021), and
later published in Procedia CIRP [256] builds on the previous work carried out by
Gil-Vilda et al. regarding a human-centred model for Lean factory design [237]. In
consequence, each one of the subsections here corresponds to a section of the con-
ference article: Introduction (3.1.1), Operator-centred assembly 4.0 model (3.1.2)
and Conclusion (3.1.3).

Article title:

Operator-centred Lean 4.0 framework for flexible assembly lines

Article abstract:

This article provides a starting point for developing a methodology
to successfully implement Industry 4.0 technology for assembly opera-
tions. It presents a novel multi-layer human-centred conceptual model
in line with Lean philosophy which identifies the assembly operator
functions and relates them to other production departments, identifying
how they would be affected by incorporating new digital technologies.
The model shows that assembly operators would only be directly sup-
ported by hardware digital technologies; while the production support
departments would mainly employ Industry 4.0 software technologies.
The work presented here paves the way for developing a methodology
for implementing Lean Assembly 4.0.

3.1.1 Introduction

The term Industry 4.0, initially adopted by a German strategic program [22], is
used nowadays to express the relationship between different elements of the current
manufacturing sector and the new digital technologies. Recent research on Industry
4.0 tends to focus on the possibilities brought by a certain new digital technology
or develops a framework to understand what would be the effect of incorporating
such new technologies.

Scarcely explored is the development of implementation methodologies that
bridge Industry 4.0 conceptual frameworks with the current state of industrial
environments, and the process to successfully deploy new digital technologies that
bring the expected returns of investment [27]. Additionally, if the Lean production
approach and its techniques are also related to this implementation, the concept
of Lean 4.0 could be used as shown in the literature [30].

This article aims to provide a starting point for developing a methodology for
successfully implementing Industry 4.0 technology for assembly operations, in line
with Lean production principles. To do so, the model presented here links assembly
elements and ancillary departments to Industry 4.0 Key Enabling Technologies for
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assembly operations, considering the operator as the centre of the model, which is
coherent with Industry 4.0 principles [240, 257], Lean manufacturing [237] and the
EU prospects for Industry 5.0 [255].

In Section 3.1.1 changes in demand trends are presented, introducing a par-
ticular issue resulting from mass-customisation: high-mix low-volume. Then, it
describes the focus shift towards people in both Lean production and Industry
4.0. Finally, it introduces the role of new technology to support humans in as-
sembly: Operator 4.0. Section 3.1.2 introduces an operator-centred Assembly 4.0
model which identifies which digital technologies have a place in supporting oper-
ator functions and interactions in the Industry 4.0 factory. Finally, Section 3.1.3
presents the conclusions of the article.

Demand trends: mass customisation requires flexibility

Although a clear segmentation traditionally existed between mass-produced goods
and made-to-order products, the market trends have been shifting towards the
customisation of mass-produced items [28]. Despite this not being economically
sustainable in the past; technological advances have made it possible. Managing
the complexity associated with mass customisation remains one of the main chal-
lenges for global production networks [258]. In the near future, mass customisation
could not only become desirable, but expected of any company wanting to remain
competitive. In this context, adaptable, changeable and decentralised manufactur-
ing networks will possess key competitive advantages [258, 259].

Mass customisation leads to a particular production demand problem, high-
mix low-volume: a large number of items being demanded, in small amounts each
one, and with a variation not depending on seasonal trends, making its forecast
difficult and inefficient. To stay competitive in such a context, manufacturing com-
panies will need to become more flexible without compromising their productivity.
Fortunately, several Industry 4.0 digital technologies are expected to prove useful
in achieving this as already shown in the literature [11, 31, 260].

Production evolution: Lean 4.0 and focusing on people

New digital technologies have set the landscape for a fourth industrial revolution,
conceptualised as Industry 4.0, which describes a vision of increased flexibility and
automation; data and information flow across processes, functions and compan-
ies; enhanced quality achieving zero-defect production; leveraging big data, neural
networks, machine learning and Artificial Intelligence, among other digital techno-
logies, to maximise efficiency [257].

Lean manufacturing, a generalisation of world-leading Toyota Production Sys-
tem, has proven its efficiency in high demand variability, shorter new product devel-
opment cycles and customer-focused, highly competitive environments [5, 261]. It
is therefore a solid starting ground for any manufacturing system evolution seeking
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to improve productivity and flexibility at the same time. One of the key character-
istics that set apart Lean production systems is its respect for people and people’s
key role in their company’s continuous improvement journey [3, 262].

Hence, Lean production needs to be the cornerstone on which Industry 4.0
technologies rely to enhance production. Lean automation is then the synergy
between the Lean approach and the new digital technologies – Lean 4.0 [31]. Ac-
cording to Kolberg and Zühlke [263], Computer Integrated Manufacturing (CIM)
failed due to the complexity required for the automation technology, while the Lean
approach was successful because of its high effectiveness, achieved by reducing com-
plexity and avoiding non-value-added processes.

Although Industry 4.0 solutions to specific Lean production issues may prove
useful, either replacing or enhancing existing Lean tools, it is looking at the produc-
tion system from a holistic perspective where the maximum benefits of disruptive
digital technologies could be achieved [30, 31].

Assembly and Operator 4.0

The goal of flexible assembly systems in the Industry 4.0 era, named ‘Assembly
4.0’ by Cohen and Faccio in [74] –a term that will be used in the present article– is
to address the mass customisation demand paradigm. The most relevant key en-
abling technologies for assembly are –according to [24]– the Internet of Things, Big
Data, Real-time optimisation, Cloud computing, Cyber-Physical Systems, Machine
Learning, Augmented Reality, Cobots and Additive Manufacturing.

Considering the critical role of assembly line level operators on Lean produc-
tion systems performance, it is only natural to consider how new digital tech-
nologies would enhance the human operator best traits, and help to cover their
weaknesses, aiming for a ‘human-automation symbiosis’ [240]. To analyse this
human-technology interaction, it would be useful to start from the operator’s per-
spective to ensure that the implementation of changes does not affect negatively
people, but supports them [252].

As proposed in this novel work, keeping the operator at the centre is the focus
of the methodology approach proposed and described in the following section, where
all the interactions between an assembly operator and production activities and its
environment have been established and analysed.

3.1.2 Operator-centred assembly 4.0 model

Due to the success of Lean production systems and because respecting people is one
of its key features, human operators need to be at the centre of any methodology
seeking to integrate Industry 4.0 digital technologies for assembly operations. This
model aims to explain, from the point of view of the assembly operator, which of its
productive functions would be affected by Industry 4.0 technologies, and how. It
also explains how new digital technologies would affect the material and information
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flow between the operator and the main Departments which support assembly
operations, such as Logistics & Planning, Maintenance and Quality Control.

Figure 3.1: First stage of the human-centred model of assembly systems.

The model proposed consists of two stages. The first stage (see Figure 3.1)
develops three concentric layers: the productive functions carried out by the oper-
ator, the elements used to do so and the Production Support Departments involved
with the operator; along with how they interact with the operator. The second
stage relates Industry 4.0 digital technologies with its specific point of application
from the first stage (Figure 3.5, Section 3.1.2).

Production functions

The first layer considered in the model presented in Figure 3.1 –the most closely
related to the operator– consists of the production functions. Manual assembly
operators carry out four main productive functions:

• Assembly (AS): attachment of parts together or to the previously processed
unit, including manipulation of the units into and out of the workstation;

• Quality Control (QC): building quality in each process step, along with the
required tests performed by the operator;

• Changeover (CO): adjustments to the workstation, tools, parts and fixtures
to assemble a different product model;

• Communication (CM): recording, sending and receiving data or information.

Assembly process elements

To develop these production functions in Subsection 3.1.2, several assembly process
elements are used, which constitute the second layer, as shown in Section 3.2:
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Figure 3.2: Assembly operator functions and process elements utilised to perform them.

• Workspace: the actual space in which the assembly task is carried out. In-
volved in AS, QC and CO.

• Workstation: the physical space where the in-process unit is held while parts
are assembled. Involved in AS and QC.

• Fresh unit: the next upcoming unit to be processed. Involved in AS.
• Processed unit: the previously assembled unit. Involved in AS and QC.
• Tools: devices employed to attach parts to the unit. Involved in AS and CO.
• Parts: components to be assembled to the in-process unit. Involved in AS

and CO.
• Status & alerts display: devices which function is to inform of the production

status and visually or audibly alert of any anomalous situation. Involved in
AS, CO and CM.
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• Production data log/ screen: physical or digital means of tracking the pro-
duction schedule, recording data and displaying supporting information. In-
volved in AS, CO and CM.

• Measurement equipment: devices utilised to gauge or test relevant character-
istics of the in-process unit. Involved in QC, CO and CM.

• Fixtures: devices employed to hold the unit while performing assembly or
QC operations. Involved in AS, QC and CO.

Production Support Departments

Assembly operators are supported by five key departments of the organisation: (i)
Assembly: other operators, situated upstream, in parallel or downstream in the
process stream; (ii) Production Management: including team leaders and assembly
managers, they typically deal with non-conforming situations; (iii) Maintenance:
they ensure the tools, fixtures and machines; (iv) Quality: they establish Quality
Control policies, calibrate and validate testing equipment; (v) Logistics & Planning:
they provide the correct materials and parts at the right time, retrieve empty
packaging and schedule production.

Operator – Supporting Departments interaction

As Figure 3.3 and Figure 3.4 depicts, operators interact with the supporting de-
partments using a combination of process elements. White arrows indicate material
flow, while black arrows indicate data flow.

As shown in Figure 3.3, operators receive fresh units from upstream process
steps; and send processed units towards downstream process steps. Information
relating non-conformities or upcoming changeovers in shared typically verbally in
an informal manner. Formal information about the production status is shared
using Status & Alerts process elements, such as Andon lights or display screens.
Operators also exchange information formally with Production Management using
Production Data logs and screens. Measurement equipment often sends test data
to an IT system that stores it and provides Data Analytics.

Operators and Quality exchange information via Status & Alerts, Production
Data log/screens and Measurement Equipment. Additionally, Quality provides
and maintains the Measurement Equipment (see Figure 3.3) that Operators use to
perform QC.

Operators and Maintenance exchange information via Status & Alerts and
Measurement Equipment (see Figure 3.4). Also, Maintenance provides and main-
tains Tools and Fixtures, in response to the operator’s information regarding its
state.

Figure 3.4 shows that Logistics & Planning provide the operator with parts to
be assembled onto the unit, and they retrieve empty packing (material flow) Along
with parts or empty boxes, information is transmitted, e.g. when using a Kanban or
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Figure 3.3: Operator – Supporting Departments interaction: Production Management, Assembly
and Quality Control.
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Figure 3.4: Operator – Supporting Departments interaction: Maintenance and Logistics & Plan-
ning.
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a twin-bin system. Operators also provide implicit information through successfully
processed units, which are a measure of production output. They also exchange
information via Status & Alerts, Production Data log/screens. A key piece of
information provided by Logistics & Planning is the production schedule, specifying
batch sizes and changeovers, which can impact the operator’s productivity.

Industry 4.0 enabling technologies for Assembly

To connect the proposed model with Industry 4.0, nine enabling technologies have
been considered as particularly relevant for Assembly Systems [24]. Six of them are
software technologies (Internet of Things, Big Data, Real-time optimisation, Cloud
computing, Cyber-Physical Systems, Machine Learning), and three are hardware
technologies (Augmented Reality, Cobots, Additive Manufacturing).

While the assembly operator’s main functions are not expected to change
due to the availability of new digital technologies, the way these functions are
developed will need to evolve to enjoy its benefits. The relationship with Sup-
porting Departments also shows potential for improvement. Lastly, Supporting
Departments are expected to integrate new digital technologies to obtain increased
benefits. Although the latter technologies will not be employed directly by the
assembly operator, they will affect his work. Therefore, the implementation of new
digital technologies at all levels needs to consider the impact on assembly workers
to be successful. Figure 3.5 depicts which Industry 4.0 digital technologies would
be beneficial at each layer of the model.

Three key technologies could be used by operators to carry out its functions, as
shown in Figure 3.5: Augmented Reality or Mixed Reality (AR/ MR) [264], collab-
orative robots (cobots) [265] and Cyber-Physical Systems (CPS) [198]. Aiming to
support the assembly operator main functions (see Section 3.1.2), Augmented Real-
ity/Mixed Reality could be widely used: enhancing the operator cognitive ability
while performing a changeover –which would need to be streamlined and mastered
to achieve mass customisation, and supporting a zero-defect assembly and Quality
Control, as introduced in [66]. Cobots are to be used not only for assembly tasks,
but also to flexibly present the unit-in-process in the best orientation and posi-
tion for an ergonomic human operation or inspection; even contributing to quick
changeovers. Finally, CPS would gather and receive data, reducing the cognitive
load of the operator while ensuring the quality and reliability of the data captured
and sent in the workstation.

Regarding the Operator’s interaction with the Supporting Departments, the
Internet of Things could be employed to communicate the vast amount of data re-
quired to and from them. Industrial IoT can be combined with Augmented Reality
technology to provide real-time maintenance assistance remotely to assembly oper-
ators, reducing the equipment downtime in the event of a breakdown, in a similar
fashion to systems used to facilitate engineering knowledge to maintenance tech-
nicians [266]. Augmented Reality can also provide enhanced tools for communic-
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Figure 3.5: Industry 4.0 technologies to be employed at each layer of the Human-Centred Assembly
4.0 model.
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ation between Operators and the Supporting Departments, enabling collaborative
assembly process design, analogously to the product process design presented in
[267].

Finally, Supporting Departments could benefit from using Cloud computing,
Big Data, Machine Learning and Real-Time optimisation, which would affect as-
sembly operations positively in the long term. These software technologies would
influence greatly the bottom-line results, but these will not be directly perceived
by assembly operators since they will not be in close contact with such techno-
logies. For example, Big Data and Digital Twins for Logistics & Planning would
help optimise in-factory stock levels while ensuring reliable feeding of components
to assembly cells, but this optimisation is hardly seen from the operator point of
view.

Discussion

The multi-layer model presented previously explains an Assembly operator func-
tions, the tools utilised for such end, and its interactions with the Production Sup-
port Departments, from a human-centric perspective. It then establishes which
of the previous layers could be affected by Industry 4.0 digital technologies, and
which technologies would enhance each particular function or relationship.

As Figure 3.5 shows, there is a clear differentiation between the technologies
used by the operator to perform its functions (hardware technologies), and the
technologies used by the Production Support Departments – not directly by the
operators (software technologies).

Although this model does not reveal how to successfully implement Industry
4.0, its necessary prerequisites, or the expected order of magnitude of the benefits
it would bring; it does identify which technologies could be used to support each
one of the operator’s duties, making it a solid starting point for future research.

This model is builds on top of the foundations laid by solid previous research:
the central role of people for Industry 4.0 [240, 257] and for Lean assembly systems
[237], as well as the EU prospects for Industry 5.0 [255]. However, it has not been
validated experimentally to date.

To determine the prerequisites and the potential benefits of implementing In-
dustry 4.0 technologies according to the framework presented here, validation in
an industrial real study case is deemed necessary.

3.1.3 Conclusion

Aiming to achieve mass customisation, production systems in the Industry 4.0 era
will need to support the Assembly operators when and as needed. The importance
of people in Manufacturing systems was already a key point in successful Lean
production systems, and Industry 4.0 technologies need to embrace this perception.



3.2. Performance Evaluation of Flexible Assembly Operations 63

A human-centred model was presented, explaining, from the point of view of
the assembly operator, which of its productive functions would be affected by In-
dustry 4.0 technologies, and how so. One clear differentiation appears between the
technologies used by the operator to perform its functions (hardware technologies),
and the technologies used by the Production Support Departments – not directly
by the operators (software technologies).

This model does not aim to be exhaustive for all kinds of manual assembly
process, but it does include everything related to most manual high-mix low-volume
processes, and it is open enough to allow additions from specific processes to adapt
it where necessary.

Future lines of work would employ this model to develop an explicit meth-
odology for implementing Industry 4.0 digital technologies aiming to support the
human Assembly operator and evaluating the potential gains in industrial contexts,
thus providing empirical validation in real industrial study cases. This would cor-
relate Assembly 4.0 implementation to key operational KPIs (e.g. productivity,
on-time delivery, first time yield) when analysing a particular case study, whose
boundary conditions and approach could be properly established by the model.

3.2 Performance Evaluation of Flexible Assembly
Operations

This section introduces an assembly line classification, the basic concepts of as-
sembly systems performance evaluation, and the definitions of the most relevant
parameters used in the models used in later chapters.

3.2.1 Assembly line classification

Assembly line features can be classified according to three main sets of charac-
teristics, according to Boysen et al. [268, p.678–682], whose definitions are listed
below. Concerning the work presented in subsequent chapters of this thesis, the
following six assembly line attributes are of capital importance:

1. Product precedence:
• Mixed-model line: “Varying models are manufactured on the same pro-

duction system, the production processes of which are similar enough
so that setup times are not present or negligible. Thus, the units of the
different models are produced in an arbitrarily intermixed sequence.”

• Multi-model line: “Different products are manufactured in batches. Whenever
another batch is to be processed, a setup occurs which requires time and
resources.”

• Single-model line: “A single product is manufactured or the production
processes of multiple products are (almost) identical so that they need
not be distinguished.”
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2. Processing times:
• Stochastic processing times: “It is assumed of processing times follow a

known (or even unknown/partially known) distribution function.”
• Dynamic variations of processing times: “These variations are, e.g., due

to learning effects of operators.”
• Processing times are considered to be static and deterministic.

3. Movement of workpieces:
• Paced workpiece movement: where a cycle time restricts the product

advance.
• Asynchronous unpaced movement: “As soon as a station completes its

work, the workpiece is moved to the next station or a buffer in front of
this station unless blocking occurs.”

• Synchronous unpaced movement: “the movement of workpieces is co-
ordinated between stations. The workpieces are transferred to the re-
spective next station when all stations have completed their current
workpiece.”

4. Line layout:
• Single line: “The stations are arranged in a serial manner along the flow

of the line.”
• U-shape: “U-shaped line layout with at least one crossover station is

used.”
5. Parallelisation:

• Parallel lines: “More than one parallel line is to be considered or the
number of lines installed as part of the decision problem.”

• Parallel stations: “When stations are parallelised, their resources and
work contents are duplicated so that they process all assigned tasks
alternately.”

• Parallel tasks: “parallelised task is assigned to more than one station. In
addition to their regular work content, stations process the parallelised
task interchangeably.”

• Neither type of parallelisation is present.
6. Buffers:

• Unlimited/limited capacity buffers: When in-process workpieces can be
stored between stations.

• Unbuffered line: When a station can only move the finished workpiece
forward if the following station is empty, or at a synchronised time.

The assembly systems analyses of this thesis employ slightly different assump-
tions depending on the goal and scope of each case.

3.2.2 Performance evaluation models

The general framework for analysing the performance of an assembly system con-
sists of a series of inputs, interpreted by a model representing the system, which
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in turn produces an output, depicted by Figure 3.6. Such output can be evaluated
using different measures, or Key Performance Indicators (KPIs).

Figure 3.6: Assembly systems performance evaluation general framework of analysis.

Input parameters

Regarding the input variables (or parameters), it is possible to differentiate two
main groups: design and fixed parameters, which will be explained together, and
disturbances.

Design parameters describe aspects of the assembly system relatively under
control or that can be directly modified to obtain the desired outcome. On the other
hand, fixed parameters cannot be easily altered, because they depend on external
factors –e.g. the customer demand or the work content of a certain product–
or changing them is beyond the scope of the analysis at hand. In consequence,
some variables, such as the number or layout of manual assembly stations, can
be considered fixed or design parameters depending on the investigation goals and
scope.

The following list includes most of the design/fixed parameters and notation
employed. Note that some additional, analysis-specific variables will be defined
and used in subsequent chapters.

BC Buffer capacity: maximum number of work-in-process units between
workstations.

BCO Number of batches of the same product family before changeover.

CT Cycle time

J Number of automated workstations.

K Number of manual workstations in an assembly system.

L Number of assembly lines.

LB Line balance.



66 Chapter 3. Framework

M Number of product models. Depending on the scope of a certain
analysis, this number can refer to final product variants (i.e. ref-
erences) or product families, each one sharing the main production
characteristics.

Q Batch size

Ts Setup time: necessary to adapt the workstations in order to produce
a different product model.

Tp Processing time: Time necessary to perform the assembly tasks as-
signed to a workstation.

Tt Milkrun transportation time: Time required by the milkrun train to
cover the route between the in-plant warehouse and the points of use
at the assembly line.

Th Milkrun operator handling time: Time required by the milkrun op-
erator to load or unload component containers to the points of use.

W Number of workers. Usually (but not always) equal to the number
of stations.

WC Work Content: Total aggregate processing time to assemble a
product from the beginning until it is finished.

WCR Work Content ratio: Ratio between the largest and the smallest work
content among the products of an assembly line.

Disturbances are different from other input variables because they present a
stochastic behaviour. Stochastic variables can be described using a random probab-
ility distribution that may be analysed statistically, although it is not predictable.
These parameters are used to represent the non-deterministic nature of manual
processing times and quality control rates, among others. While discrete events
simulation models are designed to incorporate stochastic parameters, analytical
mathematical models are considered to be more limited in this regard [269, 270].

The following parameters express the ratio between the mean and standard
deviation of the probabilistic distributions used to model stochastic disturbances.

CVp Processing time variability

CVs Setup time variability

CVc Conforming pieces per container variability

CVq Batch size variability

Models

In opposition to optimisation models—which generate a set of decisions or courses
of action to maximise the performance of production systems—performance eval-
uation models “estimate the measures of a system performance for a given set of
decisions and system parameters. These models rely on techniques of stochastic
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processes, probability, and simulation.” [271, p.4]. There are many different tools
of evaluative models for discrete production systems. A top-level categorisation
would differentiate between analytic models and simulation models, among others
[272]. These are the two types of performance evaluation models that have been
used in this thesis: mathematical and simulation.

Analytic models - which include capacity analysis, queueing, and mathematical
programming - are typically very fast, and can capture accurately some advanced
features such as rework, batch processing or re-entrant material flows. Their res-
ults, consisting of a single number for each KPI, are easy to interpret. However,
these models usually rely on restrictive assumptions, meaning that they are not
appropriate for all kinds of production scenarios.

Simulation, on the other hand, “in this context refers specifically to computer-
based discrete event simulation” [273, p.18]. This modelling tool can capture virtu-
ally any level of detail, including both dynamic and stochastic (random) behaviour.
Its downside is that it requires superior computational power, takes longer to run,
and its results can be more difficult to interpret because it requires statistical ana-
lysis of the simulation outputs [272].

The specific features of the models used in this will be detailed in Chapter 4
and Chapter 5.

Output variables

Modern assembly operations require multi-faceted measurements to fully under-
stand the performance of such systems. While the first industrial focus was to
control and minimise production costs, later productivity (or production efficiency)
became the key measure [12]. Lean Production highlighted the importance of min-
imising the delivery time to customer orders and used lead times as well as inventory
measures as indicators of efficiency. In recent times it is considered that a set of
KPIs is needed to assess the operational situation of a production system.

Assembly performance measures typically look at efficiency measures such as
“assembly throughput, capacity, lead-time, in-process inventory, availability, flexib-
ility, quality, cost per assembly” [9, p.36], depending on the situation-specific goals.
The selected KPIs need to keep a balance between simple and easy-to-understand
measures (which are directly applicable by industry practitioners) and more com-
plex, compound indicators that can depict better a particular situation.

The KPIs used in this thesis are derived from the following three main per-
formance measures [9, p.36]:

1. Throughput (Th): “the rate of good-quality assemblies produced by an as-
sembly system”. The maximum throughput is also named line capacity. Over
a fixed period, the aggregate throughput is the total output of the system.
Improvement goal: increase throughput.
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2. Productivity (P ): the ratio between the production rate and the input re-
sources required. Improvement goal: increase productivity.

3. Lead time (LT ): “total time required to produce one assembly including all
waiting time.” Improvement goal: decrease lead time.

The three main performance measures have been related to nine Key Performance
Indicators:

Output Output: Total number of conforming units produced.

Th Throughput: Production rate of conforming units.

PLine Line productivity: production rate of conforming units per operator.

PLabour Labour productivity: percentage of time that operators spend adding
value to the in-process units.

PS Surface productivity: production rate of conforming units per oper-
ator and surface unit.

U Milkrun utilisation: fraction of total available time that the supply
chain operator is busy (picking components at the warehouse, driving
the milkrun train and handling containers to load/unload compon-
ents).

S Stock at assembly line: stock level of components held in the as-
sembly line.

LTB Batch lead time: time for a batch of units to be finished from the
moment the last unit of the previous batch is finished.

LTU Unit lead time: time for a unit to be finished from the moment it
starts being assembled.

3.3 Industry case: the Cooktop Company

This Section introduces the study case: industry, product, production system,
demand (Subsection 3.3.1), and then introduces the assembly line under study
(Subsection 3.3.2).

3.3.1 Introduction to the industrial study case

As part of the DIGIMAN4.0 consortium, this thesis project could collaborate with
an industrial partner, the Cooktop Company, which is a global enterprise design-
ing, manufacturing and distributing white goods. The home appliance industry is
a highly competitive market, which drives cost efficiency. The study case analysed
here corresponds to a manufacturing facility which specifically deals with gas cook-
tops (discrete manufacturing). Gas cooktops deal with a particular global market
with multiple national and international regulations and technical specifications
which add variability to the global mass customisation demand trend.
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Product and assembly system: gas cooktops

The Cooktop Company production plant located in the North of Spain has a gas
cooktop product portfolio of c. 500 references. The references are grouped in
product families and product lines depending on some key product characteristics
such as its size (e.g. 30, 60, 75 or 90 cm), number of hobs (from 1 to 6 per
cooktop) or the hob top material (e.g. steel, ceramic, glass) and finish (e.g. enamel).
There are seven distinct product lines (PL) in this facility, and each product line is
comprised of 5 to 20 product families (PF). In turn, each product family consists
of up to 25 product references. Each product line is assembled in an assembly line,
capable of efficiently handling a vast number of related products.

All seven product lines add up to an aggregate demand of over 500k units
per year. While some product lines experience high demand, others add up to as
little as one production batch per year. The product line-family demand pattern is
also replicated at a product family-reference level and will be looked at in further
detail later on. The variable demand pattern drives the reduction of production
batch sizes to limit the low-demand references shelf time and warehouse occupation.
However, smaller production batches decrease the production productivity and thus
increase the average production cost of such references, which if transferred to the
final customers further reduces their demand, especially in a strongly commoditised
market such as home appliances.

The top three most demanded product lines are assembled in semi-automated
lines, which have cycle times of approximately 70 to 120 seconds. They consist
of eight manual stations alongside several partially automated stations (e.g. for
screw fastening after manual placement of the components) and three fully auto-
mated stations which perform laser engraving and in-line quality control tests.
Semi-automated lines present shorter cycle times and increased line productivity
and therefore lower costs per unit. However, these traditionally automated sta-
tions require heavy investments demanding high production volumes of very similar
products, which restricts them from assembling cooktops of a single product line.

On the other hand, the product lines presenting lower demand are produced
in fully manual assembly lines, which have cycle times in the range of 150 to 280
seconds, and consist of 3 to 5 workstations. They leverage the inherently superior
flexibility of human operators. The absence of rigid automation allows them to deal
with extended product lines, but their lower productivity places these products at
a competitive disadvantage in terms of production cost.

Demand profile

The demand patterns faced by The Cooktop Company are quite common across
other industries. Figure 3.7 shows a Pareto chart of the cooktop demand volume
per product line. Note that the three product lines with higher demand (above
100k units per year) were already been produced in semiautomated assembly lines;
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since the higher production volume allowed them to benefit from the increased
productivity brought by automation. Product lines 4 to 7, on the other hand, each
present such a low demand volume that introducing traditional automation would
not be economically viable.

Figure 3.7: Demand by product line (PL) at The Cooktop Company (2019). Product lines 1–3
(grey) correspond to already semiautomated assembly lines. Product lines 4–7 (blue) are low-
volume, and were assembled on manual assembly lines.

Furthermore, Figure 3.8.a and Figure 3.8.b drill down on the demand volume
of the two product lines with lower demand. These Pareto charts reveal a similar
demand volume distribution pattern: a few (three) product families account for the
majority (70-80%) of the demand volume. A more detailed look at the number of
product references in each product family highlighted that the demand of the high-
runner product families is atomised as well. This allows us to conclude that The
Cooktop Company faces high-mix low-volume demand, in line with the framework
of mass customisation.

Figure 3.8: Demand by product family (PF) at The Cooktop Company (2019): (a) product line
(PL) 6, (b) product line 7.
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3.3.2 Manual assembly line under study

Among the assembly lines of The Cooktop Company, three manual assembly lines
are analysed in this subsection, and its main features are characterised, building
up the industrial study case to be used in later chapters. Firstly, the lines will be
described and classified using the previously defined framework, focusing on the
key assumptions that analytic or simulation models will use. Then, changeover
setup times data will be explored to stress the multi-model aspect of these lines.

Product lines no.4, 6 and 7 manual assembly

This thesis focuses on the high-mix low-volume assembly lines and the ways to
integrate automation to increase their productivity while maintaining a high degree
of their current flexibility. Figure 3.9 and Figure 3.10 illustrate the state of the
lines during the thesis project. Figure 3.11 shows schematically the layout of the
assembly lines, which will be modelled in subsequent chapters.

Figure 3.9: Product line no. 7 manual assembly line (on site).

The classification framework introduced in Section 3.2 can be applied to these
manual assembly lines. Regarding the product precedence, they are multi-model
lines, since each of them deals with a product line consisting of many different
product families. Detail on the setup times necessary to adapt the workstations to
different products will be presented later on.

Their processing times are assumed to be stochastic since the assembly time
data suggests that considering variability is necessary to model the assembly system
realistically. Later Section 5.3.2 details the analysis carried out to characterise
the manual assembly time variability. The workpiece movement is asynchronous
unpaced since workers are not limited by cycle times and can push the processed
workpiece to the buffers in-between stations. The assembly lines under study, as
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Figure 3.10: Product line no. 4 manual assembly line (on site).

shown by the diagrams in Figure 3.11, present a single-line layout, without any
type of parallelisation in their current state. This potential aspect will be explored
further in Chapter 4 and Chapter 6. Finally, these are buffered lines with limited
capacity. The buffers between stations can typically hold a maximum of one in-
process unit, which allows to mitigate the worst effects of processing time variability
without excessively increasing the assembly line floor space.

Later Chapters 5–7 describe in further detail the assumptions made to model
these assembly lines.

Setup times of multi-model assembly lines

Every time an assembly line switches from producing a product reference, assembly
operators need to perform a series of change operations to adapt the stations to
the new (incoming) product model.

Setup time is defined as the time employed by assembly operators to change
over the fixtures, tools, quality control equipment and component containers (i.e.
boxes, pallets, trays).

The elements to be adjusted on each workstation belong to two distinct groups:
(1) fixtures and tools, which are present on all workstations, so that the total setup
time increases if the number of stations rises; and (2) component containers and
quality control equipment, whose total number is independent of the number of
workstations. This distinction will be important for the modelling assumptions in
Chapter 4.

Setup times typically depend on both the outgoing model (model out) and
the incoming model (model in). Table 3.1 and Table 3.2 show the setup times
for product lines no. 6 and no. 7, respectively. This data was obtained by the
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Figure 3.11: Schematic diagram of The Cooktop Company manual assembly lines.

Cooktop Company production department by timing the changeovers. Note that
the setup times in the diagonal of the table (i.e. corresponding to a changeover
between models of the same product family) are greater than zero. This implies
that for product models within a product family—whose cycle times are assumed
identical—there are enough differences so that the workstations need to be adjus-
ted. In consequence, the Cooktop Company assembly lines need to be modelled as
multi-model AL.

Since the setup time of one station can (and usually is) different from another
station, during changeovers it is possible that one or many assembly line operators
must wait (idle) for an upstream station operator to complete his or her setup,
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Table 3.1: Setup time (min), double entry table for product line no. 7.

Model in

Model out 1702 1706 1703 1705 1701 1704

1702 3.52 5.20 4.88 7.76 9.20 4.80
1706 4.16 3.44 4.24 6.80 7.44 4.00
1703 4.24 4.88 3.36 8.24 8.00 4.24
1705 4.56 4.56 4.56 4.16 5.76 4.56
1701 4.88 4.88 4.88 5.60 5.04 4.88
1704 5.92 6.72 6.16 9.12 9.76 2.96

Table 3.2: Setup time (min), double entry table for product line no. 6.

Model in

Model out 2808 2802 2807 2801 2803 2806 2804 2805

2808 4.38 4.56 4.62 5.04 5.16 4.02 4.26 4.08
2802 4.38 4.56 4.44 4.74 4.8 4.02 4.26 3.90
2807 5.10 5.40 4.86 5.16 5.28 4.44 4.68 4.32
2801 4.80 4.98 4.80 5.04 4.80 4.44 4.62 4.26
2803 5.46 5.76 5.10 5.52 4.86 4.74 4.74 4.32
2806 5.28 5.58 5.34 5.76 5.88 4.38 4.98 4.8
2804 5.58 5.88 5.16 5.58 5.70 4.86 4.86 4.68
2805 6.48 6.78 6.12 6.54 5.52 5.76 5.76 4.86

or that an operator becomes blocked until a downstream station finishes its setup.
This leads to changeover losses, which are always equal to or greater than setup
times.

Changeover time is defined as the time employed by the assembly operators
from the moment the outgoing product model leaves the line until the first unit of
the incoming product model is finished.

Figure 3.12 depicts three product changeover situations when switching from
model b to model a (or vice-versa). Product models a and b present different cycle
times (CTa, CTb). In this example, four workstations (K1...K4) process the last
units of a production batch (bn, bn−1, ...) before needing to carry out setup activities
of duration Ts,ba. As soon as possible, each station starts assembling units of the
next model (a1, a2, ...).

Note that even if all station setup times are equal, changeover losses can occur
due to cycle time differences between the incoming and outgoing product models, as
shown in Figure 3.12a and Figure 3.12b. Note that buffer capacity (BC) in-between
assembly stations protects the line from changeover losses (see Figure 3.12c, but
increases the line’s WIP and floor space occupation. The analytical model used
in the next Chapter 4 specifically focuses on realistically estimating changeover
losses because they become increasingly influential on assembly line performance
as batch sizes are reduced and product changeovers are more frequent as a result
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(a) Changeover with CTin < CTout: idle time appears due to starvation.

(b) Changeover with CTin > CTout and no WIP (BC = 0): blocking time appears.

(c) Changeover with CTin > CTout and a WIP unit (BC = 1): reduced block time.

Figure 3.12: Changeover losses due to cycle time differences between the incoming and outgoing
product models. (a) Changeover with CTin < CTout, which causes the apparition of idle times
which propagate as the number of stations grows. (b) Changeover with CTin > CTout and no
WIP buffer between stations. Operators become blocked. (c) Changeover with CTin > CTout

and WIP buffer capacity (BC) of 1 unit between stations. Operators block time is mitigated by
WIP buffer.

of high-mix low-volume demand.
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3.4 Summary

In this chapter, a human-centred model was presented, explaining, from the point
of view of the assembly operator, which of its productive functions would be af-
fected by Industry 4.0 technologies. A clear differentiation appears between the
technologies used by the operator to perform its functions (hardware technolo-
gies), and the technologies used by the Production Support Departments –i.e., not
directly by the operators (software technologies). This chapter also introduced
the assembly operations performance evaluation framework to be used in all the
remaining chapters of this thesis, as well as two key available tools to do so: math-
ematical (analytical) models and discrete events simulation. Finally, The Cooktop
Company industrial study case of assembly operations facing high-mix low-volume
demand was presented.

This chapter makes two key contributions towards understanding how to in-
crease assembly operations productivity and flexibility under high-mix low-volume
demand:

1. Based on an operator-centred Industry 4.0 framework specific to manual as-
sembly operations, a clear classification between Industry 4.0 digital tech-
nologies according to their relationship with assembly operators. Hardware
technologies (e.g. collaborative robots, augmented/mixed reality) are in dir-
ect contact with the operators, as opposed to software technologies (e.g. big
data, machine learning, cloud computing), which are employed by supporting
departments and only indirectly affect assembly operators.

2. The most relevant input and output variables to be used using a sound general
analysis framework have been established.

The following Chapter 4 employs mathematical modelling for a preliminary
evaluation of manual assembly systems to identify the most critical factors affecting
these systems’ performance. A simulation model is developed in Chapter 5 for a
more detailed analysis of flexible assembly operations.



CHAPTER 4

Identifying the critical factors: mathematical model

This chapter introduces a mathematical analytical model which focuses on product
changeovers of assembly lines. The model is then employed along with Design
of Experiments techniques for investigating the most critical factors to flexible
assembly systems performance. The goal of this preliminary study is to lay the
foundations for the analysis of improvement opportunities in the assembly line
design.

Section 4.1 explains the model’s assumptions and scope, based on the frame-
work introduced in Sections 3.1 and 3.2. Section 4.2, which was published as a
conference article in 2021, applies the mathematical model to the industry study
case of Section 3.3 along with Design of Experiments techniques to identify the
most critical factors affecting the system’s KPIs. Sections 4.3 and 4.4 expand on
the validation of the mathematical model and the significance of one of the model-
ling assumptions regarding changeover time losses. Finally, Section 4.5 summarises
the chapter and presents its contributions.

4.1 Realistic changeover mathematical modelling

A mathematical analytical model was developed, focusing on the product changeover
time losses of multi-model assembly lines. It allows us to calculate changeover
lost times quickly and accurately, which are typically underestimated by assuming
they are approximately similar to setup times (Tco ≈ Ts). This is particularly
relevant when considering that high-mix assembly lines imply large variations in
product cycle times (i.e. high work content ratio, WCR) and frequent changeovers.
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Moreover, large WCR results in acute sequence-dependent changeover times which
are rarely modelled as such. This simplified mathematical formulation enables
a quick initial assessment of the assembly lines’ operational KPIs with low com-
putational and professional time costs compared to setting up a discrete events
simulation model or employing advanced mathematical formulations.

The main area of application of this model would be high-mix low-volume
demand scenarios where product changeovers are very frequent and constitute a
major driver of line productivity. Devised as a preliminary assembly operations
design tool, this model also allows for a more precise evaluation of changeover times
–as a function of incoming and outgoing product models, number of WIP units,
number of workstations, etc.– to be used as input data in optimisation techniques
for scheduling approaches (e.g. travelling salesman scheduling problem).

The following Section 4.1.1 introduces the model scope and assumptions, and
then Section 4.1.2 provides details of the deterministic algorithm that were not
included in the conference article of Section 4.2.

4.1.1 Mathematical model assumptions, scope and algorithm

The main disadvantage of mathematical models is their stated assumptions, as they
may not be valid in—or accurately represent—the real world [269]. The mathem-
atical model developed is based upon the underlying assumptions, expressed in the
terms of the assembly line classification by Boysen et al.[268]:

• Product precedence: multi-model line, since setup times are not negligible
and are sequence-dependent. Setup times per station are constant, regardless
of the number of workstations.

• Processing times are considered static and deterministic.
• The movement of workpieces is paced, and the time required for it is negligible

compared to the assembly processing times.
• Strictly single-line layout.
• Neither type of parallelisation is present.
• Buffers: the model features limited capacity WIP buffers in-between work-

stations.

The scope of the model can also be expressed using the operator-centred frame-
work detailed in the previous Section 3.1. As shown in Figure 4.1, this model
includes the human operators (innermost layer of the framework), three out of
the four main operator functions (second layer: assembly, changeover and quality
control), and only incorporates the assembly elements of the third layer directly
related to the assembly functions: workpieces, workstations, fixtures. Although
this mathematical model takes quality control into account, it neither includes any
considerations regarding the equipment employed to carry it out nor requires any
interaction with the quality control department (fourth layer of the framework).
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Figure 4.1: Scope of the mathematical model illustrated using the operator-centred conceptual
framework.

Algorithm 1 Deterministic performance evaluation in terms of productivity,
throughput and batch lead time in paced multi-model serial assembly lines with K
stations, end of line quality controls and changeovers between batches of different
product models.

1: Input: K, Q, WC(m), LB(m), FTY (m)
2: Output: PLabour, LTB , Th
3: for all product models m do
4: Calculate cycle time
5: end for
6: for batch i of product model m do
7: Calculate time to build conforming units
8: Calculate time to build defective units
9: Calculate total time to build the batch i

10: Calculate total time to complete the batch i including changeover
11: Calculate time recovered
12: end for
13: Calculate average labour productivity
14: Calculate maximum batch lead time
15: Calculate average throughput
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The mathematical model, whose formulation is listed in the next section
(Equations 4.1–4.9), is expressed by Algorithm 1. It uses the following logic, ac-
cording to the assumptions previously stated:

1. Workpieces are processed in a serial assembly line with buffers between the
stations.

2. Each station processes units of a certain product model until a batch is com-
pleted.

3. Then, a setup must take place to make the station ready for assembling a
different product model.

4. An end-of-line quality control determines if a product is defective. Thus, the
assembly line will assemble, on average, more units than the final number of
conforming products.

4.1.2 Changeover time estimation algorithm

As mentioned in the previous chapter, the manual assembly lines under study
experience changeover time losses due to the necessary setup activities between
batches of different products. These activities consist mainly of three groups of
tasks: fixtures, tools and component containers.

The necessary time to perform the setup tasks depends on the outgoing and
incoming product models as well as the particular workstation. However, while the
time required to adjust fixtures and tools depends on the assembly line number of
stations, the time needed to swap the component containers only depends on the
outgoing-incoming models duple. The mathematical model which will be presented
in the next Section 4.2 assumes that the setup time is directly proportional to the
number of stations, which might be overstating the setup time losses of longer
assembly lines—featuring a greater number of stations—compared to shorter lines.
The impact of this assumption will be further analysed in Section 4.4.

Setup time is not the only possible source of changeover time losses. When the
cycle time of the incoming product is different from that of the outgoing product,
additional losses can occur –illustrated by Figure 3.12– as a result of idle or blocked
operators. This effect can be mitigated by the existence and capacity of WIP buffers
between stations.

The mathematical model described in 4.2.2 presents the analytical equations to
estimate the assembly line performance measures. However, it lacks the formulation
of the changeover losses algorithm, which will be used in Equation 4.5, following
Algorithm 2 shown below.

The key assumptions for this algorithm are the following:

1. Operators start the setup activities as soon as they finish the last unit of
the previous batch (i − 1), without needing to wait for the first unit of the
incoming model (i) to arrive at their workstation.
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2. To start the assembly of the first unit of the incoming product, operators
need to have completed the setup of their corresponding workstations, and
that the unit has been finished by the previous station.

3. If the incoming model is faster—i.e. CTi < CTi−1, the operators may become
blocked. For example, if the setup times are equal across all workstations,
the first operator would finish the first unit of the incoming batch before the
following operator has finished the setup (cf. Figure 3.12b). This is affected
by the WIP buffers between stations (Figure 3.12c).

4. If the incoming model is slower—i.e. CTi ≥ CTi−1, the operators may be-
come idle. This case has a greater effect on changeover losses because the
waiting time at each station becomes larger as the number of stations in-
creases (Figure 3.12a).

Algorithm 2 Deterministic estimation of total changeover time losses (Tco) from
product model i−1 to model i in paced serial assembly lines with K stations (index
k) and limited WIP buffer capacity (BC) between stations.

1: Input: CTi−1, CTi, K, Ts(i− 1, i, k), BC
2: Output: Total changeover time loss from batch i− 1 to i.
3: for each workstation k do
4: if k = 1 (first station) then
5: Start time of last unit of batch i− 1 set to zero
6: Calculate finish time of batch i− 1
7: else if k ∈ {2, ..,K} (subsequent stations) then
8: Calculate start time of last unit of batch i− 1
9: Calculate finish time of batch i− 1

10: end if
11: Calculate end of setup
12: Calculate start time of first unit of batch i
13: Calculate finish time of first unit of batch i
14: if CTi−1 ≥ CTi then ▷ Potential block, see Figure 3.12b
15: if k ∈ {1, ..,K − 1} (any station except the last one) then
16: Calculate changeover time loss
17: else if k = K (last station) then
18: Calculate changeover time loss
19: end if
20: else if CTi−1 < CTi then ▷ Potential starvation, see Figure 3.12a
21: if k = 1 (first station) then
22: Calculate changeover time loss
23: else if k ∈ {2, ..,K} (subsequent stations) then
24: Calculate changeover time loss
25: end if
26: end if
27: end for
28: Calculate total changeover time lost
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4.2 Labour productivity in manual assembly

This section includes the conference article presented at the 9th Manufacturing
Engineering Society International Conference (MESIC) in June 2021 [274].

After the article abstract below, the following subsections correspond to the
article’s Introduction (4.2.1), Methodology (4.2.2), Results (4.2.3) and Discussion
and Conclusion (4.2.4). The following Section 4.3 includes further details of the
validation results and the experiment design that were not incorporated in the
article.

Article title:

Labour productivity in mixed-model manual assembly 4.0

Article abstract:

Manual assembly lines productivity is threatened by the increased com-
plexity brought by mass customisation demand trends. Industry 4.0
offers potential solutions to address this situation, but the methodo-
logy to implement it is still a subject of study. As a preliminary step,
this article aims to identify the dominant factors affecting the Key Per-
formance Indicators of mixed-model assembly lines. To do so, paramet-
ric and discrete-events simulation models were developed, and Design
of Experiments techniques were used. The results show that the key
drivers for assembly line performance are number of work stations and
batch size, and that increasing the work content ratio of the products
assembled does not interact negatively with other factors. The results
presented here pave the way for developing Industry 4.0 projects that
address specifically the most relevant factors that affect assembly lines
performance.

4.2.1 Introduction

The demand trends in the recent decades are the mass customisation of products
or even the mass personalisation of goods [28]. The growing number of available
options for both final consumers and industrial customers requires focusing on in-
creasing the flexibility of assembly systems while maintaining high productivity
levels [13, 165]. The advances in new digital technologies that could bring forward
a 4th industrial revolution were conceptualised under the tag ‘Industry 4.0’ by a
German strategic programme, and are namely: Big Data and Analytics, Autonom-
ous robots, Simulation, Horizontal and vertical system integration, the industrial
Internet of Things, Cybersecurity, The Cloud, Additive Manufacturing and Aug-
mented Reality [8]. Some of these technologies arrive with the promise of new
opportunities for assembly systems design and operations, allowing them to ful-
fil the latest market requirements [24]. In particular, manual assembly lines and
cells show potential for improvement when facing the complexity associated with
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producing a large number of products – or variants of similar products [74].

Despite new technologies have been developed and their potential benefits have
been outlined, implementation methodologies are still a hot topic [27]. The focus
in this article is therefore to identify the dominant factors affecting the mixed-
model manual assembly lines Key Performance Indicators (KPIs) – such as labour
productivity, line capacity and lead time – as a preliminary step in order to ensure
that Industry 4.0 implementation projects address the right areas, ensuring that
the operational business goals are achieved.

From the initial analysis of the situation, a list of relevant factors was put
together along with the operational KPIs that measure the system performance:
productivity, lead time and line capacity. Design of Experiments (DoE) is used to
find out which factors and their interactions have the greatest effects on the KPIs,
and therefore are more important for the system performance. DoE allowed to
prepare two phases of analysis: Screening (I) and Interactions (II).

Aiming at exploring how to use a commercial software for mixed-model as-
sembly line simulation, an initial parametric model was used as reference, fol-
lowed by a second model which uses a commercial simulation package (Methodo-
logy, Section 4.2.2). In both cases, parametric—MATLAB®—and simulation—-
FlexSim®—-software tools are employed to calculate the Output KPIs from differ-
ent values of Input factors (Results, Section 4.2.3). The results of the two models
are compared and conclusions are extracted, along with a final discussion of the
limitations and future outlines of this study (Discussion and Conclusions, Sec-
tion 4.2.4).

Data from a real case of study is used to validate the results of the analysis.
The input data for the simulation is based on the situation of a manufacturer of
white goods located in northern Spain. The company is evaluating merging two
mixed-model manual assembly lines into one, which would increase the complex-
ity of managing the line, but could bring operational performance benefits if done
correctly – especially in terms of labour productivity, without compromising oper-
ators working conditions or product quality. Industry 4.0 would be the enabler of
such complexity-dealing transformation, but it is deemed necessary to ensure that
the investment only targets the critical elements that would allow improving the
desired KPIs.

4.2.2 Methodology

This section presents declares the input variables and output KPIs used, describes
the two analysis models developed and their verification, and the Design of Experi-
ments to be used in the next section. Figure 4.2 summarises all of this information
and schematises the followed methodology considered in this study.
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Figure 4.2: Diagram of Input factors and Output KPIs used for the analysis of mixed-model
manual assembly lines.

Variables considered

Aiming to explore the effect of various relevant factors on mixed-model manual
assembly lines, the following seven were selected for this analysis: Number of
workstations, maximum Work-in-Process buffer capacity between stations (BC),
Changeover Time, Work Content Ratio between different models, Batch size, First
Time Yield (FTY) and Line Balance. Factors related to internal logistics, lack of
Quality and Overall Equipment Effectiveness (OEE) of assembly equipment were
not considered in this study in order to keep the models simple, and they will be
included in future research. The KPIs of interest are three:

• Labour productivity (PLabour, %): ratio of operator value added time over
the total time employed.

• Batch Lead Time (LTB , hours): time to assemble a complete batch of product.
• Throughput (Th, units/hour): average output of the assembly line per unit

of time.

Table 4.1 includes the input and output variables with the abbreviations used
in this article, as well as the base values from the industrial case study. The work
content ratio used is the result of dividing the maximum work content by the
minimum work content used in a given scenario.

Models for Analysis

In this work, two models have been used. A simple initial model was developed
in order to establish a baseline to which compare later and more complex models.
Such model needed to be versatile and scalable, so the parametric tool MATLAB®
was used. Aiming at exploring the potential gains of using commercial software for
mixed-model assembly line simulation, the free version of the software FlexSim®
was chosen.

Parametric model: MATLAB®. A parametric model was employed to
calculate the KPI values as a function of the input factors. The software package
MATLAB® (R2019b, The MathWorks Inc., Natick, MA, United States) was chosen
to implement an algorithm relating the variables presented before.
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Table 4.1: Input variables and output KPIs used in models.

Type Description Notation Case study base values

Input Number of Stations K 4 stations
Work-in-Process buffer capacity BC 1 unit
Station setup time Ts 480 s
Line balance LB 99%
First Time Yield FTY 95%
Batch size Q 48 units
Number of models built in the line M 4 models
Work Content WC 600 ... 1400 s
Work Content ratio WCR 1 - 2
Cycle time CT ∼ 150 ... 350 s

Output Labour Productivity PLabour ∼ 90%
Lead time LTB ∼ 5 h
Throughput Th ∼ 10 units/h

Firstly, for each product model m, the cycle time is calculated based on the
work content (WC), number of stations (K) and line balance (LB) - Equation 4.1.

CT =
WC

K · LB (4.1)

For each model m, the time employed to build correct and defective units
are calculated using Equation 4.2 and Equation 4.3, which use the batch size (Q),
number of stations (K), cycle time (CT ) and first time yield (FTY ).

Tcorrect = Q ·K · CT (4.2)

Tdefects = Q ·K · CT · (1− FTY ) (4.3)

For each model m, the time used to build the batch is given by the time to
build correct and defective units, as shown in Equation 4.4. The time to complete
the batch (Tcomplete) is calculated by adding the time spent on changeovers (Tco)
and the time to build the batch, as shown in Equation 4.5.

Tbuild = Tcorrect + Tdefects (4.4)

Tcomplete = Tbuild + Tco (4.5)

For each model m, the time recovered (spent assembling correct products) is
found using the work content and the batch size, as shown in Equation 4.6.
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Trecovered = WC ·Q (4.6)

The KPIs can be calculated using Equations 4.7–4.9. Labour Productivity
(PLabour) is determined by the sum of time recovered and the sum of time to
complete all batches of products. Batch Lead time (LTB) is calculated as the
maximum time to complete a batch, and Throughput (Th) is worked out from
batch size (Q), number of models (M), number of stations (K) and the sum of
time to complete all batches of products.

PLabour =

∑M
i=0 Trecovered,i∑M
i=0 Tcomplete,i

(4.7)

LTB = max {Tcomplete,i}M (4.8)

Th =
Q ·M ·K · 3600
∑M

i=0 Tcomplete,i
(4.9)

Discrete events model: FlexSim®. FlexSim® is a 3D discrete events
simulation software for modelling and analysis of manufacturing, operations and
logistics systems.

The simulation results were contrasted against the output from the paramet-
ric model described in the previous subsection. The free licensing version of the
simulation software led to several limitations: (1) a maximum of 30 simulation ele-
ments, e.g. stations or buffers; (2) the maximum process flow activities is 35; (3)
changeover activities do not start until the new batch of units arrives to a worksta-
tion, causing unrealistic additional idle time; (4) the number of different random
seeds are limited to just one, preventing any variability analysis.

Due to the aforementioned limitations, two different simulation configurations
were used: Configuration A and B. Configuration A maintains the FTY at 100%—
disregarding the effects of poor Quality—but in return, allows to overcome the
unrealistic changeover limitation mentioned previously. This configuration does not
consider BC as a factor neither, since the only source of variability (poor Quality)
is neglected. Configuration B considers FTY : two Quality Control checkpoints are
implemented in this configuration to evaluate whether a unit has defects, and if
this is the case, the unit is sent back to the previous assembly station for in-line
reworks, as shown in Figure 4.3.

Verification of the models

In order to compare the two models described previously—parametric and discrete
events simulation—a base scenario made of the 7 input factors was used for each
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Figure 4.3: FlexSim® simulation model used for Configuration B.

configuration (A and B). From this base scenarios, 24 additional scenarios were
generated by changing just one factor at a time (−1 and +1 levels), 10 scenarios for
Configuration A and 14 for Configuration B. The results of two KPIs (Productivity
and Lead Time) were registered to compare the performance of the two models.
Both models obtain comparable results for productivity and lead time: the average
difference is 2.39%, the standard deviation is 4.58% and the maximum difference
is 19.45%, corresponding to the particular case of a large number of workstations,
which causes abnormally high idle times during changeovers in the FlexSim® model
Configuration B.

Design of Experiments

Considering the relatively high number of factors (k = 7 factors, as show in Fig-
ure 4.2), the analysis of their interactions and effects on the selected KPIs would
require a great number of experiment runs (nk): 27 = 128 experiments for two
levels (n = 2) per factor, or 37 = 2,187 experiments for three levels (n = 3) per
factor. Instead, the analysis was structured in two phases [275]: screening (I) to
identify most relevant factors; and analysis of interactions (II) – summarised in
Table 4.2.

Table 4.2: Design of Experiments employing two phases due to the large number of factors
involved.

Phase Goal Experiment
Design

No. of
factors (k)

No. of
levels (n)

No. of
runs

I – Screening Identify most
relevant factors

Fractional
Factorial

7 2 16

II – Interactions Analyse influence
and interactions

Full Factorial 3 3 27

The values used for each level (−1), (0) and (+1) were chosen by modifying the
industry case study values and stretching them slightly beyond what the company
considers achievable in the short term, in order to include minimum and maximum
range values for each factor.

Phase I – Screening. The Screening phase employs a Fractional Factorial
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design for 7 factors with 2 levels per factor. Table 4.3 shows the values used for
each factor.

Table 4.3: Values used for each factor in the DoE phase I — Screening: Fractional Factorial.

Values

Factor Code −1 +1

Batch Size A 12 units 48 units
Number of Stations B 3 8
Max Work-In-Process C 0 1
Line Balance D 95% 99%
Station setup time E 300 s 600 s
First Time Yield F 95% 97%
Work Content ratio G 2 3

Phase II – Analysis of Interactions. The Analysis phase consist of a Full
Factorial design of 3 factors with 3 levels per factor. The three factors chosen for
this phase resulted from analysing the results from the Screening phase. Table 4.4
shows the values used for each factor in phase II - Analysis. The other 4 factors
that were not studied in this phase remained fixed at their 0 values.

Table 4.4: Values used for each factor in the DoE phase II – Interactions: Full Factorial.

Values

Factor Code −1 0 +1

Batch Size A 12 units 24 units 48 units
Number of Stations B 2 4 8
Work Content ratio G 1 2 4
Max Work-In-Process Fixed 0 1
Line Balance Fixed - 95% -
Station setup time Fixed - 480 s -
First Time Yield Fixed - 95% -

4.2.3 Results

The methodology described in the previous section allowed to obtain the following
results for each phase of the study.

Phase I — Screening

The experiment results of the design described in Table 4.3 calculated using the
MATLAB model described in Subsection 4.2.2 are shown in Figure 4.4 and Fig-
ure 4.5.

From the results shown in Figure 4.4, it can be inferred that the two most
relevant factors are the Number of Stations (which affects all three KPIs) and the
Batch size, which affects Labour Productivity and Batch Lead time.
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Figure 4.4: Phase I – Screening: Absolute half-effects of input factors on (a) Labour Productivity,
(b) Batch Lead Time and (c) Throughput in a Fractional Factorial experimental design.

Phase II – Analysis of interactions

In this phase the focus is the interaction between the most influential factors,
namely Number of Stations and Batch size. Since one of the initial goals of the
study was to assess the viability of merging two manual assembly lines into one,
which would increase the number of models being made and therefore increasing the
Work Content ratio of the newly formed assembly line, a third factor—WCR—was
introduced at this stage of the analysis.

The results of the DoE described in Table 4.4 calculated using the MATLAB
model described in Subsection 4.2.2 are shown in Figure 4.6. The parametric
model was employed because it had been developed specifically to analyse these
interactions.

The results presented in Figure 4.6a–c show that although the interaction of
factors A (Number of stations) and B (Batch size) is relevant for assembly line
Productivity and Lead time, it is secondary to the separate effects of any of the
two factors.

4.2.4 Discussion and Conclusions

The results presented in Section 4.2.3, obtained following the methodology de-
scribed in Section 4.2.2 allow to reveal the most impactful factors affecting the
performance of manual assembly lines in terms of Labour Productivity, Batch Lead
Time and Throughput. Two models were developed, which results are comparable:
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Figure 4.5: Phase I – Screening: Average effects of input factors on (a) Labour Productivity, (b)
Batch Lead Time and (c) Throughput in a Fractional Factorial experimental design.

the average difference is 2.39%, the standard deviation is 4.58% and the maximum
difference is 19.45%.

It was found that the two most critical factors are the Number of stations and
the Batch size. It is important to note that both factors have opposing effects on
two of the KPIs – i.e. the increase of Labour Productivity and reduction of Batch
Lead Time cannot be optimised simultaneously by changing these two factors alone.

The great importance of the Number of stations is partially explained by
the assumption that any additional station needs a changeover time of a similar
order of magnitude to that of the existing stations, which may not always be the
case. In consequence, the only way of maintaining a high labour productivity when
increasing the number of stations (to merge two assembly lines into one or in order
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to reduce the Lead time) relies on decreasing the changeover time per station to
ensure that the total changeover time incurred remains constant or decreases.

The results presented in this article show that an increase in product variety
– represented by the variable Work Content ratio – does not interact negatively
with any of the two key factors, which suggests that merging two manual assembly
lines into one would not suffer from additional Productivity losses. The potential
impact of this finding for multi-model assembly lines lies on the assumption that the
stations changeover times would not significantly increase as a result of introducing
additional models.

In order to maximise the return of investment of any Industry 4.0 solution,
they should be aimed at the most influential factors identified before: (1) to address
the productivity loss due to the increase in Number of stations required to increase
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Throughput and reduce Lead Time, collaborative robots could be integrated in
the line. Alternatively, (2) to ensure that the total changeover time remains con-
stant despite an increase in the number of stations, cognitive support to complex
or infrequent changeover operations could be provided by Augmented or Mixed
Reality.

Future research in this field could focus on enhancing the analysis models by
using discrete events software actually incorporating variability, and expanding the
model to incorporate the internal logistics constraints due to an increased number
of different models in smaller batch sizes. Another potential research route would
be scanning the current state of the art Industry 4.0 technologies to find compatible
matches for the identified areas as preliminary step before implementing Industry
4.0 technologies in the assembly lines.

4.3 Details of DoE and model verification

This brief section includes some details on the mathematical model verification
and the design of experiments used in Section 4.2 that were not included in the
conference article [274].

4.3.1 Details of experiment design

Phase I – Screening

Table 4.5 shows the experiment design used for the screening phase of the analysis.
It is a fractional factorial design of seven factors (k = 7) and two levels per factor
(n = 2), which results in 16 experiment runs. The factor codification and values
used for the experiments are detailed in Table 4.3.

Table 4.5: Phase I - Fractional Factorial experiment design with seven factors and two levels [275].

Q K BC LB Ts FTY WCR

Run A B C D E F G

1 + + + + + + +
2 + + + - + - -
3 + + - + - - +
4 + + - - - + -
5 + - + + - - -
6 + - + - - + +
7 + - - + + + -
8 + - - - + - +
9 - + + + - + -
10 - + + - - - +
11 - + - + + - -
12 - + - - + + +
13 - - + + + - +
14 - - + - + + -
15 - - - + - + +
16 - - - - - - -
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Phase II – Analysis of interactions

The second phase of the analysis investigates the interactions between the most
important factors identified in Phase I—the number of stations (K) and batch size
(Q)—in addition to the work content ratio (WCR). This phase used a full factorial
experiment design with three factors (k = 3) and three levels per factor (n = 3),
which results in 27 experiment runs, as shown in Table 4.6.

Table 4.6: Phase II - Full Factorial experiment design with three factors and three levels [275].

Q K WCR

Run A B G AB BG AG ABG

1 + + + + + + +
2 + + 0 + 0 0 0
3 + + - + - - -
4 + 0 + 0 0 + 0
5 + 0 0 0 0 0 0
6 + 0 - 0 0 - 0
7 + - 1 - - + -
8 + - 0 - 0 0 0
9 + - - - + - +
10 0 + + 0 + 0 0
11 0 + 0 0 0 0 0
12 0 + - 0 - 0 0
13 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 - 0 0 0 0
16 0 - + 0 - 0 0
17 0 - 0 0 0 0 0
18 0 - - 0 1 0 0
19 - + + - + - -
20 - + 0 - 0 0 0
21 - + - - - + +
22 - 0 + 0 0 - 0
23 - 0 0 0 0 0 0
24 - 0 - 0 0 + 0
25 - - + + - - +
26 - - 0 + 0 0 0
27 - - - + + + -

4.3.2 Mathematical model verification results

Several scenarios were used to verify the parametric model output against the
simulation model. The details regarding the input factors levels and the results of
such a comparison can be found in Table 4.7. A summary of the differences (∆,
relative to the parametric model) can be found in Table 4.8.

Two simulation model configurations were used, A and B, as detailed in Sec-
tion 4.3.2. The results of two KPIs—labour productivity and batch lead time—were
used to compare the performance of the two models. It was found that both mod-
els obtain comparable results for these KPIs: the average difference is 2.39%, the
standard deviation is 4.58% and the maximum difference is 19.45%, corresponding
to the particular case of a large number of workstations, which causes abnormally
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Table 4.8: Summary of preliminary verification results. Relative difference (∆) between paramet-
ric and simulation models expressed as a percentage of the parametric results.

∆PLabour (%) ∆LTB (%)

Model Mean SD Max Mean SD Max

Config. A 0.28 0.25 0.78 -1.20 2.57 -0.09
Config. B -4.34 5.22 19.45 n/a n/a n/a
Total -2.39 4.58 19.45 -1.20 2.57 -0.09

high idle times during changeovers in the simulation model Configuration B.

Further verification

The verification carried out so far employed two very limited simulation models. In
fact, two models were used because a single model could not have all the features
that would make it equivalent to the mathematical model. To address this problem,
a more complete simulation model was developed employing the same modelling
assumptions as the mathematical model uses. The characteristics of that model
are detailed in the next chapter’s Section 5.1, which provides insight into all the
simulation models employed in this thesis.

To perform further verification of the mathematical model, the experimental
design of Phase I was adopted. A total of 16 simulation runs were set up using the
parameters and levels previously stated, and the results of such simulations were
compared against the mathematical model. Figure 4.7 shows the outcome of this
comparison in terms of absolute values and differences relative to the parametric
model.

These results are summarised in Table 4.9. The results shown here indicate
that the absolute relative errors are small—less than 10%—and that, in general,
the mathematical model overestimates the value of the KPIs compared to the simu-
lation model. Having established that the parametric model produces very similar,
comparable outputs to the simulation model when under the same assumptions, the
following chapter will look into leveraging the advantages of discrete events simula-
tion to employ modelling assumptions that can better represent the real industrial
situation.

Table 4.9: Summary of further verification results of the parametric model compared to an
equivalent simulation model. Relative differences are expressed as a percentage of the parametric
model results.

KPI Mean | ∆ | (%) SD | ∆ | (%) Max | ∆ | (%)

PLabour 4.22 1.71 1.38
LTB 4.88 3.38 1.11
Th 6.66 3.51 1.55
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Figure 4.7: Further verification of mathematical model against an equivalent DES model. Relative
differences are expressed as a percentage of the parametric result.
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4.4 Validation of Ts modelling assumption

One key assumption in the formulation described in Subsection 4.1.1 is that each
station’s setup time is constant, regardless of the number of stations (K). This
assumption is used to model how the setup time would change if the number of
stations of a manual assembly line is modified. The assumption used so far implies
that the total setup time is directly proportional to the number of workstations
(A1: T tot

s ∝ K). Although this assumption is adequate for modelling assembly
stations where fixtures are used on every station, this might not always be the
case. In assembly processes where the only changeover activities involve replacing
the component containers, a more accurate assumption would be that the total
setup time is constant. In this case, each workstation setup time could be estimated
by dividing the total setup time over the number of stations (A2: T tot

s = const).

Setup time modelling assumptions:

A1: The setup tasks only involve the fixtures on every station. Thus, Ts of each
workstation does not depend on the no. of stations. In consequence, the total
setup time is directly proportional to K.

A2: The setup tasks only consist on replacing component containers. Thus, the
total setup time is constant. In consequence, Ts of each workstation is in-
versely proportional to the no. of stations K.

To understand the potential impact of this assumption on the DoE results, the
screening phase was done over under assumption A2, and its results were compared
to the ones already presented in Section 4.2.3. Table 4.10 shows the comparison of
the two assumptions for modelling the setup times of the assembly workstations,
using parametric and simulation models. This table includes the mean and max
absolute differences of three operational KPIs for assumption A2 compared with
assumption A1.

Table 4.10: Average and maximum relative differences between modelling assumption A2 com-
pared to assumption A1, calculated using the parametric model.

KPI Mean | ∆ | (%) Max | ∆ | (%)

PLabour 3.3 11.0
LTB 3.0 7.7
Th 5.0 9.1

The results shown in Table 4.10 suggest that although the mean differences
are relatively small (5% or smaller), the max differences could be considerable,
especially for PLabour and Th, which present max relative differences of 11.0 and
9.1% respectively. However, these differences do not necessarily imply that the
conclusions of the DoE would change. To ascertain the impact of assumption A2
on the DoE outcome, the average effect charts were plotted in Figure 4.8.

These results suggest that the chosen modelling assumption had little impact
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Figure 4.8: Screening Design of Experiments comparison of average effect of factors under two
different modelling assumptions. (a) Productivity, (b) Lead Time and (c) Throughput.

on the outcome of the DoE screening phase, because they lead to the same conclu-
sion regardless of the assumption used.

4.5 Summary

This chapter presented a simplified analytic model which uses a set of equa-
tions to evaluate the operational performance of manual or semi-automated multi-
model assembly lines. Specifically, the model’s deterministic formulation focuses
on changeover time losses, a key performance driver under high-mix low-volume
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demand. An exploratory analysis was conducted based on the industrial case study
presented in Section 3.3. It employs a two-phase design of experiments to determine
the most influential factors on the performance of such assembly lines, measured
using three KPIs: throughput, batch lead time and labour productivity.

The results revealed that the two most critical factors are the Number of
stations and the Batch size. It is important to note that both factors have opposing
effects on two of the KPIs: the increase of labour productivity and reduction of
batch lead time cannot be optimised simultaneously by changing these two factors
alone.

However, this analytic tool is limited by its inability to easily incorporate
stochastic sources of variability and disturbances. To study the cases where vari-
ability is a key feature of manual assembly lines, such as the industrial study case
of The Cooktop Company, more powerful analysis tools are needed.

Finally, this chapter assessed the impact of a key modelling assumption: the
relationship between the number of stations and the total setup time. It was found
that this assumption bears no significant weight, and therefore can be relaxed in
future modelling situations.

Thus, this chapter makes five key contributions:

1. Proposed a simple analytic model for the performance evaluation of multi-
model assembly lines which is easy to implement and sufficiently capable for
preliminary analysis.

2. The Design of experiments results show that the two most critical factors for
the operational performance of multi-model assembly lines are the number
of stations and the batch size. Considering the mass customisation demand
trends, there are –and will be– strategic advantages to further reducing the
production batch sizes. This leads to the conclusion that looking at designing
flexible assembly lines with a reduced number of stations would be a way to
enhance productivity and mitigate the negative effect of frequent product
changeovers.

3. Since reducing the number of working stations implies a reduction of max-
imum line capacity, an obvious way to maintain production capacity flexibility
would be to consider shorter parallel assembly lines.

4. Further study of the influence of the total setup time - number of stations
relationship led to the conclusion that this modelling assumption does not
affect the results of the previous analysis.

5. The simplified mathematical model used in this chapter presents limitations
making it difficult to incorporate in-depth features, such as variability, and to
expand the model to include supporting departments, such as in-plan logistics
or maintenance.

The mathematical model’s limitations in terms of variability and disturbances
led to the development of a flexible assembly model using discrete events simulation,
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which is covered in the next Chapter 5.

As a consequence of the key finding of this chapter, the assembly lines design
presented in Chapter 6 focuses on integrating automated stations with short par-
allel lines to avoid the negative effects of a high number of workstations while
maintaining the capability to change the production rate efficiently.



CHAPTER 5

Simulation approach and models validation

To address the limitations of the mathematical model presented in Chapter 4, this
chapter introduces discrete events simulation (DES) models to evaluate the per-
formance of flexible assembly systems. The DES models are capable of overcoming
the most important limitations of the analytical model: they can easily incorporate
variability and stochastic disturbances, they allow different manners of operator-
workstation interaction, and they can integrate supporting departments, such as
in-plan logistics or quality control.

First, Section 5.1 introduces the several DES models utilised in this thesis and
their key features. Second, Section 5.2 describes the process used to characterised
the industrial study case assembly lines variability, so that the simulation mod-
els can use accurate distributions to represent it. Then, Section 5.3 presents the
validation and verification of the DES modelling methodology using The Cooktop
Company case. Finally, Section 5.4 summarises the chapter findings and implica-
tions for the following chapters.

5.1 Simulation models used

Multiple simulation models were used to carry out the analysis described in this
thesis. Despite their differences, they all share a common modelling methodology
and a set of core features because their overarching goal is similar: the perform-
ance evaluation of assembly systems for high-mix low-volume demand. Table 5.1
includes a brief overview of the main features of each simulation model.
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Table 5.1: Key features of the performance evaluation models employed in this thesis.

Verification Validation AL Design AL Logistics

Manual AL Manual AL (a) Manual FWAL
(b) Semiauto FWAL
(c) Semiauto WWAL
(d) Parallel WWAL

Manual AL
& Logistics

Line Configuration
No Lines 1 1 (a, b, c): 1

(d): 2
2

No models 4 8 or 6 Input data Input data
No stations 3 to 8 4 or 3 (a): 2 to 8

(b, c): 8
(d): 16

10

No workers equiv. K equiv. K (a, b): equiv. K
(c, d): Parameter

10

No stations auto - - (a): -
(b, c): 4
(d): 6

-

WIP buffers
Max WIP Parameter Parameter Parameter Parameter
Max WIP auto - - (a): -

(b-d): Parameter
-

Demand
Batch size Parameter Input data Parameter Parameter

Work Content
Work Content Input data Input data Input data Input data
WC ratio Parameter Input data F. of WC,

per model m
F. of WC

Processing Times
Line Balance Parameter Input data F. of K F. of Tp

Cycle time Input data F. of Tp F. of Tp,
per model m

F. of Tp

Process time - Input data Input data,
per model m

Input data

Setup time Parameter1 Input data Input data,
per model m

Input data

CO time Realistic
paced2

Realistic
unpaced2

Realistic
unpaced2

Realistic
unpaced2

Disturbances
Quality Parameter Parameter Parameter -
Rework time - - Out-of-Line3 -
Process var - Parameter Parameter Parameter
Setup var - Parameter Parameter Parameter
Batch size var - - - Parameter
Components var - - - Parameter

Logistics
In-plant logistics - - - Y

KPIs
Output Y Y Y Y
Throughput Y Y Y Y
Line Productivity Y Y Y Y
Labour Productivity Y Y Y Y
Batch Lead Time Y Y Y Y
Unit Lead Time - - Y Y
Milkrun Utilisation - - - Y
Line Stock - - - Y

Additional details Chapter 4 Chapter 5 Chapter 6 Chapter 7
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(a) Verfication (b) Validation

(c) Assembly line design (d) Assembly line logistics

Figure 5.1: Scope of the different simulation models illustrated using the operator-centred con-
ceptual framework: verification (a, yellow), validation (b, blue), assembly line design (c, red) and
assembly line logistics (d, green).

The scope of each simulation model related to the different layers of the
operator-centred conceptual framework presented in Chapter 3 is shown in Fig-
ure 5.1. Note that the validation model (blue) includes a few more features than
the verification one (yellow). In turn, the assembly line design model (red) incor-
porates one more feature than the previous model, which will be explained later on.
Finally, the logistics model (green) presents several fewer features—those related
with Quality Control— but expands by including components (parts, third layer)
and the logistics and planning department (fourth layer).

The first simulation model of this research project was used for preliminary
verification of the mathematical model presented in the previous Chapter 4. The
model is shown in Figure 4.3.

1Setup time either defined per station or as total Ts
2Function of (Ts, min, mout, WIP )
3Rework time mean: 0.5 of WC
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(a) Simulation model used for further verification, 3d view from FlexSim®.

(b) Verification model key features.

Figure 5.2: Simulation model used to verify the mathematical model.

A more complete DES model was later used for a more in-depth verification, as
described in Section 4.3. The model employed there, shown in Figure 5.2a, was able
to overcome the previous limitations in terms of simulation elements, production
defects and the realistic changeover logic. Note that this model features end-of-
line quality control and that it can use between three and eight manual assembly
stations.
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(a) Simulation model used for validation, 3d view from FlexSim®.

(b) Validation model key features.

Figure 5.3: Simulation model used for validation against the industrial case in Chapter 5.

To validate the simulation methodology against the industrial study case, two
models were built corresponding to The Cooktop Company’s product families no.
6 and no. 7 described Subsection 3.3.2. These DES models present a key difference
compared to the previous one: there are two in-line quality control stations, and
any defective units detected are sent for rework to a dedicated offline station, as
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shown in Figure 5.3a. Another difference compared to the previous model is the
introduction of process and setup time variability. The characterisation of the
industrial case assembly variability will be detailed in the next section.

In terms of the operator-centred framework, shown in Figure 5.3b, this model
incorporates the Production management supporting department (fourth layer)—
which deals with reworking defective units—and maintains all the features already
included in the previous simulation model used to verify the mathematical model.

To analyse the improvement opportunities brought by different assembly line
configurations, three main DES models are used: a manual assembly line such
as the previously presented, and two new ones which result from the addition of
two new features: automated stations and walking-worker interactions between the
human operators and the manual assembly stations. Figure 5.4 showcases the semi-
automated fixed-worker line, and Figure 5.5a depicts the semiautomated parallel
walking-worker lines, whose modelling assumptions will be detailed in Section 6.3.

Figure 5.4: 3d view from FlexSim® of the simulation model of a semiautomated parallel walking-
worker assembly line (PWWAL), used in Chapter 6.

This simulation models feature unpaced assembly lines with stochastic pro-
cessing and setup times, which can lead to full WIP buffers (coloured red in the
figures) resulting in blocked stations, changeover times (purple stations) and idle
operators (grey stations).

As shown in Figure 5.5b, these models expand the scope of analysis by incor-
porating the workspace element (third layer), necessary to model walking-worker
interactions between human operators and assembly stations.
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(a) Simulation model of semiautomated fixed-worker line, 3d view from FlexSim®.

(b) Assembly line design models key features.

Figure 5.5: Features of the simulation model of a semiautomated fixed-worker assembly line
(FWAL), used in Chapter 6.

Finally, in the logistics model (Figure 5.6a) the scope is expanded. This model,
which lacks the quality control or automated stations of the previous ones, adds a
layer of complexity by including component consumption by the manual stations.
In turn, a milkrun train system feeds the multi-model assembly lines. Figure 5.6b
shows the excluded function, elements and supporting department.
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(a) Simulation model of in-plant logistics, 3d view from FlexSim®.

(b) In-plant logistics simulation model key features.

Figure 5.6: Simulation model of milkrun trains for in-plant logistics, used in Chapter 7.
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5.2 Characterisation of The Cooktop Company as-
sembly lines

Measuring the Cooktop Company manual assembly lines real performance, using
the same KPI definitions as in the mathematical or DES models was a critical and
necessary step in order to verify the models.

This section first explores the process to transform raw data from the com-
pany’s MRP into relevant performance metrics using the KPI definitions specified
in Section 3.2. Then, another key feature of the manual assembly lines of the
Cooktop Company was investigated: the operator’s processing time variability.
To check whether modelling the assembly line with deterministic processing times
was suitable, or stochastic assumptions were necessary, a study to characterise the
variability was carried out.

5.2.1 Obtaining empirical industry data for model validation

The dataset employed to characterise The Cooktop Company assembly lines was
automatically produced by the MRP system of the company during the month of
January 2021. The process to obtain clean data from the raw dataset is described
below.

Firstly, it is necessary to extract raw data from the company MRP system,
which produces .csv (comma-separated values) files. The .cvs files contain a row per
unit produced (e.g. 2,116 units for one assembly line during January 2021) and 19
data columns, including the unit ID number, the company ID code, date and time
stamps, product reference code, shipment code, production shift, etc. Secondly,
nine duplicated or non-relevant data columns are removed and data formatting
is adjusted. It is also necessary to link the raw data to other key information,
e.g. to relate each product reference with its product family and standard cycle
time. Thirdly, planned stoppages (weekly production schedule, coffee/lunch breaks,
shift handover), product changeovers and unwanted minor stoppages are taken
into account. This data transformation step is a laborious process because it is
difficult to automate. For example, the Cooktop Company morning shift (6:00-
14:00) schedules three 12-minute short breaks at 9:15, 10:30 and 12:30. However,
these rarely start at the exact scheduled times, and their duration is not always
exactly 12 minutes. Maintenance problems and quality control logs also need to
be correlated at this stage. Finally, unit production time data is normalised by
comparing it against the standard operating procedures (SOP) processing times.
At this stage, each data shows the production rate deviation from the expected
production rate.

The number of empirical data points collected included 1,680 and 2,116 units
produced by two assembly lines over a natural month, which was deemed an ad-
equate sample size. The demand mix of January was considered representative of
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the annual mix because it included at least one model of each product family that
each line could produce.

The data is now ready to perform aggregate calculations for obtaining KPIs at
a batch or production shift level. The next Section 5.3 includes the KPI calculation
equations and uses the performance measures obtained from the study case data to
validate the parametric and simulation models developed. At this stage, the data
becomes starting point for the statistical characterisation of the manual assembly
variability, which is detailed below.

5.2.2 Variability of manual assembly processes

Having cleaned and processed the study case data, a histogram is used to inspect the
distribution of normalised processing times. The data distribution of manual pro-
cessing times at the Cooktop Company assembly line of product line no.6 (CA28)
during the whole month of January 2021 is shown in Figure 5.7. Note that the
histogram tail has been placed in an overflow bin for all data points above 2.0 (i.e.
whose measured processing times more than double the standard cycle time for the
particular unit measured). The data shows a significant degree of variability, so
using deterministic times for modelling assembly processing times would limit the
simulation results’ reliability.

Figure 5.7: Distribution of normalised manual assembly cycle time of Line 2 during January 2021.

The lognormal distribution was chosen for the DES models employed in this
thesis. As prescribed by Ginos, the lognormal distribution “is useful in modeling
continuous random variables which are greater than or equal to zero. The lognormal
distribution is also useful in modeling data which would be considered normally
distributed except for the fact that it may be more or less skewed” [276, p. 2].
Manual assembly activities can sometimes be performed more quickly than the
standard times (as per the SOP), but it is certainly more common to experience
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delays. This fact makes the skewed lognormal distribution a good fit for simulating
the duration of assembly activities. As Visser puts it:

The lognormal distribution is a continuous, non-symmetric distribution
that is often used to model the duration of activities or tasks. It applies
mostly to novice artisans or workers that have to perform non-standard
and complex tasks. These tasks often have an overflow especially when
something goes wrong. It has two parameters, i.e. the mean value µ

and the standard deviation σ. [277, p.2031–2039]

Banks and Chwift discuss in their 2011 article [278] the shortcomings of some of
the most commonly used distributions in DES. In particular, for modelling pro-
duction processing times, they specifically advise against normal distributions, due
to a better fit of the lognormal distribution and the fact that normal distributions
can generate negative times. Triangular distributions, despite their usefulness in
absence of data, present the problem of being bound.

The maximum likelihood estimators of lognormal distributions can be calcu-
lated using Equation 5.1 and Equation 5.2 [276, p.8]:

µ̂ =

∑n
i=1 ln (Xi)

n
(5.1)

σ̂2 =

∑n
i=1

(
ln (Xi)−

∑n
i=1 ln(Xi)

n

)2

n
(5.2)

Applying Equations 5.1 to The Cooktop Company empirical data resulted in
the estimation of the variability parameters: µ = 1.02, σ = 0.20. Figure 5.8 shows
the study case distribution of manual processing times measured in January 2021
alongside a lognormal distribution generated with the max likelihood parameters
obtained before. Note that the measured data (green) presents a wider and longer
tail. This is due to the notably frequent delay events caused by quality control
non-conformities, reworks and other production issues.
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Figure 5.8: Distribution of normalised manual assembly cycle time, comparison between measured
(January 2021, green) and generated using max likelihood estimators (yellow).

5.3 Validating and verifying the models

This section presents the validation and verification of the discrete simulation model
against the mathematical model described in the previous Chapter 4 and the em-
pirical data from The Cooktop Company study case. The content of this section
was presented at the 55th CIRP Conference on Manufacturing Systems (Lugano,
Switzerland, June 2022), and published as a conference article [279].

Therefore, the subsections below the article abstract correspond to the art-
icle’s Introduction (5.3.1), Methodology (5.3.2), Results (5.3.3) and Discussion and
Conclusion (5.3.4). Note that the article notation was edited to make its notation
consistent with the rest of the thesis.

Article title:

Models to evaluate the performance of high-mix low-volume manual or
semi-automatic assembly lines

Article abstract:

To address mass customisation demand trends, assembly line flexibility
and productivity are critical. Industry 4.0 technologies could support
assembly operations to this end. However, clear implementation meth-
odologies are still lacking. This article presents two models for evalu-
ating the most relevant Key Performance Indicators (KPIs) of manual
or semi-automatic assembly lines, allowing to maximise the return of
investment of any digital technology addition. MATLAB® was used to
implement a parametric model, and FlexSim® was employed to build a
discrete event simulation model. The models were validated using data
from two industrial study cases from a global white goods manufacturer.
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5.3.1 Introduction

The current demand trends have been shifting from mass production to mass cus-
tomisation since the end of the 20th Century, and even further towards mass per-
sonalisation [28]. As a result, an increasing number of industries are facing an
atomised demand, which could be denoted as ‘high-mix low-volume’ [13]: a great
number of products -and product variants- are in demand in small quantities each.
Moreover, the expected shortening of production lead times and reduction of in-
ventory levels put additional pressure on businesses to streamline their processes to
compete in the global marketplace [6]. In this context, assembly operations need
to be flexible while achieving high productivity, which confronts the traditional
dichotomy between manual (highly flexible, not quite productive) and automated
assembly (highly productive, not quite flexible).

Since the term Industry 4.0 was introduced by the German government in
2011 [22], it is used to refer to an array of disruptive digital technologies which are
expected to bring forward the fourth industrial revolution [8]. Some of these Key
Enabling Technologies have been shortlisted to be most impactful on the perform-
ance of assembly operations [24]—namely the Internet of Things, big data, real-time
optimisation, cloud computing, cyber physical systems, machine learning, augmen-
ted reality, collaborative robots and additive manufacturing—by enabling the main
characteristics of Assembly 4.0 [23]: late customisation, assembly control systems,
aided assembly, intelligent storage management, self-configured workstation layout
and product and process traceability.

Nonetheless, questions arise following these analyses, such as the following:
Which of the features brought by Industry 4.0 technologies would have the most
positive impact on the operational and business goals of assembly operations?
What would be the best method of implementing these changes to achieve the
maximum return on investment? Previous work [27] established that it is clear
that Lean Manufacturing has a critical role to play in this transformation due to
the similarities and synergies with Industry 4.0, and that there is a lack of meth-
odologies for implementing the new digital technologies of Industry 4.0 to address
concrete business goals.

The main approaches to evaluate alternative scenarios and the impact of design
variables on the assembly operations Key Performance Measures (KPIs) include
mathematical modelling, simulation, and other techniques such as Petri nets or ar-
tificial intelligence, among others [269]. Mathematical models that consider setup
times usually do so in a simplified way, as either sequence-independent or sequence-
dependent times, although some authors have considered the importance of product
change dependent inter-task times [280–282]. On the other hand, Discrete Event
Simulation inherently considers the assembly stations waiting and blocking times
induced by finite buffers and cycle time differences between distinct products. How-
ever, simulation models are more complex and require larger time investments to
be built. A simplified mathematical formulation with a focus on changeover losses
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would allow a quick initial assessment of operational KPIs in a high-mix low-volume
demand environment where small batch sizes and frequent changeovers are major
drivers of the assembly system’s performance.

The goal of this article is to introduce two simple yet comprehensive mod-
els that can be used to evaluate the performance of high-mix low-volume manual
or semi-automatic assembly lines, allowing to gain a deep understanding of the
implications of different parameters on the line KPIs.

The present article is structured as follows: Section 5.3.2 - Methodology -
presents the two models developed and the real case from an industrial partner
used to validate them. Section 5.3.3 includes the Results and analysis of the afore-
mentioned validation cases, and Section 5.3.4 present the Discussion and Conclusion
of the article.

5.3.2 Methodology

Two assembly line performance evaluation models were developed, using MATLAB®

and FlexSim® respectively. They consider a series of input parameters that are
processed to produce the line KPIs as output.

This section presents the general framework employed, introduces a paramet-
ric model implemented using MATLAB®, describes a discrete events simulation
model implemented using FlexSim®, compares the advantages and disadvantages
of both models, and finally describes the industrial case used to validate both mod-
els against real data from the manufacturing plant of a research business partner.

Framework

The models used for evaluating the performance of multi-product assembly lines
consider a single linear series of workstations, with one or two quality control (QC)
stations integrated with them, as depicted by Fig 5.9.

Figure 5.9: Multi-product assembly line with quality control stations.

The model is defined by a set of input variables –divided into design, fixed
and disturbance parameters– which produce a set of KPIs as a result, as shown in
Table 5.2.

The models consider a manual assembly line capable of producing multiple
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Table 5.2: Input variables and KPIs considered in the models.

Variable Notation Index

Design parameters
No. workstations K k

No. of products M m

Batch size Q

Max. WIP buffer capacity BC

Fixed parameters
Cycle time CT

Work Content WC

Line balance LB

Setup time Ts

First Time Yield FTY

Work Content Ratio WCR

Disturbances
Variability of process time CVp

Variability of setup time CVs

KPIs
Output Output

Throughput Th

Batch Lead time LTB

Labour productivity Plabour

Line productivity PLine

products. After finishing a batch of units of a certain product, the workstations
need to change over to the next product, by carrying out a setup. The setup time
depends both on the outgoing and the incoming products.

Parametric Model

Firstly, a parametric model was developed to obtain the desired KPIs. It calculates
the productive time from the available time minus the changeover time. It then
works out the actual productive time of each batch of products by subtracting the
time lost due to line imbalance, minor stops and defects, as illustrated conceptually
in Figure 5.10.

The software MATLAB® (2019b, The MarhWorks Inc., Natick MA, United
States) was used to implement the algorithm described below. MATLAB® was
chosen because of its user friendliness since the algorithm presented here does not
require the use of an optimised programming language (e.g. C/C++) to complete
the calculations in a very short time.

In the first place, the cycle time of each batch (i) of product model m in the
sequence is calculated using Equation 5.3.
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Figure 5.10: Productivity losses in multi-product assembly lines considered in the parametric
model.

CT =
WC

K · LB (5.3)

For each batch i, the time lost on changeover depends on the previous (i− 1)
and the product of the current batch (i). Equations 5.4-5.9 describe its calculation.

For each workstation k, the start and finish times (tstarti−1,k, t
end
i−1,k) of the previous

batch (i− 1) are calculated using Equations 5.4–5.6.

tendi−1,1 = CTi−1 (5.4)

tstarti−1,k = tendi−1,k−1 (5.5)

tendi−1,k = tstarti−1,k + CTi−1 (5.6)

For each workstation k, the finishing time of the setup is given by Equation 5.7.

tends,k = tendi−1,k + TS(i− 1, i, k) (5.7)

For each workstation k, the start and finish times of the first unit of the
incoming product batch i are calculated using Equations 5.8–5.9.
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tstarti,k = max
{
tends,k ; tendi,k−1

}
(5.8)

tendi,k = tstarti,k + CTi (5.9)

In case CTi−1 ≥ CTj , the changeover time lost on each station k is given by
Equations 5.10–5.11.

k ∈ {1, ...,K − 1} : Tco,k = max
{
0 ; tends,k+1 − tendi,k −BC · CTi

}
(5.10)

k = K : Tco,k = Ts(i− 1, j, k) (5.11)

In case CTi−1 < CTi, the changeover time lost on each station k is given by
Equations 5.12–5.13.

k = 1: Tco,1 = Ts(i− 1, i, k) (5.12)

k ∈ {2, ...,K} : Tco,k = tendi,k−1 − tendi−1,k (5.13)

Having calculated the time lost due to the changeover for each station, the
total time lost is obtained with Equation 5.14.

Tco = max {Tco,k} ·K (5.14)

For each batch of products (i), a number of units have defects, depending on
the product First Time Yield –see Equation 5.15–5.16.

Ndefects = ⌈Q · FTY ⌉ (5.15)

Ncorrect = Q−Ndefects (5.16)

Equations 5.17–5.18 calculate the time employed to assemble defective and
conforming units.

Tdefects = Ndefects ·K · CTi (5.17)
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Tcorrect = Ncorrect ·K · CTi (5.18)

Therefore, the time needed to complete each batch of products is given by
Equation 5.19.

Tcomplete = Tcorrect + Tdefects + Tco (5.19)

Finally, for each batch, the recovered –productive– time is calculated using
Equation 5.20.

Trecovered = WC ·Ncorrect (5.20)

The KPIs shown in Table 5.2 can be now calculated considering the full se-
quence of NB batches using Equations 5.21–5.25.

Output =

NB∑

i=1

Ncorrect,i (5.21)

Th =

∑NB
i=1 Ncorrect,i∑NB
i=1 Tcomplete,i

(5.22)

LTB = max {Tcomplete,i}NB (5.23)

PLabour =

∑NB
i=1 Trecovered,i∑NB
i=1 Tcomplete,i

(5.24)

PLine =

∑NB
i=1 Ncorrect,i

K ·∑NB
i=1 Tcomplete,i

(5.25)

Discrete Events Simulation Model

The second model employed to assess the performance of manual multi-product
assembly lines uses Discrete Events Simulation (DES) implemented on the soft-
ware FlexSim® (2021.0, FlexSim Software Products, Inc.). FlexSim® was chosen
because it allows recreating the changeover logic matching the mathematical model
within the additional complexity of a DES model, as well as defining the KPIs to
match the mathematical formulation ones.

The model developed, illustrated in Figure 5.11, consists of 3 or 4 worksta-
tions with one operator each, organized in a sequential multi-product assembly line.
Each operator, using a workstation (coloured orange in Figure 5.11), processes the
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corresponding unit for a random period of time which follows a lognormal distri-
bution governed by the mean—cycle time—and the standard deviation -expressed
by the process variability parameter as a percentage of the mean: e.g. a process
variability parameter value of 0.20 equals to the standard deviation being 20% of
the cycle time. Once the unit has been processed, it can be placed in the WIP
buffers between stations (coloured dark grey in Figure 5.11) before being processed
on the next station. The two quality control stations (coloured blue in Figure 5.11)
either reject or accept passing units. The probabilities of each result are governed
by the First Time Yield (FTY) parameter. The changeover logic works so that
once an operator has finished processing the last unit of a batch, it must set up its
workstation for a duration given by a lognormal distribution of mean equal to the
setup time parameter (which depends on the outgoing and incoming products) and
standard deviation given by the setup variability parameter, similarly to the pro-
cess variability. The numeric values of both parameters were estimated from real
data gathered by the industrial partner, using the maximum likelihood estimators
[276].

Figure 5.11: Discrete Events Simulation model of Line 1.

Models features comparison

The two models described in Subsections 5.3.2 –parametric– and 5.3.2 –discrete
events simulation– aim to calculate the same KPIs using the same input parameters.
However, despite sharing some features, they differ in several aspects that make
them behave differently under certain circumstances.

The first and most notable difference is that the parametric model does not
consider the variability of process and setup times, while the DES model employs
lognormal distributions for these times, governed by two variability parameters
which express the ratio between the Standard Deviation and the Mean of the
lognormal distribution.

The second difference is related to Quality: the parametric model considers
an end-of-line quality control, while the DES model features two in-line quality
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control stations (one located in the middle and the other one located at the end of
the assembly line).

The third difference is that the parametric model assumes the assembly sta-
tions are synchronous: they start and finish processing products in sync, which
might not be the case in industrial environments. The DES model, on the other
hand, does not force assembly stations synchronisation, and therefore reflects wait-
ing or blocked times due to the effect of line imbalance, defects and variability.

The last point is changeovers. Both models take into account the workstations
blocked and waiting times originated during a product changeover by the cycle time
difference between outgoing and incoming products. However, the DES model also
accounts for the combined effects of variability, quality issues and out-of-sync, which
deteriorate productivity even more than these factors separately.

Having established the key differences, the next Subsection describes the cases
used for verifying and validating both models.

Verification and Validation – an industrial real case

To validate the models described previously, they were employed on two scenarios
from a global white goods manufacturer site located in the North of Spain, which
will be named here as ‘Company B’. The scenarios consist of two different manual
assembly lines (‘Line 1’ and ‘Line 2’) that have not been automated yet due to the
substantial number of product variants they produce: around 50 references grouped
into 6-8 families on each line. Each family of references has been considered as a
single product because the Work Content and assembly sequence of the references
within a product family are identical. The low order quantities of each reference
and relatively high setup times relative to cycle times, make this case an example
of high-mix low-volume demand.

The input data used for both scenarios are summarised in Table 5.3.

Both scenarios were calculated using the parametric and the DES models, and
the results were compared against the actual KPIs obtained from the data gathered
by the industrial partner.

To verify the models against each other (considering that the parametric model
does not include variability of process and setup time), the DES model was used
for each scenario with the Variability parameters set to zero.

The following Section 5.3.3 shows the results of the validation and verification
against the industrial case described above.

5.3.3 Results

This section includes the KPIs resulting from simulating the two scenarios described
in Subsection 5.3.2, named ‘Line 1’ and ‘Line 2’. Figure 5.12 shows the resulting
KPIs: Output, Throughput, Labour Productivity and Line Productivity.
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Table 5.3: Input data from an industrial real case for validating the models.

Variable Units Line 1 Line 2

Design parameters
No. workstations 4 3
No. product families 6 8
Batch size (avg.) units 66 64
No. of batches 27 33
Total units ordered units 1,680 2,116
Max. WIP between stations units 1 1

Fixed parameters
Cycle time (avg.) min 5.42 4.65
Work Content (avg.) min 21.68 13.95
Line balance (avg.) % 99.2 98.7
Setup time (avg.) min 6.85 8.35
First Time Yield % 99.2 99.8
Work Content ratio 1.33 1.41

Disturbances
Variability of process time % 20 20
Variability of setup time % 20 20

Figure 5.13 below shows the relative error of each of the models when compared
with the real industry data (column Company B) for each of the results from
Figure 5.12.

The relative errors between real industry data and the KPIs obtained using
the models presented in this article are in all cases below 1% for Output, 5% for
Throughput and Line Productivity, and 3% for Labour Productivity, which allows
considering both models validated. In summary, the average relative error is 1.63%
and the maximum relative error is 4.9%.

Moreover, the differences between the results of the parametric model and the
DES model with no variability are consistent, not differing more than 3.5% in any
KPI. This allows considering that the models are also verified.

It should be noted that both models overestimate Throughput and Productiv-
ity since they do not consider any constraints outside of the assembly line such as
machine breakdowns, components quality or supply problems.

5.3.4 Discussion and Conclusion

The results shown in Section 5.3.3 allowed validating both models presented in Sec-
tion 5.3.2 by comparison against real industry data which considers two scenarios.
The results also allowed verifying the parametric model against the Discrete Events
Simulation model with no variability, since their results differ less than 3.5% for
any KPI.

The results show that both models underestimate Output and overestimate
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Figure 5.12: Results of validation using a parametric and discrete events simulation model, com-
pared to empirical data from The Cooktop Co. industrial study case: (a) Output, (b) Throughput,
(c) Labour productivity and (d) Line productivity.

Throughput, Labour Productivity and Line Productivity. The mean relative error
is 1.63% and the max relative error is 4.9%, which means that both models are
reliable for high-mix low-volume demand scenarios similar to the ones considered
here.
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Figure 5.13: Relative error of KPI results using a parametric and discrete events simulation model:
(a) Output, (b) Throughput, (c) Labour productivity and (d) Line productivity.

The sources of the errors could be (1) the simplifications that the models entail,
such as the lack of process variability in the parametric model or the consideration
of non-conforming units as scrap; (2) that constraints external to the assembly line
take place: defective components, internal logistics service problems, or quality
control equipment breakdown, among others.

Regarding the models’ limitations, the parametric model presents great ease
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of use and speed of calculations, so that it can be used as a preliminary ‘enhanced
calculator’. Nevertheless, it lacks the complexity to take into account the com-
bined effects of quality issues, variability, changeovers and minor stoppages. In
consequence, it can be a useful, yet optimistic tool. The DES model, on the other
hand, is already a powerful tool for examining theoretical situations, evaluating
assembly line design alternatives, and answering specific questions within a given
scenario. Moreover, the DES model can be easily expanded to include automated
stations—e.g. collaborative robots [265]—or to take into account the effect of op-
erator cognitive support technologies such as Augmented Reality [264].

Future lines of work would employ the parametric model presented here as
a preliminary analysis tool, followed by a DES model expanded from the one de-
scribed here, but adjusted to evaluate the impact of different digital technologies
which would affect certain variables: for example, while employing collaborative
robots would increase the line productivity, augmented reality for operator support
would reduce the process time variability. Such a model would allow us to under-
stand how to maximise the effect of investments to achieve the desired operational
or business goals. Finally, it remains an open topic comparing the estimated im-
provements to be obtained by implementing Industry 4.0 digital technologies with
the actual results in an industrial environment.

5.4 Summary

This chapter focused on the development of discrete events simulation models for
the analysis of flexible assembly operations. The limitations faced by the simpler
mathematical model presented in Chapter 4 were overcome using the software
FlexSim®. Validation of the DES models development methodology was carried
out by comparison against empirical data from the industrial study case of The
Cooktop Company. The description of both mathematical and DES models as
well as the verification and validation results were presented at the 55th CIRP
Conference on Manufacturing Systems.

This chapter makes two key contributions:

1. Built DES models to analyse flexible assembly operations with a focus on real-
istic product model changeovers, suitable for studying high-mix low-volume
assembly.

2. Verified and validated them using the previously developed parametric model
and the industrial study case of The Cooktop Company.

Having established a methodology to build simulation models and proved that
can represent real assembly operations with reduced errors in critical KPIs, this
chapter paved the way for designing and analysing assembly line configurations that
focus on the most critical factors identified in Chapter 4: number of workstations
and batch size. Thus, the following Chapter 6 introduces parallel walking-worker
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assembly lines which include both manual and automatic stations. Another re-
search patch would be to expand the simulation model to include the outer layers
of the assembly systems. Chapter 7 does so by incorporating in-plant logistics into
the DES models and analysing key aspects of milkrun trains’ performance when
feeding high-mix low-volume assembly lines.
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CHAPTER 6

Designing parallel walking worker assembly lines

Aiming to increase the productivity of low-volume manual assembly lines, the in-
troduction of traditional automation entails high investment costs, which in turn
drive the integration of several product lines to achieve a sufficiently large aggregate
production volume. However, fully automated assembly systems typically lack the
flexibility necessary to deal with the product variety brought by the integration of
multiple product families. The development of more flexible and low-cost automa-
tion technologies, such as Industry 4.0’s collaborative robots, offers the potential
to achieve high productivity even for low-volume assembly.

In Chapter 4, a preliminary study of the most critical factors to assembly line
labour productivity concluded that the number of stations and the batch size affect
productivity the most. Batch sizes are seldom a design decision, but rather are
imposed by the external market demand and the production costs derived, among
other factors, from the batch size itself. However, an assembly system capable of
producing efficiently (i.e., at low cost) despite small batch sizes is more flexible,
since it can address changes to market demand more quickly, and therefore presents
competitive advantages to manufacturers facing mass customisation markets.

The other key factor, the number of stations, implies that longer assembly
lines (i.e., with a larger number of stations) suffer from higher line balancing losses
and also higher model changeover losses. On the other hand, shorter assembly lines
present reduced line capacity (i.e., lower maximum throughput).

To overcome this problem, which constitutes the core research aim of this
thesis, this chapter introduces parallel walking-worker semiautomatic assembly
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lines, illustrated by Figure 6.1. In particular, this chapter addresses the research
objective of designing assembly systems that increase productivity by at least
+25% while facing high-mix low-volume demand, by incorporating a combination
of manual and automated stations. The DES modelling methodology developed,
verified and validated in Chapter 5 is used here to analyse the performance of
several assembly line configurations under different scenarios.

Figure 6.1: Parallel walking-worker assembly line simulation model.

The research presented here was published as an article in the journal Processes
[283], and therefore each section of the chapter corresponds to a section of the
article: Introduction (6.1), Literature Review (6.2), Materials and Methods (6.3),
Results (6.4), Discussion (6.5) and Conclusion (6.6). Section 6.7 includes four
additional scenarios which were used to analyse other aspects of PWWAL design.
Finally, Section 6.8 summarises the key findings and contributions of the chapter.

Article title:

Parallel Walking-Worker Flexible Assembly Lines for High-Mix Low-
Volume Demand

Article abstract:

Demand trends towards mass customisation drive the need for increas-
ingly productive and flexible assembly operations. Walking-worker as-
sembly lines can present advantages over fixed-worker systems. This
article presents a multiproduct parallel walking-worker assembly line
with shared automated stations, and evaluates its operational perform-
ance compared to semiautomated and manual fixed-worker lines. Sim-
ulation models were used to set up increasingly challenging scenarios
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based on an industrial case study. The results revealed that semiauto-
mated parallel walking-worker lines could achieve greater productivity
(+30%) than fixed-worker lines under high-mix low-volume demand
conditions.

6.1 Introduction

Mass customisation and personalisation demand trends drive production opera-
tions towards high product variability, smaller batch sizes, reduced inventory, and
shorter lead times [2, 28]. As a consequence, an increasing number of industries
need to assemble a large number of similar products in small quantities each, which
is called high-mix low-volume demand [28]. To succeed under such circumstances,
productivity and flexibility are required at the same time, contrary to the existing
dichotomy [6]. Reconfigurable assembly systems, first, followed by the cyberphys-
ical or smart assembly systems of Industry 4.0 and the future adaptive cognitive
assembly systems, aim to address it [18, 61, 284].

Current manual or semiautomatic serial assembly lines (ALs) present pro-
ductivity limitations due to the inherent losses of frequent changeovers and the
difficulties of balancing a large mix of different products on top of the constraints
imposed by automated stations. Moreover, these conventional fixed-worker as-
sembly lines (FWALs) are not highly responsive to demand volume changes since
the number of operators cannot be modified without compromising line balance.
Unbalanced assembly lines are an open issue [285], and mass personalisation de-
mand trends only aggravate the situation [13, 53]. To address these problems,
walking-worker assembly lines (WWALs) present benefits compared to FWALs.
WWALs are line configurations in which operators move along the line, moving
the products with them, so that each worker performs all assembly tasks on each
station until the product is complete, and then starts over again. The benefits of
WWALs versus FWALs are [286, 287]: increased flexibility in production level by
an easy modification of the number of workers, reduction of WIP inventory, and—
most importantly—avoiding the negative effects of workstations imbalance, as long
as the number of assembly stations exceeds the number of workers involved. How-
ever, WWALs may suffer from productivity losses when in-process waiting times
occur because of the stations ahead of an operator being blocked by the other
workers [288]. The inclusion of machines within the WWAL can cause additional
bottlenecks [289], which can counter the benefits of process automation.

Another take on this problem is parallel assembly lines [290, 291], which in-
crease the reliability and flexibility of the lines, allow better balancing due to super-
ior cycle times and lower number of operators and, therefore, increased productiv-
ity at the expense of larger equipment investments and space required. Combining
both approaches—WWALs and parallel assembly lines—can provide important be-
nefits in contexts of high-mix low-volume demand.
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This article presents a multiproduct parallel walking-worker assembly line
(PWWAL) with shared automated stations and evaluates its expected operational
performance compared to semiautomated fixed-worker serial assembly lines when
dealing with high-mix low-volume demand. The WWAL working logic was chosen
due to its advantages over FWAL when dealing with stations balancing under high-
mix demand conditions, despite the WWAL’s intrinsic inefficiencies due to worker
displacements. Additionally, parallel line configurations could prove useful when
product changeovers are frequent due to smaller batch sizes, since the number of
stations could be reduced, decreasing the changeover losses, which depend heavily
on the number of stations when there are large cycle time differences between the
models produced by the line.

Discrete events simulation (DES) models were used to perform this study
due to their ease of implementation and the possibility to incorporate stochastic
parameters [269, 270, 273, 292]. FlexSim® was employed to develop the simulation
models. An industrial study case from a global white goods manufacturer was
used to build the simulation models, provide input data, and allow validation using
historical data. In this industrial case, which is common across many industries, the
company goal is to improve the productivity of several manual assembly lines that
had been optimised over the years. To achieve this goal, the lines could be merged
and upgraded by introducing some automated stations to reduce the manual work
content. However, productivity would increase at the expense of flexibility, since
line balance deteriorates when increasing product variety. Thus, the motivation for
this work is to gain insights into the productivity vs. flexibility trade-off of parallel
walking-worker assembly lines in comparison to traditional fixed-worker lines.

The article is structured as follows: Section 6.2 offers a literature review on
walking-worker assembly lines. Section 6.3 includes a description of the line con-
figurations modelled, the models’ inputs and outputs, and the simulation scenarios
employed. Sections 6.4 and 6.5 present the results and discussion of the simulation
scenarios, respectively.

6.2 Literature Review

Over the last 25 years, WWALs have been studied using analytical and simulation
models, focusing on different aspects of this line configuration performance, and
considering different combinations of factors. Table 6.1 summarises the key aspects
of the articles selected for this section. It is worth mentioning that none of the
articles consider sequence-dependent setup times or automated stations in their
WWAL models. Walking times are often considered negligible when the processing
times are significantly larger.

Little had been written on walking (moving) worker assembly lines before D.P.
Bischak’s article in 1996 [286], which points out several advantages of unbuffered
WW modules: flexibility in the production level; reduction in work-in-process in-
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ventories; avoiding the negative effects of AL imbalances produced by the frequent
introduction of new products; and improving reported worker morale. On the
other hand, the importance of operator cross-training increases as it becomes an
enabler of this AL configuration. It was established that WWALs can improve
system responsiveness in terms of throughput, and that they work well for unbal-
anced processing times. The simulation results show a reduced importance of WIP
buffers for WWALs versus FWALs, that low variability systems require no WIP
buffers, and that buffers would only increase lead time.

Wang and Owen [287] presented a comparison between WWALs and FWALs in
terms of line efficiency. Their DES model considered processing times variation and
fixed walking times between stations in a linear single-model AL. It was concluded
that the WWALs could provide higher output and efficiency than FWALs, and
that it has greater tolerance to variations in processing time.

In a later article, Lassalle [288] looked into the details of the in-process operator
waiting times of linear WWALs. Simulation was employed, considering negligible
walking times and product changeovers. It was found that the productivity loss
caused by in-process waiting times is predictable and adjustable, with the workers-
to-workstations ratio being its main driver.

In their 2009 article, Wang et al. [289] studied linear WWALs using both
simulation and mathematical modelling. They considered a mixed-model AL where
workers may have unequal performance, leading to dynamic worker blockages due
to the operational rule of not allowing faster operators to overtake slower ones.

Al-Zuheri et al. [293] looked into WWALs to understand their worker pro-
ductivity and ergonomics performance. Mathematical modelling was used on a
U-cell layout, considering process time variability, worker skill level, and walking
speed, among other variables. It was found that increasing the workers’ walking
speed did not improve the productivity of the AL.

Cevikcan [294] presented a line balancing optimisation methodology for mul-
timodel WWALs based on a mathematical model. Bortolini [295] proposed a mixed-
model sequencing algorithm for unpaced unbuffered WWALs on U-cell layouts,
aiming to optimise line productivity.

In addition, a recent article from Hashemi-Petroodi et al. [296] presented a
literature review of different assembly and manufacturing workforce reconfiguration
strategies, including walking-worker assembly lines. The authors found that (1)
little has been published on multimodel walking-worker assembly lines, and (2) that
an open field of research is the consideration of different workforce reconfiguration
strategies, including walking-worker assembly lines, in a human–robot interaction
environment.

Our article aims to help close this gap by looking into multimodel WWALs,
which include manual and automated workstations.
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6.3 Materials and Methods

In this article, the performance of the proposed parallel walking-worker assembly
line configurations is compared to two fixed-worker assembly line configurations.
DES models were used to understand the behaviour of the line configuration altern-
atives by simulating different scenarios. DES was chosen because it presents im-
portant advantages over mathematical modelling when stochastic elements are the
main drivers of the system under study [270]. In the AL configurations considered
here, the random nature of processing times is combined with random product ar-
rival times to the automated stations. The simulation tool employed was FlexSim®

(2022.0, FlexSim Software Products, Inc.). The scenarios are defined by a subset
of the input parameters, design parameters. Fixed parameters are common to all
models for all scenarios, as well as the disturbances, which govern stochastic fea-
tures of the models. The performance of the AL configurations is evaluated using
several key performance indicators (KPIs), as shown in Figure 6.2.

6.3.1 Assumptions

Figure 6.2 depicts the models employed in this study. All models feature the
following general assumptions, following Boysen’s classification [268]:

• The production systems are unpaced, buffered assembly lines.
• The number of workstations is constant, and they can only process one unit

at a time. For the parallel line configuration, the number of stations refers
to the number on each of the two lines.

• The model mix is known, and demand continues for the whole simulation
horizon.

• They are multimodel assembly lines: they produce different models of products
in batches. Setup is necessary before a batch of different products can be as-
sembled, and it is performed by the operators as soon as possible, i.e., when
the last unit of the previous batch has been processed. Setup time depends
on the sequence of products, and it is lower when subsequent models are of
the same product family.

• No component shortages: components being assembled onto the product are
always available at the stations.

• The product sequence is governed by the parameter BCO, which indicates the
number of batches of the same family that are produced until a product family
changeover occurs (which takes longer than a same-family model changeover).

• Processing and setup times are modelled stochastically using a lognormal
distribution, which is governed by the average process/setup times and by a
variability coefficient.

• Processing and setup times consist of smaller tasks, which are sufficiently
small so that the line balance is not affected by a change in the number of
stations.
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Figure 6.2: DES models for flexible assembly line configurations: (1) manual fixed-worker
line (manual FWAL); (2) semiautomatic fixed-worker line (semiauto FWAL); (3) semiauto-
matic single walking worker line (semiauto single WWAL); (4) parallel walking-worker assembly
line (PWWAL). Design parameters are changed when analysing the performance of assembly line
configurations. Fixed parameters are based on industrial study case data. Variability of quality,
manual assembly, and setup times are considered disturbances. Model output includes relevant
KPIs for evaluation.
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• When converting manual work content (WCm) into automated (WCauto),
WCm can be reduced equally from all stations.

• WCm transformed into WCauto becomes 20% larger due to the inferior as-
sembly speed of the automated stations compared to well-trained human
operators.

• Two automated stations perform in-line quality control (QC) in the middle
and at the end of the assembly process. Defective units are reworked out of
line, which may cause idle time to downstream operators.

Figure 6.2(1) and Figure 6.2(2) depict manual and semiautomated FWALs,
which feature the following specific assumptions:

• Fixed workers: the operators are assigned to workstations and they do not
leave them.

• Serial layout: the stations form a line, and the work-in-process products travel
along them sequentially.

• The line balance depends on the number of operators.
• The manual FWAL features manual stations only, while the semiautomated

FWAL includes manual and automated stations.
• Workstation buffers have a maximum capacity of one product.

Figure 6.2(3) shows the semiautomated walking-worker single assembly line,
and Figure 6.2(4) shows the proposed parallel walking-worker assembly line. In
these line configurations presented here, operators walk along the line and pick
the components to assemble for the in-process product on a mobile trolley, while
automated stations process units (Figure 6.3a). When arriving at the automated
stations, the operators leave their current product in the in buffer and take a
processed product from the out buffer of the automated station (Figure 6.3b). The
operators then resume their path (Figure 6.3c). When a product is finished, it is
placed in the finished products buffer, and then the operator walks back to the
starting point to resume production.

Figure 6.3: Operator–automated station interaction in semiautomated walking-worker assembly
line. (a) Operator processes unit in a manual station. (b) Operator leaves unit on the automated
station in buffer. (c) Operator takes ready unit from the automated station out buffer and moves
to the next manual station to continue assembly.
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Thus, both WWAL configurations were modelled under the following specific
assumptions:

• The production system includes manual ‘stations’, which conform to one or
two lines, and automated stations, some of which are shared by both lines
for PWWAL.

• Despite the assembly being made on mobile trollies, it is the spaces by the
picking shelves that are modelled as stations.

• There is a certain number (W ) of operators working on the line, with a
maximum equal to the number of stations.

• Operators move downstream, cannot overtake other operators, and can wait
by a station in case it is not available when they arrive.

• The travelling time of the operators from one station to the next one is
simulated considering a constant speed of 1 m/s.

• Automation stations in and out buffers’ maximum capacity is one unit.
• Shared automated stations process products following an FIFO rule (first in,

first out), and can only place processed units in the out buffer corresponding
to the line of origin of the product.

The main objective of the analysis is to maximise line productivity, defined
as the number of conforming units produced per operator-hour. In particular, the
industry study case sets a line productivity target increase of +25% compared to
the initial situation (manual FWAL). Minimising production lead time is also con-
sidered important, but less so than line productivity maximisation. The ability to
modify throughput with ease is desirable as well. Consequently, a set of three ‘main
KPIs’ (key performance indicators) was composed of line productivity, batch lead
time, and throughput. A secondary set of three KPIs was used to understand what
drives the main performance measures as well as find potential drawbacks. The
‘secondary KPIs’ are labour productivity, unit lead time, and surface productivity.
Increasing labour productivity and surface productivity and minimising unit lead
time is also desirable if possible.
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6.3.2 Notation

The following notations are introduced:

Design parameters:

W Number of workers (index w).

Q Number of units in a batch.

BCO Number of batches of the same product family before changeover.

Fixed parameters:

M Number of models (index m).

K Number of manual workstations (index k).

J Number of automated workstations (index j).

Tp Processing time.

Ts Setup time.

WC Work content (i.e., total process time).

Disturbances:

FTY First time yield.

CVp Process time coefficient of variation: CVp = σTp/µTp.

CVs Setup time coefficient of variation: CVs = σTs/µTs.

Key performance indicators:

PLine Line productivity (units/operator-h): production rate of conforming
units per operator.

LTB Batch lead time (min): average time for a batch of units to be finished
from the moment the last unit of the previous batch is finished.

Th Throughput (units/h): production rate of conforming units.

PLabour Labour productivity (%): percentage of time that operators spend
processing units. Setup and walking times are not considered pro-
ductive.

LTU Unit lead time (min): average time for a unit to be finished from the
moment it starts being assembled.

PS Surface productivity (units/operator-h-m2): production rate of con-
forming units per operator and surface unit.

6.3.3 Input Data

The DES models employed data corresponding to the industrial case study. The
parameter values are based on the industrial case data, as indicated in Table 6.2.
The assembly operations considered in this article deal with three families of sim-
ilar products. Although all product families share technological principles, core
functionalities, and are subjected to the same QC tests, their dimensions, materi-
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als, and other secondary features are not the same. Batch sequencing is performed
by grouping products of the same family together, which leads to the BCO design
parameter.

Table 6.2: Design parameters, fixed parameters, and disturbances considered in the models.

Parameter Units Min Max Current State

Design parameters
W Workers 2 10 8
Q Units 12 48 48
BCO Batches 1 3 3

Fixed parameters
M Models 3
K Stations 8 (FWAL), 16 (PWWAL)
J Stations 4
Tp s See Tables 6.3 and 6.4
Ts s See Table 6.5
WC s See Table 6.3

Disturbances
FTY % 99
CVp % 15
CVs % 15

Table 6.2 includes the current state values for the design parameters, which
define what are considered standard demand conditions. It also shows the fixed
parameters and disturbances included in the models. They remain unchanged for
all assembly line configurations on all demand scenarios.

Processing times depend on the model (index m). The average values of
manual processing times—for stations k ∈ {1, ..., 8}, along with the manual, auto-
mated, and walking work contents—are found in Table 6.3.

Note that, based on WCm for manual FWAL, the automation of ca. 23% of the
WCm means to increase that WC by 20%, under the assumption that well-trained
manual operators can assemble faster than a collaborative robot. It was deemed
realistic to assume that both FWAL and WWAL process and setup times would
have a similar distribution in terms of mean and variability values. It was also
assumed that process times can be atomised because the individual (indivisible)
tasks considered in the industrial case take, on average, between 7 and 20 seconds,
which is significantly lower than the assembly stations process times (cf. Table
6.3).

The average values of automated processing times for stations j ∈ {1, ..., 4} are
found in Table 6.4. In theory, none of the automated stations is the AL bottleneck.
However, the processing times variability and the incoming units simultaneity calls
for additional capacity. In the industrial study case presented here, automated
stations j = 1 and j = 3 are duplicated (cf. Figure 6.2(3),(4)) because they are
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Table 6.3: Manual processing times and work content input data.

Tp
max
m Tp

min
m WCm WCauto WCwalk WCtotal

Model, m s s s s s s

Manual FWAL
1 158 146 1179 0 0 1179
2 129 119 962 0 0 962
3 100 92 745 0 0 745

Semiauto FWAL
1 122 112 908 325 0 1233
2 99 92 740 266 0 1006
3 77 71 572 207 0 779

Semiauto PWWAL
1 122 112 908 325 33 1266
2 99 92 740 266 33 1039
3 77 71 572 207 33 812

not QC stations, which reduces the investment requirements.

Table 6.4: Automated processing times input data.

Tpm,j (s)

Model, m j = 1 j = 2 j = 3 j = 4

1 31 89 105 100
2 28 76 85 77
3 25 53 65 54

The first and second manual stations include tooling and fixtures that re-
quire lengthier changeovers than the rest, which consist of picking stations only.
Moreover, the Ts base value is also altered depending on the preceding and sub-
sequent model being produced. Table 6.5 shows the setup time average values.
Automated stations do not require any setup time as it has been estimated to
be of similar magnitude to same-product setup, therefore being included in the
processing time.

Table 6.5: Setup time input data.

Ts (s)

Station Product Family Change Same Product Family

k ∈ {1, 2} 480 360
k ∈ {3, ..., 8} 48 36

The production sequence depends on the BCO design parameter, as shown
in Table 6.6. The sequence is repeated until the end of the simulation time. For
semiauto PWWAL, model 1 (m1) and model 3 (m3) batches are assigned to one
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of the parallel lines, and model 2 (m2) batches are assigned to the other one. In
consequence, PWWALs benefit from performing fewer product family changeovers.

Table 6.6: Production sequence input data.

BCO Sequence (Batches of Q Units)

1 m1 m2 m3 ⟲
2 m1 m1 m2 m2 m3 m3 ⟲
3 m1 m1 m1 m2 m2 m2 m3 m3 m3 ⟲

The DES models consider the inherent variability of manual assembly pro-
cesses by using a lognormal distribution for process and setup times, based on the
recommendations by Banks and Chwif [278]. The mean (µ) for this distribution is
the process standard assembly time for each—different for each product family—
and the standard deviation (σ) is found as a percentage of the mean given by the
parameters CVp and CVs. The values for these parameters were estimated from
historical data from the industrial partner existing manual assembly lines, and
found to be in the range of 15–20% for the assembly lines considered in this study
case. To minimise the uncertainty of the results due to the stochastic nature of
processing and setup times, each simulation scenario was run 20 times.

To calculate PS , the surface requirements for each assembly line configura-
tion were measured—manual AL configuration—or estimated from the study case
preliminary line designs, resulting in the surface requirements shown in Table 6.7.
Note that the greater WWAL lengths, compared to semiautomated FWAL, are due
to the increased WIP and operator buffers.

Table 6.7: Shopfloor surface requirements for different assembly line configurations.

Configuration Depth (m) Length (m) Shopfloor Surface (m2)

Manual FWAL 4 16 64
Semiautomated FWAL 4 23 92
Single WWAL 5 33 165
Parallel WWAL 10 33 330

The simulation time is 60 h, with a 1 h warmup time. At the start, buffers
between manual stations are empty (FWAL models), and automated stations are
full.

6.3.4 Validation

The manual fixed-worker assembly line configuration (Figure 6.2(1)) was simulated
using input parameter values from the industrial study case from a global white
goods manufacturer site located in the north of Spain. The simulation output was
compared against the company’s operational KPIs collected in January 2021. The
average relative error of the KPI estimations was 1.8%, and the maximum error
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was 4.9%. This error magnitude was deemed satisfactory for the scope of this work.
Thus, the DES model was validated, and the same simulation methodology was
used to build the semiautomated FW and the parallel walking-worker assembly
line configurations (Figure 6.2(2)–(4)).

6.3.5 Performance Comparison for Different Demand Scen-
arios

The performance of the different line configurations was assessed under different
demand conditions. The standard demand conditions, scenario i, were created by
setting the design parameters to 8 operators, a batch size of 48 units, and a product
family changeover frequency of 3 batches, as shown in Table 6.8. This scenario
represents the performance of the line configurations if the demand remains stable
and does not change towards mass customisation. The results from this scenario i
set the baseline performance of each line configuration.

Table 6.8: Simulation scenarios and design parameters analysed.

Scenario W (Operators) Q (Units) BCO (Batches)

i. Standard demand 8 48 3
ii. High-mix (1) 8 {12, 24, 48} 3
iii. High-mix (2) 8 48 {1, 2, 3}
iv. Low-volume {2, 4, 8} 48 3
v. High-mix low-volume 8 12 1
vi. Degree of automation {4, 6, 8} {12, 48} {1, 3}

To adapt to increasingly challenging demand conditions, assembly operations
flexibility in terms of reduced lead times, smaller batch sizes, and more frequent
rotation of product families are critical. To understand the performance of the
different assembly line configurations under such conditions, simulation scenarios
ii–v were set up, as shown in Table 6.8. Scenarios ii–iv look into how the per-
formance of each line configuration is affected by the change of the three design
parameters individually. Scenario v considers the most severe demand conditions
at the same time and compares the performance against the base scenario. Finally,
scenario vi analyses the effect of automation in terms of percentage of work content
automated, under either standard or high-mix low-volume demand conditions, and
for a varying number of manual operators. On the other hand, the effect of the
automation layout structure (i.e., the number of shared automated stations) would
be hardly observed and analysed using the industrial study case presented here
because none of the automated stations are the AL bottleneck. Therefore, in this
particular case, the number of automated stations would not significantly impact
the AL operational KPIs. The following section, Section 6.4, includes the outcome
of the simulations.
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6.4 Results

This section includes the models’ outputs (KPIs) for each scenario i–vi shown in
Table 6.8. The results shown in this section are the average KPI values of 20
simulation runs. The maximum standard deviation of the results, as a percentage
of the average value, is 1.1%. This indicates that the results are relatively stable
with respect to the models’ disturbances. For each scenario, the simulation results
are shown in tables including the three AL configurations. The main KPIs (PLine,
LTB , Th) improvements for the semiautomated FWAL and PWWAL configura-
tions are then evaluated compared to the manual FWAL configuration. Note that
Th (units/h) and PLine (units/oper-h) variations with respect to manual FWAL
are the same because the number of operators remains constant.

6.4.1 Base Scenario: Current-State Demand

The results of simulating the base scenario demand on the four assembly line con-
figurations are shown in Table 6.9. Firstly, PLine increases as a result of automation
for semiautomated FWAL and WWAL configurations. It is important to note that
the manual work content reduction obtained by introducing automation was ca.
−23%.

Table 6.9: Operational KPIs for manual FWAL, semiautomated FWAL, semiautomated single
WWAL, and parallel walking-worker assembly line configurations under standard demand condi-
tions (scenario i).

PLine LTB Th PLabour LTU PS

u/oper-h min u/h % min u/oper-h-m2

Manual FWAL 3.19 132 25.5 87.0 20.5 0.05
Semiauto FWAL 3.98 111 31.9 83.3 23.4 0.043
Semiauto Single WWAL

W = 8 3.48 138 27.9 71.6 25.4 0.021
W = 7 3.70 145 25.9 75.7 25.0 0.022
W = 6 3.93 156 23.6 79.3 26.3 0.024
W = 5 4.03 176 20.1 82.9 20.1 0.024
W = 4 4.28 200 17.1 85.6 27.5 0.026

Semiauto PWWAL 4.23 203 33.8 85.6 27.9 0.013

The eight workers semiautomated single WWAL improves the performance
compared to the manual FWAL. However, it presents worse performance than
semiauto FWAL in terms of each and every one of the KPIs considered because
there are not more stations than workers. This means that the single WWAL suffers
from both line unbalancing and walking inefficiencies. Progressively reducing the
number of workers in this configuration increases PLabour, PLine, and PS , at the cost
of a sharp reduction in Th. Adding a second walking-worker line and sharing some
of the existing automated stations leads to increased productivity and throughput,
transforming the semiautomated single WWAL into the parallel WWAL shown
in Figure 6.2(4). It is very significant that the walking-worker way of working
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allows duplicating the throughput—from 17.1 to 33.8 units/h—by duplicating the
number of workers while maintaining very high labour productivity (85.6%). Since
the single WWAL presents no critical productivity advantages over the PWWAL,
the following subsections omit the results of the single WWAL and focus on the
semiauto FWAL vs. PWWAL comparison.

The semiautomated FWAL configuration achieves a +25% increase in PLine

(see Figure 6.4). On the other hand, the PWWAL PLine rises by +33% despite
the walking time losses since there are no line balancing losses in this configura-
tion. This is particularly remarkable when considering that WWAL configurations
present an additional walking WC of 33 s per unit and 33 s return time to the first
station (see Tables 6.3 and 6.7).

Figure 6.4: Line productivity increase of semiautomated FW and parallel walking-worker with
respect to manual FW line configuration under standard demand conditions (scenario i).

On the other hand, batch lead time follows different trends: it improves
for semiautomated FWAL (−16% LTB reduction) but it worsens significantly for
PWWAL (+54% LTB increase) compared to manual FWAL. Semiauto FWAL LTB

improves despite the increased line length—eight manual stations plus four auto-
mated stations—due to the increased Th (+25%). Contrarily, PWWAL LTB in-
creases greatly despite its total Th increase (1) due to the walking-worker logic; (2)
because each one of the parallel lines consists of only four operators—cf. LTB for
single WWAL with W = 4 and LTB for PWWAL on Table 6.9; and (3) because
the total work content increases by ca. 7–9% when taking into account manual,
automated, and walking WC (see Table 6.3).

Unit lead time increases as a result of introducing automated stations, but
less so for semiauto FWAL (+14% LTU increase) than for PWWAL (+36% LTU

increase vs. manual FWAL). Once again, note that the LTU of single WWAL with
four operators is approximately the same as the LTU of PWWAL.

Finally, the surface needed for the PWWAL is much greater than for manual
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or semiautomated FW lines (see Table 6.7), resulting in a significant PS decrease.

As shown in Figure 6.4, the main KPI improvements (PLine increase) meet
the industrial case study target under standard demand conditions. The next sec-
tion, Section 6.4.2, analyses how the AL configurations deal with more challenging
demand conditions.

6.4.2 High-Mix and Low-Volume Demand Scenarios

Simulation scenarios ii to iv test the line configurations under tougher demand
conditions than scenario i. The performance of the assembly systems is expected
to deteriorate for all AL configurations, but the focus here is the performance of
semiautomated FWAL and PWWAL compared to manual FWAL.

Scenario ii : High-mix presents the necessity of reducing batch sizes due to
increasingly atomised demand trends. Table 6.10 shows the KPIs resulting from
simulating the different line configurations under a gradually smaller batch size
(Q). The PWWAL configuration is best in terms of PLine, Th, and PLabour at all
levels of Q, and is the worst in terms of LTB , LTU , and PS . For the three line
configurations, all KPIs deteriorate as a result of reducing Q.

Note that line productivity for semiautomated FWAL with Q = 24 units is still
greater than for manual FWAL with Q = 48 units, and that the line productivity
for PWWAL with Q = 12 units is still significantly superior to manual FWAL
with a Q of 48 units. A key driver for this is that setup time losses are smaller
for PWWAL than for FWAL because PWWAL employs fewer operators per AL
branch.

Figure 6.5: Line productivity improvement of semiautomated FW and parallel walking-worker
with respect to manual FW line configuration for reduced batch size (Q, scenario ii).

Figure 6.5 shows that manual FWAL deals with reduced batch sizes worse
than semiautomated AL since the PLine of semiauto FWAL and PWWAL shows
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improvements for all levels of batch size. It can be seen that PWWAL maintains
an improvement of ca. +30 to +33% PLine compared to manual FWAL for all
Q levels. On the other hand, semiautomated FWAL improvements vs. manual
FWAL decrease as Q decreases. This leads to the conclusion that PWWAL deals
with reduced batch sizes better than semiautomated FWAL. This is a key finding
since maintaining high line productivity, even when significantly reducing the batch
size, is the main goal of the PWWAL.

Scenario iii also considers a high-mix demand situation, in this case by requir-
ing more frequent changeovers, i.e., the number of batches before product family
changeover, BCO, decreases. The KPI results of scenario iii are shown in Table
6.10. The only performance indicator that is significantly affected is PLabour, which
decreases for semiautomated FWAL by ca. 2 percent points. However, this decrease
in PLabour is not large enough to drag down PLine significantly, as shown in Figure
6.6.

Figure 6.6: Line productivity improvement of semiautomated FW and parallel walking-worker
with respect to manual FW line configuration for reduced no. of batches until product family
changeovers (BCO, scenario iii).

Simulation scenario iv considers a situation where the demand levels drop,
and the throughput of the AL must be adjusted accordingly. To achieve this, the
number of workers, W , is reduced. Note that the semiautomated FWAL is not able
to modify this parameter under the constraints presented in Section 6.3. In reality,
the production level of the semiautomated line could be adjusted by modifying
other factors, such as the number of shifts, which are outside the scope of this
work. Table 6.10 shows the simulation results for each line configuration when
changing the parameter W .

Firstly, Th decreases as W decreases for manual FWAL and PWWAL configur-
ations, but it does not decrease equally, due to line and labour productivity. PLabour

increases significantly for manual FWAL (from 87 to 96.2%) but not so much for
PWWAL (from 85.6% to 90.9%) when W is reduced from eight to two workers.



6.4. Results 147

The PLabour increase is due to the better line balance in the case of manual FWAL;
and due to the reduction in in-process operator idle time for PWWAL—consistent
with the conclusions by Lassalle et al. [288]—and the reduction in automated sta-
tion saturation caused by the lower Th. Consequently, PLine increases when W

decreases.

Lead times, however, behave quite differently. LTU decreases slightly for
manual FWAL but increases sharply for PWWAL because of its production lo-
gic, by which operators leave units in the automation queues upon arrival, and
then take a unit already processed by the automated stations. Since the number of
WIP buffers before automations remains constant regardless of W , when W << K,
the lead time increases. On the other hand, LTB increases as W is reduced since
its main contributor is the cycle time, which is inversely proportional to W . This
trend affects both manual and PWW line configurations.

Finally, PS increases very slightly when W is reduced, as a consequence of the
increased PLine. It is important to note that the PWW line configuration is the only
one that allows introducing more operators if needed—until the automations are
saturated—which allows increased throughput even further at the cost of reducing
productivity.

Figure 6.7 shows that PWWAL performs better than manual FWAL in terms
of PLine at all levels of W . However, with W = 2 operators it is no longer possible
for PWWAL to achieve the target +25% increase in PLine compared to manual
FWAL.

Figure 6.7: Line productivity improvement of semiautomated FW and parallel walking-worker
with respect to manual FW line configuration for reduced no. of workers (W , scenario iv).
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6.4.3 High-Mix Low-Volume Demand Scenario

Simulation scenario v considers a combination of scenarios ii and iii demand con-
ditions: small batch size (Q = 12 units) and frequent product family changeovers
(BCO = 1 batch). Table 6.11 shows the KPIs resulting from scenario v.

Table 6.11: Operational KPIs for manual FWAL, semiautomated FWAL, and parallel walking-
worker assembly line configurations under high-mix low-demand demand conditions (scenario
v).

KPI Units Manual FWAL Semiauto FWAL PWWAL

PLine u/oper-h 2.63 2.82 3.42
LTB min 51 53 88
Th u/h 21.0 22.6 27.4
PLabour % 70.3 58.0 70.4
LTU min 18.6 24.8 34.5
PS u/oper-h-m2 0.041 0.031 0.010

PLine and Th for semiautomatic FW and PWW lines are greater than those
of manual AL configuration. However, only the PWWAL configuration allows a
similar PLabour under high-mix low-volume conditions. PLabour decreases sharply
under high-mix low-volume demand compared to standard conditions (cf. results
of scenario i on Table 6.9), which affects semiautomated FWAL more intensely
than PWWAL. This explains why PLine improves only by +7% for semiautomated
FWAL, compared to +30% for PWWAL, as shown in Figure 6.8.

Figure 6.8: Line productivity improvement of semiautomated FW and parallel walking-worker
with respect to manual FW line configuration under high-mix low-volume demand conditions
(scenario v).

On the other hand, LTB is worse for semiautomated than for manual lines.
LTB for PWWAL is significantly greater than for FWAL. This is deduced from the
fact that LTU almost doubles for PWWAL compared to manual FWAL (34.5 min
vs. 18.6 min). This also indicates that the WIP levels of PWWAL must be superior
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to those of FWAL lines. Finally, PS shrinks slightly under high-mix low-volume
demand conditions compared to scenario i.

In summary, under both standard (scenario i) and high-mix low-volume de-
mand conditions (scenario v), the parallel walking-worker line configuration achieves
greater line productivity, which is the main goal of the industrial case presented.
However, parallel walking-worker lines suffer from a higher batch lead time than
fixed-worker line configurations. The parallel walking-worker configuration allows
meeting the target line productivity improvement of +25% even under the most
challenging conditions simulated. In contrast, the semiautomated FWAL presents
perform better on secondary KPIs, such as lead time and surface productivity.

6.4.4 Degree of Automation

Simulation scenario vi tests the performance of semiautomated AL configurations
for varying degrees of automation, in terms of the percentage of manual work
content that has been assigned to automated stations. Scenario vi also considers
the influence of demand conditions (Q, Bco) and number of manual operators (W ).
The results of scenario vi simulations are shown in Table 6.12 and Table 6.13, with
the behaviour of the most significant KPIs depicted in Figure 6.9.

Figure 6.9a shows the assembly line productivity as the degree of automation
increases. Note that the base scenario corresponds to 23% automated WC. The
simulation results show that the productivity is at a maximum for the base scenario
with eight manual operators (W = 8). This is coherent with the number of manual
and automated stations being chosen, aiming for line balance. From this point, de-
creasing the degree of automation reduces the line productivity, since the manual
labour becomes the bottleneck. Increasing the degree of automation while keep-
ing W constant also reduces the line productivity, due to the automated stations
becoming the bottleneck. Note that this trend is maintained for both standard
demand conditions (solid line series) and high-mix low-volume conditions (dashed
line series). Productivity falls because the workers are increasingly idle and the
output does not increase. The assumption that manual WC can be automated, in-
creasing the processing time by 20%, plays an important role here. The study case
assumes that this is reasonable since a well-trained operator assembles faster than
a regular collaborative robot (see Section 6.3.3). Therefore, reducing W should in-
crease the line productivity when the degree of automation is high. Unfortunately,
for traditional FWAL lines (yellow), this change cannot be carried out without
degrading the line balance. On the other hand, walking-worker lines can reduce
the number of manual operators without incurring any penalty. This situation was
simulated for W = 6 and W = 4 total manual operators (medium and light blue
series, respectively, in Figure 6.9a. By decreasing W , PWWALs allow to achieve
an even greater line productivity with a higher degree of automation. This is due
to the fact that the manual and automated process times are being balanced.
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Figure 6.9: Performance of semiautomated FW and parallel walking-worker line configurations, for
different number of manual workers, under standard and high-mix low-volume demand conditions
(scenario vi): (a) line productivity (PLine), (b) throughput (Th).

However, this productivity increase comes at the expense of reducing the
throughput of the assembly line, since W has been reduced, as shown in Fig-
ure 6.9b. Note how a smaller W results in gradually lower Th for all levels of
automation and for all demand conditions. The Th of both line configurations
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(PWWAL and semiauto FWAL) for all levels of W tends towards a common point
as the degree of automation increases, because Th is governed by the process time
of the bottleneck.

In conclusion, PWWALs offer greater flexibility than fixed-worker lines in
terms of benefiting from an increased degree of automation because they allow
to easily rebalance the manual/automated workload by seamlessly removing oper-
ators, thus achieving greater line productivity. On the other hand, this comes at
the expense of reducing the throughput and significantly increasing the batch lead
time.

Table 6.12: Operational KPIs of semiautomated FWAL and PWWAL for varying degrees of
automation and number of workers (W ), under base demand conditions (Q, Bco).

AL W
Degree of Automation (%)

KPI Configuration (oper) 10 20 23 30 40 50

Standard Demand (Q = 48 units, Bco = 3 batches)

PLine PWWAL 4 3.89 4.29 4.42 4.78 5.55 5.04
(u/oper-h) 6 3.81 4.21 4.34 4.64 4.23 3.38

8 3.66 4.10 4.23 4.12 3.19 2.54

Semiauto FWAL 8 3.52 3.86 3.98 3.89 2.96 2.35

LTB PWWAL 4 411 375 366 338 298 320
(min) 6 290 261 254 239 258 321

8 232 209 203 208 260 327

Semiauto FWAL 8 122 113 112 121 157 196

Th PWWAL 4 15.6 17.2 17.7 19.1 22.0 20.2
(u/h) 6 22.8 25.3 26.0 27.8 25.4 20.3

8 29.3 32.8 33.8 33.0 25.6 20.3

Semiauto FWAL 8 28.2 30.9 31.9 31.1 23.6 18.8

PLabour PWWAL 4 84.9 83.1 82.5 80.7 77.0 64.6
(%) 6 80.9 78.6 77.8 74.6 62.3 44.6

8 74.8 71.7 70.4 64.6 49.3 33.7

Semiauto FWAL 8 63.2 59.3 58.0 54.9 44.4 32.1

LTU PWWAL 4 45.7 41.4 40.1 37.1 32.2 35.2
(min) 6 36.2 32.7 31.7 29.7 32.6 40.9

8 32.2 28.7 27.9 28.6 37.0 46.8

Semiauto FWAL 8 23.5 23.4 23.4 29.9 38.4 46.8

PS PWWAL 4 0.012 0.013 0.013 0.014 0.017 0.015
(u/ 6 0.012 0.013 0.013 0.014 0.013 0.010
oper-h-m2) 8 0.011 0.012 0.013 0.012 0.010 0.008

Semiauto FWAL 8 0.038 0.042 0.043 0.042 0.032 0.026
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Table 6.13: Operational KPIs of semiautomated FWAL and PWWAL for varying degrees of
automation and number of workers (W ), under high-mix low-volume demand conditions (Q,
Bco).

AL W
Degree of Automation (%)

KPI Configuration (oper) 10 20 23 30 40 50

High-Mix Low-Volume Demand (Q = 12 units, Bco = 1 batch)

PLine PWWAL 4 3.53 3.88 4.02 4.31 4.80 4.83
(u/oper-h) 6 3.36 3.68 3.78 3.99 3.88 3.34

8 3.11 3.36 3.42 3.45 3.04 2.53

Semiauto FWAL 8 2.63 2.77 2.82 2.94 2.76 2.41

LTB PWWAL 4 151 137 133 124 112 110
(min) 6 111 102 99 95 96 110

8 96 89 88 87 96 115

Semiauto FWAL 8 56 54 54 55 63 75

Th PWWAL 4 14.1 15.5 16.1 17.3 19.2 19.3
(u/h) 6 20.2 22.1 22.7 23.9 23.3 20.0

8 24.9 26.9 27.4 27.6 24.6 20.2

Semiauto FWAL 8 21.0 22.2 22.6 23.5 22.1 19.2

PLabour PWWAL 4 84.9 83.1 82.5 80.7 77.0 64.6
(%) 6 80.9 78.6 77.8 74.6 62.3 44.6

8 74.8 71.7 70.4 64.6 49.3 33.7

Semiauto FWAL 8 63.2 59.3 58.0 54.9 44.4 32.1

LTU PWWAL 4 50.5 45.8 44.3 41.2 37.0 36.8
(min) 6 41.1 37.5 36.5 34.6 35.5 41.4

8 38.1 35.2 34.5 34.2 38.5 47.0

Semiauto FWAL 8 25.1 24.9 24.8 25.7 30.7 38.7

PS PWWAL 4 0.011 0.012 0.012 0.013 0.015 0.015
(u/ 6 0.010 0.011 0.011 0.012 0.012 0.010
oper-h-m2) 8 0.009 0.010 0.010 0.010 0.009 0.008

Semiauto FWAL 8 0.029 0.030 0.031 0.032 0.030 0.026
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6.5 Discussion

Simulation results indicate that PWWALs have better operational performance
than semiautomated or manual FWALs in terms of line productivity, through-
put, and labour productivity, especially when facing high-mix low-volume demand,
which makes it necessary to perform frequent family product changeovers, use small
batch sizes, or use a reduced number of assembly operators. On the other hand,
PWWALs present longer batch and unit lead times and require additional WIP
stock and shopfloor space.

Automation-driven reduction of the products’ manual work content by −23%
leads to a productivity increase of +33% for PWWAL (vs. +25% increase for
semiautomated FWAL) compared to manual AL configuration under standard de-
mand conditions. Under high-mix demand conditions, PWWAL achieves a +30%
productivity increase, significantly superior to the +7% productivity increase for
semiautomatic FWAL—compared to manual FWAL, as shown in scenario v. In
conclusion, the main goal of a +25% line productivity increase when producing
small batches of highly mixed products can be achieved by the PWWAL, and not
by the FWAL.

The PWWAL configuration suffers less from line unbalance caused by auto-
mated stations and product variety, provided that the workers-to-stations ratio
remains low and that each worker moves through all the assembly stations. The
WWAL cells within a line [294] reintroduce the problems of line balancing, but
they reduce the need for operator training. Note that although total WC increases
for WWAL compared to FWAL due to operator walking times, these losses are off-
set by superior labour productivity. PWWAL configuration also suffers less from
setup time losses because each AL branch has fewer workers, which minimises the
waiting/blocking time losses caused by cycle time differences between the products
involved in the changeover.

Introducing automated stations does not improve the average batch lead time,
since the increased throughput is offset by the increased total work content and
the superior number of workstations. PWWAL configurations present significantly
worse batch lead times than semiauto or manual FWALs under any demand situ-
ations. It is also important to note that the average unit lead time to complete
a unit increases for semiautomated FWAL, and especially for PWWAL configura-
tions, compared to manual FWAL, which means that the WIP stock held at the
line at any given moment would be greater. This is caused by the capacity buffers
placed before and after the automations, which are required to hold twice as many
WIP units in the PWW line since each automated QC station is served by two
(slower) assembly lines which could have different cycle times.

Labour productivity decreases due to the introduction of automation and
the reduction of batch sizes—which increases the percentage of time dedicated
to setups. The PWWAL configuration is less affected than semiautomated FWAL
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by frequent changeovers since shorter ALs suffer less from operator idle times gen-
erated by cycle time differences between incoming and outgoing products. These
idle times increase as the number of operators increases. Nonetheless, labour pro-
ductivity losses are offset by the reduction in work content caused by automation.

Lastly, PWWAL presents high requirements in terms of shopfloor space com-
pared to the fixed-worker assembly lines. PWWAL surface productivity is, under
high-mix low-volume conditions, 0.010 units/operator-h-m2, which is considerably
lower than that of manual (0.041) or semiautomated configurations (0.031). The
higher surface needs derive from the additional WIP and operator space buffers
that the PWWAL needs to operate efficiently.

Increasing the degree of automation creates an imbalance between manual and
automated work content that requires adjusting the number of workers. PWWALs
offer greater flexibility than fixed-worker lines because they can seamlessly adjust
the number of manual operators. However, the increased line productivity resulting
from simultaneously increasing the degree of automation and decreasing the number
of operators reduces the line throughput and increases significantly the batch lead
time.

Besides the KPIs already exposed, PWWAL presents other advantages in
terms of flexibility and reconfigurability. Production level changes are made simple
by modifying the number of operators working on each AL branch independently—
within the limits imposed by the capacity of the automated stations—without
changes in the operators work organisation. In fact, the number of workers could
be temporarily increased beyond the designated four operators per AL branch at
the expense of productivity. A parallel line configuration also brings additional
sequencing possibilities, for example, being able to assemble a batch of products in
both lines simultaneously to reduce the batch lead time—effectively working with
half the batch size—at the cost of line productivity. Finally, the introduction of
products to the PWWAL would present fewer drawbacks due to the reduced sens-
itivity of this line configuration to work content differences and poor line balance.

In conclusion, PWWAL configurations would be particularly beneficial in as-
sembly operation situations where line productivity needs to be maximised under
high-mix low-volume demand conditions, and when batch lead times are not a
critical factor.

6.6 Conclusions

To address the need for more flexible and more productive assembly operations
brought about by mass customisation demand trends, this article presented a
concept of a multimodel parallel walking-worker assembly line with shared automa-
tions. Based on an industry real-study case, discrete events simulation was utilised
to model this assembly line concept, along with manual linear and semiautomated
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fixed-worker assembly lines. The models were used to compare the performance of
the different line configurations under standard demand as well as different scen-
arios of increasingly challenging conditions in terms of reduced batch sizes and more
frequent product changeovers. To evaluate efficiency, a set of six key performance
indicators (KPIs) were employed: line productivity, batch lead time, throughput,
labour productivity, unit lead time, and surface productivity.

It was found that under high-mix low-volume demand conditions requiring
small batch sizes and frequent product family changeovers, the parallel walking-
worker line configuration achieves greater line productivity and throughput than
the semiautomated or manual fixed-worker line configuration. On the other hand,
semiautomated fixed-worker assembly lines present better batch lead time, unit
lead time, and surface productivity. Manual fixed-worker configuration productiv-
ity is inferior to the semiautomated alternatives according to all KPIs except for
surface productivity. Increasing the degree of automation allows to increase the
line productivity under all demand conditions, only if the number of workers can
be reduced smoothly—which is the case for walking-worker configurations but not
for fixed-worker lines. However, this comes at the expense of reducing the line
throughput and increasing the lead time.

A key current research limitation lies in considering multiple layouts and
shared automation configurations in order to find optimal line configurations or
the performance of reconfigurable systems over long periods of time.

Areas for future work include (1) optimising the actual layout of the parallel
walking-worker configuration, to minimise the surface footprint; (2) the actual
implementation of the parallel walking-worker concept in an industrial setting,
which would enable validating the parallel walking-worker assembly line model;
(3) expanding the simulation models to include machine breakdowns and quality
problems, in terms of rework times and scrap products; and (4) a supply chain
simulation layer feeding parts to the assembly lines. Future developments based on
current research limitations would include assessing the operational performance
of different line configurations in terms of both automation and layout.

6.7 Extended analysis of PWWAL

This section covers four superficial analyses that were carried out after the main
six simulation scenarios and therefore were not included in the research article.
These simulation scenarios vii–x look at several issues regarding the fine-tuning of
parallel walking-worker assembly lines, aiming to better understand its behaviour.
Therefore, comparison simulations against FWAL models were not set up for these
scenarios. Table 6.14 summarises the simulation scenarios and the variables in-
volved.
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Table 6.14: Simulation extended scenarios and design parameters analysed.

Design variable Range of values

Scenario vii. Automation layout
No. shared auto. stations {0, ..., 4}

Scenario viii. Operator cognitive support
CVp (%) {0, 15}
Ts (s) {0, see Table 6.5}
W (operators) {2, 4, 6, 8}

Scenario ix. Auto. station buffer capacity
BC (units) {0, 1, 2}
W (operators) {4, 8}

Scenario x. Assembly line length
Line length (m) {23, ..., 35}
W (operators) {4, 8}

6.7.1 Automation layout: number of shared stations

Scenario vii was set up by varying the number of shared automated stations, from
zero (transforming the PWWAL into two independent WWAL) to four (sharing all
automated stations), in order to identify potential operational gains. Said scenario
was constructed by duplicating or sharing the automated stations (j = 1...4), as
shown in Table 6.15.

Table 6.15: Scenario vii : PWWAL layout details for a different number of shared automated
stations. Stations can be either duplicated (D) or shared between the parallel lines (S).

Automated station

No. shared auto. stations j = 1 j = 2 j = 4 j = 4

0: independent WWAL D D D D
1: only one shared auto. D S D D
2: standard PWWAL D S D S
3: only one dedicated auto. S S D S
4: all auto. stations shared S S S S

In the particular case under study, the number of shared automated stations
seems to have a very limited impact on the AL performance for both standard and
high-mix low-volume demand conditions, as shown in Figure 6.10.

These results are coherent with the fact that none of the automated stations
are the bottleneck of the PWWAL, even if they are shared (cf. processing times
shown on Table 6.3 and Table 6.4). Moreover, the fact that only manual stations
incur in setup times reinforces this phenomenon. Note that these results show that
the very limited effect of the automation layout on the assembly line performance
is due to the particular process and setup times distribution of this industrial study
case. Therefore, they cannot be generalised to other PWWAL cases.
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Figure 6.10: Scenario vii : automation layout. Effect of the number of shared automated sta-
tions on semiautomated parallel walking-worker assembly line (PWWAL) line productivity under
standard or high-mix low-volume (HmLv) demand.

6.7.2 Operator cognitive support for production complexity

The systematic literature review and the operator-centred conceptual framework
revealed the potential application of augmented or mixed reality (AR/MR) tech-
nologies to provide cognitive support to assembly operators to better deal with
the complexity brought by the high product variety and variability driven by mass
customisation and personalisation demand trends [66, 264, 267].

To gain insight into the order of magnitude of the performance improvements
that such technologies could provide to PWWAL lines, scenario viii considers that
these technologies, combined with traditional Lean tools such as SMED or poke-
yoke, would allow to minimise setup time losses and manual assembly process
variability. The simulations were performed considering 2 to 8 manual workers to
explore the potential impact of these technologies when dealing with low-volume
production. The demand conditions used here are equivalent to scenario i: standard
demand, which corresponds to a batch size (Q) of 48 units and a product family
changeover frequency (BCO) of 3 batches. Figure 6.11 shows the results of the
simulation scenario.

The results indicate that the potential benefits of reduced setup times (i.e. a
mixed-model assembly line instead of multi-model AL) are greater when the number
of operators is greater. This is due to the fact that the lines’ worker-to-station
ratio is larger and there are more frequent lost time incidents (blocking or starved
operators). On the other hand, when the lines are manned by just one or two
operators per line (W = 2 or 4, respectively) there is already a smooth flow and the
potential improvement is reduced. Note that for the standard level of production
volume (W = 8), the labour productivity gap due to process variability and setup
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Figure 6.11: Scenario viii : operator cognitive support. Effect of process variability and no. of
workers on PWWAL labour productivity.

time losses sits in the order of magnitude of 10%, which provides an optimistic,
best-case scenario outcome of the investment in operator cognitive support.

6.7.3 Automated stations WIP buffer capacity

In the previously explored scenarios i–vi, the automated stations are modelled to
include two WIP buffers (before and after the station), with a maximum capacity
of one product unit (see assumptions in Section 6.3.1). Although increasing the
buffer capacity might provide some advantages because it would mitigate the effects
of disturbances, WIP buffers also require floor space, which in turn could increase
the length of the assembly lines. This would increase the operator walking time,
which would have a negative impact on labour productivity. The extent of such
impact will be studied in the next scenario.

This scenario viii examines the effect on labour productivity of using larger
WIP buffers before and after the automated stations, or no buffers at all. Fig-
ure 6.12 shows the simulation results.

The results suggest that there is no significant benefit of duplicating the buffer
capacity from 1 unit to 2 units, since the labour productivity change is minimal
(below +1% regardless of W ). On the other hand, removing the WIP buffers
(BC = 0) does produce a very noticeable decrease in labour productivity, in the
order of magnitude of −20% (−22% for W = 8, −18% for W = 4). These consid-
erations persist independently of the number of workers. In light of these results,
maintaining a buffer capacity of one unit (before and after the automated stations)
appears to be optimal in view of labour productivity and layout issues previously
mentioned.
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Figure 6.12: Scenario ix : effect of automated station buffer capacity on PWWAL labour pro-
ductivity.

6.7.4 Assembly line length

An assembly line design consideration that would seem particularly relevant for
PWWAL is the line length because the walking operators need to go across the
line twice for every product unit they assemble. Therefore, this scenario x looks
into the effect that shortening or extending the assembly line would have on its
labour productivity. As a reference, the assembly line length considered so far is
33 m (see Table 6.7). This scenario considers a significant reduction in line length
(down to 23 m) that could result from an assembly design focused on optimising
this parameter, at the expense of other factors, such as operator ergonomic risks
or WIP buffer capacity. The simulation results, displayed in Figure 6.13, show the
effect of line length for standard (W = 8) and low production volume (W = 4).

First of all, the results indicate that the number of workers does not interact
with the line length. Secondly, despite the increase in labour productivity as a
result of reducing the line length, even a very significant reduction in line length
(from 35 m down to 23 m) only increases the labour productivity by less than +1%.
These superficial simulation results hint that the PWWAL performance is not very
sensitive to line length, and therefore should not be considered a key factor for
PWWAL design. Also, this conclusion is consistent with previous studies on this
matter by Al-Zuheri et al., which analysed the effect of walking speed of manual
walking-worker lines [293], and found that higher walking speed does not improve
the assembly line productivity.
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Figure 6.13: Scenario x : effect of parallel walking-worker assembly line length on labour pro-
ductivity.

6.8 Summary

This chapter addresses the principal aim of the thesis: finding methodologies to
increase the productivity of flexible assembly operations under challenging high-
mix low-volume demand conditions. The simulation tools built and verified in
previous Chapter 5 were employed to study the possibilities brought by joining
formerly separated low-volume assembly lines and introducing automated assembly
stations in addition to the walking-worker system. Parallel walking-worker lines
maintain high productivity despite frequent changeovers or different product cycle
times. Moreover, they enable seamlessly changing the number of operators without
suffering from the line unbalance losses encountered by equivalent fixed-worker
assembly lines. A set of six key performance indicators was used to obtain insight
into these assembly systems from different angles.

The simulation results shown in Section 6.4 revealed that under mass custom-
isation demand conditions requiring small batch sizes and frequent product family
changeovers, the parallel walking-worker line configuration achieves greater line
productivity and throughput than the semiautomated or manual fixed-worker line
configuration. The results estimated a large improvement in line productivity as a
result of introducing automation in parallel walking-worker assembly lines (+30%),
significantly greater than the productivity improvement of fixed-worker assembly
lines (+7%), under high-mix low-volume demand conditions.

Specifically, this chapter makes three key contributions:

1. A multimodel parallel walking-worker assembly line design was presented.
This assembly line design is estimated to achieve a +30% productivity in-
crease (greater than the initial goal of +25%) while maintaining high flex-
ibility in terms of line throughput, enabling a quick adaptation to demand
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variations.
2. A comprehensive set of operational KPIs was used to estimate the perform-

ance of fixed and walking-worker assembly lines from different angles. Un-
der any demand conditions, parallel walking-worker lines present higher pro-
ductivity and throughput than traditional fixed-worker lines. This chapter’s
results highlighted the trade-off between productivity and lead time experi-
mented by parallel walking-worker lines.

3. Simulation results show that increasing the degree of automation allows in-
crementing the line productivity under all demand conditions, but only if the
number of workers can be reduced smoothly—which is the case for walking-
worker configurations but not for fixed-worker lines. However, this comes at
the expense of reducing the line throughput and increasing the lead time.

The main limitations to the research presented in this chapter are (1) that the
DES models only allowed analysing a particular assembly line configuration—in
terms of the number of manual stations, automated stations, and their layout—,
which may not be optimal; and (2) that the models’ scope is limited to assembly
operations, and does not include the supporting departments—e.g., maintenance
or in-plant logistics—which could also introduce additional constraints.

The work expounded in this chapter led the way to expand the simulation
models to include a key supporting department: in-plant logistics. In particular,
Chapter 7 studies the use of a classic Lean logistics tool, milkrun trains, to feed
multi-model assembly lines under disturbances.
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CHAPTER 7

Milkruns for in-plant logistics under disturbances

The operator-centred conceptual model presented in Chapter 3 located several pro-
duction support departments—such as maintenance, quality control, logistics and
planning—in the outer layers of the model. One of the limitations of the assembly
system performance evaluation models presented in Chapters 4–6 is that they do
not take into account the potential constraints introduced by said supporting de-
partments. From the point of view of The Cooktop Company industrial study
case, it was considered that the restrictions imposed by the maintenance or quality
control departments would be less critical for multi-model parallel assembly lines
than in-plant logistics.

Previous research projects carried out at the University of Zaragoza Depart-
ment of Design and Manufacturing Engineering [297–299] focused on the analysis
of a classic Lean tool for in-plant logistics: milkrun trains. Due to the milkrun’s in-
herent ability to deal with different production cycle times, a study was conducted
to understand the ability of milkrun logistics to feed parallel multi-model assembly
lines under disturbances. Once again, the DES modelling methodology described
and verified in Chapter 5 was employed to model the milkrun and assembly systems,
as shown in Figure 7.1.

The research presented in this chapter was published in the Special Issue “Lean
Manufacturing and Industry 4.0” of the journal Machines [300]. In consequence,
each section of the chapter corresponds to an article section: Introduction (7.1),
Literature review (7.2), Materials and Methods (7.3), Results (7.4), Discussion
(7.5) and Conclusion (7.6). Finally, Section 7.7 summarises the key findings and
contributions of the chapter.
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Figure 7.1: DES model FlexSim® screenshot of parallel assembly lines in-plant logistics using
milkrun.

Article title:

Multi-Model In-Plant Logistics Using Milkruns for Flexible Assembly
Systems under Disturbances: An Industry Study Case

Article abstract:

Mass customisation demand requires increasingly flexible assembly op-
erations. For the in-plant logistics of such systems, milkrun trains could
present advantages under high variability conditions. This article uses
an industrial study case from a global white goods manufacturing com-
pany. A discrete events simulation model was developed to explore the
performance of multi-model assembly lines using a set of operational
and logistics Key Performance Indicators. Four simulation scenarios
analyse the separate effects of an increased number of product models
and three different sources of variability. The results show that milkruns
can protect the assembly lines from upstream process disturbances.

7.1 Introduction

Since the end of the 20th century, it is considered that demand trends are shifting
from mass production towards mass customisation [6] and mass personalisation [28].
To address this situation, manufacturing companies need to produce an increasing
number of different products, in smaller quantities each, without compromising
on quality or price [2]. For consumer goods manufacturers, this means shifting
from large batches of very similar products towards high-mix low-volume produc-
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tion. To gain an advantage or simply remain competitive, production flexibility,
reconfigurability and resilience are key [284].

In a typical discrete production process—e.g., automobiles, white goods, home
electronics, furniture, toys—the assembly stage taking place after manufacturing is
also of capital importance [13]. Traditional assembly operations are performed in
manual or semi-automated lines or cells, which are usually dedicated to one product
or a small family of products closely related [268]. These products are assembled
in batches to minimise the losses incurred due to product changeovers [48, 53].
Looking at existing assembly operations approaches to build upon, Lean Manufac-
turing [5] proposes a methodology inherently oriented towards reduced batch sizes,
frequent product changeovers, multi-product assembly cells and cross-functional
operator teams [145, 301]. In this context, it seems clear that traditional assembly
lines face serious threats when confronted with the high-mix low-volume demand
brought by the mass customisation paradigm. The main challenges include dealing
with complexity, uncertainty and disturbances, successfully deploying disruptive
digital technologies [61]—i.e., Industry4.0 [8] or smart manufacturing [22]—and
further integrating the sub-systems related to assembly: supporting functions such
as internal logistics [58], maintenance [64] or quality control [57].

Internal logistics is the supply chain function most closely related to the as-
sembly operations since it is tasked with feeding components to the assembly line or
cell without introducing production constraints [297, 302]. Flexible assembly lines
driven by mass customisation and featuring mixed- or multi-model production pose
additional challenges to internal logistics [43], which impact directly on the classic
Lean supply performance indicators [118]. In-plant milkruns [303] (misuzumashi
[304], tow-train [302]) are one of the best available Lean tools for efficiently sup-
plying parts to flexible multi-model assembly lines [156].

The brief literature review that will be presented in Section 7.2 shows that
despite an increasing research depth on the topic of milkrun logistic systems for
flexible assembly lines, there are still limited published works which include vari-
ability. Two papers are very closely related to our research topic: Korytkowski
et al.’s [305] is great but features a single-model assembly line, while Faccio et
al.’s [306] article considers mixed-model assembly lines, but the sources of variab-
ility considered there are limited to milkrun train capacity and refilling interval.
This connects with the key avenues for future work identified by Gil-Vilda et al.
[297], which point to including variability and disturbances to the study of milkrun
systems.

In consequence, the goal of this article is to continue exploring the use of
milkrun trains for the internal logistics of flexible assembly operations featuring
multiple manual assembly lines. In particular, we aim to look at scenarios where
demand presents mass customisation characteristics (i.e., high-mix low-volume).
The work presented here aims to evaluate the performance of milkrun trains and
assembly lines in this demand context by focusing on two main aspects, following
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the lines for further investigation detected by Gil-Vilda et al. [297], namely the
product mix (multi-model in opposition to single-model assembly) and the impact
of variability and stochastic disturbances.

To address the aforementioned objectives, the following research questions are
formulated:

1. What is the effect on the operational and logistics Key Performance Indicators
(KPIs) of producing multiple models in an assembly line compared to single-
model production? Are there significant differences between mixed-model and
multi-model production from the milkrun internal logistics point of view?

2. How is the milkrun-assembly lines system affected by variability? In particu-
lar, to what extent is it impacted by assembly process variability and supply
chain disturbances?

To carry out this research, Discrete Events Simulation (DES) was the chosen
tool. A real industrial study case from a global white goods manufacturer site
located in northern Spain is presented and used to provide the foundations of the
different simulation scenarios analysed to address the research questions.

The structure of this article is the following: Section 7.2 presents a brief liter-
ature review on the topic, highlighting the key findings made by previous research
and the open lines of research derived from them. Section 7.3 Methodology intro-
duces the assumptions used to build the simulation model, details the study case
data and the parameters as well as the performance indicators selected to define
and assess the simulation scenarios. Section 7.4 Results presents the outcome of
the simulation, which is then discussed in Section 7.5.

7.2 Literature Review

Feeding the components to assembly lines requires complex in-plant logistics to do
so in an efficient, flexible and responsive manner. Although many feeding policies
could be used [307], some have clear advantages when facing a demand situation
of mass customisation or mass personalisation.

In the context of Lean logistics, milkruns (also named ’tow-trains’ or shuttles)
are defined as ’pickups and deliveries at fixed times along fixed routes’ [302]. In-
bound and outbound milkrun delivery systems work analogously, sharing a key
aspect: ’milkruns are round tours on which full and empty returnable containers
are exchanged in a 1:1 ratio’ [303].

Several authors have proposed different approaches for classifying milkrun sys-
tems. For instance, Kilic et al. [308] proposed that the main problem for milkrun
design is to determine the routes and time periods aiming to minimise total cost,
which are composed of transportation and Work In Process (WIP) holding costs.
Their framework classifies milkrun problems depending on the need to determine
the time periods, the routes or both; for one- or multiple-routed milkruns; and
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considering either equally or differently timed routes. On the other hand, Mácsay
et al. [309] described four milkrun-based material supply strategies, while Klenk
et al. [310] modelled milkrun systems using Methods-Time Measurement (MTM)
parameters and explored six major milkrun concepts.

Alnahhal et al. conducted a literature review in 2014 [311] that found a scarcity
of studies looking at in-plant milkrun systems as a whole, and that there was a
research tendency to drift away from Lean goals to look for optimality based on
restrictive objectives in its stead. Later articles, however, addressed in-plant milk-
runs from multiple angles; in particular, for mixed-model assembly systems closely
related to multi-model systems, which are the focus of this article. A plethora
of study cases have also been published in recent years, helping to illustrate the
benefits of milkruns and the production challenges they help to overcome. The
following subsections look into some of them in further detail.

7.2.1 In-Plant Milkruns for Mixed-Model Assembly Lines

Alnahhal et al. [312] looked into using milkruns for mixed-model assembly lines
from decentralised supermarkets. Variables such as train routing, scheduling and
loading problems were considered, aiming to minimise the number of trains, loading
variability route length variability and assembly line inventory costs. Different
analysis tools were employed: analytical equations, dynamic programming and
Mixed-Integer Programming (MIP). On the other hand, Golz et al. [313] used a
heuristic solution in two stages to minimise the number of shuttle drivers, focusing
on the automotive sector.

This sector was also the focal point of Faccio et al.’s work [306], in which they
proposed a general framework using short-term (dynamic) and long-term (static)
sets of decisions allowing to size up the feeding systems for mixed-model assembly
lines composed of supermarkets, kanbans and tow-trains. In another article [314],
Faccio et al. dived deeper into the subject by investigating kanban number optim-
isation. It was highlighted that traditional kanban calculation methods fell short
under a multi-line mixed-model assembly systems.

Emde et al. also looked at optimising some aspects of mixed-model assembly
lines, namely (1) the location of in-house logistics zones [315] and (2) the loading
of tow-trains to minimise the inventory at the assembly and to avoid material
shortages, using an exact polynomial procedure [316]. Discrete Events Simulation
was used by Vieira et al. [317] in an automated way (using a tailored API on top
of a DES commercial software) to model and analyse the costs of mixed-model
supermarkets.

7.2.2 Other Aspects of in-Plant Milkruns

A few articles examined the performance evaluation of milkrun systems. Klenk et
al. [318]evaluated milkruns in terms of cost, lead time and service level. Their
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article used real data from the automotive industry with a focus on dealing with
demand peaks. Bozer et al. [319] presented a performance evaluation model used
to estimate the probability of (1) exceeding the physical capacity of the milkrun
train and (2) exceeding the prescribed cycle time. This model assumed a basic,
single-train system and that assembly lines are never starved of components. It
highlighted some of the milkrun advantages: low lead times, low variability and
low line-side inventory levels. Other articles describe milkrun systems evaluation
methods which employ cost efficiency [309] or the required number of tow-trains
[320]. Many authors used discrete event simulation to evaluate the potential per-
formance of milkrun systems as a tool for milkrun design [321], evaluating dynamic
scheduling strategies [322] or digital twin verification and validation [323].

The Association of German Engineers (VDI—Verein Deutscher Ingenierure)
proposed the standardisation guidelines VDI 5586 [324] for in-plant milkrun sys-
tems design and dimensioning. Schmid et al. [325] discussed the draft VDI norm
and found several drawbacks. Their article states that algorithms can support the
milkrun design process; however, this system’s design cannot be formulated as a
regular optimisation problem. In a later article, Urru et al. [326] highlighted that
VDI 5586 was the only norm for milkrun logistics systems design and that it is only
applicable under severe restrictions. A methodology was then proposed to com-
plement the VDI guideline. Kluska et al. proposed a milkrun design methodology
which includes the use of simulation as supporting tool [321].

Gyulai et al. [327] provided an overview of models and algorithms for treating
milkrun systems as a Vehicle Routing Problem (VRP). This article introduced a
new approach with initial solution generation heuristics and a local search method
to solve the VRP.

Gil-Vilda et al. [297] focused on studying the surface productivity and milkrun
work time of U-shaped assembly lines fed by a milkrun train using a mathematical
model. This article established promising avenues for future research: (1) assessing
the impact of the number of parts per container and (2) analysing the impact of
variability.

On the topic of variability, two articles stand out. Korytkowski [305] posed the
research question about ’how disturbances in the production environment and ma-
nagerial decisions affect the milkrun efficiency’. This work analyses a single-model
assembly line by employing discrete events simulation including three variability
parameters—assembly process coefficient of variability, probability of a delayed
milkrun cycle start and the magnitude of such delay—in addition to other three
parameters: WIP buffer capacity, TAKT time synchronisation, and the milkrun
cycle time. The KPIs used were throughput, WIP stock, milkrun utilisation and
workstation starvation. The key conclusions were that TAKT sync does not affect
the KPIs, even in conjunction with limited WIP buffer capacity. It was also found
that a higher milkrun cycle time decreases the milkrun utilisation and increases the
assembly line stock. Finally, this article concluded that milkrun systems mitigate
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the impact of production variations, which implies that they do not require large
safety times built into them. Faccio et al. [306] also introduced variability sources
in their dynamic milkrun framework for mixed-model assembly lines. In particular,
this article includes tow-train capacity variability (related to the number of parts
per kanban container, which is linked to the stochastic demand considered) and
refilling interval variability.

7.2.3 In-Plant Milkrun Study Cases

There is no scarcity of published articles featuring study cases of in-plant milkrun
systems. However, there are not so many articles specifically focusing on milkruns
feeding multi-model assembly lines, and only a few articles consider stochastic
variables. It is also noteworthy that the majority of study cases on the topic
belong to the automotive industry. Table 7.1 summarises the study case articles
found in this brief review, which includes the articles mentioned previously as well
as a few additional documents [328, 330, 331, 333, 334] which specifically present
milkrun study cases.

Table 7.1 shows some noteworthy points. First of all, no article specifically
shows study cases of multi-model assembly lines, although there are some articles
on mixed-model systems. Secondly, very few articles present real industrial study
cases outside of the automotive sector. Finally, variability has not been commonly
considered by research articles on the topic so far. The work presented here aims
to cover the three highlighted shortcomings.

7.3 Materials and Methods

In this article, the operational performance of two assembly lines and the milkrun
train that feeds them is evaluated under different conditions. The system con-
sisting of assembly lines and internal logistics was studied by considering a set of
inputs, a Discrete Events Simulation model and a set of output KPIs, as depic-
ted in Figure 7.2. The model consists of two main parts: the assembly lines and
the supply chain feeding the components to the Assembly Line (AL) in containers
using a milkrun train. Simulation was chosen for building this model because it
allows the introduction of stochastic elements [270], such as process or logistics
variability, which is necessary to achieve this work’s goals. The simulation tool
employed was FlexSim® (2022.0, FlexSim Software Products, Inc., Orem, UT,
USA). Several simulation scenarios are created by modifying different parameters
and disturbances values to analyse desired aspects of the system behaviour. Section
7.3.1 details the modelling assumptions. Section 7.3.2 includes the notation and
definitions employed, and Section 7.3.3 includes the input data used in the models,
which are used for validation (Section 7.3.4) and the experiment design (Section
7.3.5).
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Figure 7.2: In-plant milkrun for multi-model assembly lines. Input parameters and disturbances
are changed when analysing the performance of the system using simulation. Model output
includes relevant operational and logistics Key Performance Indicators (KPIs) for evaluation.

7.3.1 Assumptions

The simulation model depicted in Figure 7.2 is made of two main subsystems: (1)
two manual assembly lines, which feature operators, workstations, product buffers
and components racks; and (2) internal logistics, which include a milkrun train,
the components Points Of Use (POUs), a warehouse and the information flow
necessary to ensure the assembly line receives the required components on time;
see Figure 7.3.

Assembly lines: Figure 7.3a,b show the elements of the assembly lines used in
this model, which feature the following assumptions following the classification of
assembly systems by Boysen et al. [268]:

• The assembly systems are unpaced, buffered lines.
• These are fixed-worker assembly lines: operators are assigned to stations.
• There is manual assembly only (no semi- or fully automated work content).
• The number of workstations is constant. Each station can process only one

product unit at a time.
• Operators need to gather all components specified by the Bill of Materials

(BOM) to proceed to assemble at their stations; see Figure 7.3a.
• The demand mix is known and it continues for the whole simulation horizon.
• The assembly lines can be single-model, mixed-model or multi-model. Single-

model lines only produce one product variant per AL. Mixed-model lines can
produce more than one model, but there is no setup time between products.
Multi-model lines are similar to mixed-model lines but they do incur setup
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Figure 7.3: Simulation model subsystems interaction. (a) Assembly line stations; (b) Milkrun
operator loading and unloading containers to assembly station; (c) Milkrun train picking at the
warehouse, followed by the components replenishment cycle across all Points Of Use (POUs) of
the route.

time losses when changing over from one product model to another.
• Setup times, where present, are not dependent on the product sequence.
• The product sequence consists of an alternating pattern of batches of products.

The batch size is stochastic, based on a discrete uniform distribution to rep-
resent the probability of a batch being released to the assembly line with
fewer units than standard. This represents the disturbances caused by up-
stream manufacturing processes. The probability distribution is governed by
the batch size coefficient of variability (CVq).

• Processing and setup times are stochastic. They follow a lognormal distribu-
tion based on mean values and standard deviations, which are expressed by
the coefficients of variability (CVp, CVs).

• Slightly different processing times on each station mean that these are un-
balanced assembly lines, as shown in the ’Input’ subsection.

Internal Logistics: Figure 7.3 shows the main components of the internal lo-
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gistics, which consists of four subsystems:

• Information flow between the assembly lines and the milkrun train, so that
the milkrun picks up the right components for the product models that will be
needed in the AL. This includes the calculations of the number of containers
of each component Ni. This is worked out based on the expected consumption
over the milkrun cycle time (d), the no. of pieces of component i per product
unit (ni) and the no. of pieces per container (qi), with a minimum of 2, as
shown in Equation 7.1. This minimum of 2 containers is required to prevent
assembly line starvation, which could occur otherwise since the milkrun logic
implies taking empty containers and replacing them with full ones on the
next cycle.

Ni = max

(⌈
di · ni

qi

⌉
, 2

)
(7.1)

• The number of pieces in each component container is stochastic, based on the
standard number of pieces per container and a coefficient of variability (CVc).
A discrete uniform distribution is employed, which uses CVc as the lower
limit and the standard no. of pieces as the upper limit. This represents the
probability of a certain number of pieces being non-conforming due to quality
problems, inaccurate counting at the external suppliers’ production site or
incorrect re-packing at the in-plant warehouse, especially for components
packed in bulk, such as nuts and bolts.

• Milkrun train picking at the warehouse (see Figure 7.3c) is modelled as a
single POU. The milkrun train is emptied upon arrival, and it is thereafter
filled again with the required containers for the next supply cycle.

• The milkrun transportation time from/to all POUs (Figure 7.3c) is based on
historical time measurements from the industrial study case. Since the data
show very little variability, the model assumes a deterministic transportation
time given by the input parameter Tt.

• Supply chain operator loading and unloading of component containers to
the assembly lines at each POU, as shown in Figure 7.3b. There are two
possible situations: (1) Regular cycle (same product model): the operator
replaces the empty boxes in the ‘returns rack’ with full boxes of the same
component. The handling time is different for full and empty containers;
see the input subsection. (2) Product changeover cycle (before the assembly
line changeover): in which the milkrun operator firstly replaces any current
product empty container to ensure that the current batch can be finished
and then loads the next containers of the next product components so that
they are available to the assembly operators when they finish the stations’
changeover.
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7.3.2 Notation

The following notations are introduced:

Input: Parameters

Q Batch size.

CT Assembly cycle time.

CTMR Milkrun cycle time.

L No. of assembly lines, index l.

K No. of assembly workstations (no. POUs) per assembly line, index
k.

M No. of product models, index m.

Tp Processing time.

Ts Setup time.

WC Work content (i.e., total process time).

BC No. of work in progress units between workstations.

Tt Milkrun transportation time to/from assembly line.

T e
h Milkrun operator container handling time, empty container.

T f
h Milkrun operator container handling time, full container.

Input: Disturbances

CVp Process time coefficient of variation: CVp = σTp/µTp.

CVs Setup time coefficient of variation: CVs = σTs/µTs.

CVc Conforming units per container coefficient of variation.

CVq Batch size coefficient of variation.

Output: Key Performance Indicators

PLine Line Productivity (units/operator-h): production rate of conforming
units per assembly operator.

LTB Lead Time (min): average time for a batch of units to be finished
from the moment the last unit of the previous batch is finished.

U Milkrun Utilisation (%): fraction of total available time that the
supply chain operator is busy (picking components at the warehouse,
driving the milkrun train and handling containers to load/unload the
components at the POUs).

S Stock in the assembly line (units): average stock of components held
in the assembly line measured in equivalent finished product units.
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7.3.3 Input Data

The simulation model uses data provided by the industrial study case, which
presents a common situation faced by plenty of manufacturing businesses globally.
Table 7.2 shows the model parameters base, min and max values.

Table 7.2: Input parameters and disturbances base and range values.

Parameter Units Min Max Base Value

Input parameters
Q units 48
CT s see Table 7.3
CTMR min 140
L lines 2
K stations 5
M models 2 4 4
Tp s see Table 7.3
Ts s 480
WC s see Table 7.3
BC units 1
Tt min 4
T e
h s 1

T f
h s 2

Disturbances
CVp 0 0.50 0.15
CVs 0 0.50 0.15
CVq 0 0.50 0.10
CVc 0 0.20 0.00

The operations considered in this model include two manual assembly lines
which assemble four product models, two on each line. The mean processing times
for each model and station along with work content and cycle time is summarised
in Table 7.3. These processing times were obtained from the industrial company
standard operating procedures, which in turn are calculated using MTM.

Table 7.3: Product processing time input data.

Tp (s)
CT (s) WC (s)Line m k = 1 k = 2 k = 3 k = 4 k = 5

1 1 192.8 187.5 185.5 188.2 190.1 192.8 944.1
2 214.3 210.2 215.4 212.0 210.7 215.4 1062.6

2 3 237.6 238.5 236.7 233.0 232.1 238.5 1177.9
4 176.1 176.1 175.1 173.2 173.0 176.1 873.5

The products within a line share materials, technological features and general
purposes, but they require different components, assembly fixtures and tooling.
This calls for changeovers to adjust the workstations when a batch of a different
product model is required. The parameter governing setup times is Ts, which takes
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each operator approximately 6 min (see Table 7.2), independently of the product
sequencing.

Each product unit consists of many different components, as shown in Table 7.4.
Most components are required only once per finished product unit, although some
components, especially the smaller ones, may be required in larger numbers.

Table 7.4: Bill Of Materials summary data.

No. Components
Total No.

Components
Total
Piecesm k = 1 k = 2 k = 3 k = 4 k = 5

1 16 6 10 11 4 47 62
2 28 4 14 13 13 72 132
3 20 7 20 18 21 86 160
4 16 9 9 24 14 72 105

Components are transported to the POUs and then presented to the assembly
operators in containers, i.e., boxes, trays or small trolleys. Each container carries a
certain number of pieces of one component, typically a few dozens for middle- and
large-size components, and about one hundred pieces for small components, such
as bolts, screws and washers.

In this particular study case, an important number of components are packed
in very large quantities per container compared to the number of pieces needed
to feed the assembly line for the duration of the milkrun cycle. Note that the
the milkrun cycle time is approximately similar to the time required to complete a
production batch. To illustrate this fact, Table 7.5 shows the number of components
of each product model that are packed in large quantities. Here, large quantities
refers to the case in which one single container includes a number of pieces allowing
to assemble more than two full batches of products—i.e., it is equivalent to the
assembly line consumption of two milkrun cycles.

Table 7.5: Details of the high number of components served in large quantities 2 to the assembly
lines.

Product Model
AvgNumber of Components m = 1 m = 2 m = 3 m = 4

Total no. components 47 72 86 72 69
Packed in large quantities 2

No. components 13 25 29 37 26
Percentage components 28% 35% 34% 51% 28%

2 Containers including a no. of pieces equivalent to the consumption of more than
two milkrun cycles.

When the milkrun operator arrives at each POU, the containers are handled
between the train and the back side of the POU racks. Based on measurements
at the industrial partner facility, one second was estimated for handling empty
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containers and two seconds for containers full of components, as shown in Table
7.2. When walking from the milkrun train to the POU, the milkrun operator’s
speed was considered 1 m/s. The milkrun train speed in the assembly line area was
found to be around 1 m/s, and the POU positions are separated approximately 2
m from each other, resulting in a 12 m long assembly line. Regarding the milkrun
train travel from the warehouse to either assembly line, the industrial partner
measurements showed little variability for an average travel time of approximately
4 min each way. The milkrun preparation time at the warehouse (picking time)
was simulated considering the warehouse as a single picking point and treated as
any POU of the assembly line.

The DES model takes into account the inherent variability of manual assembly
operations by using lognormal distributions for processing and setup times, follow-
ing the recommendations of [278]. The lognormal distribution is generated using
the mean (µ) values of Tp and Ts—see Table 7.3—and the standard deviation (σ),
which is given as a percentage of the mean by the coefficients of variation CVp

and CVs. The base values for the coefficients were estimated from historical data
provided by the industrial partner of this study case. The data allowed estimating
CVp and CVs to be in the range of 0.15–0.20 for manual assembly lines. Note
that since one of the goals of this work is to analyse the influence of processing and
setup times variability on the internal logistics performance, CVp and CVs will take
a range of values in certain simulation scenarios. Another two sources of variabil-
ity, introduced in Section 7.3.1, are considered: the conforming units per container
variability (CVc) and the batch size quantity variability (CVq). They are relevant
along with the processing and setup variability because the logistic performance of
the milkrun system is directly related to them.

7.3.4 Verification and Validation

The validation and verification of the simulation models were performed separately
for assembly operations and internal logistics.

For the assembly operations section, historical production KPIs data were
gathered and compared against the results of a simple parametric model and a
discrete events simulation model. The results presented by the authors in [279] al-
lowed the validation of both models by comparison against real industry study case
data. It was also possible to verify the parametric model against the simulation
model (considering no variability) because their results difference was smaller than
3.5% for any considered performance metric. In summary, the results indicated
that both parametric and simulation models slightly underestimate total output
and that they overestimate the production rate, labour productivity and line pro-
ductivity. Both models were found to be reliable for the context considered here
since the mean relative error was 1.63% and the max relative error was 4.9%.

Regarding the internal logistics part of the simulation model, the validation
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was carried out using measurements at the industrial partner assembly lines from
June 2022. A total of 18 milkrun cycle measurements were registered, finding
an average milkrun utilisation of 78.4%. This was compared with the equivalent
simulation model results (U = 71.6%) to calculate a relative error of 8.7%, slightly
below 10%, which was considered satisfactory for the scope of this work.

7.3.5 Experiment Design

To address the research questions laid out in Section 7.1, several simulation scen-
arios were designed and then implemented on the simulation model by modifying
the model’s parameters. Table 7.6 summarises the parameters and range of values
used to set up the simulation scenarios.

Table 7.6: Simulation scenarios.

Scenario Parameter Units Range

i. Product mix M models {2, 4}
Ts s {0, 480}

ii. Process variability CVp, CVs per unit [0, 0.50]

iii. Batch size variability CVq per unit [0, 0.50]

iv. Components quantity var. CVc per unit [0, 0.20]

The first research question—’(1) What is the effect on the operational and
logistics KPIs of producing multiple models in an assembly line compared to single-
model production? Are there significant differences between mixed-model and multi-
model production from the milkrun internal logistics point of view?’—is examined
by changing the number of product models under demand (one model per assembly
line for single-model, M = 2; two models per assembly line per mixed- and multi-
model, M = 4) and the setup time duration parameter (Ts set to 0 s for mixed-
model, 480 s for multi-model). For this scenario i., process and batch quantity
coefficients of variability take their base values (Tp and Ts 0.15, CVq 0.10 ), and
the conforming units per container coefficient of variability is set to 0, as stated in
Table 7.2.

The second research question—’(2) How is the milkrun-assembly lines system
affected by variability? In particular, to what extent is it impacted by assembly pro-
cess variability and supply chain disturbances?’—will be decomposed into the three
variability sources considered in the simulation model. Firstly, process variability is
governed by parameters CVp (assembly processing time variability) and CVs (setup
time variability). These parameters will take values ranging from 0 (no variability
at all) up to 0.50 (high variability), making up scenario ii. Secondly, the batch
size variability coefficient will be used to represent in-plant manufacturing issues
leading to smaller-than-standard batches of products being released for assembly.
Similarly to the previous scenario, in scenario iii. CVq values will range from 0 to
0.50, covering from no disturbances up to half of the batches having fewer units
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than it was intended. Finally, scenario iv. looks into external supplier perturba-
tions which are simulated using the components quantity coefficient of variability.
CVc will take values in the range of 0 to 0.20, meaning that each components con-
tainer can have up to 20% fewer valid pieces in the less favourable case. The effect
of the interactions between the variability parameters was not analysed because
a preliminary two-level full factorial design of experiments showed that two-factor
interactions were not significant for the KPIs under study in comparison to the
effects of the variability parameters by themselves.

The following Section 7.4 Results shows the outcome of the simulation scen-
arios introduced here.

7.4 Results

This section includes the outcome of the simulations corresponding to scenarios
i.-iv. Section 7.4.1 addresses the first research question, and Section 7.4.2 includes
scenarios ii.-iv., which jointly address the second research question.

The results shown here are obtained with a simulation horizon of 74 h with a
warm-up time of 2 h (i.e., nine production shifts after the warm-up is finished). To
account for the stochastic nature of the results, each simulation scenario is run 20
times. This number was chosen because it was found that using a larger number
of runs did not affect the resulting output in a statistically significant manner. At
the start of each simulation run, all assembly stations and buffers between them
are empty as well as all the components racks and the milkrun train.

The results shown in this section are presented in boxplots where the upper and
lower limit of the boxes corresponds to the first and third quartiles. The coloured
line is the mean and the whiskers limits are set to 1.5 times the interquartile range.
Outlier data points (beyond the whiskers) are marked by a circle. The charts scale
has been kept constant across all simulation scenarios to facilitate comparison.

7.4.1 Single-Model vs. Mixed-, Multi-Model Assembly

The selected operational KPIs comparing the performance of the assembly lines
under scenario i. demand conditions are shown in Figure 7.4 and summarised in
Table 7.7.

Table 7.7: Scenario i : Mean and standard deviation (SD) of main KPIs for single-, mixed- and
multi-model assembly lines.

PLine (u/oper-h) LTB (min) U (%) S (u)

Product Mix Mean SD Mean SD Mean SD Mean SD

Single-model 3.33 0.015 188.9 1.5 50.60 0.82 181.7 1.9
Mixed-model 3.31 0.006 192.0 1.4 72.05 1.23 222.8 6.2
Multi-model 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4
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Figure 7.4: Scenario i.: Mean and deviation values of KPIs for single-, mixed- and multi-model
assembly lines. (a) Line productivity, (b) batch lead time, (c) milkrun utilisation and (d) assembly
line stock levels.

The productivity of single- and mixed-model lines is significantly superior to
multi-model lines, as is expected considering that the setup time becomes zero (from
480 s per batch of 48 units, which represents just below 5% of the time needed to
complete the batch on average). The difference in productivity between single- and
mixed-model lines is related to operator idle and blocked times following product
model changeovers as a result of cycle time differences between the incoming and
outgoing products. Said difference does not account for significant productivity
results in this case. Batch lead time, as expected, is slightly larger for mixed- and
multi-model lines compared to single-model lines.

On the internal logistics KPIs side, milkrun utilisation and assembly line stock
show a clear differentiation between single-model assembly lines and the other two.
Incorporating multiple product models increases greatly the utilisation (from 51%
to 72%, a +44% increment). Note that this steep increase could be linked to the
high percentage of components packed in large quantities. This will be examined
in the next Section 7.5 Discussion.

The component stock in the assembly line also suffers an increase for mixed-
and multi-model lines driven by the same reason: single-model assembly lines see
their average component stock decrease as the containers with very large quantit-
ies of pieces are consumed over time. Contrarily, mixed- and multi-model lines are
constantly fed with small component boxes full of pieces. In the case shown here,
the difference is significant but not dramatic, at an approx. +22% increase (from
182 to 223 units). In summary, increasing product mix negatively affects opera-
tional KPIs (reduces productivity, increases batch lead time), which was expected.
It also increases greatly supply chain operator utilisation (+44% rise), although
the magnitude of this sharp increase could be attributed to the high percentage of
components packed in large quantities.
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7.4.2 Variability and Disturbances

This subsection looks at how increasing levels of variability affect the operational
(PLine, LTB) and internal logistics KPIs (U , S). As described in Section 7.3.5,
simulation experiments were set up to independently analyse the influence of as-
sembly line process variability (CVp and CVs, scenario ii.), batch size variability
(CVq, scenario iii.) and conforming components variability (CVc, scenario iv.).

Process Variability

To analyse the impact of the assembly line process and setup variability, the re-
spective coefficients were modified increasingly from 0 up to 0.50 (the base value
for the industrial case study is 0.15; see Table 7.2). Figure 7.5 shows the results
of this simulation scenario, and Table 7.8 includes the results’ numeric values for
average and standard deviation.

Figure 7.5: Scenario ii.: Mean and deviation values of KPIs for varying levels of process and
setup coefficients of variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation, and
(d) assembly line stock level.

In terms of operational KPIs, Figure 7.5a,b show that, as expected, an increase
in process variability negatively the performance of the assembly line, especially
considering that this lines’ number of work-in-process units is limited to one. In
particular, it can be seen that the productivity deteriorates greatly when CVp and
CVs are greater than 0.20 both in terms of mean and standard deviation. Batch
lead time follows the same trend.

Figure 7.5c shows that U does not suffer any changes, although its standard
deviation increases slightly. On the other hand, the assembly line components’
stock levels are severely impacted, rising from approx. 220 units for none or very
small variability (CVp and CVs at 0–0.10) up to an average of approx. 270 units for
CVp, CVs 0.50, which represents a noticeable +23% increase. Standard deviation
also rises, but it remains small compared to the mean values of S, as shown in Figure
7.5d. In summary, only AL stock levels are affected by in-process variability, while
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the milkrun driver’s workload remains unaffected.

Table 7.8: Scenario ii.: Mean and standard deviation of main KPIs for increasing values of process
variability.

PLine (u/oper-h) LTB (min) U (%) S (u)

CVp, CVs Mean SD Mean SD Mean SD Mean SD

0.00 3.27 0.012 183.0 1.2 71.75 1.33 220.4 4.9
0.10 3.24 0.011 187.8 0.8 71.25 1.16 218.7 5.8
0.20 3.12 0.015 195.4 1.1 71.45 1.05 238.5 7.6
0.30 2.98 0.019 205.2 1.8 71.30 0.99 238.1 8.8
0.40 2.83 0.021 216.0 2.2 71.45 1.23 252.6 7.8
0.50 2.67 0.025 228.7 2.3 71.28 4.06 272.1 10.7

Batch Size Variability

To understand the impact that upstream manufacturing process issues would have
on the assembly operational and internal logistics performance, scenario iii. was
set up by changing the value of CVq, which determines the probability of an as-
sembly production batch smaller than standard. CVq takes values between 0 (no
disruption) and 0.50 (meaning that on average, half the batches released to the
assembly lines have between 36 and 48 units. The simulation results of scenario
iii. are summarised in Figure 7.6, and average and standard deviation data are
shown in Table 7.9.

Figure 7.6: Scenario iii.: Mean and average values of KPIs for varying levels of batch size
coefficients of variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation, and (d)
assembly line stock.

Figure 7.6a,b shows that the average of both line productivity and lead time
remains constant despite changes in CVq. Although PLine standard deviation in-
creases slightly, it remains very low at about 0.25–0.43% of the average value. The
lead time SD, on the other hand, does increase more than five-fold while remain-
ing very low compared to average values (SD of 0.24–1.39%). Therefore, the data
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show that batch size variability has no significant impact on the operational KPIs.
Although variability rises as CVq grows, it remains at very low levels in relative
terms.

Figure 7.6c,d show very little impact on internal logistics KPIs as a result
of an important rise in batch size variability. The milkrun utilisation average
does increase slightly (from 71 to 73%, c.+4% rise), but the SD reduction (from
1.25% to 0.82%) is not statistically significant. In a similar fashion, assembly line
components stock decreases slightly in both average and standard deviation values,
but none of these changes are statistically significant.

Table 7.9: Scenario iii.: Mean and standard deviation of main KPIs for increasing values of batch
size variability.

PLine (u/oper-h) LTB (min) U (%) S (u)

CVq Mean SD Mean SD Mean SD Mean SD

0.00 3.18 0.008 191.7 0.5 70.68 1.25 225.6 8.0
0.10 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4
0.20 3.19 0.012 191.1 1.2 71.74 1.37 222.6 9.1
0.30 3.19 0.019 191.0 2.0 72.84 1.07 225.8 8.5
0.40 3.18 0.011 191.1 2.8 73.17 0.92 224.7 6.7
0.50 3.17 0.014 191.9 2.7 73.32 0.82 218.1 6.8

Components Quantity Variability

The goal of this subsection is to analyse the impact of the components quantity
coefficient of variability CVc. This coefficient is employed to represent disturbances
within in-house or external suppliers’ processes, resulting in a lower-than-standard
number of conforming pieces in each component container. As explained in Section
7.3, the number of conforming pieces per container is simulated using a discrete
uniform distribution which has the inferior limit set to CVc percent of the nominal
value. Scenario iv. considers CVc values from 0 to 0.20, as shown in Table 7.10.

Figure 7.7a shows that productivity is affected negatively by an increase in
CVc, although the magnitude of the impact is very limited: only a −2.2% re-
duction from the base scenario when components containers have up to 20% less
conforming pieces than expected. Similarly, lead time is impacted negatively by
CVc increase, as depicted in Figure 7.7b. The LTB average rises slightly (c.+2%)
and suffers a greater dispersion of results (SD increases by +54%). All in all, even a
substantial increase in components quantity variability does not affect the assembly
lines’ operational KPIs severely.

Regarding internal logistics KPIs, Figure 7.7c,d show that an increase of CVc

has no significant impact on either milkrun utilisation or assembly line component
stock levels.
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Figure 7.7: Scenario iv.: Mean and deviation values of KPIs for varying levels of components
quantity coefficients of variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation,
(d) assembly line stock.

Table 7.10: Scenario iv.: Mean and standard deviation of main KPIs for increasing values of
component quantity variability.

PLine (u/oper-h) LTB (min) U (%) S (u)

CVc Mean SD Mean SD Mean SD Mean SD

0.00 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4
0.05 3.17 0.015 192.4 1.2 72.17 0.99 217.5 6.2
0.10 3.16 0.016 193.5 1.2 72.26 0.81 220.0 6.8
0.15 3.15 0.019 194.0 1.6 72.00 1.05 222.0 5.6
0.20 3.12 0.019 195.2 1.7 72.40 0.50 221.9 5.9

7.5 Discussion

The results shown in the previous section have been summarised in Table 7.11.

Table 7.11: Summary of KPI change trends resulting from each scenario considered.

Scenario Productivity Lead
Time

Milkrun
Utilisation

Line
Stock

Goal ↑ ↓ ↓ ↓
i. Product mix ↘ ↗ ↑↑ ↑↑
ii. Process variability: CVp, CVs ↑ ↓↓ ↑↑ = ↑↑
iii. Batch size variability: CVq ↑ = = ≈ ≈
iv. Components qty. variability: CVc ↑ ↘ ↗ ≈ ≈

Increasing the product mix from single- to mixed- and multi-model assembly
lines results in a moderate impact on operational performance (PLine, LTB) but a
very significant negative effect on internal logistics KPIs, which could have further
implications. For instance, the rise of assembly line component stock would increase
the required floor space and decrease the assembly line surface productivity.
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It is important to note that according to the results shown in Section 7.3.1, the
greatest factor affecting U is the product mix, with a remarkable +44% increase
resulting from changing from single- to multi-model assembly.

This sharp increase in U is caused by the rising number of containers that
need to be handled, which is due to two main reasons.

(1) First of all, the number of component containers to be handled is larger
every time there is a product changeover, which is the case for almost every milkrun
cycle under the assumption that the milkrun cycle time is approximately similar
to the time required to complete a batch of products (cf. CTMR, Q in Table 7.2
and CT in Table 7.3). The increased number of containers to be handled is due
to the fact that the supply chain operator needs to take all the containers of the
outgoing model from the POU racks regardless of how many component pieces are
left and replace them with components for the incoming product model. During
regular supply cycles, on the other hand, containers are only replaced if needed
(empty boxes work as kanban signals).

(2) The second reason is related with the compound effects of the first reason
and the fact that in this particular study case, we find a large number of components
packed in large quantities (see Table 7.5). This fact means that for a significant
percentage of the components, each milkrun train carries enough pieces to assemble
more than four times the required amount of pieces. Furthermore, the milkrun train
will need to take back to the warehouse a full container and a half-empty container
every time a changeover is needed.

Thus, it seems reasonable to conclude that milkrun utilisation is higher on
mixed- and multi-model lines compared to single-model assembly lines. However,
the magnitude of the increase shown in the Results must be considered carefully,
since it it would be strongly related to the container quantities of this particular
industrial study case.

As a closing remark on this subject, two aspects could be looked at in order
to reduce the milkrun utilisation for multi-model assembly lines. Firstly, if enough
shop-floor space is available, small components packed in large quantities could be
left by the workstations, forming an assembly line supermarket, independent of the
regular milkrun cycles. For larger components, relaxing the rule of minimum two
containers (see Equation 7.1) could be considered. Secondly, packing components
in smaller quantities (so that two containers cover approximately the consumption
of a milkrun cycle) could also reduce the milkrun workload so that it is only slightly
higher than for single-model assembly lines.

Production variability (CVp, CVs) is the most important disturbance factor
affecting productivity, lead time and assembly line components stock. However, it
does not affect supply chain operator utilisation because the productivity reduction
implies a reduction of output rate (which slows down components consumption).
The reason behind this is that the milkrun work logic establishes a fixed replenish-
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ment frequency (milkrun cycle time), resulting in a supply chain operator workload
effectively unaffected by several minor variations over the course of a full replen-
ishment cycle.

Despite the previous expectation that variability would always impact per-
formance negatively, results from Sections 7.4.2 and 7.4.2 show that the internal
logistics KPIs are not sensitive to disturbances originated by batch size and com-
ponents quantity variability (CVq and CVc respectively). This implies that employ-
ing milkruns for the internal logistics of flexible multi-model assembly lines under
high-mix low-volume demand is a way to shield this part of the supply chain from
upstream disturbances, arriving from either external or internal processes.

It was also found that variability regarding batch size (CVq) does not have any
noticeable negative impact on operational performance, as shown in Figure 7.6c.

Note that as mentioned in Section 7.2, this article addresses a gap in the literat-
ure by specifically addressing in-plan logistics for multi-model assembly operations,
including variability, and using a real study case—specially from an industry sector
other than automotive.

The fact that the simulation model used in this work is based on a real in-
dustry study case provides valuable insight into the behaviour of similar assembly
operations—internal logistics systems under increasingly hard conditions in terms
of variability and product mix. However, it is important to note that this also
limits the generalisation extent of the results obtained due to certain aspects listed
below.

First of all, the case employed here considers only a relatively small product
variation within each assembly line (∆WC 13% and 34% for AL no. 1 and AL no.
2, respectively) and almost no difference in terms of average WC per model when
comparing both lines (∆WC c.2%). Understanding how much product variability
affects the operational and internal logistics KPIs could be a potential avenue for
further research to understand the extent of the potential benefits of employing
milkruns for high-mix low-volume assembly.

Secondly, it could be argued that the number of conforming components coeffi-
cient of variability (CVc) only modifies the number of pieces per container available
to the assembly operator, but it does not realistically capture the possibility of
components actually arriving at the assembly line and then causing quality control
failures or unexpected assembly process time increases, which would imply addi-
tional productivity losses due to reasons such as product rework and idle/blocked
assembly operators.

Thirdly, milkrun transportation time was considered deterministic because
the industry case measurements indicated this time were consistent. However, for
multi-train production sites, variability caused by occasional milkrun train traffic
jams could be considered.
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Finally, modelling the milkrun train as a single wagon could be slightly un-
derestimating its utilisation despite the satisfactory validation results. Specifically,
in potential scenarios featuring longer milkrun cycle times—note that the CTMR

parameter was unchanged through scenarios i. to iv.—this would entail a greater
number of component containers and therefore potentially a greater number of re-
quired wagons leading to an increased walking time for the supply chain operator,
which the current simulation model would not capture.

7.6 Conclusions

To address a mass customisation demand context that drives high-mix low-volume
assembly operations, this article studied the implications of using milkrun trains
for the internal logistics of multi-model assembly lines. Based on a real industrial
study case from the white goods sector, a discrete events simulation model was
employed to set up four different scenarios which evaluate the effect of product
mix and three different sources of variability. To measure such impact, a set of
four Key Performance Indicators (KPIs) were used, two corresponding to assembly
operations and two corresponding to supply chain efficiency.

It was found that multi-model lines increase significantly the milkrun util-
isation and the assembly line components stock compared to single-model lines.
However, the magnitude of this large increase could be partially attributed to par-
ticularities of the study case. Operational KPIs were also affected negatively but
to a much lesser extent. Internal logistics performance is greatly affected by the
variability of assembly line processing time, especially in terms of component stock.
Other sources of variability, such as the ones affecting the number of units per pro-
duction batch or the components quantity per container, have very limited impact
on the selected KPIs. This would imply that employing milkruns for the internal
logistics of flexible multi-model assembly lines under high-mix low-volume demand
is a way to shield this part of the supply chain from upstream disturbances, arriving
from either external or internal processes.

Two key limitations of this work are the relatively low product variability in
terms of work content and the milkrun train physical features simplification.

Further research paths include exploring the implications of much greater
product work content variability, incorporating more detailed physical models of
the milkrun train and expanding the simulation model to include adjacent layers
that could constrain the performance of the assembly system as a whole, such as
quality (defects, reworks, quality controls) or breakdowns and maintenance.



188 Chapter 7. Milkruns for in-plant logistics under disturbances

7.7 Summary

This chapter aims to provide further insight into multi-model parallel assembly
lines by exploring the use of milkrun trains for their in-plant logistics. To do so,
the research presented here builds on previously developed conceptual frameworks
(Chapter 3) and simulation tools (Chapter 5), while focusing on the mass custom-
isation demand context. Four different simulation scenarios were used to assess the
effect of product mix and three sources of variability (assembly processes, other in-
plant processes and external suppliers) on a set of four key performance indicators
consisting of two operational and two logistics performance measures.

This chapter makes three specific contributions:

1. It addresses a gap in the literature by investigating in-plant logistics for multi-
model assembly under variability disturbances.

2. It was found that internal logistics performance is very sensitive to the as-
sembly line processing time variability, especially regarding components stock.

3. The results showed that employing milkruns for in-plant logistics is a way of
shielding multi-model assembly lines from upstream disturbances.

Although the results of the simulations presented in this chapter are heav-
ily influenced by the particularities of the industrial study case (see Section 7.5),
the DES modelling methodology and the simulation models developed as part of
this study can be reused to analyse other similar situations, either industrial or
conceptual study cases.

Future avenues for this research line could focus on increasing the internal
logistics simulation level of detail, for example by incorporating milkrun train and
containers dimensions, weight and other physical aspects to the models. Further
research could also concentrate on increasing the product variety range, or adding
other supporting departments’ constraints, such as maintenance, quality control
and rework policies.



CHAPTER 8

Summary, conclusions and outlook

This chapter will conclude the thesis with a brief summary of the key research
findings and how they contribute to answering the research aims, as well as the
limitations of this study and an outlook of potential avenues for further research.

8.1 Summary of key findings

The overarching research aim of this thesis was to understand and define how
to design semiautomatic assembly systems to improve flexibility and productivity
under high-mix low-volume demand. To guide the research, three main research
objectives were stated, which have been answered sequentially along the chapters
of this thesis.

(1) The first research objective was to understand the state of the art of In-
dustry 4.0 assembly. To do so, Chapter 2 presented a systematic literature review
focusing on six key concepts: assembly, Lean, key performance indicators, mass
customisation, Industry 4.0 and operators. The key findings of the review were
that there is a lack of methodologies for implementing Industry 4.0 technologies
so that they deliver all their potential benefits. It was also found that the mass
customisation and personalisation demand trends drive the assembly systems in-
creasing complexity. To address this issue, a holistic view of the systems would
be required, along with the use of multiple performance measures which enable a
perspective of the implications of Industry 4.0 technologies from different angles.
Finally, in Chapter 3 an operator-centred conceptual framework was presented,
allowing to clear classification of the Industry 4.0 digital technologies according to
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their relationship with assembly operators.

(2) The second research objective was to develop a methodology and the tools
for the performance evaluation of flexible assembly systems. Firstly, Chapter 3
introduced the general definitions and the industrial study case to be used in the
rest of the thesis. In Chapter 4, a simplistic yet effective mathematical model was
presented. This model, which focuses on calculating changeover losses to estimate
the performance of multi-model assembly lines, was then used along design of
experiments techniques to identify the most critical factors affecting these assembly
lines. To evaluate the assembly lines’ performance, several KPIs were used: labour
productivity, line throughput and lead time, among others, which allowed us to
gain insight into the relationships between them under different circumstances.

When answering the specific research question What are the key drivers for
multi-model assembly line performance?, the results showed that the number of
stations and the batch size are key to labour productivity and lead time, an im-
portant measure of the system’s capability to deliver quickly to customer orders.
The results also highlighted the trade-off between these two KPIs, so that they
cannot be optimised simultaneously.

To overcome the limitations of the mathematical model –namely, its lack of
stochastic parameters and the difficulty to integrate different ways of operator-
workstation interaction– Chapter 5 presented discrete events simulation models
and their verification against empirical data from the industrial study case.

(3) The third research objective was to find assembly line configurations with
at least +25% productivity increase by introducing partial automation. Walking-
worker assembly lines can leverage the productivity advantages of assembly lines
with fewer stations, which results from reduced line balancing and changeover time
losses. This assembly line configuration can avoid the disadvantages in terms of
maximum line throughput derived from employing shorter lines by sharing the
automated stations between two parallel lines.

Thus, Chapter 6 presents a study of semiautomatic parallel walking-worker
assembly lines (PWWAL) in comparison to traditional fixed-worker lines (FWAL).
The simulation modelling methodology developed previously was used to analyse
six simulation scenarios of increasingly challenging high-mix low-demand condi-
tions, which are expressed in terms of progressively smaller batch sizes and in-
creasingly more frequent product family changeovers.

The simulation results showed that PWWALs can outperform FWALs in terms
of productivity in all demand scenarios, achieving the +25% productivity increase
goal. A key advantage of PWWALs is that they can seamlessly reduce the num-
ber of manual workers without compromising the line balance, therefore enabling
efficient low-volume production. PWWALs also present advantages over FWAL
regarding their capability to incorporate different degrees of automation without
reducing their productivity; however the maximum line throughput becomes lim-
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ited. On the other hand, PWWALs present significantly superior lead times and
shopfloor surface requirements.

Finally, Chapter 7 expanded the scope of analysis of previous studies by incor-
porating outer layers of the operator-centred conceptual framework. In particular,
the in-plant logistics function was analysed to better understand the implications
of using milkrun trains to feed multi-model parallel assembly lines under severe
disturbances. The simulation results showed that milkruns can be a great way to
protect assembly lines from disturbances originating in upstream processes.

8.2 Contributions

This thesis made several contributions that have been listed at the end of each
chapter, and which are summarised here grouped by stage.

Regarding the Problem definition stage:

(1) The systematic literature review evidences a lack of specific methodologies for
the implementation of Industry 4.0 digital technologies on assembly systems.
Key literature on the topic shows that mass customisation and personalisa-
tion demand trends lead to more complex assembly systems. These systems
include many different layers that need to be addressed holistically. To gain
perspective from multiple angles of how the several layers affect one another,
sets of performance measures ought to be used. The literature review was
published as a journal article in Applied Sciences [27].

(2) This thesis developed an operator-centred Industry 4.0 conceptual framework
specific to manual assembly operations. Based on this framework, a clear
classification between Industry 4.0 digital technologies according to their re-
lationship with assembly operators. Hardware technologies (e.g. collaborat-
ive robots, augmented/mixed reality) are located in direct contact with the
operators, as opposed to software technologies (e.g. big data, machine learn-
ing, cloud computing), which are employed by supporting departments and
only affect assembly operators in an indirect way. The conceptual model was
published as a conference article in Procedia CIRP [256].

In relation to the Tool development stage:

(3) This thesis proposed a simple analytic model for the performance evaluation
of multi-model assembly lines which is easy to implement and sufficiently
capable for preliminary analysis. Design of experiments results show that
the two most critical factors for the operational performance of multi-model
assembly lines are the number of stations and the batch size. Considering
the mass customisation demand trends, there are—and will be—strategic
advantages to further reducing the production batch sizes. This led to the
conclusion that looking at designing flexible assembly lines with a reduced
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number of stations would be a way to enhance productivity and mitigate the
negative effect of frequent product changeovers. Since reducing the number of
working stations implies a reduction of maximum line capacity, an apparent
way to maintain production capacity flexibility would be to consider shorter
parallel assembly lines. Further study of the influence of the relationship
between total setup time and the number of stations led to the conclusion that
this modelling assumption does not affect the results of the previous analysis.
The mathematical model and the design of experiments analysis of critical
factors to manual assembly line performance were published as a conference
article in IOP Conference Series: Materials Science and Engineering [274].

(4) Several discrete events simulation models were developed to analyse flexible
assembly operations with a focus on realistic product model changeovers,
suitable for studying high-mix low-volume assembly. They were later verified
and validated them using the previously developed parametric model and an
industrial study case from a global white goods manufacturer. This work was
published as a conference article in Procedia CIRP [279].

Finally, regarding the Improvement stage:

(5) A multi-model parallel walking-worker assembly line design was presented.
This assembly line design is estimated to achieve a significant productivity in-
crease while maintaining high flexibility in terms of line throughput, enabling
a quick adaptation to demand variations. A comprehensive set of operational
KPIs was used to estimate the performance of fixed and walking-worker as-
sembly lines from different angles. Under any demand conditions, parallel
walking-worker lines present higher productivity and throughput than tra-
ditional fixed-worker lines. These results highlighted the trade-off between
productivity and lead time experimented by parallel walking-worker lines.
The results also showed that increasing the degree of automation allows in-
crementing the line productivity under all demand conditions, but only if the
number of workers can be reduced smoothly, which is the case for walking-
worker configurations but not for fixed-worker lines. However, this comes at
the expense of reducing the line throughput and increasing the lead time.
This assembly line concept and the results of the analysis were published as
a journal article in Processes [283].

(6) This thesis addresses a gap in the literature by investigating in-plant logistics
for multi-model assembly under variability disturbances. It was found that
internal logistics performance is very sensitive to the assembly line processing
time variability, especially regarding components stock. The simulation res-
ults showed that employing milkruns for in-plant logistics is a way of shielding
multi-model assembly lines from upstream disturbances. This analysis was
published as a journal article in Machines [300].
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8.3 Further research

Further research following the results obtained in this thesis can be structured
around three main lines towards the implementation of Industry 4.0 technologies
to improve assembly operations under high-mix low-volume demand conditions:
analysis methodology, parallel walking-worker assembly lines, and milkruns for in-
plant logistics.

8.3.1 Analysis methodology

The simulation models already developed could be expanded, following the same
modelling methodology, to include supporting departments that were out of the
scope of this thesis. For example, the inclusion of maintenance problems (auto-
mated station breakdowns or minor stops) or different rework policies for defective
units (e.g. in-line or out-of-line, done by operators or by team leaders) would be
fair starting points to cover the fourth layer of the operator-centred model.

The simulation modelling approach developed here could be used to implement
a Digital Twin, one of the Industry 4.0 key enabling technologies. Along with the
Internet of Things, it would be possible to deploy sensors in the assembly lines
to gather data directly from the real system. Analysing short and medium-term
scenarios using simulation would allow early detection of performance risks, such
as transient bottlenecks caused by highly variable demand mixes.

Another avenue for research would be the use of simulation together with other
tools, such as mixed-integer programming or scheduling techniques, that would
allow the optimisation of the assembly line layouts.

8.3.2 Parallel walking-worker assembly lines

To continue the research on semiautomatic PWWALs, three areas stand out. First
of all, the study of PWWALs by simulation tools would need to use more study
cases, since some of the analyses already carried out were limited by the industrial
case considered here. The investigation could be deepened by looking into aspects
such as assembly line layout configuration, the effects of the number of automated
stations, and the human operator’s training, to cite just a few. The assembly
workstation’s detailed design could be another area of interest, especially regarding
ergonomic risks. Additional sources of disturbances—the current model considers
processing and setup times variability—such as stochastic breakdowns or different
types of quality issues, would also constitute valuable avenes for future research.

Secondly, evaluating the incorporation of Industry 4.0 technologies could be
explored, such as the use of collaborative robots for assembly or quality control
tasks, or to provide support during product changeovers. Operator cognitive sup-
port provided by augmented/ mixed reality and cyber-physical systems could be
beneficial to address the increased requirements in terms of human operator train-
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ing that walking-worker lines require compared to fixed-worker ALs.

Finally, the actual industrial implementation of semiautomated PWWALs
would allow us to verify the simulation results obtained here and detect further
issues and opportunities of this assembly line configurations to deal with high-mix
low-volume demand.

8.3.3 Milkruns for in-plant logistics

Regarding the use of milkrun trains for in-plant logistics, once again having a
wealth of case studies would allow the in-depth evaluation of some of the questions
already investigated. For example, the effect of mixed- and multi-model assembly
lines on the milkrun utilisation, which depends heavily on the products’ bills of
materials and the number of parts per container being fed to the assembly lines.

Expanding the scope of the milkrun system models could be done in two dir-
ections. The system could grow to include more detailed operations of the in-plant
warehouse and more milkrun trains serving other assembly lines. This way it would
be possible to analyse the potential resource conflicts caused by disturbances, such
as milkrun trains traffic jams or warehouse operators saturation. The simulation
model could also be expanded by including physics considerations, such as the con-
tainers’ weight and dimensions, and the milkrun train number of wagons and their
available volume. This level of detail would enable a more accurate evaluation of
the milkrun operator workload.

Finally, the digitalisation of milkrun systems could be explored. In this regard,
artificial intelligence, the internet of things and autonomous guided vehicles could
present synergies. For example, artificial intelligence algorithms could be used
along with simulation models to optimise milkrun loading thanks to real-time data
gathered from the assembly line racks.
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8.4 Publications

The following were published as a result of this thesis:

Journals

• A. Miqueo, M. Torralba, and J. A. Yagüe-Fabra. “Lean Manual Assembly
4.0: A Systematic Review”. In: Applied Sciences 10.23 (2020), p. 8555. DOI:

10.3390/app10238555.

• A. Miqueo, J. A. Yagüe-Fabra, M. Torralba, M. J. Oliveros, and G. Tosello.
“Parallel Walking-Worker Flexible Assembly Lines for High-Mix Low-Volume
Demand”. In: Processes 11.1 (2023), p.172. DOI: 10.3390/pr11010172.

• A. Miqueo, M. Gracia-Cadarso, M. Torralba, F. Gil-Vilda, and J. A. Yagüe-
Fabra. “Multi-Model In-Plant Logistics Using Milkruns for Flexible Assembly
Systems under Disturbances: An Industry Study Case”. In: Machines 11.1
(2023), p.66. DOI: 10.3390/machines11010066.

Conference (peer-reviewed)

• A. Miqueo, M. Torralba, and J. A. Yagüe-Fabra. “Operator-centred Lean 4.0
framework for flexible assembly lines”. In: Procedia CIRP 104 (2021), pp.
440–445. DOI: 10.1016/j.procir.2021.11.074.

• A. Miqueo, M. Martín, M. Torralba, and J. A. Yagüe-Fabra. “Labour pro-
ductivity in mixed-model manual assembly 4.0”. In: IOP Conference Series:
Materials Science and Engineering 1193.1 (2021), p.012104. DOI: 10.1088/1757-
899X/1193/1/012104.

• A. Miqueo, M. Torralba and J. A. Yagüe-Fabra. ‘Models to evaluate the per-
formance of high-mix low-volume manual or semi-automatic assembly lines’.
In: Procedia CIRP 107 (2022), pp. 1461–1466. doi: 10.1016/j.procir.
2022.05.175

https://www.mdpi.com/2076-3417/10/23/8555
https://www.mdpi.com/2227-9717/11/1/172
https://www.mdpi.com/2075-1702/11/1/66
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https://doi.org/10.1088/1757-899X/1193/1/012104
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APPENDIX A

Resumen en castellano

A.1 Resumen

Las tendencias globales de la personalización e individualización en masa impulsan
la producción industrial en serie corta y variada; y por tanto una gran variedad
de productos en pequeñas cantidades. Por ello, la customización en masa precisa
de sistemas de ensamblaje que sean a la vez altamente productivos y flexibles, a
diferencia de la tradicional oposición entre ambas características. La llamada cuarta
revolución industrial trae diversas tecnologías habilitadoras que podrían ser útiles
para abordar este problema. Sin embargo, las metodologías para implementar el
ensamblaje 4.0 todavía no han sido resueltas. De hecho, para aprovechar todas las
ventajas potenciales de la Industria 4.0, es necesario contar con un nivel previo
de excelencia operacional y un análisis holístico de los sistemas productivos. Esta
tesis tiene como objetivo entender y definir cómo mejorar la productividad y la
flexibilidad de las operaciones de montaje en serie corta y variada.

Esta meta se ha dividido en tres objetivos. El primer objetivo consiste en com-
prender las relaciones entre la Industria 4.0 y las operaciones de ensamblaje, así
como sus implicaciones para los operarios. El segundo objetivo consiste en desarro-
llar una metodología y las herramientas necesarias para evaluar el rendimiento de
diferentes configuraciones de cadenas de ensamblaje. El último objetivo consiste en
el diseño de sistemas de ensamblaje que permitan incrementar su productividad al
menos un 25 %, produciendo en serie corta y variada, mediante la combinación de
puestos de montaje manual y estaciones automatizadas.

Para abordar la fase de comprensión y definición del problema, se llevó a cabo
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una revisión bibliográfica sistemática y se desarrolló un marco conceptual para
el Ensamblaje 4.0. Se desarrollaron, verificaron y validaron dos herramientas de
evaluación del rendimiento: un modelo matemático analítico y varios modelos de
simulación por eventos discretos. Para la verificación, y como punto de partida para
los análisis, se ha utilizado un caso de estudio industrial de un fabricante global de
electrodomésticos. Se han empleado múltiples escenarios de simulación y técnicas
de diseño de experimentos para investigar tres cuestiones clave.

En primer lugar, se identificaron los factores más críticos para el rendimiento
de líneas de montaje manuales multi-modelo. En segundo lugar, se analizó el ren-
dimiento de líneas de montaje semiautomáticas paralelas con operarios móviles en
comparación con líneas semiautomáticas o manuales con operarios fijos, empleando
diversos escenarios de demanda en serie corta y variada. Por último, se investigó el
uso de trenes milkrun para la logística interna de líneas de ensamblaje multi-modelo
bajo la influencia de perturbaciones.

Los resultados de las simulaciones muestran que las líneas paralelas con ope-
rarios móviles pueden superar a las de operarios fijos en cualquier escenario de
demanda, alcanzando como mínimo el objetivo de mejorar la productividad en un
25 % o más. También permiten reducir cómodamente el número de operarios traba-
jando en la línea sin afectar negativamente al equilibrado de la misma, posibilitando
la producción eficiente de bajo volumen. Los resultados de las simulaciones de lo-
gística interna indican que los milkrun pueden proteger las líneas de ensamblaje de
las perturbaciones originadas en procesos aguas arriba.

Futuras líneas de investigación en base a los resultados obtenidos en esta tesis
podrían incluir la expansión e integración de los modelos de simulación actuales
para analizar las cadenas de montaje paralelas con operarios móviles incorporando
logística, averías y mantenimiento, problemas de control de calidad y políticas de
gestión de los retrabajos. Otra línea podría ser el uso de diferentes herramientas
para el análisis del desempeño como, por ejemplo, técnicas de programación de
la producción que permitan evaluar el desempeño operacional de diferentes con-
figuraciones de cadenas de montaje con operarios móviles, tanto en términos de
automatización como de organización en planta. Podrían incorporarse tecnologías
de la Industria 4.0 a los modelos de simulación para evaluar su impacto operacional
global –como cobots para ensamblaje o para la manipulación de materiales, reali-
dad aumentada para el apoyo cognitivo a los operarios, o AGVs para la conducción
de los trenes milkrun. Por último, el trabajo presentado en esta tesis acerca las
líneas de ensamblaje semiautomáticas con operarios móviles a su implementación
industrial.

A.2 Introducción

Las operaciones de ensamblaje se enfrentan a una tradicional oposición entre la
alta productividad de la automatización y la flexibilidad superior de las líneas
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de montaje manuales. El contexto global de la producción de electrodomésticos se
caracteriza por las tendencias de demanda de gran personalización de los productos
y por las nuevas posibilidades que ofrecen las nuevas tecnologías inteligentes.

A pesar del potencial casi ilimitado que se atribuye a la introducción de tecno-
logías digitales disruptivas, las metodologías para su implementación real, así como
la madurez operacional requerida para una digitalización exitosa de las operaciones
de ensamblaje, son todavía cuestiones sin resolver.

El objetivo de esta tesis es comprender y definir líneas de ensamblaje capaces
de lidiar de manera flexible con productos altamente personalizados alcanzando
una gran productividad y, por tanto, preparando dichas líneas para la llegada de
la llamada cuarta revolución industrial: la Industria 4.0.

Este capítulo presenta el contexto y la motivación de la tesis, el problema de la
investigación, los objetivos y preguntas de la investigación, el alcance y, finalmente,
resume la estructura del documento.

A.2.1 Contexto y motivación

La primera revolución industrial tuvo lugar durante los siglos XVIII y XIX en los
países de Occidente. Fue posible gracias a la máquina de vapor y la mecanización
del trabajo, y permitió un fuerte aumento de la producción de bienes manufac-
turados. En un paradigma de mercado simple, donde la demanda de productos
industriales superaba ampliamente a la oferta, había una fuerza impulsora estable
para el aumento de la producción [1, p.17–20].

La segunda revolución industrial ocurrió en diferentes regiones a lo largo de
finales del siglo XIX o principios del XX. Vino impulsada por avances tecnológicos
(como las piezas intercambiables, la electricidad o el proceso Bessemer para la
producción de acero, entre otros), e innovaciones organizativas como la gestión
científica de la producción y las cadenas de montaje. Apareció así la producción en
masa, que se convertiría en el paradigma dominante de los sistemas de producción
hasta la década de 1980. La producción en masa permitió la fabricación de grandes
volúmenes a bajo coste mediante la estandarización (es decir, reduciendo la variedad
de productos) para poder beneficiarse de las economías de escala y la especialización
de la mano de obra. Esto hizo que cada vez más personas pudieran permitirse
comprar productos industriales elaborados, lo que impulsó un ciclo virtuoso de
aumento del volumen de producción y una mayor reducción de los costes unitarios
[1, p.21–32].

En la segunda mitad del siglo XX, el desarrollo de la electrónica y los ordena-
dores trajo consigo la automatización y la robotización de la producción, así como
una velocidad de transmisión de la información mucho mayor. Los productos es-
tandarizados de bajo coste dejaron de ser suficientes: las tendencias de demanda
cambiaron y dieron paso al mercado volátil. Como resultado, el nuevo objetivo de
los sistemas de producción era tener una mayor variedad de productos y tiempos de
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entrega lo más cortos posible [2]. El Sistema de Producción Toyota (TPS, por sus
siglas en inglés [3]) surgió en Japón en las décadas de 1950 y 1960, y se convirtió
en la mejor forma de lograr dichos objetivos [4]. Su expansión global en la década
de 1980 bajo el nombre de Producción Lean [5] coincidió con la aparición de otro
desarrollo clave: los sistemas de fabricación flexible (Flexible Manufacturing Sys-
tems, FMS), que integran ordenadores, máquinas de control numérico y sistemas
automáticos para el manejo de materiales [6, p.158]. Tanto Lean como FMS, que
no son mutuamente excluyentes, tienen como objetivo la producción de volúmenes
intermedios de productos con un cierto grado de variedad. Este paradigma produc-
tivo, que abarca aproximadamente desde la década de 1980 hasta la actualidad,
se caracteriza por la volatilidad del mercado, la generalización de las tecnologías y
sistemas de la información (IT/IS), la producción Lean y los FSM. Se le ha deno-
minado Industria 3.0 [2, 7] para referirse a lo que se considera que será el próximo
paradigma de la producción: la cuarta revolución industrial, o Industria 4.0, hecha
posible por una serie de tecnologías digitales [8].

Para comprender mejor el impacto potencial que esta cuarta revolución indus-
trial podría tener en los sistemas de ensamblaje, es necesario ahondar en varios
conceptos básicos: el ensamblaje industrial, la automatización, la productividad y
la flexibilidad y la evolución de la demanda hacia la personalización y la individua-
lización en masa.

El montaje o ensamblaje es la parte de un proceso productivo donde se unen
varios componentes y subconjuntos hasta que el producto adquiere su forma final,
convirtiéndose en un producto acabado. El montaje industrial es, siguiendo la de-
finición de Nof et al., «la suma de todos los procesos mediante los cuales varios
componentes y subconjuntos se ensamblan para formar un conjunto diseñado geo-
métricamente o producto completo (como una máquina o un circuito electrónico)
ya sea mediante un proceso unidad a unidad, por lotes o continuo» [9, p.2]. El
sistema de ensamblaje utilizado es crítico, ya que determina en gran medida la
productividad, la calidad del producto y su coste final.

La cadena de montaje, introducida por Henry Ford, se considera el primer
sistema de ensamblaje moderno y demostró ser muy eficaz para producir grandes
cantidades de un único producto estándar. Las cadenas de montaje se pueden definir
como «una disposición de trabajadores, máquinas y equipos en los que el producto
a ensamblar pasa consecutivamente de una operación especializada a la siguiente
hasta que se completa. También se las denomina líneas de producción» [9, p.2].

En cuanto al agente que ejecuta el ensamblaje, «las operaciones de manipu-
lación pueden ser realizadas por robots, personas, o combinaciones de ambos» [6,
p.148]. En función del grado de automatización hay tres tipos básicos de ensam-
blaje:

Los sistemas de montaje se utilizan prácticamente en todos los tipos
de fabricación de bienes duraderos. Hay tres tipos básicos de sistemas
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de ensamblaje: (1) ensamblaje manual, llevado a cabo por operarios
humanos, generalmente con la ayuda de herramientas simples . . . (2)
sistemas de montaje que combinan operarios humanos y mecanismos
automatizados . . . (3) sistemas de montaje totalmente automatizados
para piezas producidas en serie, especialmente en condiciones peligrosas
para las personas [6, p.167].

Los sistemas automáticos e híbridos emplean robots industriales para llevar a
cabo partes, o todo, el proceso de ensamblaje, lo cual aumenta la productividad y
reduce los costes de mano de obra. Una de las tecnologías habilitadoras clave para
la cuarta revolución industrial es la robótica colaborativa, que presenta ventajas
significativas respecto a los robots de ensamblaje convencionales en términos de
seguridad, coste y facilidad de implementación y reconfiguración [10, 11]. Este
enfoque en la reconfigurabilidad de los sistemas automatizados está estrechamente
relacionado con la tradicional oposición entre productividad y flexibilidad.

La productividad, es decir, la eficiencia, la cantidad de recursos necesarios para
producir un determinado producto, no puede expresar por sí sola la capacidad real
de un sistema de producción para responder a la demanda del mercado y adaptarse
a los sucesivos cambios [12]. El creciente énfasis sobre la variedad y personalización
de los productos hace necesario que los sistemas de ensamblaje se diseñen y operen
teniendo en cuenta la flexibilidad [13]. Este enfoque, sin embargo, puede dificultar
el aprovechamiento de las ventajas de productividad resultantes de las economías
de escala y la especialización de los procesos. Los sistemas tradicionales de montaje
dedicados aprovechan los ordenadores y la maquinaria automatizada para lograr
costes de producción muy bajos en productos estándar, no personalizados. Requie-
ren, no obstante, grandes inversiones de capital y, por lo tanto, grandes volúmenes
de producción para ser rentables. Por su parte, los sistemas de ensamblaje total-
mente manuales siguen existiendo, a pesar de su baja productividad, debido a su
gran flexibilidad. Esto los hace viables para satisfacer la demanda de nichos de
mercado y productos especializados (Figura A.1).

Figura A.1: Dicotomía tradicional entre sistemas automatizados muy productivos, pero poco
flexibles, y cadenas de montaje manuales muy flexibles, pero menos productivas.

Ocupando un término medio entre ambos, los sistemas de ensamblaje flexibles
son capaces de integrar puestos de montaje manuales y automáticos para producir
cierta variedad de productos de manera eficiente, incluso en volúmenes de produc-
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ción medianos.

La flexibilidad de los sistemas de ensamblaje «puede verse como la capacidad
de un sistema para cambiar y asumir diferentes posiciones o estados en respuesta
a cambios en la demanda, incurriendo en pequeñas pérdidas de tiempo, esfuerzo,
coste o rendimiento» [14, p.262] (basado en [15]). De los diez tipos de flexibilidad
identificados por ElMaraghy et al. [14, p.263] (basado en Browne et al. [16] y Sethi
y Sethi [17]), esta tesis se centra en los siguientes cuatro aspectos:

• Flexibilidad del producto: «facilidad (en tiempo y coste) de incorporar nuevos
productos a un mix de productos existente. Contribuye a la agilidad».

• Flexibilidad de volumen: «la capacidad para variar el volumen de producción
dentro de la capacidad de producción máxima, manteniendo la rentabilidad».

• Flexibilidad de expansión: «facilidad (en tiempo y coste) de aumentar la
capacidad de producción máxima y/o los tipos de productos a producir, a
través de cambios físicos en el sistema».

• Flexibilidad de producción: «El rango de todos los tipos de componentes que
se pueden producir sin añadir grandes inversiones en equipos».

La creciente atención a la flexibilidad está estrechamente relacionada con la
evolución de las tendencias de demanda globales. A pesar de que tradicionalmente
existía una clara segmentación entre los bienes producidos en serie y los productos
fabricados por pedido (o bajo demanda), los mercados se han ido desplazando hacia
la personalización de artículos producidos en masa. Aunque esto no era económi-
camente viable en el pasado, los avances tecnológicos lo han hecho posible. En un
futuro cercano, la personalización en masa podría volverse no solo deseable, sino un
requisito a cumplir por cualquier empresa manufacturera que quiera seguir siendo
competitiva [2].

La personalización en masa (en inglés, mass customisation) es una tendencia
desde la década de 1980, caracterizándose por los cambios en la variedad y el
volumen demandado por cada referencia de producto. «En comparación con la
producción en masa (que alcanzó su punto álgido en 1955), la variedad de cada
producto en la personalización en masa es grande, y el volumen de producción de
cada variante del producto es relativamente pequeño» [6, p.6].

El cambio industrial de la producción en masa a la personalización en masa ya
fue pronosticado en 1987. La capacidad de producir productos personalizados que
cumplan con los requisitos de cada consumidor con costes de producción cercanos a
los de la fabricación en masa es el objetivo de la personalización en masa. Brindar la
oportunidad de tener un producto en el lugar, forma y momento que deseen, resuena
bien en los clientes. La cantidad de productos personalizados en masa aumenta
gradualmente, al igual que los servicios personalizados. Este tipo de paradigma
productivo se denomina individualización en masa (en inglés, mass personalisation)
[18, p.313].

La personalización e individualización en masa llevan a una situación de de-
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manda particularmente desafiante: gran variedad y bajo volumen de producción
(en inglés, high-mix low-volume) [19]. Este tipo de producción, también llamada en
serie corta y variada, se caracteriza por la demanda de una gran cantidad de artícu-
los, en pequeñas cantidades por artículo y con variaciones que no siguen patrones
estacionales, lo que hace que su pronóstico sea difícil e ineficiente.

Los tamaños de lote de producción cada vez más pequeños y los productos
individuales completamente personalizados enfatizan la necesidad de que los fabri-
cantes diseñen y utilicen los sistemas de producción, y las operaciones de ensam-
blaje en particular –ya que son la última parte de la cadena de producción–, con
el objetivo claro de ser capaces de enfrentarse a, y prosperar en, un contexto de
demanda para el que la flexibilidad es una característica clave. Para seguir siendo
competitivas en este contexto, las empresas manufactureras tendrán que aumentar
su productividad al tiempo que se vuelven más flexibles. Afortunadamente para
ellas, son numerosas las nuevas tecnologías digitales que se espera sean útiles para
lograrlo [8].

En las últimas décadas, los avances tecnológicos digitales han abierto nuevas
posibilidades para diversos sectores económicos. Los proveedores de servicios fueron
los primeros en beneficiarse de ellos. Más tarde, el gobierno alemán reconoció las
posibles ventajas de implementar tales soluciones en el sector manufacturero euro-
peo, y acuñó el término «Industria 4.0» [20] para conceptualizar la esperada cuarta
revolución industrial: un cambio en el paradigma de fabricación que aprovecharía
tecnologías digitales disruptivas, permitiendo a Alemania –y Europa– mantener
una posición de liderazgo industrial haciéndose más ágiles y eficientes y centrándo-
se en la fabricación avanzada y de alto valor añadido [21]. Otros países líderes en
fabricación, como Estados Unidos, China, Japón e India también han establecido
planes estratégicos similares que subrayan la importancia de aprovechar las nuevas
tecnologías digitales para impulsar sus industrias [22].

Figura A.2: Las tecnologías de la Industria 4.0 podrían ayudar a resolver la dicotomía entre
productividad y flexibilidad de las cadenas de montaje.

Industria 4.0, industria inteligente, fabricación inteligente o fábricas inteligen-
tes, entre otros [22], son términos utilizados para describir la misma visión: mayor
flexibilidad y automatización; flujos de datos e información entre procesos, funcio-
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nes y compañías; mejora de la calidad para lograr una producción sin defectos;
aprovechamiento del big data, las redes neuronales, el aprendizaje automático y
la inteligencia artificial, entre otras tecnologías, para maximizar la eficiencia y la
capacidad de reacción [23]. Sin embargo, el camino para materializar la cuarta
revolución industrial en las operaciones de ensamblaje –el Ensamblaje 4.0 [24],
representado en la Figura A.2– dista mucho de estar establecido. De hecho, para
aprovechar los potenciales beneficios de las tecnologías inteligentes sería necesario
desarrollar sistemas de ensamblaje con un nivel de excelencia operativa y madurez
Lean que rara vez se encuentra en la mayor parte de las industrias.

Como ilustra la Figura A.3, parece claro que la aplicación de nuevas tecno-
logías para digitalizar las operaciones de montaje solo puede causar una ventaja
disruptiva si el rendimiento operativo de todos los sistemas subyacentes –incluidos
elementos convencionales como la maquinaria, el hardware, las personas o las po-
líticas organizativas– tiene una base sólida. Como indican Rüttiman y Stöcki, «si
el sistema de fabricación está mal concebido, la digitalización sólo podrá optimizar
un mal diseño» [25].

Figura A.3: Interacción entre la digitalización de la fábrica y la producción Lean.
Figura: Buer et al. [26], CC BY 4.0.

Hasta la fecha, la búsqueda de metodologías eficaces para la implantación de
las tecnologías de la Industria 4.0 en las operaciones de montaje con una visión
sistémica –en oposición a los proyectos pequeños y aislados con efectos limitados
en la mejora de productividad– sigue siendo una cuestión pendiente. Sin embargo,
la recompensa de cubrir este vacío podría ser la materialización de sistemas verda-
deramente flexibles y productivos que puedan hacer frente, e incluso prosperar, en
los mercados más cambiantes y exigentes.

A.2.2 Finalidad, objetivos y cuestiones de la investigación

El objetivo central de esta tesis es comprender y definir cómo diseñar operaciones
de montaje en serie corta y variada para mejorar su flexibilidad y productividad.
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Para ello, se definieron tres objetivos de investigación principales, cada uno de los
cuales sienta las bases del siguiente:

1. Comprender el estado del arte de las operaciones de ensamblaje de la cuarta
revolución industrial.

• ¿Cómo se relacionan el ensamblaje y la personalización en masa, la pro-
ducción Lean y la Industria 4.0?

• ¿Cómo podrían las tecnologías de la Industria 4.0 mejorar la flexibilidad
y la productividad de las operaciones de montaje?

• ¿Cuál es el papel de los operarios en relación con las tecnologías digitales
de la Industria 4.0?

2. Desarrollar un método y las herramientas necesarias para caracterizar y eva-
luar el rendimiento de diferentes configuraciones de cadenas de montaje fle-
xible.

• ¿Cómo se puede evaluar el rendimiento de las operaciones de montaje
flexible semiautomatizado?

• ¿Qué combinación de parámetros de entrada, perturbaciones e indica-
dores clave del desempeño deben utilizarse para dicha evaluación?

• ¿Cuáles son los factores clave para el rendimiento de una línea de en-
samblaje multi-modelo para la producción en serie corta y variada?

3. Diseñar sistemas de montaje que aumenten su productividad en al menos
un 25 % cuando hacen frente a una demanda de gran variedad y bajo volu-
men, incorporando una combinación de puestos de trabajo automatizados y
manuales.

• ¿Cómo pueden configurarse las líneas de montaje semiautomáticas para
lograr importantes incrementos de productividad y a la vez mantener
una gran flexibilidad cuando producen en serie corta y variada?

• ¿Qué factores clave deben tenerse en cuenta a la hora de diseñar estas
líneas para que las iniciativas de digitalización puedan mejorar aún más
su rendimiento?

• ¿Qué tecnologías podrían aplicarse a este caso de estudio concreto?

A.2.3 Alcance

Esta tesis se estructura en tres etapas, cada una de las cuales se centra en un
objetivo de investigación, tal y como se muestra en la Figura A.4.

La primera etapa, Definición del problema, define y delimita el problema, per-
mitiendo comprender mejor las cadenas de montaje manuales y semiautomáticas.
También establece el marco conceptual sobre el que se construyen las etapas si-
guientes.

La segunda etapa, Herramientas de análisis, introduce, valida y verifica dos
herramientas de evaluación del rendimiento de las líneas de montaje flexibles, y las
utiliza en un estudio preliminar para identificar sus factores más críticos.
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En la tercera etapa, Mejora, se estudia el rendimiento de las cadenas de mon-
taje paralelas con operarios móviles, estableciendo una comparación con las líneas
tradicionales con operarios fijos. A continuación, esta etapa amplía los modelos de
simulación para estudiar el uso de milkrun para la logística interna de las cadenas
de montaje multiproducto como medio para hacer frente a las perturbaciones.

Figura A.4: Finalidad, objetivos, alcance y capítulos.
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Definición del problema

La primera etapa de esta tesis, Definición del problema, se deriva de la finalidad
general de esta investigación: comprender y definir cómo diseñar las operaciones
de montaje para mejorar la flexibilidad y la productividad bajo una demanda de
gran variedad y bajo volumen . En primer lugar, se investiga el estado del arte de
las operaciones de ensamblaje en relación con cinco áreas clave: las tendencias de
demanda de personalización e individualización en masa; las nuevas posibilidades
que brindan las tecnologías digitales de la Industria 4.0; los indicadores a utilizar
para evaluar el impacto de las nuevas tecnologías; la relación de la Industria 4.0 con
el paradigma de la producción Lean; y el papel de las personas en esta transfor-
mación. Metodológicamente, se emplea una revisión sistemática de la bibliografía
para identificar la falta de metodologías de implantación del Ensamblaje 4.0.

A partir de las principales conclusiones de la revisión bibliográfica, se plantea
un marco conceptual centrado en las personas que organiza las distintas capas que
intervienen en las operaciones de ensamblaje y subraya sus relaciones, revelando
qué tecnologías digitales de la Industria 4.0 podrían implementarse y qué capas del
modelo conceptual se verían afectadas. La implantación metódica de nuevas tec-
nologías digitales disruptivas para mejorar las operaciones de ensamblaje requiere
una evaluación cuidadosa de su impacto potencial en el rendimiento del sistema.
Esto permitiría que los proyectos de digitalización transformaran realmente el ren-
dimiento operativo de todo el sistema y evitaran obtener únicamente ganancias
parciales o menores.

Para sentar las bases de dicho análisis, se introducen las definiciones y con-
ceptos básicos de la evaluación del rendimiento de los sistemas de ensamblaje y se
presenta un caso de estudio industrial real, que se utilizará en las etapas siguien-
tes. En base al objetivo general de la investigación, el ámbito de dicha evaluación
del rendimiento se enfoca específicamente a los sistemas de montaje manuales y
semiautomáticos. Las métricas de rendimiento se centran en la medición de la pro-
ductividad y el plazo de entrega, mientras que la flexibilidad se evalúa mediante la
respuesta del sistema a las perturbaciones y a las exigentes condiciones impuestas
por producción en serie corta y variada. Productividad y flexibilidad contribuyen
conjuntamente a introducir el paradigma de la personalización en masa en el ámbi-
to del análisis. Así, este paradigma subraya la importancia de dos elementos clave:
los cambios de modelo de producto y la variabilidad asociada a los procesos es-
tocásticos, que se integrarán posteriormente en las herramientas de evaluación del
rendimiento.

Herramientas de análisis

La segunda etapa, Herramientas de análisis, está directamente relacionada con
el segundo objetivo de investigación de esta tesis: desarrollar una metodología y
las herramientas para caracterizar y evaluar las operaciones de montaje para la
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producción en serie corta y variada. Para ello, se desarrollan dos herramientas de
análisis. En primer lugar, se presenta un modelo matemático simplificado. A pesar
de sus limitaciones, relacionadas con la dificultad para integrar variables estocás-
ticas, el bajo coste computacional de este modelo paramétrico permite realizar
estimaciones preliminares con rapidez. Se emplea para encontrar los factores más
importantes que afectan al rendimiento de los sistemas de ensamblaje del caso de
estudio industrial, reduciendo así el número de variables a considerar. Para superar
las limitaciones del modelo matemático, se introducen a continuación modelos de si-
mulación por eventos discretos. Para garantizar que esta metodología de modelado
es adecuada para llevar a cabo análisis posteriores y para respaldar las conclusiones
del análisis preliminar, ambos modelos (paramétrico y de simulación) se validan y
verifican usando datos empíricos procedentes del caso de estudio industrial. Por lo
tanto, esta etapa proporciona dos herramientas de análisis adecuadas para evaluar
el rendimiento de las cadenas de montaje en serie corta y variada, incluido el impac-
to potencial de las tecnologías de la Industria 4.0, puesto que el marco presentado
en la etapa anterior ya identificaba dónde se situaría cada tecnología digital y qué
elementos del sistema se verían afectados.

Mejora

Una vez desarrolladas y probadas las herramientas de análisis, la tercera fase, Me-
jora, aborda el último objetivo clave de la investigación: diseñar sistemas de en-
samblaje que aumenten su productividad en al menos un 25% en producción de
serie corta y variada mediante la introducción de una combinación de estaciones de
montaje automáticas y manuales. En base a los resultados del análisis preliminar,
se presentan líneas de montaje paralelas con operarios a pie.

Para comprobar los posibles beneficios de esta configuración de las cadenas
de montaje, especialmente en términos de la dupla productividad-flexibilidad, se
realiza una comparación entre líneas semiautomatizadas de operario fijo y operario
móvil, evaluando su rendimiento frente al de una configuración de línea manual
convencional de operario fijo. Para ampliar el alcance del análisis a otras capas
del modelo conceptual, se lleva a cabo otra simulación para analizar el uso de una
herramienta Lean de probada eficacia para alimentar de componentes las líneas de
montaje multimodelo: los trenes milkrun. El objetivo de este estudio es evaluar si
la logística interna añadiría restricciones al rendimiento de las cadenas paralelas
de ensamblaje multimodelo, especialmente cuando se enfrentan a la producción en
serie corta y variada, y están sujetas a perturbaciones de diferentes fuentes.

A.2.4 Estructura del documento

De acuerdo con el esquema presentado, esta tesis se organiza de la siguiente manera:

En el Capítulo 1 se han explicado los antecedentes y la motivación de la tesis.
Se han detallado los objetivos, las metas y las preguntas de la investigación, y se
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ha esbozado el alcance de la tesis.

El Capítulo 2 presenta el estado de la cuestión a través de una revisión biblio-
gráfica sistemática para comprender la relación entre la productividad, la flexibili-
dad y las nuevas tecnologías digitales para operaciones de ensamblaje. En concreto,
la revisión examina cuatro aspectos estrechamente relacionados: el ensamblaje pa-
ra la personalización en masa; la Industria 4.0 y la evaluación del rendimiento; la
producción Lean como punto de partida para las fábricas inteligentes; y las impli-
caciones de la Industria 4.0 para las personas que trabajan en las operaciones de
ensamblaje.

El Capítulo 3 establece el marco teórico de la investigación. En primer lugar,
se propone un modelo conceptual de Ensamblaje 4.0 centrado en el operario. Di-
cho modelo ordena los componentes del sistema de operaciones de montaje junto
con sus interacciones entre sí y con las nuevas tecnologías de la Industria 4.0. A
continuación, se explican las definiciones y conceptos básicos de la evaluación del
rendimiento de los sistemas de ensamblaje flexible. Por último, este capítulo pre-
senta el caso de estudio industrial de The Cooktop Company, que se utilizará en
los capítulos sucesivos.

En el Capítulo 4 se presenta un modelo matemático analítico centrado en los
cambios de serie de las cadenas de montaje. A continuación, se emplea el modelo
junto con técnicas de diseño de experimentos para analizar los factores más críticos
para el rendimiento de los sistemas de montaje flexible. Por último, se valida uno
de los supuestos clave del modelo.

En el Capítulo 5 se desarrollan modelos de simulación por eventos discretos
para superar las limitaciones de la herramienta analítica del capítulo anterior. En
este capítulo se exponen las principales características de los diferentes modelos de
simulación utilizados en la tesis, el método empleado para la obtención de datos de
The Cooktop Company, y la validación y verificación de los modelos frente a los
datos empíricos del caso de estudio industrial.

En el Capítulo 6, los resultados previos sobre las cadenas de montaje flexibles y
las herramientas de simulación ya desarrolladas se utilizan para estudiar las líneas
de montaje paralelas con operarios móviles, que presentan varias ventajas clave
con respecto a las tradicionales cadenas semiautomáticas. Este capítulo incluye una
revisión bibliográfica específica y exhaustiva sobre las cadenas de montaje paralelas
y con operarios móviles, seguida de los supuestos de modelado y la descripción del
modelo de simulación. Se emplean seis escenarios para explorar el efecto de diversas
condiciones de demanda en un contexto de personalización en masa, así como el
grado de automatización introducido en las diferentes configuraciones de línea.
Cuatro escenarios de simulación adicionales estudian distintos elementos para el
ajuste fino del diseño de las líneas paralelas de operarios móviles.

El Capítulo 7 amplía el alcance del análisis al estudiar la logística interna de
las cadenas de montaje mediante trenes milkrun. Este capítulo también incluye una
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revisión bibliográfica específica del uso de milkrun para logística interna. Se detalla
el modelado del milkrun y se utilizan cuatro escenarios de simulación para analizar
el efecto del mix de productos y de tres fuentes distintas de perturbaciones sobre
los indicadores clave del desempeño.

Por último, el Capítulo 8 resume las principales conclusiones y aportaciones
de la tesis. También analiza las principales líneas para continuar la investigación.

A.3 Resumen, conclusiones y perspectivas futuras

Este capítulo concluirá la tesis con un breve resumen de los principales resultados
de la investigación y de cómo contribuyen a los objetivos de la misma; así como
las limitaciones de este estudio y una perspectiva de posibles vías de investigación
futura.

A.3.1 Resumen de las conclusiones principales

El objetivo general de investigación de esta tesis era «comprender y definir có-
mo diseñar sistemas de ensamblaje semiautomáticos para mejorar la flexibilidad
y la productividad en serie corta y variada». Para orientar la investigación, se
plantearon tres objetivos de investigación principales, que se han ido respondiendo
secuencialmente a lo largo de los capítulos de esta tesis.

(1) El primer objetivo de la investigación era «comprender el estado del arte
del ensamblaje de la Industria 4.0». Para ello, el Capítulo 2 expuso una revisión
bibliográfica sistemática centrada en seis conceptos clave: el ensamblaje, la pro-
ducción Lean, los indicadores clave del desempeño (KPIs), la personalización en
masa, la Industria 4.0 y los operarios. Las principales conclusiones de la revisión
fueron que faltan metodologías para implantar las tecnologías de la Industria 4.0
de modo que aporten todos sus beneficios potenciales. También se detectó que las
tendencias de demanda de personalización y customización en masa hacen que los
sistemas de ensamblaje sean cada vez más complejos. Para abordar esta cuestión,
sería necesaria una visión holística de los sistemas, junto con el uso de múltiples
medidas del rendimiento que permitan obtener una perspectiva desde diferentes
ángulos de las implicaciones de las tecnologías de la Industria 4.0. Por último, en
el Capítulo 3 se presentó un marco conceptual centrado en la persona, que permite
clasificar claramente las tecnologías digitales de la Industria 4.0 en función de su
relación con los operarios de montaje.

(2) El segundo objetivo de la investigación era «desarrollar una metodología y
las herramientas para la evaluación del rendimiento de los sistemas de ensamblaje
flexible». En primer lugar, el Capítulo 3 introdujo las definiciones generales y el
caso de estudio industrial que se utilizaría en el resto de la tesis. En el Capítulo 4, se
presentó un modelo matemático simple pero eficaz. Este modelo, que se centra en el
cálculo de las pérdidas de productividad debidas al cambio de serie para estimar el
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rendimiento de las líneas de montaje multimodelo, se empleó a continuación junto
con técnicas de diseño de experimentos para identificar los factores más críticos
que afectan a estas líneas de montaje. Para evaluar el rendimiento de las líneas de
montaje, se utilizaron varios KPIs: productividad de los operarios, productividad
de la línea y lead time, entre otros, lo que permitió conocer las relaciones entre ellos
en distintas circunstancias.

De cara a responder de forma específica a la pregunta de investigación «¿Cuá-
les son los factores clave del rendimiento de una cadena de montaje multimodelo?»,
los resultados mostraron que el número de puestos y el tamaño de lote son funda-
mentales para la productividad de los operarios y el lead time. Este último es una
medida importante de la capacidad del sistema para responder rápidamente a los
pedidos de los clientes. Los resultados también subrayaron el carácter contrapuesto
de estos dos indicadores, de tal forma que no pueden optimizarse simultáneamente.

Para superar las limitaciones del modelo matemático –a saber, su falta de
parámetros estocásticos y la dificultad de integrar distintas formas de interacción
operador-estación de trabajo–, en el Capítulo 5 se presentó una metodología de mo-
delado para la simulación por eventos discretos y la verificación de dichos modelos
con datos empíricos del caso de estudio industrial.

(3) El tercer objetivo de la investigación era «encontrar configuraciones de
líneas de montaje que permitan un aumento de la productividad de al menos un
25 % gracias a la introducción de la automatización parcial». Las líneas de mon-
taje con operarios móviles pueden aprovechar las ventajas de productividad de las
cadenas de montaje con un menor número de operarios, que son consecuencia de
la reducción de las pérdidas de tiempo por el equilibrado de línea y los cambios
de serie. La configuración de línea con operarios móviles puede evitar las desven-
tajas derivadas del empleo de líneas más cortas, como una menor tasa máxima de
producción, compartiendo las estaciones de montaje automático entre dos líneas
paralelas.

Así pues, el Capítulo 6 presenta un estudio de las líneas de montaje semiauto-
máticas paralelas con operarios móviles (en inglés, parallel walking worker assembly
lines, PWWAL) en comparación con las líneas convencionales de operarios fijos (fi-
xed worker assembly lines, FWAL). La metodología de modelado desarrollada an-
teriormente se utilizó en este capítulo para analizar seis escenarios de simulación de
condiciones de demanda cada vez más desafiantes, que se expresan en términos de
tamaños de lote progresivamente más pequeños y cambios de familia de productos
cada vez más frecuentes, necesarios para producir una gran variedad de artículos
en pequeñas cantidades.

Los resultados de la simulación mostraron que las PWWAL pueden superar
a las FWAL en términos de productividad en todos los escenarios de demanda,
alcanzando el objetivo de incrementar la productividad en un 25% o más. Una
ventaja clave de las PWWAL es que pueden reducir sin problemas el número de
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operarios sin afectar negativamente al equilibrado de la línea, lo que permite una
producción eficiente para bajo volumen. Las PWWAL también presentan ventajas
sobre las FWAL en cuanto a su capacidad para incorporar distintos grados de
automatización sin reducir su productividad, aunque la tasa de producción máxima
de la línea se vea limitada. Por otra parte, las PWWAL presentan un lead time
significativamente superior y requieren una mayor superficie en planta.

Por último, el Capítulo 7 amplió el alcance de los estudios anteriores incorpo-
rando capas externas del modelo conceptual centrado en el operario. En concreto,
se analizó la función de la logística interna para comprender mejor las implicaciones
del uso de trenes milkrun para alimentar cadenas de montaje paralelas multimo-
delo bajo el efecto de perturbaciones severas. Los resultados de las simulaciones
mostraron que los milkrun pueden ser una excelente forma de proteger las cadenas
de montaje de las perturbaciones originadas en los procesos aguas arriba.

A.3.2 Contribuciones

En esta tesis se han realizado varias contribuciones, que se han ido enumerado al
final de cada capítulo, y que se resumen aquí agrupadas por etapas.

Respecto a la etapa de Definición del problema:

(1) La revisión sistemática de la literatura pone de manifiesto la falta de meto-
dologías específicas para la implementación de las tecnologías digitales de la
Industria 4.0 en los sistemas de ensamblaje. La bibliografía clave sobre el tema
muestra que las tendencias de demanda de personalización e individualiza-
ción en masa implican una mayor complejidad en los sistemas de ensamblaje.
Dichos sistemas incluyen muchas capas diferentes que deben abordarse de for-
ma holística. Para obtener una perspectiva desde múltiples puntos de vista de
cómo las distintas capas se afectan mutuamente, han de utilizarse conjunta-
mente varios indicadores del desempeño. La revisión bibliográfica sistemática
fue publicada por la revista Applied Sciences [27].

(2) Esta tesis ha desarrollado un marco conceptual centrado en la persona para
las operaciones de montaje manual en el contexto de la Industria 4.0. So-
bre la base de este marco, se ha establecido una clasificación clara entre las
tecnologías digitales 4.0 en función de su relación con los operarios de mon-
taje. Las tecnologías de hardware (por ejemplo, los robots colaborativos o la
realidad aumentada/mixta) se encuentran en contacto directo con los opera-
rios, a diferencia de las tecnologías de software (por ejemplo, el big data, la
inteligencia artificial o la computación en la nube), que son empleadas por
departamentos que apoyan al ensamblaje, y que solo afectan a los operarios
de montaje de forma indirecta. El modelo conceptual fue publicado como
artículo de congreso en la revista Procedia CIRP [256].

En relación con la etapa de Desarrollo de la herramienta:
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(3) En esta tesis se propone un modelo analítico sencillo para la evaluación del
rendimiento de las cadenas de montaje multimodelo, de fácil implementación
y con capacidad suficiente para realizar análisis preliminares. Los resulta-
dos obtenidos con técnicas de diseño de experimentos muestran que los dos
factores más críticos para el rendimiento operativo de las líneas de montaje
multimodelo son el número de puestos de montaje y el tamaño de lote. Te-
niendo en cuenta las tendencias de la demanda de personalización en masa,
reducir aún más el tamaño de los lotes de producción genera (y generará)
ventajas estratégicas a quienes sean capaces de hacerlo sin dañar la producti-
vidad. Esto llevó a la conclusión de que estudiar el diseño de líneas de montaje
flexibles con un número reducido de estaciones sería una forma de mejorar
la productividad y mitigar el efecto negativo de los cambios de serie frecuen-
tes. Dado que la reducción del número de puestos de trabajo implica una
reducción de la tasa de producción máxima de la línea, una forma obvia de
mantener la flexibilidad en cuanto a capacidad de producción sería plantear
cadenas de montaje paralelas más cortas. Un estudio más detallado sobre la
influencia de la relación entre el tiempo total de cambio de serie y el número
de puestos permitió concluir que los resultados del análisis anterior no se ven
afectados por esta hipótesis de modelado. La descripción del modelo mate-
mático y el diseño de experimentos de los factores críticos para el rendimiento
de las líneas de montaje manual se publicaron como artículo de congreso en
la revista IOP Conference Series: Materials Science and Engineering [274].

(4) Se desarrollaron varios modelos de simulación de eventos discretos para ana-
lizar operaciones de ensamblaje flexible, enfocadas a un modelado realista de
los cambios de modelo, de tal manera que fueran adecuados para estudiar el
ensamblaje en serie corta y variada. Posteriormente se verificaron y validaron
dichos modelos utilizando el modelo paramétrico ya desarrollado previamente
y un caso de estudio industrial de un fabricante internacional de electrodo-
mésticos. Este trabajo fue publicado como artículo de congreso en la revista
Procedia CIRP [279].

Finalmente, respecto a la etapa de Mejora:

(5) Se ha presentado un diseño de líneas de ensamblaje multimodelo paralelas
con operarios móviles. Se estima que este diseño de línea de montaje puede
lograr un aumento significativo de la productividad, al tiempo que mantiene
una alta flexibilidad en términos de tasa de producción, lo que permite una
rápida adaptación a las variaciones de la demanda. Se empleó un extenso
conjunto de KPIs operacionales para estimar el rendimiento de las líneas de
montaje fijas y con operarios móviles desde distintos puntos de vista. Bajo
cualesquiera condiciones de demanda, las líneas paralelas con operarios móvi-
les presentan mayor productividad y mayor tasa de producción que las líneas
tradicionales con operarios fijos. Estos resultados resaltan la contraposición
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entre productividad y lead time que experimentan las líneas paralelas de ope-
rarios móviles. Los resultados también mostraron que un aumento del grado
de automatización permite incrementar la productividad de la línea en todas
las condiciones de demanda, pero solo si el número de trabajadores puede
reducirse sin problemas, lo que ocurre en las configuraciones de operarios
móviles, pero no en las líneas de operarios fijos. Sin embargo, esto se consigue
a costa de reducir la tasa de producción de la línea y aumentar el lead time.
Este concepto de línea de montaje y los resultados del análisis se publicaron
como artículo de investigación en la revista Processes [283].

(6) Esta tesis aborda un vacío en la literatura investigando la logística interna
para el ensamblaje multimodelo bajo perturbaciones estocásticas. Se determi-
nó que el desempeño de la logística interna es muy sensible a la variabilidad
del tiempo de proceso de la cadena de montaje, especialmente en lo relativo
al stock de componentes. Los resultados de la simulación mostraron que el
empleo de milkrun para la logística interna es una forma de proteger las líneas
de ensamblaje multimodelo de las perturbaciones aguas arriba. Este análisis
se publicó como artículo de investigación en la revista Machines [300].

A.3.3 Líneas futuras de investigación

La investigación futura en base a los resultados obtenidos en esta tesis puede estruc-
turarse en torno a tres líneas principales encaminadas hacia la implementación de
tecnologías digitales de la Industria 4.0 para mejorar las operaciones de ensamblaje
para serie corta y variada: las metodologías de análisis, las líneas de ensamblaje
paralelas de operarios móviles y el uso de sistemas milkrun para la logística interna.

Metodologías de análisis

Los modelos de simulación ya desarrollados podrían ampliarse, siguiendo la misma
metodología de modelado, para incluir departamentos anejos que quedaron fuera
del alcance de esta tesis. Por ejemplo, un punto de partida interesante para la
inclusión de la cuarta capa del modelo conceptual centrado en el operario sería
la inclusión de problemas de mantenimiento (como las averías en los puestos de
montaje automáticos, o las microparadas) o diferentes políticas de retrabajo de
unidades defectuosas (verbigracia, en línea o fuera de línea, realizado por los propios
operarios de montaje o por los jefes de equipo).

El enfoque de modelado de simulación desarrollado aquí podría utilizarse para
implementar un gemelo digital, una de las tecnologías habilitadoras clave de la
Industria 4.0. Junto con el internet de las cosas, sería posible desplegar sensores en
las cadenas de montaje para recopilar datos directamente del sistema real. En base
a esos datos, el análisis de escenarios a corto y medio plazo mediante simulación
permitiría detectar con antelación los riesgos para el rendimiento, como los cuellos
de botella transitorios causados por un mix de demanda muy variable.
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Otra vía de investigación sería el uso de la simulación junto con otras he-
rramientas, como la programación mixta-entera o técnicas de programación de la
producción, que permitirían optimizar la disposición en planta de las cadenas de
montaje.

Líneas de ensamblaje paralelas con operarios móviles

Tres áreas destacan de cara a proseguir la investigación sobre las líneas semiauto-
máticas paralelas de operarios móviles (PWWAL). En primer lugar, el estudio de
las PWWAL mediante herramientas de simulación se beneficiaría de utilizar más
casos de estudio, ya que algunos de los análisis ya realizados estaban limitados por
las particularidades del caso industrial aquí considerado. Se podría profundizar en
la investigación estudiando aspectos como la disposición en planta de la cadena de
montaje, los efectos del número de estaciones automáticas y la formación de los
operarios, por citar solo algunos. El diseño en detalle de los puestos de trabajo de
los operarios podría ser otra cuestión de interés, especialmente en lo que respecta
a los riesgos ergonómicos. Otras vías interesantes para investigaciones futuras son
otras fuentes de perturbaciones (el modelo actual tiene en cuenta la variabilidad
de los tiempos de montaje y de cambio de serie) como las averías estocásticas o los
distintos tipos de problemas de calidad.

En segundo lugar, podría estudiarse la incorporación de tecnologías de la In-
dustria 4.0, como el uso de robots colaborativos para tareas de ensamblaje o control
de calidad, o para prestar apoyo durante los cambios de serie. El apoyo cognitivo al
operario, proporcionado por la realidad aumentada/mixta y los sistemas ciberfísi-
cos, podría ser beneficioso para ayudar a superar los mayores requisitos en términos
de formación de operarios humanos que precisan las líneas de operarios móviles en
comparación con las de operarios fijos.

Por último, la implementación industrial de las cadenas semiautomáticas para-
lelas de operarios móviles permitiría verificar los resultados de simulación obtenidos
en esta tesis y detectar problemas y oportunidades adicionales de esta tipología de
línea de ensamblaje para hacer frente a la producción en serie corta y variada.

Milkrun para logística interna

Respecto a la utilización de los trenes milkrun para la logística interna, disponer de
numerosos casos de estudio permitiría una vez más evaluar en profundidad algunas
de las cuestiones ya investigadas. Por ejemplo, el efecto del tipo de cadena de
montaje (modelo único, modelo mixto o multimodelo) en la utilización del milkrun,
que depende en gran medida de la lista de materiales de los productos y del número
de piezas por caja de los componentes que se presentan en las cadenas de montaje.

La ampliación del alcance de modelos de simulación del milkrun podría hacerse
en dos direcciones. El sistema podría ampliarse para incluir más detalles de las
operaciones en almacén interno de la planta y podrían incluirse más trenes milkrun
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que presten servicio a otras cadenas de montaje. De este modo, sería posible analizar
los posibles conflictos de recursos causados por las perturbaciones estocásticas, que
podrían derivar en problemas como embotellamientos de los trenes milkrun o la
saturación de los operarios del almacén. El modelo de simulación también podría
ampliarse incluyendo consideraciones físicas, como el peso y las dimensiones de las
cajas, el número de vagones del tren y su volumen disponible. Este nivel de detalle
permitiría una evaluación más precisa de la carga de trabajo de los operarios del
milkrun.

Por último, podría explorarse la digitalización de los sistemas milkrun. En
este sentido, la inteligencia artificial, el internet de las cosas y los vehículos de
guiado automático (AGV) podrían presentar sinergias. Por ejemplo, se podrían
utilizar algoritmos de inteligencia artificial junto con modelos de simulación para
optimizar la carga de los trenes milkrun gracias a datos recogidos en tiempo real
en los propios puestos de la cadena de montaje.
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Abstract: In a demand context of mass customization, shifting towards the mass personalization
of products, assembly operations face the trade-off between highly productive automated systems
and flexible manual operators. Novel digital technologies—conceptualized as Industry 4.0—suggest
the possibility of simultaneously achieving superior productivity and flexibility. This article aims
to address how Industry 4.0 technologies could improve the productivity, flexibility and quality of
assembly operations. A systematic literature review was carried out, including 234 peer-reviewed
articles from 2010–2020. As a result, the analysis was structured addressing four sets of research
questions regarding (1) assembly for mass customization; (2) Industry 4.0 and performance evaluation;
(3) Lean production as a starting point for smart factories, and (4) the implications of Industry 4.0
for people in assembly operations. It was found that mass customization brings great complexity
that needs to be addressed at different levels from a holistic point of view; that Industry 4.0 offers
powerful tools to achieve superior productivity and flexibility in assembly; that Lean is a great starting
point for implementing such changes; and that people need to be considered central to Assembly 4.0.
Developing methodologies for implementing Industry 4.0 to achieve specific business goals remains
an open research topic.

Keywords: assembly; lean; Industry 4.0; human-centered; operator 4.0

1. Introduction

The current situation of assembly operations is characterized by an increasingly varied
demand (mass customization) while the production faces a trade-off between the superior
productivity of automated assembly systems and the absolute flexibility and adaptability of manual
assembly. Therefore, high-volume production of discrete goods received heavy investments for
automation, while low volume, made-to-order or engineer-to-order products were typically assembled
manually [1,2]. In this context, Lean production (a generalization of the Toyota Production System)
expanded from its origin—automotive—to many other sectors and was adapted as necessary to
the particularities of each industry or company [3]. Lean production typically focuses on value as
perceived from the customer’s point of view. Thus it considers that the flexibility to quickly adapt
to market demand is critical. For Lean, rigid automation can be seen as a hindrance rather than an
advantage, and seeks to incorporate the human factor to automation: jidoka, or “automation with a
human touch” [4].

The term Industry 4.0, initially adopted by a German strategic program [5], is used nowadays
to express the relationship between different elements of the current manufacturing sector and the
new digital technologies. These Key Enabling Technologies are, according to [6]: Big data and
analytics, Autonomous robots, Simulation, Horizontal and vertical system integration, the Industrial
Internet of Things (IoT), Cybersecurity, The cloud, Additive manufacturing, and Augmented Reality.
Recent research on Industry 4.0 tends to focus on the possibilities brought by a certain new digital
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technology or develops a framework to understand what would be the effect of incorporating such
new technologies [7]. The arrival of the new digital technologies could address the aforementioned
dichotomy of highly productive yet rigid automation vs. flexible but less-productive manual assembly.
The quickly developing fields of human–robot collaboration, virtual/augmented reality and Automated
quality control, to cite some examples, show promise in bringing forward actually flexible and adaptable
automation that has the best of both worlds.

Scarcely explored is the development of implementation methodologies that bridge Industry 4.0
conceptual frameworks with the current state of industrial environments and the process to successfully
deploy new digital technologies that bring the expected returns of investment. Additionally, if the
Lean production approach and its techniques are also related to this implementation, the concept
of Lean 4.0 could be used, as shown in the literature [8]. Since Lean production and Industry 4.0
certainly have some commonalities [9], Lean could prove useful in providing a starting point for the
implementation of Industry 4.0 technologies that improve assembly operations in a mass customization
demand context.

In order to assess the impact of any changes, careful evaluation systems are needed to ensure that
technology investments are implemented to solve the problems and address business goals, and not
just because they are available or they bring some cosmetic advantage.

The 4th Industrial Revolution is expected to transform the role of the people, but to what extent
will assembly operators be affected—are humans to be replaced by machines or empowered by
new technology?

The issue that this literature review aims to address is: How could Industry 4.0 technologies improve
the flexibility, productivity and quality of assembly operations? To look into it, we aim to answer the
following questions:

1. What are the characteristics and implications of mass customization for assembly operations?
2. What new Industry 4.0 digital technologies are relevant to assembly operations?How to make the

most out of their potential, and how to measure the improvement?
3. Is Lean production the best starting ground for implementing Industry 4.0 assembly operations?
4. How would Industry 4.0 affect people in assembly? How to support people transitioning to

Assembly 4.0?

To answer these questions, a systematic literature review was carried out. From these four sets
of questions, six key concepts are extracted, as shown in Figure 1: The scope of this article is limited
to assembly operations, particularly focusing on mass customization demand. Neither fully automated
systems nor manual assembly deal comfortably with mass customization demand since one lacks
flexibility and the other’s productivity falls short. Industry 4.0 aims to address this gap by providing
superior connectivity between machines and people. Lean production may serve as a foundation for
Assembly 4.0, transversally providing a framework to analyze and conceptualize the new role of
human operators. Finally, to evaluate the efficiency of assembly systems, Key Performance Indicators are
commonly used.

This article is structured in the following manner: Section 2—Materials and Methods—describes
the methodology used for the review, which focuses on the six key concepts related to the issue
being addressed. This section also includes a brief bibliometric analysis of the references used for the
analysis. Section 3—Results—includes an analysis of literature, grouped into four main subsections:
(3.1) Assembly operations, (3.2) Industry 4.0, (3.3) Lean, and (3.4) People. Each subsection focuses
on one of the questions that this article aims to answer. Section 4—Discussion—gathers the main
conclusions found in the previous analysis and addresses the main issue stated before.



Appl. Sci. 2020, 10, 8555 3 of 37Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 41 

 

Figure 1. Key concepts used for the systematic literature review. 

This article is structured in the following manner: Section 2—Materials and Methods—describes 

the methodology used for the review, which focuses on the six key concepts related to the issue being 

addressed. This section also includes a brief bibliometric analysis of the references used for the 

analysis. Section 3—Results—includes an analysis of literature, grouped into four main subsections: 

(3.1) Assembly operations, (3.2) Industry 4.0, (3.3) Lean, and (3.4) People. Each subsection focuses on 

one of the questions that this article aims to answer. Section 4—Discussion—gathers the main 

conclusions found in the previous analysis and addresses the main issue stated before. 

2. Materials and Methods 

In order to address the issue introduced in the previous section and to answer the 

aforementioned questions, a systematic literature review was conducted. This section firstly 

describes the methodology employed in such a review, and secondly, offers a brief bibliometric 

analysis of the results. 

The literature review was carried out in four stages—see Figure 2: database search, screening, 

eligibility and literature analysis. 

Figure 1. Key concepts used for the systematic literature review.

2. Materials and Methods

In order to address the issue introduced in the previous section and to answer the aforementioned
questions, a systematic literature review was conducted. This section firstly describes the methodology
employed in such a review, and secondly, offers a brief bibliometric analysis of the results.

The literature review was carried out in four stages—see Figure 2: database search, screening,
eligibility and literature analysis.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 41 

Records identified through 
database searching

(n = 1111)

Additional records identified 
through other sources

(n = 0)

Records after duplicates removed
(n = 1026)

Records screened
(n = 1026)

Records excluded
(n = 741)

Full-text articles reviewed
(n = 285)

Full-text articles excluded, 
with reasons

(n = 51)

Articles included in analysis
(n = 234)

Sc
re

en
in

g
El

ig
ib

ili
ty

A
n

al
ys

is
D

at
ab

as
e 

se
ar

ch

 

Figure 2. Search process and results, adapted from PRISMA [10]. 

The databases used for the initial stage were SCOPUS (Elsevier) and Web of Science, and only 

included relevant publications belonging to the following fields: Manufacturing engineering, 

Industrial engineering, Generalist engineering, Operations and management science. Since the topic 

under study is the conjunction of several broad subjects, we decided to conduct a systematic literature 

review that specifically targets their intersections. The six key concepts that were used are Assembly, 

Mass customization, Key Performance Indicator (KPI), Lean manufacturing, Industry 4.0 and 

Operator. These concepts were chosen for the search because they are the key ideas in the posed 

research questions–“Key Performance Indicators” being used for measuring improvement. The 

following keywords were used to perform the database search: (1) Lean: Lean manufacturing, Lean 

production; (2) Mass customization: mass customization, mass customization; (3) Industry 4.0: Industry 

4.0, Industrie 4.0, smart factories; (4) KPI: “KPI”, Key Performance Indicator; (5) Assembly: assembly; (6) 

Operator: operator, people, person. The keywords were used for Title, Author Keyword and Keyword 

Plus (in WOS), except for KPI, which was also searched for in the Abstract field. From these six key 

concepts, 15 search groups were defined by intersecting each possible combination of two concepts, 

as shown in Table 1. Duplicates were removed at this point, resulting in 1026 publications identified. 

Table 1. Search groups created by the intersection of each pair of key concepts and number of 

publications found. 

Search Group 
Publications 

WOS 

Publications 

SCOPUS 

Publications Identified after 

Duplicates Removed 

Assembly and mass 

customization 
58 52 97 

Assembly and KPI 20 19 33 

Assembly and Lean 81 106 168 

Assembly and Industry 

4.0 
47 10 55 

Assembly and operator 83 196 268 

Figure 2. Search process and results, adapted from PRISMA [10].



Appl. Sci. 2020, 10, 8555 4 of 37

The databases used for the initial stage were SCOPUS (Elsevier) and Web of Science, and only
included relevant publications belonging to the following fields: Manufacturing engineering, Industrial
engineering, Generalist engineering, Operations and management science. Since the topic under
study is the conjunction of several broad subjects, we decided to conduct a systematic literature
review that specifically targets their intersections. The six key concepts that were used are Assembly,
Mass customization, Key Performance Indicator (KPI), Lean manufacturing, Industry 4.0 and Operator.
These concepts were chosen for the search because they are the key ideas in the posed research
questions–“Key Performance Indicators” being used for measuring improvement. The following
keywords were used to perform the database search: (1) Lean: Lean manufacturing, Lean production;
(2) Mass customization: mass customization, mass customization; (3) Industry 4.0: Industry 4.0, Industrie
4.0, smart factories; (4) KPI: “KPI”, Key Performance Indicator; (5) Assembly: assembly; (6) Operator:
operator, people, person. The keywords were used for Title, Author Keyword and Keyword Plus (in WOS),
except for KPI, which was also searched for in the Abstract field. From these six key concepts, 15 search
groups were defined by intersecting each possible combination of two concepts, as shown in Table 1.
Duplicates were removed at this point, resulting in 1026 publications identified.

Table 1. Search groups created by the intersection of each pair of key concepts and number of
publications found.

Search Group Publications WOS Publications SCOPUS Publications Identified
after Duplicates Removed

Assembly and mass
customization 58 52 97

Assembly and KPI 20 19 33
Assembly and Lean 81 106 168
Assembly and Industry 4.0 47 10 55
Assembly and operator 83 196 268
Industry 4.0 and Lean 48 8 55
Industry 4.0 and operator 33 16 45
Industry 4.0 and mass
customization 17 2 19

Industry 4.0 and KPI 11 2 12
Lean and mass
customization 14 19 32

Lean and KPI 31 58 74
Lean and operator 10 33 40
Operator and mass Mass
Customisation 4 15 15

Operator and KPI 13 98 108
Mass customization and KPI 4 3 5

The publications resulting from this search were then screened—based on title, abstract, publication
and year—to assess which of them met the inclusion and exclusion criteria shown in Table 2, resulting
in 741 records being excluded and 285 articles being included.

Table 2. Eligibility and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Peer-reviewed publications Book chapters

Recent: published in 2010 or later Regarding construction, continuous production (e.g., petrochemical),
energy efficiency

Language: publications in English Regarding product design

Regarding mathematical models or algorithms for scheduling,
line sequencing, or line balancing



Appl. Sci. 2020, 10, 8555 5 of 37

Finally, the 285 articles were reviewed within each one of the 15 search groups and assessed for
eligibility, resulting in 51 articles being excluded because they were not relevant to the key concept
being analyzed.

The resulting 234 articles were analyzed, and the outcome of such analysis can be found in
Section 3—Results.

The number of articles included in the analysis shows an increasing trend over time, as shown
in Figure 3. It should be noted that the database search was performed in June 2020. Therefore the
results shown in this analysis only include articles published up until the first half of 2020. It can be
seen that the number of articles related to some key concepts remain constant or grow slightly over
time—assembly, mass customization and operator—while others grow significantly—Lean and KPI.
The number of articles related to Industry 4.0 is rising since 2015, which is consistent with the fact
that the term “Industry 4.0” was coined in 2011 [5]. Of the 234 articles included in this review, 54 are
conference or proceedings articles (23%), and 180 are journal articles (77%). The articles were published
in a total of 117 publications, with 18 journals including 50% of the total articles and 83 publications
contributing with just one article to this review. This is consistent with the database search strategy,
which looks at the intersections of 6 different concepts.
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3. Results

This section shows the outcome of the systematic literature review carried out following the
methodology described in the previous section, and that addresses the issue of improving assembly
operations in terms of productivity, flexibility and quality by using novel digital technologies of
Industry 4.0. To look into this question, four specific questions were presented in the first section of
this article. In consequence, this section is composed of four parts made of the search key concepts
most closely related to each one of the questions, as shown in Figure 4. Firstly, looking into “the
characteristics and implications of mass customization for assembly operations”, the key concepts
used are “assembly” and “mass customization” (3.1). Secondly, to identify “the new Industry 4.0
technologies, how to make the most out of them and how to measure the improvement”, the key
concepts used are “Industry 4.0′ and “Key Performance Indicators” (3.2). Then, the key concept “Lean”
is employed to determine whether Lean production is the best starting ground for implementing the
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aforementioned technologies (3.3). Finally, to explore “the effect of Industry 4.0 on people in assembly
and to find out how to support them in transitioning to Assembly 4.0, the search key concept used is
“operator” (3.4).Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 41 
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3.1. Assembly Operations for Mass Customisation

In order to answer the first question, “What are the characteristics and implications of mass
customization for assembly operations?” the systematic literature review publications related to
the key concepts “assembly” and “mass customization” were analyzed. After a brief introduction,
the five main topics to be considered will be presented, as shown in Figure 5: Modularity and
product clustering; Mixed-model assembly optimization; Customer involvement and postponement
strategies; The implications of complexity; and Mass customization impact on operators. Finally,
the key conclusions will be summarized.

3.1.1. Introducing Assembly Operations for Mass Customisation

Mass customization demand is characterized by a combination of great variety, shorter product
life cycles, and variable production volumes (medium or high for platform products, very low
for personalized products); compared to Industry 2.0’s stable market and Industry 3.0’s volatile
market—in terms of product volume, product variety and delivery time. In this new context, Toyota
Production Systems (TPS) may prove limited, and its advantages and disadvantages with regards to
seru were analyzed by Yin et al. [11]. The usage of new key digital technologies will bring forward the
4th Industrial Revolution (Industry 4.0), addressing many of the challenges of production systems
for mass customization [11,12]. However, looking at isolated systems may not be enough since
increased complexity requires a holistic approach to respond successfully and cost-effectively to
shifting market demands [13]. Assembly is the final process to create a product, where component
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sub-assemblies come together into the final product. Demand-driven increasing product variety
adds complexity, production cost and lead time to assembly operations, which goes against its
goals. In the mass customization landscape, key assembly topics need to be reviewed, evaluated
and adapted [2]: assembly representation and sequencing, especially non-sequential assembly;
assembly system design—considering line balancing, delayed product differentiation and performance
evaluation; assembly system operations—with a focus on exploring reconfigurable assembly planning,
mixed-model assembly scheduling, and dealing with complexity resulting from different sources;
and the changing role of human operators.

1 
 

 

Figure 5. Key aspects of assembly operations for mass customization and main conclusions of
the analysis.

In conclusion, mass customization brings increased complexity that needs to be addressed at
multiple levels and taking a holistic point of view to ensure that optimizing a subsystem does not
negatively affect another subsystem.

3.1.2. Modularity and Product Clustering

In order to flexibly assemble many different product variants using the same resources (such as
people, equipment, management systems) to keep manufacturing costs down and productivity high.
Efficient grouping of products into clusters or families is of paramount importance. The variables
selected for clustering will depend on the assembly operation objectives, for instance: quality and cost
to determine product family design [14]; product variety to determine assembly system layout [15];
assembly and disassembly for configuring product variants [16]; procedure, equipment and parts [17];
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or involving worker’s perspective for actual ease of assembly [18]. Modular production systems would
also benefit from automated planning based on individual product CAD files [19].

In conclusion, product clustering, modularization, reconfigurable assembly systems and
delayed product differentiation are valuable tools to maintain competitive assembly in a mass
customization context.

3.1.3. Mixed-Model Assembly Optimisation

Another area greatly affecting the efficiency of assembly lines is its sequencing and balancing.
Similar to clustering and modularization, different approaches are used depending on the focused
goals of the optimization: cooperative sequencing or workstation analysis for assembly material
consumption waviness, setup time and lead time [20,21]; multi-agent systems analysis for reducing
the negative impact of material handling complexity [22]; monitoring manufacturing complexity
for workload balancing [23]. New approaches have also been developed to optimize assembly line
sequencing [24,25].

In conclusion, mixed-model assembly is needed to deal with mass customization while remaining
competitive since it allows to address various operational goals depending on the business needs.

3.1.4. Customer Involvement and Postponement Strategies

Mass customization may be leading towards mass personalization, where individual products
made to match the exact preferences of each customer are produced in large numbers [1]. Integrating the
customer in the design phase could be done using web-based platforms [26], while Industry 4.0’s
Cyber Physical Systems (CPS) and a tailored assembly architecture would enable efficient mass
personalization [27]. An alternative strategy is Postponement, which could help with dealing with
high assembly complexity [28]. However, it requires designing the assembly line layout for delayed
product differentiation [29,30] and would benefit from reconfigurable assembly stations [31].

In conclusion, assembly operations need to consider the increasing expectations of mass
customization heading towards mass personalization. In order to adapt to it, Industry 4.0 Cyber
Physical Systems could be used to develop reconfigurable assembly stations that can deal with high
assembly complexity while maintaining high productivity.

3.1.5. The Implications of Complexity

Mass customization brings a great deal of complexity to assembly operations, which affect
key elements of the system as well as other nearby areas, such as quality, supply chain or
maintenance.Assembly complexity has can been evaluated from different perspectives: the number of
product variants [32], induced task differences [33] or product configuration [34]. Complexity has a
negative effect on quality, which could be minimized by using cognitive automation [35]. The increasing
number of product features to be controlled makes the necessary new advanced quality management
systems [36]. Supply chain implications of mass customization assembly range from assembly line
feeding problems [37] and modularity-specific issues [38] to assembly supply chain configuration [39]
and whole manufacturing networks [40]. Using Automated Guided Vehicles (AGVs) can be used
efficiently to feed mixed-model assembly lines [41,42]. Maintenance resource allocation also needs to
be prioritized to minimize the negative effects of increased complexity [43].

In conclusion, assembly complexity reaches outside the boundaries of assembly operations and
needs to be considered jointly with supply chain, quality, maintenance and IT/IS.

3.1.6. Mass Customisation Impacts Operators

Fully automated assembly systems bring increased productivity for high-volume production but
lack the flexibility and adaptability of human operators. People are better equipped for assembly tasks
with small and frequent variations, but their potential for higher productivity is limited. In a context
of market demand characterized by mass customization, which heads towards mass personalized
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production, reconfigurable assembly systems that incorporate both machines and people can lead to
cost-effective systems that are flexible and scalable [2]. Automation needs to consider both the physical
and cognitive abilities of the human operators it supports [44].

In order to improve the yield of assembly operations, providing support to human workers is
necessary. Augmented Reality (AR) could be used, reducing the number of engineering/production
management resources needed to provide assembly operators with cognitive support to perform
their tasks [45,46]; as well as cognitive/handling skills transfer systems [47], self-adapting automatic
quality control [48] or cognitive automation strategies [49]. Automation needs to ensure human
safety, which led to research on Human–Robot Collaboration (HRC) plan recognition and trajectory
prediction [50], and the concept of “safety bubble” [51]. When employing novel digital technologies
for enhancing assembly systems performance, one cannot underestimate the strategic importance of
IT/IS systems [52].

In conclusion, in a context of market demand characterized by mass customization, which heads
towards mass personalized production, reconfigurable assembly systems that incorporate both
machines and people can lead to cost-effective systems that are flexible and scalable. Industry 4.0 digital
technologies have a critical role to play in making possible mass customization assembly systems that
do not compromise on quality and cost and that do not achieve increased performance by affecting
human operators negatively.

3.1.7. Assembly and Mass Customisation: Conclusions

In a context of market demand characterized by mass customization which heads towards mass
personalized production, the increased complexity reaches the boundaries of assembly operations
and needs to be considered jointly with other areas (e.g., supply chain, quality, maintenance, IT/IS)
and taking a holistic point of view to ensure that optimizing a subsystem does not affect others
negatively. To maintain assembly operations competitive despite the increased complexity, product
clustering, modularization, delayed product differentiation, mixed-model assembly, and reconfigurable
assembly systems are valuable tools. Reconfigurable assembly systems in which human operators
work effectively alongside machines or robots, made possible with Cyber Physical Systems, can lead to
cost-effective systems that are flexible and scalable. It seems clear that Industry 4.0 digital technologies
have a critical role to play in making possible mass customization assembly systems.

3.2. New Digital Technology Available: Industry 4.0

In order to answer the previously presented questions “What new Industry 4.0 digital technologies
are relevant to assembly operations?”, “How to make the most out of them?” and “How to measure
the improvement?”; the systematic literature review publications related to the key concepts “Industry
4.0′ and “Key Performance Indicators” were analyzed. After a brief introduction on Industry 4.0
(I4.0), the eight main topics to be considered are presented, as shown in Figure 6: I4.0 technology
for improving processes and decisions; I4.0 technology for mass customization; I4.0 technology for
supporting human operators; I4.0 for mass customization; Key Performance Indicators for assembly;
Key Performance Indicators for I4.0; and Small and Medium Enterprises (SMEs) in the I4.0 era. Finally,
the key conclusions are summarized.

3.2.1. Introducing “Assembly 4.0”

According to Yin et al., industrial revolutions are related to distinct technologies, market demands
and production systems. The 4th industrial revolution differs from industry 1.0–3.0 because it is
expected to happen in the near future, as opposed to the previous three. The deep and intertwined
changes in available technology and market demand paradigms create new possibilities; however,
the industry 4.0 production systems are expected to be an evolution from the previously existing systems
(characterized by seru, flow lines, Toyota Production System or TPS, job shops, cellular manufacturing
and Flexible Manufacturing Systems or FMS) enhanced by the novel digital technologies [11].



Appl. Sci. 2020, 10, 8555 10 of 37

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 41 

 

Figure 6. Key aspects of Industry 4.0 technologies for assembly operations and Key Performance 

Indicators (KPIs), and main conclusions of the analysis. 

3.2.1. Introducing “Assembly 4.0” 

According to Yin et al., industrial revolutions are related to distinct technologies, market 

demands and production systems. The 4th industrial revolution differs from industry 1.0–3.0 because 

it is expected to happen in the near future, as opposed to the previous three. The deep and intertwined 

changes in available technology and market demand paradigms create new possibilities; however, 

the industry 4.0 production systems are expected to be an evolution from the previously existing 

systems (characterized by seru, flow lines, Toyota Production System or TPS, job shops, cellular 

manufacturing and Flexible Manufacturing Systems or FMS) enhanced by the novel digital 

technologies [11]. 

Bortolini et al. investigated in [53] the impact of the 4th industrial revolution on assembly systems 

design. The dimensions to consider are six: balancing, sequencing, material feeding, ergonomic risk, 

Figure 6. Key aspects of Industry 4.0 technologies for assembly operations and Key Performance
Indicators (KPIs), and main conclusions of the analysis.

Bortolini et al. investigated in [53] the impact of the 4th industrial revolution on assembly systems
design. The dimensions to consider are six: balancing, sequencing, material feeding, ergonomic risk,
equipment selection and learning effect. The evolution of the industrial environment in European
countries leads to an aging workforce, re-shoring of production facilities and more efficient and
distributed communication networks. In this environment, nine are the enabling technologies
of Industry 4.0 that have the most potential to affect assembly systems: big data, IoT, real-time
optimization, cloud computing, Cyber Physical Systems, machine learning, Augmented Reality, cobots
and additive manufacturing. The integration of these technologies in the design and management of
assembly processes leads to what Bortolini et al. define as “AS40”: Assembly Systems 4.0. The main
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characteristics of AS40 are assembly control systems, aided assembly, intelligent storage management,
late customization, product and process traceability and self-configured workstation layout [53].

Cohen et al. looked into how assembly system configuration would be affected by Industry 4.0
principles, understood as four incremental stages or steps to achieve the 4th revolution: connectivity,
information, knowledge and smart, which involves “predictive and automated decision making
processes, with possible self-adjustments and reconfiguration of the production system”. The new
paradigm would reduce the costs of assembly automation; reduce setup costs and learning curves;
enable the assembly of small quantities of large products in flow lines; enable the assembly of very
different products in the same system; better traceability of failures and defects; and smarter material
handling. In the last stage of Industry 4.0 (smart), assembly systems would be Self-Adapting Smart
Systems (SASS), and together with continuous support to operators (OSS), flexibility, agility and
productivity would be greatly increased [54].

According to Cohen et al. in [7], the main goal of flexible assembly systems in the Industry 4.0
era is to address the mass customization demand paradigm. At this moment, operational, tactical
and strategical issues remain unsolved for implementing “Assembly 4.0”. A key aspect is the social
effect of Assembly 4.0: the assembly workforce is expected to shrink—at least, in Western countries-,
but additional technological job positions will appear, partially offsetting the operator reduction.
The workforce would experiment a net decrease, thus increasing the productivity per employee.
Therefore, the role of people in A4.0 will be increasingly important, which calls for future research that
considers human operators back at the center of the production systems of the future [7].

When looking ahead in the evolution of assembly systems into the 4th Industrial revolution,
Cohen et al. identify challenges when integrating new and existing technologies: uncertainty on the
synergies of the I4.0 Key Enabling Technologies; the human–automation collaboration; incorporating
Artificial Intelligence into assembly systems; and finding, developing and keeping the Assembly 4.0
human specialists. On top of the technical knowledge, Industry 4.0 operators will need a new set
of non-technical skills, so education centers and companies will need to work together to meet this
demand [55].

Developing an Assembly 4.0 system in a controlled environment, such as a Learning Factory,
allows to better understand the complexity of such a system. The drone factory developed by
Fast-Berglund et al. “focuses on the interaction and cooperation between humans and cobots to create
collaborative applications in final assembly tasks”. It was built with operator involvement from the
start, and it incorporates a modular and event-driven IT architecture that creates a digital twin of both
product and production system, allowing automated planning and preparation of operations [56].

Facing a mass customization demand, late customization is a strategy allowing customers to make
changes to their orders even when the production has started. Industry 4.0 digital technologies bring
additional tools for developing an assembly system able to cope with resequencing the production
process [24]. Identifying information and data needs is a key step in the design of smart assembly
factories to ensure that the increased complexity associated with addressing mass customization
production can be managed by human operators [57]. Additionally, strategies for improving the
use of IT/IS systems in assembly need to consider the whole digital strategy of the organization [52].
Optimizing the design of any Industry 4.0-enabled system at early stages is critical for SMEs in the
manufacturing sector. Axiomatic design and Acclaro software have proven useful [58].

The analysis of literature allowed to organize Industry 4.0 technologies in four main categories
depending on their goals in assembly operations: improving processes and decisions, gathering
information on human operators, supporting people in assembly, and enabling mass customization.
Table 3 summarizes the references to technologies employed for each goal.

3.2.2. Industry 4.0 Technologies for Improving Processes and Decisions

Novel Industry 4.0 technologies can be used to improve processes and gather meaningful data,
which allows better-informed decisions. Big data can be used to maximize yield and machine uptime in
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precision assembly processes by detecting long term errors and enabling predictive maintenance [59].
Sensors from across the shop-floor can be used in conjunction with an IT/IS service to provide critical
information about the processes in the white goods industry [61]. RFID can be used to track assembly
execution and then to derive guidelines for smart assembly line development [62] and web-based
systems (saas) to control smart internal logistics using mobile robots [68]. Motion Analysis System
(MAS) to monitor and evaluate manual production processes [63,93]. The Human Factor Analyzer is
a software/hardware architecture that can be used for manual work motion and time measurement
employing depth cameras and automatic data processing aiming to evaluate work performance
quantitatively [64]. Digital twins of assembly processes can be used to analyze the efficiency of the
line [85], and it would also enable product-centric assembly [86]. Festo’s Cyber Physical Factory can be
used to implement an Industry 4.0 digital twin framework [87].

Table 3. Technologies of Industry 4.0 by usage.

Industry 4.0 Technologies 1
Improving

Processes and
Decisions

Gathering
Information on

Human Operators

Supporting
People in
Assembly

Enabling Mass
Customisation

Big data [59] [60]
IoT [61–64] [65] [66] [67]

Real-time optimization [68] [69] [24]
Cloud computing [70]

Cyber Physical Systems [71,72] [67]
Augmented/Virtual Reality [73–82] [83]

Additive manufacturing [83,84]
digital twin [85–87] [69]

Other [88,89] [49,90–92]
1 Industry 4.0 Key Enabling Technologies based on [53].

3.2.3. Industry 4.0 Technologies for Gathering Information on Human Operators

Industry 4.0 technologies allow new ways of gathering information about human assembly
operators that are less intrusive, more accurate or more capable than previously existing techniques:
Mattson et al. propose a method of measuring the wellbeing and performance of operators at assembly
stations [88]. Krugh et al. measure human–machine interaction using the Internet of Things (IoT)
to understand the impact of people on Industry 4.0 assembly systems [65]. Eye-tracking can be
used to analyze the user experience of engineering design and manufacturing [89]. A theoretical
human-centered framework for operator 4.0 using digital twin based simulation and real-time human
data capture can be used to provide insights on operator ergonomics and mental workload [69].

3.2.4. Industry 4.0 Technologies for Supporting People in Assembly

Cyber Physical Systems (CPS) for improving operator ergonomics [71]; vision systems for
measuring and providing feedback on operator performance [90]; cognitive assistance for rework
area [91]; strategies for cognitive automation that allow operators to deal with increased complexity [49];
Augmented Reality (AR) to assist manual assembly [73]; operator training using digital assistance [92];
training using Virtual Reality and process mining, allowing to replace traditional interpersonal
demonstration and repetition [74] and real-time interface using data from many devices and an
algorithm allowing manual assembly operators to deal with requests and report faults [66].

3.2.5. Industry 4.0 Technologies for Mass Customisation

Manufacturing flexibility is a strategic orientation for high-wage countries, and Industry 4.0
technologies bring solid benefits to operations management, especially in terms of technology
management and Just-In-Time (JIT) production [94]. One technology in particular—additive
manufacturing, can break the flexibility vs. cost trade-off, which most industrially developed countries
face [84]. Compared to the volatile market of Industry 3.0, characterized by product variety, the smart
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market of industry 4.0 involves customer participation in individual customization of products [11].
Industry 4.0 KET enable mass personalization through short product development cycles [83] and
individual customers’ input [67,95]. Rossit et al. propose an approach based on tolerance planning
strategies and resequencing capabilities to allow changes to the product to be made even after production
has started [24]; while Chung et al. envisage a dynamic supply chain design for connected factories
through cloud-based information systems as a way to achieve mass personalization [70].

In conclusion, Industry 4.0 not only offers new alternatives for cost-competitive mass
customization but also opens the door to mass personalization, where the customer is involved
in individual customization of the product.

3.2.6. Key Performance Indicators for Assembly

Key Performance Indicators (KPIs) are employed widely to assess the outcome of assembly systems.
New concepts for novel assembly systems need to use KPIs to evaluate their potential performance.
In most cases, traditional KPIs are used [96]: cost (investment, labor), quality (first pass yield,
final yield) [97–99], throughput time, quantity and lot size; inventory costs [100], line productivity
(e.g., OEE—overall equipment effectiveness) [101], energy consumption, cycle time and service
level [102,103]. Integrating KPIs that link design, production, and quality goals through the product &
process development has proven useful to limit late engineering changes, which delay the assembly
system development [104]. A combination of economic and structural KPIs can be used to evaluate the
adaptability of reconfigurable manufacturing systems [105]. Yang et al. propose that KPI selection for
the smart automation of manufacturing systems needs to be company and location-specific and that
the KPIs variation and sensitivity to the introduction of new Industry 4.0 technology needs to be a key
driver for developing a strategy for smart assembly automation [106]. For evaluating the performance
of Line-less Mobile Assembly Systems (LMAS), Hüttemann et al. developed a set of 11 specific KPIs,
6 of which are adapted from conventional KPIs to account for the wide variety of products being made
in the assembly system, and 5 are specific to LMAS (e.g., overall traveled distance, number of station
configuration reconfigurations) [107].

In conclusion, to evaluate assembly systems, standard KPIs need to be adapted in order to include
both traditional metrics (e.g., cost, quality, throughput, inventory, lead time, productivity) and new
indicators that are specific to the products, operations context and business goals.

3.2.7. Key Performance Indicators for Industry 4.0

Manufacturing flexibility is a strategic orientation for high-wage countries, and Industry 4.0 Key
Enabling Performance measurement is a necessary management tool in any factory transformation.
Traditional KPIs are valid to evaluate the impact of Industry 4.0 on production systems. However,
new IT-related KPI classes will be required to assess data management (e.g., IT efficiency, availability
of IT, the correctness of data, completeness of data), transparency & connectivity (e.g., degree of
interconnectivity, digital coverage, the proportion of virtually controllable resources), and product
management [108]. Industry 4.0 technologies bring the possibility of using IoT devices to gather
real-time data from an immense number of devices in real time, enabling rapid responses to changing
conditions [109]. KPIs for smart factories need to be reliable and targeting the right goals to support
operational objectives. Therefore, correctly identifying the smart factory stakeholders and understanding
their requirements is crucial [110]. Transforming a traditional factory—using legacy machines—into a
smart factory is possible without buying expensive new machines, employing a continuous improvement
approach, the IoT as enabling technology and establishing visible KPIs from the beginning so that the
path to Industry 4.0 is clear to all stakeholders [111]. The increased network complexity and data traffic
increase the probabilities of IoT failure. To address this, a data anomaly response model was proposed by
Hwang et al. [112]. The changes brought by Industry 4.0 could affect people greatly. To make this impact
on people more visible, human-centric KPIs have been proposed [113].
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In conclusion, traditional and new IT-related KPIs classes (e.g., data management, transparency
and connectivity, product management) would be used to assess and control the impact of Industry 4.0
on production systems. Identifying the smart factory stakeholders and their requirements is critical
for obtaining meaningful KPIs. The Internet of things is the Key Enabling Technology that allows
gathering data from multiple sources to produce real-time KPIs that allow rapid responses to fast
changes in smart factories.

3.2.8. Small and Medium Enterprises in the Industry 4.0 Era

Although large corporations are more likely to benefit from adopting Industry 4.0 technologies,
Small and Medium Enterprises (SMEs) could also obtain a competitive edge from Lean-digital
manufacturing systems [114]; for example, improving the communication between shop-floor and
the top-floor [115]. SMEs have different needs and requirements, which should be taken into account
when designing smart manufacturing systems [116]. SMEs have started their digitalization journey,
but further Industry 4.0 developments need to align with the particularities of SMEs, and their
organizational structures need to fully embrace and support digitalization in order to benefit from
its implementation [117]. Fast-Berglund et al. looked at 40 SME and 8 OEMs in order to establish
collaborative robot (cobots) implementation strategies and to determine what KPIs to use for these
cases [118]. The increasing penetration of intelligent machines to work alongside people and the
benefits of agile production will turn SME operators into “Makers”, skilled workers whose main
activities are no longer assisting or monitoring machines, but creative tasks involving a wealth of
information, alternatives, criteria and possible solutions [119].

In conclusion, Small and Medium Enterprises (SMEs) operators will be affected differently by
I4.0 compared to corporate workers, but it is clear that I4.0 can bring competitive benefits for SMEs.

3.2.9. Assembly 4.0: Conclusions

The 4th Industrial revolution demand paradigm means mass customization of products,
made possible by new digital technology. Conversely, production systems are most likely to experiment
an evolution rather than a revolutionary change. Two key areas will be subject to change: the role of
people in assembly operations—especially in terms of responsibility and skills; and the possibility of
automated or hybrid assembly for low-volume production, including multi-mixed model assembly.

To evaluate the performance of assembly systems, standard KPIs need to be adapted in order
to include both traditional metrics (e.g., cost, quality, throughput, inventory, lead time, productivity)
and new indicators that are specific to the products, operations, stakeholders and business goals.
The Internet of Things is the Key Enabling Technology that allows gathering data from multiple sources
to produce real-time KPIs that allow rapid responses to fast changes in smart factories. The smart
factory will need to consider also IT-related KPIs to ensure its smooth computer-dependent operations.

There are plenty of examples of new possibilities due to novel technologies applied to final
assembly: improving processes, gathering data and obtaining valuable information, measuring human
operator performance and supporting human operators” work. However, research articles mostly focus
on what the new technology can do, but few relate to following a methodology to assess the operational
needs or opportunities in final assembly and finding or developing an Industry 4.0 solution to them.

In order to ensure that the solutions enabled by Industry 4.0 technologies are aimed in the right
direction, it is important to keep the focus on adding value.

3.3. Focusing on Delivering Value: Lean

In order to answer the third question, “Is Lean production the best starting ground for implementing
Industry 4.0 assembly operations?” a systematic literature review of publications related to the key
concept “Lean” was analyzed. After a brief introduction, the nine main topics to be considered are
presented, as shown in Figure 7: Lean tools for assembly operations; Internal logistics; Ergonomics;
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Assembly operations layout; Teaching Lean; Evaluating performance; Lean and Industry 4.0 interaction;
Lean tools for Industry 4.0; and Lean management. Finally, the key conclusions are summarized.
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3.3.1. Introducing Lean in the Era of Industry 4.0

According to Yin et al., one key characteristic of the Industry 3.0 market—product variety—changed
is to change in the Industry 4.0 era to mass customization (customer participate in individual
customization). However, the existing production systems will not change in a great way, as flow lines,
Lean production, cells, and remain up to date when facing mass customization [11]. On the other hand,
Stump et al. propose that despite the fact that Lean production can be applied easily to manufacturing
situations with low levels of customization (i.e., product variety, Yin’s Industry 3.0 market conditions),
increasing levels of customization make it difficult to directly apply Lean principles of establishing
flow and keeping low inventory levels [120].
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Gunasekaran et al.’s review conclude that Agile manufacturing (which shares with Lean its
focus on product value as defined by the customer) is key for sustainable competitive advantages;
and identifies five enabling competencies that need to be deployed jointly to achieve its goals:
transparent customization, agile supply chains, intelligent automation, total employee empowerment
and technology integration [121]. To cope with mass customization with Lean objectives of continuous
mixed-model flow, Chatzopoulos presented a production system design algorithm that employs
production modules connected by Kanban [122].

3.3.2. Lean Production Tools for Assembly Operations

Lean manufacturing offers an array of tools and techniques to deal with increasing demand
complexity and variability which could benefit assembly operations in the context of mass customization.
Although Lean, a generalization of the Toyota Production System (TPS), originated in the automotive
industry, it has expanded to many other manufacturing sectors—e.g., aeronautical, which demand
characteristics are not similar to automotive [123]. One classic Lean tool is a single minute exchange of
die (SMED), which is still a trending topic according to a recent review [124]. Looking at balancing
manual assembly lines with a high number of product variants (mixed-model assembly), kaizen events
and complexity reduction have proven useful since they fill the gap between mathematical balancing
models developed by academia and actual techniques used in industry [125]. Mixed-model assembly
lines throughput rate can be increased by using Lean in conjunction with simulation [126]. To increase
productivity and reduce the necessary shop floor space, continuous flow can be achieved through
the use of Standardized Work (SW), U-shape assembly lines and material handling systems [127].
Continuous improvement tools can be applied to increase throughput and reduce buffer capacity [128].
To address the increasing complexity of SW for mixed-model assembly, a reconfigurable approach to
SW sheets and control and fabrication instructions has proven useful [129]. Value Stream Mapping
(VSM), another classic Lean tool, has been evolved into value stream management at the University
of Luxembourg Lean Manufacturing Laboratory [130]. A different approach to VSM is combining
electronic-VSM with simulation, resulting in reduced lead times and non-value-added activities [131].
Three new methods were proposed to identify non-obvious constraints of mature production processes,
where traditional Theory of Constraints methods fall short [132].

In conclusion, research on the application of Lean techniques and tools for assembly operations
is still an open topic. The digitalization of some of the tools, such as Value Stream Mapping, has shown
some success.

3.3.3. Internal Logistics

An adjacent key area to Lean assembly operations is Logistics, which makes the necessary
components or materials available for assembly at the right time with minimum waste. Lean supply
chain uses six classic KPIs: lead time, costs, inventory level, delivery service level and quality [100].
To increase the assembly line’s value-add time and ergonomics, and to reduce waste and necessary space,
using plastic containers instead of cardboard has been found an interesting option [133]. Looking into
minimizing Work-In-Progress stock (WIP) and the required number of assembly operators, pre-kitting
offers advantages as well as challenges [134,135]. Usta et al. propose a methodology for assessing the
best design for part feeding system for Lean assembly, considering that the problems of pure kitting
could be countered by hybrid systems (human & machine) [136]. Yamazaki et al. present a design
method to reduce the cost of flexible automation of material handling systems [137]. In-house logistics
for Lean assembly require evaluating and selecting from different transportation alternatives in order
to feed part supermarkets [138].

In conclusion, internal logistics are tightly associated with assembly, and therefore both should
be analyzed together since changes to one will affect the other as well.
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3.3.4. Ergonomics

Lean production (LP) impact on ergonomics and psychosocial risks have been studied for decades,
and the focus of the studies has varied over time, with a current view that considers that management
style can make LP effects either negative or positive [139]. Da Silva et al. develop an index to assess
the LP assembly cell work in terms of ergonomics and psychophysical demand [140]. The impact of
line and assembly cells on breaks and worker’s health has been assessed, finding that assembly cells
tend to have higher Cycle Times, which increase the physicality of the work; while assembly lines
posed no risks [141]. A different approach to evaluating the impact of LP on ergonomics is utilizing
simulation: (1) for analyzing the effect of physical overload on assembly line performance, finding that
Cycle Times too close to TAKT (i.e., low catch back time) leads to operator overload, which means
absenteeism and low productivity in the long term [142]; (2) or for designing efficient hybrid assembly
lines that are ergonomically safe [143].

In conclusion, Lean production can affect ergonomics negatively depending on management style.

3.3.5. Assembly Operations Layout

A key aspect of Lean assembly operations is the production layout. Classic Lean assembly is done
in assembly lines or assembly cells. Assembly cells offer various advantages with regards to assembly
lines, and a methodology for reconfiguring an assembly line into a cell is proposed by Carmo-Silva
et al. [144]. The efficiency of Lean manufacturing production systems can be better analyzed when
considering assembly as a macro-activity instead of a series of stations, and the identification of
the waste is fine-tuned to assembly operations [145]. Lean assembly lines typically use Kanban to
pull production and create material flow. In his paper, Savino et al. propose a method for using
semi-automated parts feeding in O-shaped assembly lines [146].

Yin et al. analyzed in [147] the similarities and differences between Lean assembly (lines and cells),
Agile manufacturing (Quick Response Manufacturing, QRM) and seru manufacturing. They found,
based on two key industrial cases (Canon and Sony), that a production system that focuses primarily
on responding to quick changes in demand and product instead of prioritizing waste reduction
(i.e., Lean production) can be very competitive in high-cost environments. As a result, of this priority,
seru focuses on “reconfigurability, resource completeness within cells, worker responsibility and
buffering as needed to accommodate dimensions of demand variability”. However, the applicability of
seru assembly systems outside of high-cost, high variability, high innovation, short product development
cycles remains to be seen [147].

In conclusion, Lean production systems typically employ assembly lines or cell layouts to establish
pull and create material flow. For certain contexts involving high-cost, high-variability, short product
development cycles, seru assembly systems are particularly competitive because they are focused
on adaptability.

3.3.6. Teaching Lean for Assembly Operations: Learning Factories

Since operator engagement is at the core of Lean production, Lean-assembly-focused training
has been explored over the past decades. Academia-driven teaching methods have not always been
adequately adapted for non-students. Recreating industrially relevant environments for teaching Lean
at Learning Factories aim to bridge this gap [148]. Lean techniques themselves have been used to
design a Learning Factory, using a manual assembly line as a starting point, and employing theoretical
knowledge as well as industrial experience for evolving the line into a Learning Factory [149].

Learning factories are incorporating Industry 4.0 technologies into their education and research
facilities, focusing on dealing with complexity [150], intelligent logistics [151] or intelligent
manufacturing in full-scale simulations [152]. Virtual Reality (VR) and Augmented Reality (AR)
can be used to enhance the student’s experience when learning Lean manufacturing. Using VR for
training and AR for visualizing the assembly instructions improved the lessons [153].
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In conclusion, Lean Learning Factories need to mimic real-life scenarios to become useful
for non-academic learners with industrial backgrounds, such as assembly operators. Industry 4.0
technologies could be used to enhance the training environment of Learning Factories.

3.3.7. Evaluating Performance From a Lean Perspective

Lanza et al. propose a simulation-based method for assessing the performance improvement
of production systems due to Lean techniques. As Key Performance Indicators (KPIs), either direct
measures or monetary equivalents are used to compare initial vs. future scenarios. To relate cost-savings
over time, cost–time profile charts can be employed [154]. Complex coefficient KPIs derived from
delivery date and balanced production can be used to assess small-batch mixed-model scheduling
models better than simple KPIs, although the potential use of such KPIs to manage real operations is
reduced [25]. Multi-criteria KPIs can be used not only for management and control of operations but at
earlier stages of flow planning projects [155]. For practical results, leading indicators are preferred over
lagging KPIs [156], so Cyber Physical Systems (CPS), which lead to intra-logistics evaluation tools that
use a wealth of data collected automatically, could be preferred over-relying on human input [157].

Evaluating the operational performance of Lean organizations can be done using tree-like KPI
structures [158] or integrated performance assessment frameworks [159,160]. Cortes et al. proposed a
“Lean & Six Sigma Framework” [161] to evaluate leanness in order to justify future investment—in a
similar fashion to Lanza et al.’s [154]—and focus on a methodology for a solid KPI definition that allows
and enables strategic-operational alignment. Kovacs et al. studied the relationship between Lean
maturity, operational performance and investment; and concluded that implementing and sustaining
Lean practices pays off because new technology cannot improve performance if the processes are not
under control in the first place [162].

In conclusion, KPIs and performance assessment frameworks are used to measure the effects of
changes in Lean production systems. Establishing a set of KPIs needs to take into account multiple
stakeholders and to align the strategic and operational goals of the organization. Simulations and
case studies show the beneficial effects of Lean methods and allow to estimate the economic return of
investment of Lean management decisions.

3.3.8. The Interaction between Lean Production and Industry 4.0

Lean production is a key characteristic of the 3rd industrial revolution production systems.
While other aspects have evolved (e.g., technology, from computers to smart digital devices) or
radically changed (e.g., market focus from variety and lead time to customization and personalization),
Lean is still up-to-date in the era of Industry 4.0 [11]. Moreover, the relationship between Lean and
Industry 4.0 technologies is catching increasing attention from academia in the last decade [163].

The question posed by Mrugalska et al. [164] has been addressed by many authors,
both theoretically and analyzing use cases across many countries: “Can Lean and Industry 4.0
coexist and support each other, and if so, how?” There are four main lines of thought when answering
this question: (1) Lean techniques and Industry 4.0 technologies interact in a positive way, and there are
many cases to illustrate this [8,9,165,166]; (2) Lean facilitates the change towards Industry 4.0 [167,168];
(3) Industry 4.0 supports Lean, i.e., makes the factory Lean [169–173]; (4) although Lean and Industry
4.0 aim for the same goals, their approach is essentially different regarding digital technology [174].

Five articles looked at answering Mrugalska et al.’s question [164] by surveying the industrial
reality of different countries, all of them finding positive interactions between Lean and Industry 4.0
technologies. Dombrowski et al. analyzed 260 industrial companies in Germany and found Lean as an
enabler of Industry 4.0 [168]. Tortorella et al. looked into 110 user cases in Brazil and found a positive
Lean-Industry 4.0 correlation, as well as increased benefits of new digital technologies where Lean was
also present [175]. Rossini et al. analyzed 108 cases of European manufacturers, concluding that Lean
allows achieving higher levels of Industry 4.0 while lacking Lean production techniques makes it more
difficult to change towards Industry 4.0 [176]. Chiarini et al. investigated 200 cases in Italy and found
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that most strategic, operational areas benefit from implementing Industry 4.0, such as design-to-cost,
supply chain integration or machinery–electronics–database integration [177]. Lorenz et al. analyzed
user cases in Switzerland and found that Lean maturity allows greater performance improvements
from implementing Industry 4.0 [178].

In conclusion, there is a wealth of evidence showing that Lean manufacturing is a valid approach
to improve assembly operation in the context of mass customization and that Lean and Industry 4.0 can
benefit from synergies because each one enhances the other. However, according to some authors [174],
Industry 4.0 and Lean have essentially different approaches regarding the role digital technologies
should have.

While some authors deem that TPS considers robots, machines and computers in the opposing
side of jidoka (“automation with a human touch”), it should be noted that the lack of enthusiasm of
TPS towards digital technologies could have been influenced by the current digital technologies of that
era (the 1950s–1980s). Since the rate of change in digital technology has been particularly remarkable
in the past four decades, it seems bold to assume that TPS’s views on computers in the second half of
the 20th century still apply.

3.3.9. Lean Tools for the Industry 4.0 Era

The arrival of the 4th industrial revolution could mean changes in the role or the value of existing
Lean production tools. For example, Value Stream Mapping (VSM) could no longer be a sustainable tool
since it might lack flexibility when dealing with digital processes, although evolutionary improvements
to this tool could correct this shortcoming [179]. On the other hand, Lean automation aims at achieving
the best possible combination of Lean and Industry 4.0 automation [180]. Industry 4.0 will create new
forms of waste, digital waste, and Romero et al. conclude that future research would need to focus on
new techniques developed to eliminate it [181,182]. Using simulations of Lean production environment
can be used to find clustering alternatives that reduce the waiting time without compromising the
business productivity [183]. Malik and Bilberg proposed a method for assigning tasks to robots
or people in Human–Robot Collaborative (HRC) assembly, based on the physical properties of the
components, HRC safety, and the dynamics of the HRC environment such as part presentation and
feeding [184]. The IoT and simulation could be used to support expert-less decision making, in a
similar way to the classic Andon tool does [185]. In any case, systems integration will be needed to
ensure that Lean manufacturing systems meet the Industry 4.0 requirements [186].

In conclusion, classic Lean tools—e.g., value stream map—might need to change in order to
remain useful for analyzing digital processes. The appearance of “digital waste” should be taken into
account, but in general terms, Industry 4.0 technologies are expected to support the ability of people to
make Lean-oriented decisions.

3.3.10. Lean Management Affected by the 4th Industrial Revolution

The evolution of Lean management in the context of Industry 4.0 leads to risks and opportunities.
According to Rother et al. [187], the success factors of the coming transformation are three: management
engagement, involvement and interaction. Therefore, the proposed approach is to use the technological
advances to free up manager time and use it to focus on the human relationships: sharing knowledge,
developing the workforce’s skills and managing progress [188]. Total Quality Management will need
to evolve as quality planning, quality control, quality assurance and quality improvement are different
in a digital manufacturing framework compared to the previous human-capabilities-based era [189].

In conclusion, management has a key role to play in the successful transition to Industry 4.0.
From the Lean perspective, changes brought by Industry 4.0 could be used to free up manager time to
be invested focusing on human relationships.
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3.3.11. Lean and Industry 4.0: Conclusions

Research on Lean tools for assembly operations is still an open topic. Firstly, it should be noted that
since internal logistics are tightly associated with assembly, both should be analyzed together because
changes to one will affect the other as well. Lean production systems typically employ assembly line
or cell layouts to establish pull and create material flow. For certain contexts involving high-cost,
high-variability, short product development cycles, seru assembly systems are particularly competitive
because they are focused on adaptability. KPIs and performance assessment frameworks are used to
measure the effects of changes in Lean production systems. Establishing a set of KPIs needs to take
into account multiple stakeholders and to align the strategic and operational goals of the organization.
Simulations and case studies show the beneficial effects of Lean methods and allow to estimate the
economic return of investment of Lean management decisions.

The Toyota Production System (TPS) considers robots, machines and computers in the opposing
side of jidoka (“automation with a human touch”), but it should be noted that their lack of enthusiasm
towards digital technologies could have been influenced by the current digital technologies of that era
(1950–80’s). Since the rate of changes in digital technology has been particularly remarkable in the
past four decades, it seems bold to assume that TPS’s views on computers in the second half of the
20th century still apply. Currently, there is a wealth of evidence showing that Lean manufacturing is a
valid approach to improve assembly operation in the context of mass customization and that Lean
and Industry 4.0 can benefit from synergies because each one enhances the other. Some classic Lean
tools—e.g., Value Stream Map—may need to change in order to remain useful for analyzing digital
processes. In general terms, Industry 4.0 technologies are expected to support the ability of people
to make Lean-oriented decisions. Management has a key role to play in the successful transition to
Industry 4.0. From the Lean perspective, changes brought by Industry 4.0 could be used to free up
manager time to be invested focusing on human relationships. Learning Factories could be a great tool
to share the vision of Lean 4.0 assembly, but they need to mimic real-life scenarios to become useful
for non-academic learners with industrial backgrounds, such as assembly operators. Industry 4.0
technologies could also be used to enhance the training environment of Learning Factories. Since both
Lean and Industry 4.0 stress the importance of people, it seems only natural that supporting human
capabilities becomes a priority in Lean 4.0 assembly

3.4. Focusing on People

In order to answer the fourth and last set of questions, “How would Industry 4.0 affect people in
assembly?” and “How to support people transitioning to Assembly 4.0?”, the systematic literature
review publications related to the key concept “Operator” were analyzed. After a brief introduction,
the six main topics to be considered will be presented, as shown in Figure 8: Line balancing, sequencing
and job rotation; Lean: Operators at the center; Frameworks for operators in Industry 4.0; Automation
and Human–Robot Collaboration; Supporting operators with Industry 4.0 technology; and Implications
of smart factories for operators. Finally, the key conclusions will be summarized.

3.4.1. Introducing People in Assembly Operations

Human operators are critical for competitive assembly systems when considering information
flows, competence needs and the requirements for effectively making use of automation. In such an
environment, human teams—rather than individuals, are key [190]. The role of operators depends
strongly on the type of production system (e.g., high-volume production vs. low-volume high-variety).
Traditional automation allows increased productivity, but it lacks the adaptability of human operators.
The design of reconfigurable assembly systems by incorporating both machines and people can lead to
cost-effective system flexibility and scalability. However, the collaboration between people and robots
can create safety issues. These can be addressed in two clearly separated ways, according to Hu et al.:
(1) employing vision systems to stop robots; (2) robots so light and low force that they can be stopped
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safely by people. Safely increasing flexibility and efficiency in mixed-model assembly lines is one of
the problems that Industry 4.0 technologies seek to address [54].

In conclusion, the role of operators depends on the type of production system, and there is
usually a trade-off between the increased productivity of automation and the adaptability of human
operators. Reconfigurable, hybrid assembly systems that incorporate machines and people could lead
to cost-effective flexibility and scalability. However, the collaboration between people and robots can
also create safety issues.Appl. Sci. 2020, 10, x FOR PEER REVIEW 23 of 41 
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3.4.2. Line Balancing, Sequencing and Job Rotation

Having a flexible and cross-trained workforce is a recurrent approach to deal with the complexity
and changing demand conditions of mass customization [191–193]. Operator job allocation can also
be adjusted to address an array of situations: one-of-a-kind production [194], minimizing costs in
seru production systems [195], high turnover and slow learning processes [196], a heterogeneous
workforce with varying degrees of absenteeism [197], remarkable ergonomics and walking costs [198],
or operator-intensive assembly optimization—along with sequencing [199]. Alternatively, sequencing
algorithms can be used for minimizing operator headcount in reconfigurable assembly systems [200].
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Although line reconfiguration is a common approach in mixed-model assembly, output can be increased
in peak demand without it [201].

Analyzing the human operator characteristics and the process complexity can be used to maintain
the process KPIs [202], to predict operator overload [203], or to assess human-originated quality
problems [204]. Operator walking distances are a key input for kitting vs. line stocking decisions [205],
and JIT kitting can be optimized by incorporating hybrid HRC systems [206].

In conclusion, a flexible and cross-trained workforce is key for dealing with changing demand
conditions, allowing dynamic job assignation and efficient line balancing and sequencing.

3.4.3. Automation and Human-Robot Collaboration

Human-Robot Collaboration (HRC) expects to obtain the best of both human and automation
worlds. Costa Mateus et al. developed a methodology for transitioning from manual to HRC assembly:
(1) operation decomposition, (2) resource evaluation, (3) resource allocation, (4) collaborative assembly
operation. [207]. However, HRC brings quality and reliability problems associated with robots and
human operators separately, on top of their interactions, which needs to be addressed when establishing
Quality Control [208]. Additionally, collaborative work with a robot has been found to cause stress
in operators [209]. Moreover, operator safety remains a key concern for HRC systems. A safety
strategy for HRC should consider the following key design areas: Human–Robot Collaboration spaces,
robot safety systems, computer vision monitoring of safety conditions, and an operation control system
that coordinates human–robot interaction [210]. Regarding the vision monitoring of safety conditions,
Anton et al. used depth sensors so that robots avoid collisions with operators [211]. Another way of
ensuring human operator safety in HRC would be the “safety bubble” concept, which is based on live
data sharing between reconfigurable assembly systems [38].

In conclusion, Human–Robot Collaboration aims to obtain systems that are both flexible and
highly productive. However, quality and safety concerns are yet to be solved.

3.4.4. Lean: Operators at the Centre

One key aspect of Lean production Systems (LPS) implementation is respect for people, which has
been typically overseen [212]. Worker development defines the Toyota Production System (TPS)
culture of respect and teamwork, and although it does not directly relate to bottom-line results, it is an
integral component of the TPS implementation of kaizen (continuous improvement) [213]. There are
simple ways to involve operators and supervisors in the continuous improvement journey, and they
are built on showing the importance and effect of everyone’s actions towards addressing the problems
together [214]. One-point lessons have been found effective in sustaining the standardization and
optimization in LPS [215].

There must be a balance between worker autonomy and creativity versus process and cost control,
and De Haan et al. found that “challenging and enabling workers to creatively use their talent and
skills in daily work will most likely lead to positive results” [216]. Another tension exists related to
judgment-based operator adjustments to processes, which could be considered as tampering from the
Statistical Process Control (SPC) point of view. Operator adjustment is not always bad, but a necessity
in real production plants, and there are methods to determine whether the operator judgment was
appropriate or not [217].

Romero et al. looked towards Jidoka (or “automation with a human touch”) when analyzing the
future relationship of people and machines in the emerging 4th Industrial Revolution. They stress
that Jidoka needs to be understood not only as an approach to automation but also as a “learning
system” in which machine and human benefit from each other [4]. “Employee development system”,
a tool of Lean production management, can be used to enhance the problem-solving capabilities of the
workforce, which leads to improved results measured by KPIs [218].
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New frameworks consider people as the cornerstone of LPS: either depicting them as one of the
fundamental pillars—alongside processes and tools [219]; or directly as the center of a layered model
for Lean factory design [220].

In conclusion, “respect for people”—a core principle of Lean production—should be considered a
cornerstone of Lean production process design. There must be a balance between worker’s autonomy
and process control, keeping in mind that operators‘ involvement in the continuous improvement
journey is necessary for success in the long term.

3.4.5. Frameworks for Operators in Industry 4.0

The concept of Industry 4.0 appeared to provide cohesion to different visions regarding the future
of manufacturing, connected by Key Enabling Technologies (KET). Alongside the development of such
technologies, recent research has focused on theoretical frameworks to conceptualize the use of the KET
and its impact on human operators. Lindblom et al. [221] studied how to evaluate the Human–Robot
Collaboration in terms of safety, trust and operator experience; Golan et al. [222] looked into the
future Industry 4.0 interaction between operator and workstation, composed of three subsystems:
observation, analysis and reaction.

The key role of operators in the era of the 4th Industrial Revolution has been identified by numerous
authors, coining the term Operator 4.0 [223]. Industry 4.0 technologies should support operators in
their tasks, either by directly helping them or by providing meaningful information to assembly system
design engineers. Peruzzini et al. developed a theoretical human-centered framework for Operator 4.0
using digital twin-based simulation, and real-time human data capture can be used to provide insights
on operator ergonomics and mental workload [69]. In a similar way, Mattson et al. propose a method
of measuring the wellbeing and performance of operators at assembly stations using electro-dermal
activity [88]. Industrial IoT is another technology that can be used for capturing human and machinery
data for understanding human impact on Industry 4.0 assembly systems [65]. Understanding the
operator’s information needs is vital for the design of smart assembly factories [57].

In conclusion, new operator-centered frameworks are appearing to conceptualize the role of
people in the 4th Industrial Revolution era. The key role of operators has been identified by numerous
authors, coining the term operator 4.0 [223]. Industry 4.0 technologies should support operators in
their tasks, either by directly helping them or by providing meaningful information to assembly system
design engineers.

3.4.6. Supporting Operators with Industry 4.0 Technologies

Industry 4.0 technologies offer new ways to support human operators in their duties—see
Table 3: training can be made easier with Virtual Reality (VR), Augmented Reality (AR) and motion
tracking [74–76]; instructions can be generated in real time and displayed using AR [77–79]; or projection
AR can be used to provide process information [80], assembly assistance [81], safety in HRC “chaotic”
smart warehouses [224], shipyard worker assistance [225] or to enhance the operator’s capabilities
and competencies [82]. In general, human operators are positive about the use of AR for assembly
support [226]. The technology-enhanced operator is a growing field of research, with many other
Industry 4.0 KET involved in achieving varied goals: IoT-based human–Cyber Physical Systems for
providing feedback to operators working in an intelligent space [72]; reducing big data to smart
data to assist people [60]; software robots (softbots) to interface between machines and computer
information systems [227]; mobile devices in order to allow dynamic job rotation in multi-variant
assembly lines [228]; verbal and visual prompts for assisting workers with intellectual disabilities [229];
wearables for audio commands [230] or detecting potentially hazardous or risky situations [231]; or a
combination of many technology-enabled tools [232–234].

In conclusion, varied Industry 4.0’s Key Enabling Technologies can be used to support production
operators to obtain different benefits. In particular, Virtual and augmented reality and wearable devices
have attracted great attention. Operators can be supported with assembly instructions, quality control,
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assembly details prompts or enhanced training programs, which can be provided in a way that is
satisfactory for the users.

3.4.7. Implications of Smart Factories for Human Operators

Digital technologies’ progressive presence in factories will change the role of human operators,
which will shift from work-focused activities towards dispositive tasks, supervision and decision
activities [235]. Operators will, therefore, need more information than ever before, and these
requirements need to be carefully assessed [57]. Considering the operator at the center, human activities
with Cyber Physical Systems (CPS) have been modeled, and new KPIs proposed to make visible
how business and operational decisions affect operators [113]. Empowering operators seems one
possible way of making Smart factories happen, and such empowerment will make visual computing
technologies necessary, according to Segura et al. [236].

Digital technologies can also be used to obtain insights into human–machine interactions [65]
or worker’s wellbeing [88], which then lead to forming strategies for cognitive automation [49].
Despite recent advances, digital maturity in manufacturing companies has a long way to go, and most
operator-machine interaction is done by mouse and keyboard hardware instead of by using CPS [237].

In conclusion, human operators will need to receive and manage more information than ever
before, make decisions and supervise instead of focusing on mechanical work-related activities.
Therefore, empowering operators to act more autonomously and supporting them accordingly seems
necessary. To understand the situation of Industry 4.0 operators can be done using new digital
technologies, obtaining meaningful data in ways that were not possible before.

3.4.8. Focusing on People: Conclusions

The role of operators depends on the type of production system, and there is usually a
trade-off between the increased productivity of automation and the adaptability of human operators.
Reconfigurable, hybrid assembly systems that incorporate machines and people could lead to
cost-effective flexibility and scalability. However, the collaboration between people and robots
can also create safety issues. There must be a balance between worker’s autonomy and process control,
keeping in mind that operators‘ involvement in the continuous improvement journey is necessary
for success in the long term. “Respect for people”—a core principle of Lean production—should be
considered a cornerstone of Lean production process design. A flexible and cross-trained workforce is
key for dealing with changing demand conditions, allowing dynamic job assignation and efficient line
balancing and sequencing. New operator-centered frameworks are appearing to conceptualize the
role of people in the 4th Industrial Revolution era. The key role of operators has been identified by
numerous authors, coining the term operator 4.0. Industry 4.0’s Key Enabling Technologies can be
used to support production operators to obtain different benefits. In particular, Virtual and Augmented
Reality and wearable devices have attracted great attention. Operators can be supported with assembly
instructions, quality control, assembly details prompts or enhanced training programs, which can be
provided in a way that is satisfactory for the users. Human operators will need to receive and manage
more information than ever before, make decisions and supervise instead of focusing on mechanical
work-related activities. Therefore, empowering operators to act more autonomously and supporting
them accordingly seems necessary.

4. Discussion

This section outlines the key ideas of the four areas considered in the previous section, organized as
answers to the four sets of questions posed in the introduction.

4.1. Assembly & Mass Customisation

The question related to Assembly and Mass customization is: “What are the characteristics and
implications of mass customization for assembly operations? “
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Mass customization brings increased complexity that needs to be addressed at multiple levels
and taking a holistic point of view to ensure that optimizing a subsystem does not negatively affect
another subsystem. Assembly complexity reaches outside the boundaries of assembly operations and
needs to be considered jointly with supply chain, quality, maintenance and IT/IS. Industry 4.0 digital
technologies have a critical role to play in making possible mass customization assembly systems that
do not compromise on quality and cost.

4.2. Industry 4.0 & Key Performance Indicators

The set of questions related to Industry 4.0 and KPIs are: “What new Industry 4.0 digital
technologies are relevant to assembly operations?”, “How to measure the improvement?“ and “How to
make the most out of them?”

There are many examples of new technologies applied to final assembly—see Table 3: the Internet
of Things, big data and digital twins for improving processes and decisions as well as for gathering
data and obtaining valuable information; Cyber Physical Systems and Augmented/Virtual Reality
for measuring human operator performance and supporting human operators‘ work; and a mix
of technologies to support different aspects that enable mass customization. However, assembly
operations are likely to experiment an evolution rather than a revolution by gradually incorporating
these technologies. Two key areas will be of particular interest: enhancing the role of people in assembly
operations—especially in terms of responsibility and skills; and making possible human–machine
hybrid systems capable of efficient low-volume high-variability production.

To evaluate the performance of assembly systems, a KPI system is employed. Standard KPIs need
to be adapted in order to include both traditional metrics (e.g., cost, quality, throughput, inventory,
lead time, productivity) and new indicators that are specific to the products, operations, stakeholders,
business goals and IT-related aspects of the smart factory.

Despite the wealth in the literature about what new technology can do, few relate to methodologies
to assess the operational needs and opportunities in final assembly and then finding or developing an
Industry 4.0 solution to them.

4.3. Lean Assembly for Industry 4.0

The question related to Lean production is: “Is Lean production the best starting ground for
implementing Industry 4.0 assembly operations?”

Lean manufacturing offers an array of tools and techniques to deal with the increasing demand
complexity and variability, and which could benefit assembly operations in the context of mass
customization. While most authors consider Lean manufacturing as a valid approach for increased
complexity of mass customization, others claim that Lean cannot be applied straightforwardly in
the Industry 4.0 era. Lean might not be necessarily the best possible starting ground for smart
assembly in every situation. However, it clearly has positive synergy with Industry 4.0 because new
technologies can enhance Lean assembly, and Lean maturity supports the implementation of new
technology. Moreover, both Industry 4.0 and Lean consider that people have a central role to play in
assembly operations.

4.4. Assembly Operators in Industry 4.0

The questions related to human operators are: “How would Industry 4.0 affect people in assembly?”
and “How to support people transitioning to Assembly 4.0?”

Industry 4.0 is expected to shift the assembly operators’ main functions from direct labor activities
to managing information and making decisions, supported by technology. A flexible and cross-trained
workforce would be key for dealing with changing demand conditions, allowing dynamic job
assignation, line balancing and sequencing. Learning factories are a great way to train operators in the
new digital manufacturing skills needed for smart factories and to gain a deeper understanding of
how new technologies affect them.
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5. Conclusions

This article looked at the issue of how Industry 4.0 technologies could improve the flexibility,
productivity and quality of assembly operations. To do so, a systematic literature review was carried
out, and 239 articles were analyzed. The resulting analysis was structured into four main topics,
each one addressing one of the questions posed in the introduction.

It was found that mass customization brings complexity into assembly operations, which need to
be looked at from a holistic point of view—joining assembly, supply chain, quality, maintenance and IT.
New technologies—such as big data, the Internet of Things, real-time optimization, cloud computing,
CPS, Virtual/Augmented Reality, additive manufacturing and digital twins–allow obtaining meaningful
information in real time about the assembly operations, making better decisions and supporting human
operators in their activities. A combination of conventional and new KPIs to evaluate IT-related aspects
of the smart factory will be needed to measure the impact of these technologies. Although it might not
necessarily be the best starting point in each and every situation, Lean is definitely a great starting
ground for smart factories. Since both Industry 4.0 and Lean consider that people have a critical role to
play in assembly operations, frameworks that place human operators at the center of Lean 4.0 have
started to appear. This focus will need to be translated into supporting people to acquire the digital
manufacturing skills they will need. Learning Factories are great to this end.

The literature analysis also uncovered the relative lack of methodologies for implementing
Industry 4.0 technologies in assembly operations to address concrete business goals, which remains an
open question. There is also room for developing operator-centered frameworks for Industry 4.0 that
are specific to assembly operations in the demand context of mass customization.
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

This article provides a starting point for developing a methodology to successfully implement Industry 4.0 technology for assembly operations. 
It presents a novel multi-layer human-centred conceptual model in line with Lean philosophy which identifies the assembly operator functions 
and relates them to other production departments, identifying how they would be affected by incorporating new digital technologies. The model 
shows that assembly operators would only be directly supported by hardware digital technologies, while the production support departments 
would mainly employ Industry 4.0 software technologies. The work presented here paves the way for developing a methodology for implementing 
Lean Assembly 4.0. 
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1. Introduction 

The term Industry 4.0, initially adopted by a German 
strategic program [1], is used nowadays to express the 
relationship between different elements of the current  
manufacturing sector and the new digital technologies. Recent 
research on Industry 4.0 tends to focus on the possibilities 
brought by a certain new digital technology or develops a 
framework to understand what the effect of would be 
incorporating such new technologies. 

Scarcely explored is the development of implementation 
methodologies that bridge Industry 4.0 conceptual frameworks 
with the current state of industrial environments, and the 
process to successfully deploy new digital technologies that 
bring the expected returns of investment [2]. Additionally, if the 
Lean production approach and its techniques are also related to 
this implementation, the concept of Lean 4.0 could be used as 
shown in the literature [3]. 

This article aims to provide a starting point for developing a 
methodology for successfully implementing Industry 4.0 
technology for assembly operations, in line with Lean 

production principles. To do so, the model presented here links 
assembly elements and ancillary departments to Industry 4.0 
Key Enabling Technologies for assembly operations, 
considering the operator as the centre of the model, which is 
coherent with Industry 4.0 principles [4,5], Lean manufacturing 
[6] and the EU prospects for Industry 5.0 [7]. 

In section 1.1 changes in demand trends are presented, 
introducing a particular issue resulting from mass-
customisation: high-mix low-volume. Section 1.2 describes the 
focus shift towards people in both Lean production and Industry 
4.0. Section 1.3 introduces the role of new technology to 
support humans in assembly: Operator 4.0. Section 2 introduces 
an operator-centred Assembly 4.0 model which identifies 
which digital technologies have a place in supporting operator 
functions and interactions in the Industry 4.0 factory. Finally, 
Section 3 presents the conclusions of the article. 

1.1. Demand trends: mass customisation requires flexibility 

Although a clear segmentation traditionally existed between 
mass-produced goods and made-to-order products, the market 
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1. Introduction 
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strategic program [1], is used nowadays to express the 
relationship between different elements of the current  
manufacturing sector and the new digital technologies. Recent 
research on Industry 4.0 tends to focus on the possibilities 
brought by a certain new digital technology or develops a 
framework to understand what the effect of would be 
incorporating such new technologies. 

Scarcely explored is the development of implementation 
methodologies that bridge Industry 4.0 conceptual frameworks 
with the current state of industrial environments, and the 
process to successfully deploy new digital technologies that 
bring the expected returns of investment [2]. Additionally, if the 
Lean production approach and its techniques are also related to 
this implementation, the concept of Lean 4.0 could be used as 
shown in the literature [3]. 

This article aims to provide a starting point for developing a 
methodology for successfully implementing Industry 4.0 
technology for assembly operations, in line with Lean 

production principles. To do so, the model presented here links 
assembly elements and ancillary departments to Industry 4.0 
Key Enabling Technologies for assembly operations, 
considering the operator as the centre of the model, which is 
coherent with Industry 4.0 principles [4,5], Lean manufacturing 
[6] and the EU prospects for Industry 5.0 [7]. 

In section 1.1 changes in demand trends are presented, 
introducing a particular issue resulting from mass-
customisation: high-mix low-volume. Section 1.2 describes the 
focus shift towards people in both Lean production and Industry 
4.0. Section 1.3 introduces the role of new technology to 
support humans in assembly: Operator 4.0. Section 2 introduces 
an operator-centred Assembly 4.0 model which identifies 
which digital technologies have a place in supporting operator 
functions and interactions in the Industry 4.0 factory. Finally, 
Section 3 presents the conclusions of the article. 

1.1. Demand trends: mass customisation requires flexibility 

Although a clear segmentation traditionally existed between 
mass-produced goods and made-to-order products, the market 
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trends have been shifting towards the customisation of mass-
produced items [8]. Despite this not being economically 
sustainable in the past; technological advances have made it 
possible. Managing the complexity associated with mass 
customisation remains one of the main challenges for global 
production networks [9]. In the near future, mass customisation 
could not only become desirable, but expected of any company 
wanting to remain competitive. In this context, adaptable, 
changeable, and decentralised manufacturing networks will 
possess key competitive advantages [9,10]. 

Mass customisation leads to a particular production demand 
problem, high-mix low-volume: a large number of items being 
demanded, in small amounts each one, and with a variation not 
depending on seasonal trends, making its forecast difficult and 
inefficient. To stay competitive in such a context, 
manufacturing companies will need to become more flexible 
without compromising their productivity. 

Fortunately, several Industry 4.0 digital technologies are 
expected to prove useful in achieving this as already shown in 
the literature [11–13]. 

1.2. Production evolution: Lean 4.0 and focusing on people 

New digital technologies have set the landscape for a fourth 
industrial revolution, conceptualised as Industry 4.0, which 
describes a vision of increased flexibility and automation; data 
and information flow across processes, functions, and 
companies; enhanced quality achieving zero-defect production; 
leveraging big data, neural networks, machine learning and 
Artificial Intelligence, among other digital technologies, to 
maximise efficiency [4]. 

Lean manufacturing, a generalization of world-leading 
Toyota Production System, has proven its efficiency in high 
demand variability, shorter new product development cycles 
and customer-focused, highly competitive environments [14, 
15]. It is therefore a solid starting ground for any manufacturing 
system evolution seeking to improve productivity and 
flexibility at the same time. One of the key characteristics that 
set apart Lean production systems is its respect for people and 
people’s key role in their company’s continuous improvement 
journey [16, 17]. 

Hence, Lean production needs to be the cornerstone on 
which Industry 4.0 technologies rely to enhance production. 
Lean automation is then the synergy between the Lean 
approach and the new digital technologies – Lean 4.0 [12]. 
According to Kolberg and Zühlke [18], Computer Integrated 
Manufacturing (CIM) failed due to the complexity required for 
the automation technology, while the Lean approach was 
successful because of its high effectiveness, achieved by 
reducing complexity and avoiding non-value-added processes. 

Although Industry 4.0 solutions to specific Lean production 
issues may prove useful, either replacing or enhancing existing 
Lean tools, it is looking at the production system from a holistic 
perspective where the maximum benefits of disruptive digital 
technologies could be achieved [3,12]. 

1.3. Assembly and Operator 4.0 

The goal of flexible assembly systems in the Industry 4.0 
era, named ‘Assembly 4.0’ by Cohen and Faccio in [19] –a 
term that will be used in the present article– is to address the 
mass customisation demand paradigm. The most relevant key 
enabling technologies for assembly are –according to [20]– the 
Internet of Things, Big Data, Real-time optimisation, Cloud 
computing, Cyber-Physical Systems, Machine Learning, 
Augmented Reality, Cobots and Additive Manufacturing. 

Considering the critical role of assembly line level operators 
on Lean production systems performance, it is only natural to 
consider how new digital technologies would enhance the 
human operator best traits, and help to cover their weaknesses, 
aiming for a ‘human-automation symbiosis’ [5]. To analyse 
this human-technology interaction, it would be useful to start 
from the operator’s perspective to ensure that the 
implementation of changes does not negatively affect people 
but supports them [21]. 

As proposed in this novel work, keeping the operator at the 
centre is the focus of the methodology approach proposed and 
described in the following section, where all the interactions 
between an assembly operator and production activities and its 
environment have been established and analysed. 

2. Operator-centred assembly 4.0 model 

Due to the success of Lean production systems and because 
respecting people is one of its key features, human operators 
need to be at the centre of any methodology seeking to integrate 
Industry 4.0 digital technologies for assembly operations. 

This model aims to explain, from the point of view of the 
assembly operator, which of its productive functions would be 
affected by Industry 4.0 technologies, and how. It also explains 
how new digital technologies would affect the material and 
information flow between the operator and the main 
Departments which support assembly operations, such as 
Logistics & Planning, Maintenance and Quality Control. 

 

 

Fig. 1. First stage of the human-centred model of assembly systems 

The model proposed consists of two stages. The first stage (see 
Figure 1) develops three concentric layers: the productive 
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functions carried out by the operator, the elements used to do 
so, and the Production Support Departments involved with the 
operator; along with how they interact with the operator 
(Sections 3.1 – 3.4, respectively). The second stage relates 
Industry 4.0 digital technologies with its specific point of 
application from the first stage (Figure 4, Section 2.5). 

2.1. Production functions 

The first layer considered in the model presented in Figure 
1 –the most closely related to the operator– consists of the 
production functions. Manual assembly operators carry out 
four main productive functions: 
• Assembly (AS): attachment of parts together or to the 

previously processed unit, including manipulation of the 
units into and out of the workstation 

• Quality Control (QC): building quality in each process 
step, along with the required tests performed by the 
operator 

• Changeover (CO): adjustments to the workstation, tools, 
parts, and fixtures to assemble a different product model 

• Communication (CM): recording, sending, and receiving 
data or information. 

2.2. Assembly process elements 

 

Fig. 2. Assembly operator functions and process elements utilised to perform 
them 

To develop these production functions in 2.1, several 
assembly process elements are used, which constitute the 
second layer, as shown in Figure 2: 

• Workspace: the actual space in which the assembly task is 
carried out. Involved in AS, QC and CO. 

• Workstation: the physical space where the in-process unit 
is held while parts are assembled. Involved in AS and QC 

• Fresh unit: the next upcoming unit to be processed. 
Involved in AS 

• Processed unit: the previously assembled unit. Involved in 
AS and QC 

• Tools: devices employed to attach parts to the unit. 
Involved in AS and CO 

• Parts: components to be assembled to the in-process unit. 
Involved in AS and CO 

• Status & alert display: devices which function is to inform 
of the production status and visually or audibly alert of any 
anomalous situation. Involved in AS, CO and CM 

• Production data log/ screen: physical or digital means of 
tracking the production schedule, recording data, and 
displaying supporting information. Involved in AS, CO 
and CM 

• Measurement equipment: devices utilised to gauge or test 
relevant characteristics of the in-process unit. Involved in 
QC, CO, and CM 

• Fixtures: devices employed to hold the unit while 
performing assembly or QC operations. Involved in AS, 
QC and CO 

2.3. Production Support Departments 

Assembly operators are supported by five key departments 
of the organisation: (i) Assembly: other operators, situated 
upstream, in parallel or downstream in the process stream; (ii) 
Production Management: including team leaders and assembly 
managers, they typically deal with non-conforming situations; 
(iii) Maintenance: they ensure the tools, fixtures and machines; 
(iv) Quality: they establish Quality Control policies, calibrate 
and validate testing equipment; (v) Logistics & Planning: they 
provide the correct materials and parts at the right time, retrieve 
empty packaging and schedule production. 

2.4. Operator – Supporting Departments interaction 

As Figure 3 depicts, operators interact with the supporting 
departments using a combination of process elements. White 
arrows indicate material flow, while black arrows indicate data 
flow. 

As shown in Figure 3.a, operators receive fresh units from 
upstream process steps; and send processed units towards 
downstream process steps. Information relating non-
conformities or upcoming changeovers in shared typically 
verbally in an informal manner. Formal information about the 
production status is shared using Status & Alerts process 
elements, such as Andon lights or display screens. Operators 
also exchange information formally with Production 
Management using Production Data logs and screens. 
Measurement equipment often sends test data to an IT system 
that stores it and provides Data Analytics. 

Operators and Maintenance exchange information via Status 
& Alerts and Measurement Equipment (see Figure 3.b). Also, 
Maintenance provides and maintains Tools and Fixtures, in 
response to the operator’s information regarding its state. 
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Operators and Quality exchange information via Status & 
Alerts, Production Data log/screens and Measurement 
Equipment. Additionally, Quality provides and maintains the 
Measurement Equipment (see Figure 3.c) that Operators use to 
perform QC. 

Figure 3.d shows that Logistics & Planning provide the 
operator with parts to be assembled onto the unit, and they 
retrieve empty packing (material flow) Along with parts or 
empty boxes, information is transmitted, e.g., when using a 
Kanban or a twin-bin system. Operators also provide implicit 
information through successfully processed units, which are a 
measure of production output. They also exchange information 
via Status & Alerts, Production Data log/screens. A key piece 

of information provided by Logistics & Planning is the 
production schedule, specifying batch sizes and changeovers, 
which can impact the operator’s productivity. 

2.5. Industry 4.0 enabling technologies for Assembly 

To connect the proposed model with Industry 4.0, nine 
enabling technologies have been considered as particularly 
relevant for Assembly Systems [20]. Six of them are software 
technologies (Internet of Things, Big Data, Real-time 
optimisation, Cloud computing, Cyber-Physical Systems, 

 

Fig. 3. Operator – Supporting Departments interaction: (a) Production Management & Assembly; (b) Maintenance; (c) Quality Control; (d) Logistics & 
Planning. 
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Machine Learning), and three are hardware technologies 
(Augmented Reality, Cobots, Additive Manufacturing).  

While the assembly operator’s main functions are not 
expected to change due to the availability of new digital 
technologies, the way these functions are developed will need 
to evolve to enjoy its benefits. The relationship with Supporting 
Departments also shows potential for improvement. Lastly, 
Supporting Departments are expected to integrate new digital 
technologies to obtain increased benefits. Although the latter 
technologies will not be employed directly by the assembly 
operator, they will affect his work. Therefore, the 
implementation of new digital technologies at all levels needs 
to consider the impact on assembly workers to be successful. 
Figure 4 depicts which Industry 4.0 digital technologies would 
be beneficial at each layer of the model. 

Three key technologies could be used by operators to carry 
out its functions, as shown in Figure 4: Augmented Reality or 
Mixed Reality (AR/ MR) [22], collaborative robots (cobots) 
[23] and Cyber-Physical Systems (CPS) [24]. 

 

 

Fig. 4. Industry 4.0 technologies to be employed at each layer of the Human-
Centred Assembly 4.0 model. 

Aiming to support the assembly operator main functions 
(see section 2.1), Augmented Reality/Mixed Reality could be 
widely used: enhancing the operator cognitive ability while 
performing a changeover –which would need to be streamlined 
and mastered to achieve mass customisation, and supporting a 
zero-defect assembly and Quality Control, as introduced in 

[25]. Cobots are to be used not only for assembly tasks, but also 
to flexibly present the unit-in-process in the best orientation 
and position for an ergonomic human operation or inspection; 
even contributing to quick changeovers. Finally, CPS would 
gather and receive data, reducing the cognitive load of the 
operator while ensuring the quality and reliability of the data 
captured and sent in the workstation. 

Regarding the Operator’s interaction with the Supporting 
Departments, the Internet of Things could be employed to 
communicate the vast amount of data required to and from 
them. Industrial IoT can be combined with Augmented Reality 
technology to provide real-time maintenance assistance 
remotely to assembly operators, reducing the equipment 
downtime in the event of a breakdown, in a similar fashion to 
systems used to facilitate engineering knowledge to 
maintenance technicians [26]. Augmented Reality can also 
provide enhanced tools for communication between Operators 
and the Supporting Departments, enabling collaborative 
assembly process design, analogously to the product process 
design presented in [27]. 

Finally, Supporting Departments could benefit from using 
Cloud computing, Big Data, Machine Learning and Real-Time 
optimisation, which would affect assembly operations 
positively in the long term. These software technologies would 
influence greatly the bottom-line results, but these will not be 
directly perceived by assembly operators since they will not be 
in close contact with such technologies. For example, Big Data 
and Digital Twins for Logistics & Planning would help 
optimise in-factory stock levels while ensuring reliable feeding 
of components to assembly cells, but this optimisation is hardly 
seen from the operator point of view. 

2.6. Discussion 

The multi-layer model presented previously explains an 
Assembly operator functions, the tools utilised for such end, 
and its interactions with the Production Support Departments, 
from a human-centric perspective. It then establishes which of 
the previous layers could be affected by Industry 4.0 digital 
technologies, and which technologies would enhance each 
particular function or relationship. 

As Figure 4 shows, there is a clear differentiation between 
the technologies used by the operator to perform its functions 
(hardware technologies), and the technologies used by the 
Production Support Departments – not directly by the operators 
(software technologies). 

Although this model does not reveal how to successfully 
implement Industry 4.0, its necessary prerequisites, or the 
expected order of magnitude of the benefits it would bring; it 
does identify which technologies could be used to support each 
one of the operator’s duties, making it a solid starting point for 
future research. 

This model is builds on top of the foundations laid by solid 
previous research: the central role of people for Industry 4.0 [4, 
5] and for Lean assembly systems [6], as well as the EU 
prospects for Industry 5.0 [7]. However, it has not been 
validated experimentally to date. 
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To determine the prerequisites and the potential benefits of 
implementing Industry 4.0 technologies according to the 
framework presented here, validation in an industrial real study 
case is deemed necessary. 

3. Conclusion 

Aiming to achieve mass customisation, production systems 
in the Industry 4.0 era will need to support the Assembly 
operators when and as needed. The importance of people in 
Manufacturing systems was already a key point in successful 
Lean production systems, and Industry 4.0 technologies need 
to embrace this perception. 

A human-centred model was presented, explaining, from the 
point of view of the assembly operator, which of its productive 
functions would be affected by Industry 4.0 technologies, and 
how so. One clear differentiation appears between the 
technologies used by the operator to perform its functions 
(hardware technologies), and the technologies used by the 
Production Support Departments – not directly by the operators 
(software technologies). 

This model does not aim to be exhaustive for all kinds of 
manual assembly process, but it does include everything related 
to most manual high-mix low-volume processes, and it is open 
enough to allow additions from specific processes to adapt it 
where necessary. 

Future lines of work would employ this model to develop an 
explicit methodology for implementing Industry 4.0 digital 
technologies aiming to support the human Assembly operator 
and evaluating the potential gains in industrial contexts, thus 
providing empirical validation in real industrial study cases. 
This would correlate Assembly 4.0 implementation to key 
operational KPIs (e.g., productivity, on-time delivery, first time 
yield) when analysing a particular case study, whose boundary 
conditions and approach could be properly established by the 
model. 
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Abstract: Manual assembly lines productivity is threatened by the increased complexity brought 
by mass customisation demand trends. Industry 4.0 offers potential solutions to address this 
situation, but the methodology to implement it is still a subject of study. As a preliminary step, 
this article aims to identify the dominant factors affecting the Key Performance Indicators of 
mixed-model assembly lines. To do so, parametric and discrete-events simulation models were 
developed, and Design of Experiments techniques were used. The results show that the key 
drivers for assembly line performance are number of work stations and batch size, and that 
increasing the work content ratio of the products assembled does not interact negatively with 
other factors. The results presented here pave the way for developing Industry 4.0 projects that 
address specifically the most relevant factors that affect assembly lines performance.  

Keywords: Assembly operations, Productivity, Mixed-model assembly, Industry 4.0. 

1.  Introduction  
The demand trends in the recent decades are the mass customisation of products or even the mass 
personalisation of goods [1]. The growing number of available options for both final consumers and 
industrial customers requires focusing on increasing the flexibility of assembly systems while 
maintaining high productivity levels [2,3]. The advances in new digital technologies that could bring 
forward a 4th industrial revolution were conceptualised under the tag ‘Industry 4.0’ by a German 
strategic programme, and are namely: Big Data and Analytics, Autonomous robots, Simulation, 
Horizontal and vertical system integration, the industrial Internet of Things, Cybersecurity, The Cloud, 
Additive Manufacturing and Augmented Reality [4]. Some of these technologies arrive with the promise 
of new opportunities for assembly systems design and operations, allowing them to fulfil the latest 
market requirements [5]. In particular, manual assembly lines and cells show potential for improvement 
when facing the complexity associated with producing a large number of products – or variants of similar 
products [6]. 

Despite new technologies have been developed and their potential benefits have been outlined, 
implementation methodologies are still a hot topic [7]. The focus in this article is therefore to identify 
the dominant factors affecting the mixed-model manual assembly lines Key Performance Indicators 
(KPIs) – such as labour productivity, line capacity and lead time – as a preliminary step in order to 
ensure that Industry 4.0 implementation projects address the right areas, ensuring that the operational 
business goals are achieved. 

From the initial analysis of the situation, a list of relevant factors was put together along with the 
operational KPIs that measure the system performance: productivity, lead time and line capacity. Design 
of Experiments (DoE) is used to find out which factors and their interactions have the greatest effects 
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on the KPIs, and therefore are more important for the system performance. DoE allowed to prepare two 
phases of analysis: Screening (I) and Interactions (II).  

Aiming at exploring how to use a commercial software for mixed-model assembly line simulation, 
an initial parametric model was used as reference, followed by a second model which uses a commercial 
simulation package (Methodology, Section 2). In both cases, parametric – MATLAB® – and 
simulation–FlexSim®– software tools are employed to calculate the Output KPIs from different values 
of Input factors (Results, Section 3). The results of the two models are compared and conclusions are 
extracted, along with a final discussion of the limitations and future outlines of this study (Discussion 
and Conclusions, Section 4). 

Data from a real case of study is used to validate the results of the analysis. The input data for the 
simulation is based on the situation of a manufacturer of white-goods located in northern Spain. The 
company is evaluating merging two mixed-model manual assembly lines into one, which would increase 
the complexity of managing the line, but could bring operational performance benefits if done correctly 
– especially in terms of labour productivity, without compromising operators working conditions or 
product quality. Industry 4.0 would be the enabler of such complexity-dealing transformation, but it is 
deemed necessary to ensure that the investment only targets the critical elements that would allow 
improving the desired KPIs. 

2.  Methodology 
This section presents declares the input variables and output KPIs used, describes the two analysis 
models developed and their verification, and the Design of Experiments to be used in the next section. 
Figure 1 summarises all of this information and schematizes the followed methodology considered in 
this study. 

 

 
Figure 1. Diagram of Input factors and Output KPIs used for the analysis of mixed-model manual 
assembly lines. 

2.1.1.  Variables considered 
Aiming to explore the effect of various relevant factors on mixed-model manual assembly lines, the 
following seven were selected for this analysis: Number of workstations, maximum Work-in-Process 
units in-between stations (WIP), Changeover Time, Work Content Ratio between different models, 
Batch size, First Time Yield (FTY) and Line Balance. Factors related to internal logistics, lack of Quality 
and Overall Equipment Effectiveness (OEE) of assembly equipment were not considered in this study 
in order to keep the models simple, and they will be included in future research. The KPIs of interest are 
three:  

 
• Labour productivity (Prod, %): ratio of operator value added time over the total time employed. 
• Lead Time (hours): time to assemble a complete batch of product. 
• Line Capacity (Capacity, units/hour): average output of the assembly line per unit of time. 
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Table 1 includes the input and output variables with the abbreviations used in this article, as well as 
the base values from the industrial case study. The work content ratio used is the result of dividing the 
maximum work content by the minimum work content used in a given scenario. 

 
Table 1. Input variables and output KPIs used in models. 

Type Description Notation Case study base values 
Input Number of Stations Nstations 4 stations 

Max Work-in-Process WIP 1 unit 
Station changeover time tco 480 s 

Line balance Bal 99% 
First Time Yield FTY 95% 

Batch size Nbatch size 48 units 
Number of models built in the line M 4 models 

Work Content WC 600 … 1400 s 
Work Content ratio WCratio 1 - 2 

Cycle time CT ~ 150 … 350 s 
Output Productivity Prod ~ 90% 

Lead time Lead Time ~ 5 h 
Line capacity Capacity ~ 10 units/h 

2.1.2.  Models for Analysis 
In this work, two models have been used. A simple initial model was developed in order to establish a 
baseline to which compare later and more complex models. Such model needed to be versatile and 
scalable, so the parametric tool MATLAB® was used. Aiming at exploring the potential gains of using 
commercial software for mixed-model assembly line simulation, the free version of the software 
FlexSim® was chosen. 

2.1.3.  Parametric model: MATLAB®. A parametric model was employed to calculate the KPI values 
as a function of the input factors. The software package MATLAB® (R2019b, The MathWorks Inc., 
Natick, MA, United States) was chosen to implement an algorithm relating the variables presented 
before.  

Firstly, for each model M, the cycle time is calculated based on the work content, number of stations 
and line balance - equation (1). 

 𝐶𝐶𝐶𝐶 = 𝑊𝑊𝑊𝑊
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 · 𝐵𝐵𝐵𝐵𝐵𝐵

 (1) 

For each model M, the time employed to build correct and defective units are calculated using 
equation (2) and equation (3), which use the batch size, number of stations, cycle time and first time 
yield. 

 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑏𝑏𝐵𝐵𝑐𝑐𝑐𝑐ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 · 𝑁𝑁𝑠𝑠𝑐𝑐𝐵𝐵𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠 · 𝐶𝐶𝐶𝐶 (2) 

 𝑡𝑡𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 = 𝑁𝑁𝑏𝑏𝐵𝐵𝑐𝑐𝑐𝑐ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 · 𝑁𝑁𝑠𝑠𝑐𝑐𝐵𝐵𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠 · 𝐶𝐶𝐶𝐶 · (1 − 𝐹𝐹𝐶𝐶𝐹𝐹) (3) 

For each model M, the time used to build the batch is given by the time to build correct and defective 
units, as shown in equation (4). The time to complete the batch is calculated by adding the time spent 
on changeover and the time to build the batch, as shown in equation (5). 

 𝑡𝑡𝑏𝑏𝑏𝑏𝑠𝑠𝐵𝐵𝑑𝑑 =  𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 (4) 

 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝐵𝐵𝑐𝑐𝑐𝑐ℎ = 𝑡𝑡𝑏𝑏𝑏𝑏𝑠𝑠𝐵𝐵𝑑𝑑 + 𝑡𝑡𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵𝐵𝐵 (5) 

For each model M, the time recovered (spent assembling correct products) is found using the work 
content and the batch size, as shown in equation (6). 
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 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 𝑊𝑊𝐶𝐶 · 𝑁𝑁𝑏𝑏𝐵𝐵𝑐𝑐𝑐𝑐ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  (6) 

The KPIs can be calculated using equations (7-9). Productivity is determined by the sum of time 
recovered and the sum of time to complete all batches of products. Lead time is calculated as the 
maximum time to complete a batch, and Line capacity is worked out from batch size, number of models, 
number of stations and the sum of time to complete all batches of products. 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 =  ∑ 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠
𝑀𝑀
𝑠𝑠=0

∑ 𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟 𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟ℎ,𝑠𝑠
𝑀𝑀
𝑠𝑠=0

 (7) 

 𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 𝑡𝑡𝑖𝑖𝑡𝑡𝐿𝐿 = 𝑡𝑡𝐿𝐿𝑚𝑚�𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝐵𝐵𝑐𝑐𝑐𝑐ℎ�𝑀𝑀 (8) 

 𝐶𝐶𝐿𝐿𝐶𝐶𝐿𝐿𝑃𝑃𝑖𝑖𝑡𝑡𝑖𝑖 = 𝑁𝑁𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟·𝑀𝑀·𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠· 3600
∑ 𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟 𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟ℎ,𝑠𝑠
𝑀𝑀
𝑠𝑠=0

 (9) 

2.1.4.  Discrete events model: FlexSim®. FlexSim® is a 3D discrete events simulation software for 
modelling and analysis of manufacturing, operations and logistics systems. 

The simulation results were contrasted against the output from the parametric model described 
previously in subsection 2.2.1. The free licensing version of the simulation software led to several 
limitations: (1) a maximum of 30 simulation elements, e.g. stations or buffers; (2) the maximum process 
flow activities is 35; (3) changeover activities do not start until the new batch of units arrives to a 
workstation, causing unrealistic additional idle time; (4) the number of different random seeds are 
limited to just one, preventing any variability analysis. 

Due to the aforementioned limitations, two different simulation configurations were used: 
Configuration A and B. Configuration A maintains the FTY at 100% - disregarding the effects of poor 
Quality – but in return, allows to overcome the unrealistic changeover limitation mentioned previously. 
This configuration does not consider WIP as a factor neither, since the only source of variability (poor 
Quality) is neglected. Configuration B considers FTY: two Quality Control checkpoints are 
implemented in this configuration to evaluate whether a unit has defects, and if this is the case, the unit 
is sent back to the previous assembly station for in-line reworks, as shown in figure 2. 

 

 

Figure 2. FlexSim® simulation model used for Configuration B. 

2.1.5.  Verification of the models 
In order to compare the two models described in subsections 2.2.1 (parametric) and 2.2.2 (discrete events 
simulation), a base scenario made of the 7 input factors was used for each configuration (A and B). From 
this base scenarios, 24 additional scenarios were generated by changing just one factor at a time (-1 and 
+1 levels), 10 scenarios for Configuration A and 14 for Configuration B. The results of two KPIs 
(Productivity and Lead Time) were registered to compare the performance of the two models. Both 
models obtain comparable results for productivity and lead time: the average difference is 2.39%, the 
standard deviation is 4.58% and the maximum difference is 19.45%, corresponding to the particular case 
of a large number of workstations, which causes abnormally high idle times during changeovers in the 
FlexSim® model Configuration B. 
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2.1.6.  Design of Experiments 
Considering the relatively high number of factors (k = 7 factors, as show in figure 1), the analysis of 
their interactions and effects on the selected KPIs would require a great number of experiment runs (nk): 
27 = 128 experiments for two levels (n = 2) per factor, or 37 = 2,187 experiments for three levels (n = 3) 
per factor. Instead, the analysis was structured in two phases [8]: screening (I) to identify most relevant 
factors; and analysis of interactions (II) – summarised in table 2.  

The values used for each level (-1), (0) and (+1) were chosen by modifying the industry case study 
values and stretching them slightly beyond what the company considers achievable in the short term, in 
order to include minimum and maximum range values for each factor. 

 
Table 2. Design of Experiments employing two phases due to the large number of factors involved. 

Phase Goal 
Experiment 

Design 
No. of 

factors (k) 
No. of 

levels (n) 
No. of 
runs 

I – Screening Identify most relevant factors Fractional 
Factorial 

7 2 16 

II – Interactions Analyse influence and interactions Full Factorial 3 3 27 

2.1.7.  Phase I – Screening. The Screening phase employs a Fractional Factorial design for 7 factors 
with 2 levels per factor. Table 3 shows the values used for each factor.  

 
Table 3. Values used for each factor in the DoE phase I – Screening: 
Fractional Factorial. 

 Factor Code 
Values 

-1 +1 
Batch Size A 12 units 48 units 
Number of Stations B 3 8 
Max Work-In-Process C 0 1 
Line Balance D 95% 99% 
Station changeover time E 300 s 600 s 
First Time Yield F 95% 97% 
Work Content ratio G 2 3 

2.1.8.  Phase II – Analysis of Interactions. The Analysis phase consist of a Full Factorial design of 3 
factors with 3 levels per factor. The three factors chosen for this phase resulted from analysing the results 
from the Screening phase. Table 4 shows the values used for each factor in phase II - Analysis. The 
other 4 factors that were not studied in this phase remained fixed at their 0 values. 

 
Table 4. Values used for each factor in the DoE phase II – Interactions: 
Full Factorial. 

Factor Code 
Values 

-1 0 +1 
Batch Size A 12 units 24 units 48 units 
Number of Stations B 2 4 8 
Work Content ratio G 1 2 4 
Max Work-In-Process Fixed - 1 - 
Line Balance Fixed - 95% - 
Station Changeover time Fixed - 480 s - 
First Time Yield Fixed - 95% - 

3.  Results 
The methodology described in the previous section allowed to obtain the following results for each 



9th Manufacturing Engineering Society International Conference (MESIC 2021) 
IOP Conf. Series: Materials Science and Engineering 1193  (2021) 012104

IOP Publishing
doi:10.1088/1757-899X/1193/1/012104

6

 
 
 
 
 
 

phase of the study. 

3.1.1.  Phase I – Screening. The experiment results of the design described in table 3 calculated using 
the MATLAB model described in Section 2.2 are shown in figure 3. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) (f) 

Figure 3. Left: bar charts for values of half-effects of Input factors on (a) Productivity, (c) Lead Time 
and (e) Line Capacity in a Fractional Factorial experimental design. Right: average effects of input 
factors on (b) Productivity, (d) Lead Time and (f) Line Capacity in a Fractional Factorial 
experimental design. 

 
From the results shown in figure 3, it can be inferred that the two most relevant factors are the 

Number of Stations (which affects all three KPIs) and the Batch size, which affects Productivity and 
Lead time. 

3.1.2.  Phase II – Analysis of interactions. In this phase the focus is the interaction between the most 
influential factors, namely Number of Stations and Batch size. Since one of the initial goals of the study 
was to assess the viability of merging two manual assembly lines into one, which would increase the 
number of models being made and therefore increasing the Work Content ratio of the newly formed 
assembly line, a third factor – WCratio – was introduced at this stage of the analysis. 

The results of the DoE described in table 4 calculated using the MATLAB model described in Section 
2.2 –– are shown in figure 4. The parametric model was employed because it had been developed 
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specifically to analyse these interactions. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Pareto charts for values of half-effects of Number of Stations, Batch size and Work 
Content ratio on (a) Productivity, (c) Lead Time and (e) Line Capacity in a Full Factorial 
experimental design. Average effects of Number of Stations, Batch size and Work Content ratio on 
(b) Productivity, (d) Lead Time and (f) Line Capacity in a Full Factorial experimental design. 

 
The results presented in figure 4(a-c) show that although the interaction of factors A (Number of 

stations) and B (Batch size) is relevant for assembly line Productivity and Lead time, it is secondary to 
the separate effects of any of the two factors. 

4.  Discussion and conclusions 
The results presented in Section 3, obtained following the methodology described in Section 2 allow to 
reveal the most impactful factors affecting the performance of manual assembly lines in terms of 
Productivity, Lead time and Line Capacity. Two models were developed, which results are comparable: 
the average difference is 2.39%, the standard deviation is 4.58% and the maximum difference is 19.45%. 

It was found that the two most critical factors are the Number of stations and the Batch size. It is 
important to note that both factors have opposing effects on two of the KPIs – i.e. the increase of 
Productivity and reduction of Lead time cannot be optimised simultaneously by changing these two 
factors alone.  

The great importance of the Number of stations is partially explained by the assumption that any 
additional station needs a changeover time of a similar order of magnitude to that of the existing stations, 
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which may not always be the case. In consequence, the only way of maintaining a high labour 
productivity when increasing the number of stations (to merge two assembly lines into one or in order 
to reduce the Lead time) relies on decreasing the changeover time per station to ensure that the total 
changeover time incurred remains constant or decreases. 

The results presented in this article show that an increase in product variety – represented by the 
variable Work Content ratio – does not interact negatively with any of the two key factors, which 
suggests that merging two manual assembly lines into one would not suffer from additional Productivity 
losses. The potential impact of this finding for mixed-model assembly lines lies on the assumption that 
the stations changeover times would not significantly increase as a result of introducing additional 
models. 

In order to maximise the return of investment of any Industry 4.0 solution, they should be aimed at 
the most influential factors identified before: (1) to address the productivity loss due to the increase in 
Number of stations required to increase line Capacity and reduce Lead time, collaborative robots could 
be integrated in the line. Alternatively, (2) to ensure that the total changeover time remains constant 
despite an increase in the number of stations, cognitive support to complex or infrequent changeover 
operations could be provided by Augmented or Mixed Reality. 

Future research in this field could focus on enhancing the analysis models by using discrete events 
software actually incorporating variability, and expanding the model to incorporate the internal logistics 
constraints due to an increased number of different models in smaller batch sizes. Another potential 
research route would be scanning the current state of the art Industry 4.0 technologies to find compatible 
matches for the identified areas as preliminary step before implementing Industry 4.0 technologies in 
the assembly lines. 
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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To address mass customisation demand trends, assembly line flexibility and productivity are critical. Industry 4.0 technologies could support
assembly operations to this end. However, clear implementation methodologies are still lacking. This article presents two models for evaluating
the most relevant Key Performance Indicators (KPIs) of manual or semi-automatic assembly lines, allowing to maximise the return of investment
of any digital technology addition. MATLAB® was used to implement a parametric model, and FlexSim® was employed to build a discrete event
simulation model. The models were validated using data from two industrial study cases from a global white goods manufacturer.
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1. Introduction

The current demand trends have been shifting from mass
production to mass customisation since the end of the 20th Cen-
tury, and even further towards mass personalisation [1]. As a re-
sult, an increasing number of industries are facing an atomised
demand, which could be denoted as ‘high-mix low-volume’ [2]:
a great number of products -and product variants- are in demand
in small quantities each. Moreover, the expected shortening of
production lead times and reduction of inventory levels put ad-
ditional pressure on businesses to streamline their processes to
compete in the global marketplace [3]. In this context, assembly
operations need to be flexible while achieving high productiv-
ity, which confronts the traditional dichotomy between manual
(highly flexible, not quite productive) and automated assembly
(highly productive, not quite flexible).

Since the term Industry 4.0 was introduced by the German
government in 2011 [4], it is used to refer to an array of disrup-
tive digital technologies which are expected to bring forward
the fourth industrial revolution [5]. Some of these Key Enabling
Technologies have been shortlisted to be most impactful on the
performance of assembly operations [6] -namely the Internet of

Things, big data, real-time optimisation, cloud computing, cy-
ber physical systems, machine learning, augmented reality, col-
laborative robots and additive manufacturing - by enabling the
main characteristics of Assembly 4.0 [7]: late customisation,
assembly control systems, aided assembly, intelligent storage
management, self-configured workstation layout and product
and process traceability.

Nonetheless, questions arise following these analysis, such
as the following: Which of the features brought by Industry 4.0
technologies would have the most positive impact on the opera-
tional and business goals of assembly operations? What would
be the best method of implementing these changes to achieve
the maximum return on investment? Previous work [8] estab-
lished that it is clear that Lean Manufacturing has a critical role
to play in this transformation due to the similarities and syner-
gies with Industry 4.0, and that there is a lack of methodologies
for implementing the new digital technologies of Industry 4.0
to address concrete business goals.

The main approaches to evaluate alternative scenarios and
the impact of design variables on the assembly operations Key
Performance Measures (KPIs) include mathematical modelling,
simulation, and other techniques such as Petri nets or artifi-
cial intelligence, among others [9]. Mathematical models that
consider setup times usually do so in a simplified way, as ei-
ther sequence-independent or sequence-dependent times, al-
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1. Introduction

The current demand trends have been shifting from mass
production to mass customisation since the end of the 20th Cen-
tury, and even further towards mass personalisation [1]. As a re-
sult, an increasing number of industries are facing an atomised
demand, which could be denoted as ‘high-mix low-volume’ [2]:
a great number of products -and product variants- are in demand
in small quantities each. Moreover, the expected shortening of
production lead times and reduction of inventory levels put ad-
ditional pressure on businesses to streamline their processes to
compete in the global marketplace [3]. In this context, assembly
operations need to be flexible while achieving high productiv-
ity, which confronts the traditional dichotomy between manual
(highly flexible, not quite productive) and automated assembly
(highly productive, not quite flexible).

Since the term Industry 4.0 was introduced by the German
government in 2011 [4], it is used to refer to an array of disrup-
tive digital technologies which are expected to bring forward
the fourth industrial revolution [5]. Some of these Key Enabling
Technologies have been shortlisted to be most impactful on the
performance of assembly operations [6] -namely the Internet of

Things, big data, real-time optimisation, cloud computing, cy-
ber physical systems, machine learning, augmented reality, col-
laborative robots and additive manufacturing - by enabling the
main characteristics of Assembly 4.0 [7]: late customisation,
assembly control systems, aided assembly, intelligent storage
management, self-configured workstation layout and product
and process traceability.

Nonetheless, questions arise following these analysis, such
as the following: Which of the features brought by Industry 4.0
technologies would have the most positive impact on the opera-
tional and business goals of assembly operations? What would
be the best method of implementing these changes to achieve
the maximum return on investment? Previous work [8] estab-
lished that it is clear that Lean Manufacturing has a critical role
to play in this transformation due to the similarities and syner-
gies with Industry 4.0, and that there is a lack of methodologies
for implementing the new digital technologies of Industry 4.0
to address concrete business goals.

The main approaches to evaluate alternative scenarios and
the impact of design variables on the assembly operations Key
Performance Measures (KPIs) include mathematical modelling,
simulation, and other techniques such as Petri nets or artifi-
cial intelligence, among others [9]. Mathematical models that
consider setup times usually do so in a simplified way, as ei-
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though some authors have considered the importance of prod-
uct change dependent inter-task times [10–12]. On the other
hand, Discrete Event Simulation inherently considers the as-
sembly stations waiting and blocking times induced by finite
buffers and cycle time differences between distinct products.
However, simulation models are more complex and require
larger time investments to be built. A simplified mathematical
formulation with a focus on changeover losses would allow a
quick initial assessment of operational KPIs in a high-mix low-
volume demand environment where small batch sizes and fre-
quent changeovers are major drivers of the assembly system’s
performance.

The goal of this article is to introduce two simple yet com-
prehensive models that can be used to evaluate the performance
of high-mix low-volume manual or semi-automatic assembly
lines, allowing to gain a deep understanding of the implications
of different parameters on the line KPIs.

The present article is structured as follows: Section 2 -
Methodology - presents the two models developed and the real
case from an industrial partner used to validate them. Section 3
includes the Results and analysis of the aforementioned valida-
tion cases, and Section 4 present the Discussion and Conclusion
of the article.

2. Methodology

Two assembly line performance evaluation models were de-
veloped, using MATLAB® and FlexSim® respectively. They
consider a series of input parameters that are processed to pro-
duce the line KPIs as output.

This section is comprised of five Subsections. The general
framework employed is presented in Subsection 2.1; Subsection
2.2 introduces a parametric model implemented using MAT-
LAB®; Subsection 2.3 describes a discrete events simulation
model implemented using FlexSim®; Subsection 2.4 compares
the advantages and disadvantages of both models, and Subsec-
tion 2.5 describes the industrial case used to validate both mod-
els against real data from the manufacturing plant of a research
business partner.

2.1. Framework

The models used for evaluating the performance of multi-
product assembly lines consider a single linear series of work-
stations, with one or two quality control (QC) stations inte-
grated with them, as depicted by Fig 1.

Fig. 1: Multi-product assembly line with quality control stations.

The model is defined by a set of input variables -divided into
design, fixed and disturbance parameters- which produce a set
of KPIs as a result, as shown in Table 1.

Table 1: Input variables and KPIs considered in the models.

Type Variable Notation

Design parameters No. workstations Nstations
No. of products Nproducts
Batch size Nbatchsize
Max. WIP between stations WIP

Fixed parameters Cycle time Tcycle
Work Content WC
Line balance Bal
Setup time Tsetup
First Time Yield FTY
Work Content Ratio WCratio

Disturbances Variability of process time Varprocess
Variability of setup time Varsetup

KPIs Output Output
Throughput Throughput
Lead time LeadTime
Labour productivity Prodlabour
Line productivity Prodline

The models consider a manual assembly line capable of pro-
ducing multiple products. After finishing a batch of units of a
certain product, the workstations need to change over to the
next product, by carrying out a setup. The setup time depends
both on the outgoing and the incoming products.

2.2. Parametric Model

Firstly, a parametric model was developed to obtain the de-
sired KPIs. It calculates the productive time from the available
time minus the changeover time. It then works out the actual
productive time of each batch of products by subtracting the
time lost due to line imbalance, minor stops and defects, as il-
lustrated conceptually in Fig. 2.

The software MATLAB® (2019b, The MarhWorks Inc.,
Natick MA, United States) was used to implement the algo-
rithm described below. MATLAB® was chosen because of its
user friendliness since the algorithm presented here does not
require the use of an optimised programming language (e.g.
C/C++) to complete the calculations in a very short time.

In the first place, the cycle time of each batch of products in
the sequence is calculated using Equation 1.

Tcycle =
WC

Nstations · Bal
(1)

For each batch, the time lost on changeover depends on the
previous product (pout) and the product of the current batch
(pin). Equations 2-7 describe its calculation. For each worksta-
tion i, the start and finish times of the previous batch are calcu-
lated using Equations 2-4.

t f inish out,1 = Tcycle(Pout) (2)
2



 Adrian Miqueo  et al. / Procedia CIRP 107 (2022) 1461–1466 1463
A. Miqueo et al. / Procedia CIRP 00 (2022) 000–000 2

though some authors have considered the importance of prod-
uct change dependent inter-task times [10–12]. On the other
hand, Discrete Event Simulation inherently considers the as-
sembly stations waiting and blocking times induced by finite
buffers and cycle time differences between distinct products.
However, simulation models are more complex and require
larger time investments to be built. A simplified mathematical
formulation with a focus on changeover losses would allow a
quick initial assessment of operational KPIs in a high-mix low-
volume demand environment where small batch sizes and fre-
quent changeovers are major drivers of the assembly system’s
performance.

The goal of this article is to introduce two simple yet com-
prehensive models that can be used to evaluate the performance
of high-mix low-volume manual or semi-automatic assembly
lines, allowing to gain a deep understanding of the implications
of different parameters on the line KPIs.

The present article is structured as follows: Section 2 -
Methodology - presents the two models developed and the real
case from an industrial partner used to validate them. Section 3
includes the Results and analysis of the aforementioned valida-
tion cases, and Section 4 present the Discussion and Conclusion
of the article.

2. Methodology

Two assembly line performance evaluation models were de-
veloped, using MATLAB® and FlexSim® respectively. They
consider a series of input parameters that are processed to pro-
duce the line KPIs as output.

This section is comprised of five Subsections. The general
framework employed is presented in Subsection 2.1; Subsection
2.2 introduces a parametric model implemented using MAT-
LAB®; Subsection 2.3 describes a discrete events simulation
model implemented using FlexSim®; Subsection 2.4 compares
the advantages and disadvantages of both models, and Subsec-
tion 2.5 describes the industrial case used to validate both mod-
els against real data from the manufacturing plant of a research
business partner.

2.1. Framework

The models used for evaluating the performance of multi-
product assembly lines consider a single linear series of work-
stations, with one or two quality control (QC) stations inte-
grated with them, as depicted by Fig 1.

Fig. 1: Multi-product assembly line with quality control stations.

The model is defined by a set of input variables -divided into
design, fixed and disturbance parameters- which produce a set
of KPIs as a result, as shown in Table 1.

Table 1: Input variables and KPIs considered in the models.

Type Variable Notation

Design parameters No. workstations Nstations
No. of products Nproducts
Batch size Nbatchsize
Max. WIP between stations WIP

Fixed parameters Cycle time Tcycle
Work Content WC
Line balance Bal
Setup time Tsetup
First Time Yield FTY
Work Content Ratio WCratio

Disturbances Variability of process time Varprocess
Variability of setup time Varsetup

KPIs Output Output
Throughput Throughput
Lead time LeadTime
Labour productivity Prodlabour
Line productivity Prodline

The models consider a manual assembly line capable of pro-
ducing multiple products. After finishing a batch of units of a
certain product, the workstations need to change over to the
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Firstly, a parametric model was developed to obtain the de-
sired KPIs. It calculates the productive time from the available
time minus the changeover time. It then works out the actual
productive time of each batch of products by subtracting the
time lost due to line imbalance, minor stops and defects, as il-
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Natick MA, United States) was used to implement the algo-
rithm described below. MATLAB® was chosen because of its
user friendliness since the algorithm presented here does not
require the use of an optimised programming language (e.g.
C/C++) to complete the calculations in a very short time.

In the first place, the cycle time of each batch of products in
the sequence is calculated using Equation 1.

Tcycle =
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Nstations · Bal
(1)

For each batch, the time lost on changeover depends on the
previous product (pout) and the product of the current batch
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Fig. 2: Productivity losses in multi-product assembly lines considered in the
parametric model.

tstart out,i = t f inish out,i−1 (3)

t f inish out,i = tstart out,i + Tcycle(pout) (4)

For each workstation i, the finishing time of the changeover
is given by Equation 5.

t f inish co,i = t f inish out,i + Tsetup(pout, pin) (5)

For each workstation i, the start and finish times of the first
unit of the incoming product are calculated using Equations 6-
7.

tstart in,i = max
{
t f inish co,i ; t f inish in,i−1

}
(6)

t f inish in,i = tstart in,i + Tcycle(pin) (7)

In case Tcycle(out) ≥ Tcycle(in), the time lost on each station i
is given by Equations 8-9.

i ∈ {1,Nstations − 1} : Tlost,i =

max
{
0 ; t f inish co,i+1 − t f inish in,i −WIP · Tcycle(in)

} (8)

i = Nstations : Tlost,i = Tsetup(pout, pin) (9)

In case Tcycle(out) < Tcycle(in), the time lost on each station i
is given by Equations 10-11.

i = 1: Tlost,i = Tsetup(pout, pin) (10)

i ∈ {2,Nstations} : Tlost,i = t f inish in,i−1 − t f inish out,i (11)

Having calculated the time lost due to the changeover for
each station, the total time lost is obtained with Equation 12.

Tlost co = max
{
Tlost,i

} · Nstations (12)

For each batch of products, a number of units have defects,
depending on the product First Time Yield -see Equation 13-14.

Nde f ects = ⌈Nbatchsize · FTY⌉ (13)

Ncon f orming = Nbatchsize − Nde f ects (14)

Equations 15-16 calculate the time employed to assemble
defective and conforming units.

Tde f ects = Nde f ects · Nstations · Tcycle (15)

Tcon f orming = Ncon f orming · Nstations · Tcycle (16)

Therefore, the time needed to complete each batch of prod-
ucts is given by Equation 17.

Tcomplete batch = Tcon f orming + Tde f ects + Tlost co (17)

Finally, for each batch, the recovered -productive- time is
calculated using Equation 18.

Trecovered = WC · Ncon f orming (18)

The KPIs shown in Table 1 can be now calculated consider-
ing the full sequence of NB batches using Equations 19-23.

Output =
NB∑
j=1

Ncon f orming, j (19)

Throughput =

∑NB
j=1 Ncon f orming, j∑NB

j=1 Tcomplete batch, j
(20)

LeadTimebatch = max
{
Tcomplete batch

}
NB (21)

Throughput =

∑NB
j=1 Trecovered, j∑NB

j=1 Tcomplete batch, j
(22)

Prodline =

∑NB
j=1 Ncon f orming, j

Nstations ·∑NB
j=1 Tcomplete batch, j

(23)

2.3. Discrete Events Simulation Model

The second model employed to assess the performance of
manual multi-product assembly lines uses Discrete Events Sim-
ulation (DES) implemented on the software FlexSim® (2021.0,
FlexSim Software Products, Inc.). FlexSim® was chosen be-
cause it allows to recreate the changeover logic matching the
mathematical model within the additional complexity of a DES
model, as well as defining the KPIs to match the mathematical
formulation ones.

The model developed, illustrated in Fig. 3, consists of 3 or 4
workstations with one operator each, organized in a sequential
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multi product assembly line. Each operator, using a worksta-
tion (coloured orange in Figure 3), processes the corresponding
unit for a random period of time which follows a lognormal
distribution governed by the mean -cycle time- and the stan-
dard deviation -expressed by the process variability parameter
as a percentage of the mean: e.g. a process variability parameter
value of 0.20 equals to the standard deviation being 20% of the
cycle time. Once the unit has been processed, it can be placed
in the WIP buffers between stations (coloured dark grey in Fig.
3) before being processed on the next station. The two quality
control stations (coloured blue in Fig. 3) either reject or accept
passing units. The probabilities of each result are governed by
the First Time Yield (FTY) parameter. The changeover logic
works so that once an operator has finished processing the last
unit of a batch, it must set up its workstation for a duration
given by a lognormal distribution of mean equal to the setup
time parameter (which depends on the outgoing and incoming
products) and standard deviation given by the setup variability
parameter, similarly to the process variability. The numeric val-
ues of both parameters were estimated from real data gathered
by the industrial partner, using the maximum likelihood estima-
tors [13].

Fig. 3: Discrete Events Simulation model of Line 1.

2.4. Models features comparison

The two models described in Subsections 2.2 –parametric–
and 2.3 –discrete events simulation– aim to calculate the same
KPIs using the same input parameters. However, despite shar-
ing some features, they differ in several aspects that make them
behave differently under certain circumstances.

The first and most notable difference is that the parametric
model does not consider the variability of process and setup
times, while the DES model employs lognormal distributions
for these times, governed by two variability parameters which
express the ratio between the Standard Deviation and the Mean
of the lognormal distribution.

The second difference is related to Quality: the parametric
model considers an end-of-line quality control, while the DES
model features two in-line quality control stations (one located
in the middle and the other one located at the end of the assem-
bly line).

The third difference is that the parametric model assumes
the assembly stations are synchronous: they start and finish pro-
cessing products in sync, which might not be the case in indus-

trial environments. The DES model, on the other hand, does not
force assembly stations synchronisation, and therefore reflects
waiting or blocked times due to the effect of line imbalance,
defects and variability.

The last point is changeovers. Both models take into account
the workstations blocked and waiting times originated during a
product changeover by the cycle time difference between out-
going and incoming products. However, the DES model also
accounts for the combined effects of variability, quality issues
and out-of-sync, which deteriorate productivity even more than
these factors separately.

Having established the key differences, the next Subsection
describes the cases used for verifying and validating both mod-
els.

2.5. Verification and Validation – an industrial real case

To validate the models described previously, they were em-
ployed on two scenarios from a global white goods manufac-
turer site located in the North of Spain, which will be named
here as ‘Company B’. The scenarios consist of two different
manual assembly lines (‘Line 1’ and ‘Line 2’) that have not
been automated yet due to the substantial number of product
variants they produce: around 50 references grouped into 6-8
families on each line. Each family of references has been con-
sidered as a single product because the Work Content and as-
sembly sequence of the references within a product family are
identical. The low order quantities of each reference and rela-
tively high setup times relative to cycle times, make this case an
example of high-mix low-volume demand.

The input data used for both scenarios are summarised in
Table 2.

Table 2: Input data from an industrial real case for validating the models.

Variable Units Line 1 Line 2

No. workstations 4 3
No. product families 6 8
Batch size (avg.) units 66 64
No. of batches 27 33
Total units ordered units 1680 2116
Max. WIP between stations units 1 1

Cycle time (avg.) min 5.42 4.65
Work Content (avg.) min 21.68 13.95
Line balance (avg.) % 99.2 98.7
Setup time (avg.) min 6.85 8.35
First Time Yield % 99.2 99.8
Work Content ratio 1.33 1.41

Variability of process time % 20 20
Variability of setup time % 20 20

Both scenarios were calculated using the parametric and the
DES models, and the results were compared against the actual
KPIs obtained from the data gathered by the industrial partner.

To verify the models against each other (considering that the
parametric model does not include variability of process and
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identical. The low order quantities of each reference and rela-
tively high setup times relative to cycle times, make this case an
example of high-mix low-volume demand.

The input data used for both scenarios are summarised in
Table 2.

Table 2: Input data from an industrial real case for validating the models.

Variable Units Line 1 Line 2

No. workstations 4 3
No. product families 6 8
Batch size (avg.) units 66 64
No. of batches 27 33
Total units ordered units 1680 2116
Max. WIP between stations units 1 1

Cycle time (avg.) min 5.42 4.65
Work Content (avg.) min 21.68 13.95
Line balance (avg.) % 99.2 98.7
Setup time (avg.) min 6.85 8.35
First Time Yield % 99.2 99.8
Work Content ratio 1.33 1.41

Variability of process time % 20 20
Variability of setup time % 20 20

Both scenarios were calculated using the parametric and the
DES models, and the results were compared against the actual
KPIs obtained from the data gathered by the industrial partner.

To verify the models against each other (considering that the
parametric model does not include variability of process and

4

A. Miqueo et al. / Procedia CIRP 00 (2022) 000–000 5

setup time), the DES model was used for each scenario with
the Variability parameters set to zero.

The following Section 3 shows the results of the validation
and verification against the industrial case described above.

3. Results

This section includes the KPIs resulting from simulating the
two scenarios described in Subsection 2.5, named ‘Line A’ and
‘Line B’. Figure 4 shows the resulting KPIs: Output, Through-
put, Labour Productivity and Line Productivity.

Fig. 4: Results of simulation using a parametric and Discrete events simula-
tion model: (a) Output, (b) Throughput, (c) Labour productivity and (d) Line
productivity.

Figure 5 below shows the relative error of each of the models
when compared with the real industry data (column Company
B) for each of the results from Figure 4.

Fig. 5: Relative error of KPI results using a parametric and Discrete events
simulation model: (a) Output, (b) Throughput, (c) Labour productivity and (d)
Line productivity.

The relative errors between real industry data and the KPIs
obtained using the models presented in this article are in all
cases below 1% for Output, 5% for Throughput and Line Pro-
ductivity, and 3% for Labour Productivity, which allows consid-
ering both models validated. In summary, the average relative
error is 1.63% and the maximum relative error is 4.9%.

Moreover, the differences between the results of the para-
metric model and the DES model with no variability are con-
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sistent, not differing more than 3.5% in any KPI. This allows
considering that the models are also verified.

It should be noted that both models overestimate Through-
put and Productivity since they do not consider any constraints
outside of the assembly line such as machine breakdowns, com-
ponents quality or supply problems.

4. Discussion and Conclusion

The results shown in Section 3 allowed validating both mod-
els presented in Section 2 by comparison against real industry
data which considers two scenarios. The results also allowed to
verify the parametric model against the Discrete Events Sim-
ulation model with no variability, since their results differ less
than 3.5% for any KPI.

The results show that both models underestimate Output and
overestimate Throughput, Labour Productivity and Line Pro-
ductivity. The mean relative error is 1.63% and the max rela-
tive error is 4.9%, which means that both models are reliable
for high-mix low-volume demand scenarios similar to the ones
considered here.

The sources of the errors could be (1) the simplifications that
the models entail, such as the lack of process variability in the
parametric model or the consideration of non-conforming units
as scrap; (2) that constraints external to the assembly line take
place: defective components, internal logistics service prob-
lems, or quality control equipment breakdown, among others.

Regarding the models limitations, the parametric model
presents great ease of use and speed of calculations, so that
it can be used as a preliminary ‘enhanced calculator’. Never-
theless, it lacks the complexity to take into account the com-
bined effects of quality issues, variability, changeovers and mi-
nor stoppages. In consequence, it can be a useful, yet optimistic
tool. The DES model, on the other hand, is already a power-
ful tool for examining theoretical situations, evaluating assem-
bly line design alternatives, and answering specific questions
within a given scenario. Moreover, the DES model can be eas-
ily expanded to include automated stations –e.g. collaborative
robots [14]– or to take into account the effect of operator cog-
nitive support technologies such as Augmented Reality [15].

Future lines of work would employ the parametric model
presented here as a preliminary analysis tool, followed by a
DES model expanded from the one described here, but adjusted
to evaluate the impact of different digital technologies which
would affect certain variables: for example, while employing
collaborative robots would increase the line productivity, aug-
mented reality for operator support would reduce the process
time variability. Such a model would allow understanding how
to maximise the effect of investments to achieve the desired op-
erational or business goals. Finally, it remains an open topic
comparing the estimated improvements to be obtained imple-
menting Industry 4.0 digital technologies with the actual results
in an industrial environment.
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Abstract: Demand trends towards mass customization drive the need for increasingly productive
and flexible assembly operations. Walking-worker assembly lines can present advantages over fixed-
worker systems. This article presents a multiproduct parallel walking-worker assembly line with
shared automated stations, and evaluates its operational performance compared to semiautomated
and manual fixed-worker lines. Simulation models were used to set up increasingly challenging
scenarios based on an industrial case study. The results revealed that semiautomated parallel walking-
worker lines could achieve greater productivity (+30%) than fixed-worker lines under high-mix
low-volume demand conditions.

Keywords: assembly lines; walking worker; multimodel; parallel stations; high-mix low-volume;
simulation; flexible manufacturing systems

1. Introduction

Mass customization and personalization demand trends drive production operations
towards high product variability, smaller batch sizes, reduced inventory, and shorter lead
times [1,2]. As a consequence, an increasing number of industries need to assemble a large
number of similar products in small quantities each, which is called high-mix low-volume
demand [1]. To succeed under such circumstances, productivity and flexibility are required
at the same time, contrary to the existing dichotomy [3]. Reconfigurable assembly systems,
first, followed by the cyberphysical or smart assembly systems of Industry 4.0 and the
future adaptive cognitive assembly systems, aim to address it [4–6].

Current manual or semiautomatic serial assembly lines (ALs) present productivity
limitations due to the inherent losses of frequent changeovers and the difficulties of bal-
ancing a large mix of different products on top of the constraints imposed by automated
stations. Moreover, these conventional fixed-worker assembly lines (FWALs) are not highly
responsive to demand volume changes since the number of operators cannot be modified
without compromising line balance. Unbalanced assembly lines are an open issue [7],
and mass personalization demand trends only aggravate the situation [8,9]. To address
these problems, walking-worker assembly lines (WWALs) present benefits compared to
FWALs. WWALs are line configurations in which operators move along the line, moving
the products with them, so that each worker performs all assembly tasks on each station
until the product is complete, and then starts over again. The benefits of WWALs versus
FWALs are [10,11]: increased flexibility in production level by an easy modification of the
number of workers, reduction of WIP inventory, and—most importantly—avoiding the
negative effects of workstations imbalance, as long as the number of assembly stations
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exceeds the number of workers involved. However, WWALs may suffer from productivity
losses when in-process waiting times occur because of the stations ahead of an operator
being blocked by the other workers [12]. The inclusion of machines within the WWAL can
cause additional bottlenecks [13], which can counter the benefits of process automation.

Another take on this problem is parallel assembly lines [14,15], which increase the
reliability and flexibility of the lines, allow better balancing due to superior cycle times
and lower number of operators and, therefore, increased productivity at the expense of
larger equipment investments and space required. Combining both approaches—WWALs
and parallel assembly lines—can provide important benefits in contexts of high-mix low-
volume demand.

This article presents a multiproduct parallel walking-worker assembly line (PWWAL)
with shared automated stations and evaluates its expected operational performance com-
pared to semiautomated fixed-worker serial assembly lines when dealing with high-mix
low-volume demand. The WWAL working logic was chosen due to its advantages over
FWAL when dealing with stations balancing under high-mix demand conditions, despite
the WWAL’s intrinsic inefficiencies due to worker displacements. Additionally, parallel line
configurations could prove useful when product changeovers are frequent due to smaller
batch sizes, since the number of stations could be reduced, decreasing the changeover
losses, which depend heavily on the number of stations when there are large cycle time
differences between the models produced by the line.

Discrete events simulation (DES) models were used to perform this study due to their
ease of implementation and the possibility to incorporate stochastic parameters [16–19].
FlexSim® was employed to develop the simulation models. An industrial study case from
a global white-goods manufacturer was used to build the simulation models, provide input
data, and allow validation using historical data. In this industrial case, which is common
across many industries, the company goal is to improve the productivity of several manual
assembly lines that had been optimized over the years. To achieve this goal, the lines could
be merged and upgraded by introducing some automated stations to reduce the manual
work content. However, productivity would increase at the expense of flexibility, since line
balance deteriorates when increasing product variety. Thus, the motivation for this work is
to gain insights into the productivity vs. flexibility trade-off of parallel walking-worker
assembly lines in comparison to traditional fixed-worker lines.

The article is structured as follows: Section 1.1 offers a literature review on walking-
worker assembly lines. Section 2 includes a description of the line configurations modeled,
the models’ inputs and outputs, and the simulation scenarios employed. Sections 3 and 4
present the results and discussion of the simulation scenarios, respectively.

1.1. Literature Review

Over the last 25 years, WWALs have been studied using analytical and simulation
models, focusing on different aspects of this line configuration performance, and consider-
ing different combinations of factors. Table 1 summarizes the key aspects of the articles
selected for this section. It is worth mentioning that none of the articles consider sequence-
dependent setup times or automated stations in their WWAL models. Walking times are
often considered negligible when the processing times are significantly larger.

Little had been written on walking (moving) worker assembly lines before D.P. Bis-
chak’s article in 1996 [10], which points out several advantages of unbuffered WW modules:
flexibility in the production level; reduction in work-in-process inventories; avoiding the
negative effects of AL imbalances produced by the frequent introduction of new products;
and improving reported worker morale. On the other hand, the importance of operator
cross-training increases as it becomes an enabler of this AL configuration. It was estab-
lished that WWALs can improve system responsiveness in terms of throughput, and that
they work well for unbalanced processing times. The simulation results show a reduced
importance of WIP buffers for WWALs versus FWALs, that low variability systems require
no WIP buffers, and that buffers would only increase lead time.
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Table 1. Key aspects of selected research articles on walking-worker assembly lines (WWALs).

Author Layout Target Method Product Setup Walking Time Automated
Stations Variability

Bischak [10] U-cell Max
throughput Simulation Single-model No Negligible No Yes

Wang [11] Linear

Max
throughput &

line
productivity

Simulation Single-model No Yes

Lassalle [12] Linear In-process
waiting time Simulation Mixed-model No Negligible No Yes

Wang [13] Linear In-process
waiting time

Simulation &
mathematical

modeling
Single-model No Negligible No Simulation

only

Al-Zuheri [20] U-cell

Line
productivity &

er-
gonomic perf.

Mathematical
modeling Single-model No Yes No Yes

Cevikcan [21] Segmented
rabbit-chase

Line
balancing

Mathematical
modeling Mixed-model No Yes No No

Bortolini [22] U-cell Max line
productivity Simulation Mixed-model No Negligible No Yes

Wang and Owen [11] presented a comparison between WWALs and FWALs in terms
of line efficiency. Their DES model considered processing times variation and fixed walking
times between stations in a linear single-model AL. It was concluded that the WWALs
could provide higher output and efficiency than FWALs, and that it has greater tolerance
to variations in processing time.

In a later article, Lassalle [12] looked into the details of the in-process operator waiting
times of linear WWALs. Simulation was employed, considering negligible walking times
and product changeovers. It was found that the productivity loss caused by in-process
waiting times is predictable and adjustable, with the workers-to-workstations ratio being
its main driver.

In their 2009 article, Wang et al. [13] studied linear WWALs using both simulation and
mathematical modeling. They considered a mixed-model AL where workers may have
unequal performance, leading to dynamic worker blockages due to the operational rule of
not allowing faster operators to overtake slower ones.

Al-Zuheri et al.[20] looked into WWALs to understand their worker productivity and
ergonomics performance. Mathematical modeling was used on a U-cell layout, considering
process time variability, worker skill level, and walking speed, among other variables. It
was found that increasing the workers’ walking speed did not improve the productivity of
the AL.

Cevikcan [21] presented a line balancing optimization methodology for multimodel
WWALs based on a mathematical model. Bortolini [22] proposed a mixed-model sequenc-
ing algorithm for unpaced unbuffered WWALs on U-cell layouts, aiming to optimize line
productivity.

In addition, a recent article from Hashemi-Petroodi et al. [23] presented a literature
review of different assembly and manufacturing workforce reconfiguration strategies,
including walking-worker assembly lines. The authors found that (1) little has been
published on multimodel walking-worker assembly lines, and (2) that an open field of
research is the consideration of different workforce reconfiguration strategies, including
walking-worker assembly lines, in a human–robot interaction environment.

Our article aims to help close this gap by looking into multimodel WWALs, which
include manual and automated workstations.

2. Materials and Methods

In this article, the performance of the proposed parallel walking-worker assembly
line configurations is compared to two fixed-worker assembly line configurations. DES
models were used to understand the behavior of the line configuration alternatives by
simulating different scenarios. DES was chosen because it presents important advantages
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over mathematical modeling when stochastic elements are the main drivers of the system
under study [19]. In the AL configurations considered here, the random nature of pro-
cessing times is combined with random product arrival times to the automated stations.
The simulation tool employed was FlexSim® (2022.0, FlexSim Software Products, Inc.).
The scenarios are defined by a subset of the input parameters, design parameters. Fixed
parameters are common to all models for all scenarios, as well as the disturbances, which
govern stochastic features of the models. The performance of the AL configurations is
evaluated using several key performance indicators (KPIs), as shown in Figure 1.

Figure 1. DES models for flexible assembly line configurations: (1) manual fixed-worker line (manual
FWAL); (2) semiautomatic fixed-worker line (semiauto FWAL); (3) semiautomatic single walking
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worker line (semiauto single WWAL); (4) parallel walking-worker assembly line (PWWAL). Design
parameters are changed when analyzing the performance of assembly line configurations. Fixed
parameters are based on industrial study case data. Variability of quality, manual assembly, and setup
times are considered disturbances. Model output includes relevant KPIs for evaluation.

2.1. Assumptions

Figure 1 depicts the models employed in this study. All models feature the following
general assumptions, following Boysen’s classification [24]:

• The production systems are unpaced, buffered assembly lines.
• The number of workstations is constant, and they can only process one unit at a time.

For the parallel line configuration, the number of stations refers to the number on each
of the two lines.

• The model mix is known, and demand continues for the whole simulation horizon.
• They are multimodel assembly lines: they produce different models of products in

batches. Setup is necessary before a batch of different products can be assembled,
and it is performed by the operators as soon as possible, i.e., when the last unit of the
previous batch has been processed. Setup time depends on the sequence of products,
and it is lower when subsequent models are of the same product family.

• No component shortages: components being assembled onto the product are always
available at the stations.

• The product sequence is governed by the parameter BCO, which indicates the number
of batches of the same family that are produced until a product family changeover
occurs (which takes longer than a same-family model changeover).

• Processing and setup times are modeled stochastically using a lognormal distribution,
which is governed by the average process/setup times and by a variability coefficient.

• Processing and setup times consist of smaller tasks, which are sufficiently small so
that the line balance is not affected by a change in the number of stations.

• When converting manual work content (WCm) into automated (WCauto), WCm can be
reduced equally from all stations.

• WCm transformed into WCauto becomes 20% larger due to the inferior assembly speed
of the automated stations compared to well-trained human operators.

• Two automated stations perform in-line quality control (QC) in the middle and at the
end of the assembly process. Defective units are reworked out of line, which may
cause idle time to downstream operators.

Figure 1(1),(2) depict manual and semiautomated FWALs, which feature the following
specific assumptions:

• Fixed workers: the operators are assigned to workstations and they do not leave them.
• Serial layout: the stations form a line, and the work-in-process products travel along

them sequentially.
• The line balance depends on the number of operators.
• The manual FWAL features manual stations only, while the semiautomated FWAL

includes manual and automated stations.
• Workstation buffers have a maximum capacity of one product.

Figure 1(3) shows the semiautomated walking-worker single assembly line, and
Figure 1(4) shows the proposed parallel walking-worker assembly line. In these line
configurations presented here, operators walk along the line and pick the components to
assemble for the in-process product on a mobile trolley, while automated stations process
units (Figure 2a). When arriving at the automated stations, the operators leave their current
product in the in buffer and take a processed product from the out buffer of the automated
station (Figure 2b). The operators then resume their path (Figure 2c). When a product is
finished, it is placed in the finished products buffer, and then the operator walks back to
the starting point to resume production.
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Figure 2. Operator–automated station interaction in semiautomated walking-worker assembly line.
(a) Operator processes unit in a manual station. (b) Operator leaves unit on the automated station in
buffer. (c) Operator takes ready unit from the automated station out buffer and moves to the next
manual station to continue assembly.

Thus, both WWAL configurations were modeled under the following specific assump-
tions:

• The production system includes manual ‘stations’, which conform to one or two lines,
and automated stations, some of which are shared by both lines for PWWAL.

• Despite the assembly being made on mobile trollies, it is the spaces by the picking
shelves that are modeled as stations.

• There is a certain number (W) of operators working on the line, with a maximum
equal to the number of stations.

• Operators move downstream, cannot overtake other operators, and can wait by a
station in case it is not available when they arrive.

• The traveling time of the operators from one station to the next one is simulated
considering a constant speed of 1 m/s.

• Automation stations in and out buffers’ maximum capacity is one unit.
• Shared automated stations process products following an FIFO rule (first in, first out),

and can only place processed units in the out buffer corresponding to the line of origin
of the product.

The main objective of the analysis is to maximize line productivity, defined as the
number of conforming units produced per operator-hour. In particular, the industry study
case sets a line productivity target increase of +25% compared to the initial situation
(manual FWAL). Minimizing production lead time is also considered important, but less
so than line productivity maximization. The ability to modify throughput with ease is
desirable as well. Consequently, a set of three ‘main KPIs’ (key performance indicators)
was composed of line productivity, batch lead time, and throughput. A secondary set
of three KPIs was used to understand what drives the main performance measures as
well as find potential drawbacks. The ‘secondary KPIs’ are labor productivity, unit lead
time, and surface productivity. Increasing labor productivity and surface productivity and
minimizing unit lead time is also desirable if possible.

2.2. Notation

The following notations are introduced:
Design parameters:

W Number of workers (index w).
Q Number of units in a batch.
BCO Number of batches of the same product family before changeover.

Fixed parameters:

M Number of models (index m).
K Number of manual workstations (index k).
J Number of automated workstations (index j).
Tp Processing time.
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Ts Setup time.
WC Work content (i.e., total process time).

Disturbances:

FTY First time yield.
CVp Process time coefficient of variation: CVp = σTp/µTp.
CVs Setup time coefficient of variation: CVs = σTs/µTs.

Key performance indicators:

PLine Line productivity (units/operator-h): production rate of conforming units per
operator.

LTB Batch lead time (min): average time for a batch of units to be finished from the
moment the last unit of the previous batch is finished.

Th Throughput (units/h): production rate of conforming units.
PLabor Labor productivity (%): percentage of time that operators spend processing units.

Setup and walking times are not considered productive.
LTU Unit lead time (min): average time for a unit to be finished from the moment it

starts being assembled.
PS Surface productivity (units/operator-h-m2): production rate of conforming units

per operator and surface unit.

2.3. Input Data

The DES models employed data corresponding to the industrial case study. The
parameter values are based on the industrial case data, as indicated in Table 2. The
assembly operations considered in this article deal with three families of similar products.
Although all product families share technological principles, core functionalities, and are
subjected to the same QC tests, their dimensions, materials, and other secondary features
are not the same. Batch sequencing is performed by grouping products of the same family
together, which leads to the BCO design parameter.

Table 2 includes the current state values for the design parameters, which define
what are considered standard demand conditions. It also shows the fixed parameters
and disturbances included in the models. They remain unchanged for all assembly line
configurations on all demand scenarios.

Table 2. Design parameters, fixed parameters, and disturbances considered in the models.

Parameter Units Min Max Current State

W Workers 2 10 8
Q Units 12 48 48
BCO Batches 1 3 3

M Models 3
K Stations 8 (FWAL), 16 (PWWAL)
J Stations 4
Tp s See Tables 3 and 4
Ts s See Table 5
WC s See Table 3

FTY % 99
CVp % 15
CVs % 15

Processing times depend on the model (index m). The average values of manual
processing times—for stations k ∈ {1, . . . , 8}, along with the manual, automated, and
walking work contents—are found in Table 3.

Note that, based on WCm for manual FWAL, the automation of ca. 23% of the WCm
means to increase that WC by 20%, under the assumption that well-trained manual opera-
tors can assemble faster than a collaborative robot. It was deemed realistic to assume that
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both FWAL and WWAL process and setup times would have a similar distribution in terms
of mean and variability values. It was also assumed that process times can be atomized
because the individual (indivisible) tasks considered in the industrial case take, on average,
between 7 and 20 s, which is significantly lower than the assembly stations process times
(cf. Table 3).

Table 3. Manual processing times and work content input data.

Model, m Tp
max
m (s) Tp

min
m (s) WCm (s) WCauto (s) WCwalk (s) WCtotal (s)

Manual FWAL

1 158 146 1179 0 0 1179
2 129 119 962 0 0 962
3 100 92 745 0 0 745

Semiauto FWAL

1 122 112 908 325 0 1233
2 99 92 740 266 0 1006
3 77 71 572 207 0 779

Semiauto PWWAL

1 122 112 908 325 33 1266
2 99 92 740 266 33 1039
3 77 71 572 207 33 812

The average values of automated processing times for stations j ∈ {1, . . . , 4} are
found in Table 5. In theory, none of the automated stations is the AL bottleneck. However,
the processing times variability and the incoming units simultaneity calls for additional
capacity. In the industrial study case presented here, automated stations j = 1 and j = 3
are duplicated (cf. Figure 1(3),(4)) because they are not QC stations, which reduces the
investment requirements.

Table 4. Automated processing times input data.

Tpm,j (s)

Model, m j = 1 j = 2 j = 3 j = 4

1 31 89 105 100
2 28 76 85 77
3 25 53 65 54

The first and second manual stations include tooling and fixtures that require lengthier
changeovers than the rest, which consist of picking stations only. Moreover, the Ts base
value is also altered depending on the preceding and subsequent model being produced.
Table 5 shows the setup time average values. Automated stations do not require any setup
time as it has been estimated to be of similar magnitude to same-product setup, therefore
being included in the processing time.

Table 5. Setup time input data.

Ts (s)

Station Product Family Change Same Product Family

k ∈ {1, 2} 480 360
k ∈ {3, . . . , 8} 48 36

The production sequence depends on the BCO design parameter, as shown in Table 6.
The sequence is repeated until the end of the simulation time. For semiauto PWWAL, model
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1 (m1) and model 3 (m3) batches are assigned to one of the parallel lines, and model 2 (m2)
batches are assigned to the other one. In consequence, PWWALs benefit from performing
fewer product family changeovers.

Table 6. Production sequence input data.

BCO Sequence (Batches of Q Units)

1 m1 m2 m3 	
2 m1 m1 m2 m2 m3 m3 	
3 m1 m1 m1 m2 m2 m2 m3 m3 m3 	

The DES models consider the inherent variability of manual assembly processes by
using a lognormal distribution for process and setup times, based on the recommendations
by Banks and Chwif [25]. The mean (µ) for this distribution is the process standard assembly
time for each—different for each product family—and the standard deviation (σ) is found
as a percentage of the mean given by the parameters CVp and CVs. The values for these
parameters were estimated from historical data from the industrial partner existing manual
assembly lines, and found to be in the range of 15–20% for the assembly lines considered in
this study case. To minimize the uncertainty of the results due to the stochastic nature of
processing and setup times, each simulation scenario was run 20 times.

To calculate PS, the surface requirements for each assembly line configuration were
measured—manual AL configuration—or estimated from the study case preliminary line
designs, resulting in the surface requirements shown in Table 7. Note that the greater
WWAL lengths, compared to semiautomated FWAL, are due to the increased WIP and
operator buffers.

Table 7. Shopfloor surface requirements for different assembly line configurations.

Configuration Depth (m) Length (m) Shopfloor Surface (m2)

Manual FWAL 4 16 64
Semiautomated FWAL 4 23 92
Single WWAL 5 33 165
Parallel WWAL 10 33 330

The simulation time is 60 h, with a 1 h warmup time. At the start, buffers between
manual stations are empty (FWAL models), and automated stations are full.

2.4. Validation

The manual fixed-worker assembly line configuration (Figure 1(1)) was simulated
using input parameter values from the industrial study case from a global white-goods
manufacturer site located in the north of Spain. The simulation output was compared
against the company’s operational KPIs collected in January 2021. The average relative error
of the KPI estimations was 1.8%, and the maximum error was 4.9%. This error magnitude
was deemed satisfactory for the scope of this work. Thus, the DES model was validated,
and the same simulation methodology was used to build the semiautomated FW and the
parallel walking-worker assembly line configurations (Figure 1(2)–(4)).

2.5. Performance Comparison for Different Demand Scenarios

The performance of the different line configurations was assessed under different
demand conditions. The standard demand conditions, scenario i, were created by setting the
design parameters to 8 operators, a batch size of 48 units, and a product family changeover
frequency of 3 batches, as shown in Table 8. This scenario represents the performance
of the line configurations if the demand remains stable and does not change towards
mass customization. The results from this scenario i set the baseline performance of each
line configuration.
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Table 8. Simulation scenarios and design parameters analyzed.

Scenario W (Operators) Q (Units) BCO (Batches)

i. Standard demand 8 48 3
ii. High-mix (1) 8 {12, 24, 48} 3
iii. High-mix (2) 8 48 {1, 2, 3}
iv. Low-volume {2, 4, 8} 48 3
v. High-mix low-volume 8 12 1
vi. Degree of automation {4, 6, 8} {12, 48} {1, 3}

To adapt to increasingly challenging demand conditions, assembly operations flex-
ibility in terms of reduced lead times, smaller batch sizes, and more frequent rotation of
product families are critical. To understand the performance of the different assembly line
configurations under such conditions, simulation scenarios ii–v were set up, as shown in
Table 8. Scenarios ii–iv look into how the performance of each line configuration is affected
by the change of the three design parameters individually. Scenario v considers the most
severe demand conditions at the same time and compares the performance against the base
scenario. Finally, scenario vi analyzes the effect of automation in terms of percentage of work
content automated, under either standard or high-mix low-volume demand conditions, and
for a varying number of manual operators. On the other hand, the effect of the automation
layout structure (i.e., the number of shared automated stations) would be hardly observed
and analyzed using the industrial study case presented here because none of the automated
stations are the AL bottleneck. Therefore, in this particular case, the number of automated
stations would not significantly impact the AL operational KPIs. The following section,
Section 3, includes the outcome of the simulations.

3. Results

This section includes the models’ outputs (KPIs) for each scenario i–vi shown in Table 8.
The results shown in this section are the average KPI values of 20 simulation runs. The
maximum standard deviation of the results, as a percentage of the average value, is 1.1%.
This indicates that the results are relatively stable with respect to the models’ disturbances.
For each scenario, the simulation results are shown in tables including the three AL config-
urations. The main KPIs (PLine, LTB, Th) improvements for the semiautomated FWAL and
PWWAL configurations are then evaluated compared to the manual FWAL configuration.
Note that Th (units/h) and PLine (units/oper-h) variations with respect to manual FWAL
are the same because the number of operators remains constant.

3.1. Base Scenario: Current-State Demand

The results of simulating the base scenario demand on the four assembly line con-
figurations are shown in Table 9. Firstly, PLine increases as a result of automation for
semiautomated FWAL and WWAL configurations. It is important to note that the manual
work content reduction obtained by introducing automation was ca. -23%.

Table 9. Operational KPIs for manual FWAL, semiautomated FWAL, semiautomated single WWAL,
and parallel walking-worker assembly line configurations under standard demand conditions (sce-
nario i).

Manual Semiauto Semiauto Single WWAL

KPI Units Goal FWAL FWAL W = 8 W = 7 W = 6 W = 5 W = 4 PWWAL

PLine u/oper-h ↗ 3.19 3.98 3.48 3.70 3.93 4.03 4.28 4.23
LTB min ↘ 132 111 138 145 156 176 200 203
Th u/h ↗ 25.5 31.9 27.9 25.9 23.6 20.1 17.1 33.8
PLabour % ↗ 87.0 83.3 71.6 75.7 79.3 82.9 85.6 85.6
LTU min ↘ 20.5 23.4 25.4 25.0 26.3 20.1 27.5 27.9
PS u/oper-h-m2 ↗ 0.050 0.043 0.021 0.022 0.024 0.024 0.026 0.013
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The eight workers semiautomated single WWAL improves the performance compared
to the manual FWAL. However, it presents worse performance than semiauto FWAL in
terms of each and every one of the KPIs considered because there are not more stations
than workers. This means that the single WWAL suffers from both line unbalancing and
walking inefficiencies. Progressively reducing the number of workers in this configuration
increases PLabor, PLine, and PS, at the cost of a sharp reduction in Th. Adding a second
walking-worker line and sharing some of the existing automated stations leads to increased
productivity and throughput, transforming the semiautomated single WWAL into the
parallel WWAL shown in Figure 1(4). It is very significant that the walking-worker way of
working allows duplicating the throughput—from 17.1 to 33.8 units/h—by duplicating
the number of workers while maintaining very high labor productivity (85.6%). Since the
single WWAL presents no critical productivity advantages over the PWWAL, the following
subsections omit the results of the single WWAL and focus on the semiauto FWAL vs.
PWWAL comparison.

The semiautomated FWAL configuration achieves a +25% increase in PLine (see
Figure 3). On the other hand, the PWWAL PLine rises by +33% despite the walking time
losses since there are no line balancing losses in this configuration. This is particularly
remarkable when considering that WWAL configurations present an additional walking
WC of 33 s per unit and 33 s return time to the first station (see Tables 3 and 7).

Figure 3. Line productivity increase of semiautomated FW and parallel walking-worker with respect
to manual FW line configuration under standard demand conditions (scenario i).

On the other hand, batch lead time follows different trends: it improves for semiauto-
mated FWAL (−16% LTB reduction) but it worsens significantly for PWWAL (+54% LTB
increase) compared to manual FWAL. Semiauto FWAL LTB improves despite the increased
line length—eight manual stations plus four automated stations—due to the increased Th
(+25%). Contrarily, PWWAL LTB increases greatly despite its total Th increase (1) due to
the walking-worker logic; (2) because each one of the parallel lines consists of only four
operators—cf. LTB for single WWAL with W = 4 and LTB for PWWAL on Table 9; and (3)
because the total work content increases by ca. 7–9% when taking into account manual,
automated, and walking WC (see Table 3).

Unit lead time increases as a result of introducing automated stations, but less so for
semiauto FWAL (+14% LTU increase) than for PWWAL (+36% LTU increase vs. manual
FWAL). Once again, note that the LTU of single WWAL with four operators is approximately
the same as the LTU of PWWAL.

Finally, the surface needed for the PWWAL is much greater than for manual or
semiautomated FW lines (see Table 7), resulting in a significant PS decrease.
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As shown in Figure 3, the main KPI improvements (PLine increase) meet the industrial
case study target under standard demand conditions. The next section, Section 3.2, analyzes
how the AL configurations deal with more challenging demand conditions.

3.2. High-Mix and Low-Volume Demand Scenarios

Simulation scenarios ii to iv test the line configurations under tougher demand condi-
tions than scenario i. The performance of the assembly systems is expected to deteriorate
for all AL configurations, but the focus here is the performance of semiautomated FWAL
and PWWAL compared to manual FWAL.

Scenario ii: High-mix presents the necessity of reducing batch sizes due to increasingly
atomized demand trends. Table 10 shows the KPIs resulting from simulating the different
line configurations under a gradually smaller batch size (Q). The PWWAL configuration is
best in terms of PLine, Th, and PLabor at all levels of Q, and is the worst in terms of LTB, LTU ,
and PS. For the three line configurations, all KPIs deteriorate as a result of reducing Q.

Note that line productivity for semiautomated FWAL with Q = 24 units is still greater
than for manual FWAL with Q = 48 units, and that the line productivity for PWWAL with
Q = 12 units is still significantly superior to manual FWAL with a Q of 48 units. A key
driver for this is that setup time losses are smaller for PWWAL than for FWAL because
PWWAL employs fewer operators per AL branch.

Table 10. Operational KPIs of manual FWAL, semiautomatic FWAL, and PWWAL for reduced batch
size (Q, scenario ii), reduced no. of batches until product family changeovers (BCO, scenario iii), and
reduced no. of workers (W, scenario iv).

Batch Size, Q (Units) BCO (Batches) W (Operators)

KPI AL Configuration 12 24 48 1 2 3 2 4 8

PLine (u/oper-h) Manual FW 2.73 3.04 3.19 3.19 3.20 3.19 3.60 3.45 3.19
Semiauto. FW 3.07 3.64 3.98 3.91 3.97 3.98 - - 3.98
PWW 3.56 3.97 4.23 4.14 4.18 4.23 4.45 4.42 4.23

LTB (min) Manual FW 50 77 132 131 131 132 416 225 132
Semiauto. FW 51 70 111 112 111 111 - - 111
PWW 73 124 203 209 206 203 704 366 203

Th (u/h) Manual FW 21.9 24.4 25.5 25.5 25.6 25.5 7.2 13.8 25.5
Semiauto. FW 24.5 29.1 31.9 31.3 31.8 31.9 - - 31.9
PWW 28.5 31.7 33.8 33.1 33.4 33.8 8.9 17.7 33.8

PLabor (%) Manual FW 73.2 82.0 87.0 85.8 86.6 87.0 96.2 93.0 87.0
Semiauto. FW 63.4 75.0 83.3 80.5 82.6 83.3 - - 83.3
PWW 72.9 80.9 85.6 85.0 85.6 85.6 90.9 90.2 85.6

LTU (min) Manual FW 18.5 19.4 20.5 20.1 20.3 20.5 18.8 19.7 20.5
semiauto. FW 24.0 23.5 23.4 23.4 23.3 23.4 - - 23.4
PWW 33.2 29.7 27.9 28.5 28.2 27.9 66.6 40.1 27.9

PS (u/oper-h-m2) Manual FW 0.043 0.048 0.050 0.050 0.050 0.050 0.056 0.054 0.050
Semiauto. FW 0.033 0.040 0.043 0.043 0.043 0.043 - - 0.043
PWW 0.011 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013

Figure 4 shows that manual FWAL deals with reduced batch sizes worse than semiau-
tomated AL since the PLine of semiauto FWAL and PWWAL shows improvements for all
levels of batch size. It can be seen that PWWAL maintains an improvement of ca. +30 to
+33% PLine compared to manual FWAL for all Q levels. On the other hand, semiautomated
FWAL improvements vs. manual FWAL decrease as Q decreases. This leads to the conclu-
sion that PWWAL deals with reduced batch sizes better than semiautomated FWAL. This
is a key finding since maintaining high line productivity, even when significantly reducing
the batch size, is the main goal of the PWWAL.
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Figure 4. Line productivity improvement of semiautomated FW and parallel walking-worker with
respect to manual FW line configuration for reduced batch size (Q, scenario ii).

Scenario iii also considers a high-mix demand situation, in this case by requiring more
frequent changeovers, i.e., the number of batches before product family changeover, BCO,
decreases. The KPI results of scenario iii are shown in Table 10. The only performance
indicator that is significantly affected is PLabor, which decreases for semiautomated FWAL
by ca. 2 percent points. However, this decrease in PLabor is not large enough to drag down
PLine significantly, as shown in Figure 5.

Figure 5. Line productivity improvement of semiautomated FW and parallel walking-worker with
respect to manual FW line configuration for reduced no. of batches until product family changeovers
(BCO, scenario iii).

Simulation scenario iv considers a situation where the demand levels drop, and the
throughput of the AL must be adjusted accordingly. To achieve this, the number of
workers, W, is reduced. Note that the semiautomated FWAL is not able to modify this
parameter under the constraints presented in Section 2. In reality, the production level of
the semiautomated line could be adjusted by modifying other factors, such as the number
of shifts, which are outside the scope of this work. Table 10 shows the simulation results
for each line configuration when changing the parameter W.

Firstly, Th decreases as W decreases for manual FWAL and PWWAL configurations,
but it does not decrease equally, due to line and labor productivity. PLabor increases sig-
nificantly for manual FWAL (from 87 to 96.2%) but not so much for PWWAL (from 85.6%
to 90.9%) when W is reduced from eight to two workers. The PLabor increase is due to the
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better line balance in the case of manual FWAL; and due to the reduction in in-process
operator idle time for PWWAL—consistent with the conclusions by Lassalle et al. [12]—and
the reduction in automated station saturation caused by the lower Th. Consequently, PLine
increases when W decreases.

Lead times, however, behave quite differently. LTU decreases slightly for manual
FWAL but increases sharply for PWWAL because of its production logic, by which operators
leave units in the automation queues upon arrival, and then take a unit already processed
by the automated stations. Since the number of WIP buffers before automations remains
constant regardless of W, when W << K, the lead time increases. On the other hand, LTB
increases as W is reduced since its main contributor is the cycle time, which is inversely
proportional to W. This trend affects both manual and PWW line configurations.

Finally, PS increases very slightly when W is reduced, as a consequence of the increased
PLine. It is important to note that the PWW line configuration is the only one that allows
introducing more operators if needed—until the automations are saturated—which allows
increased throughput even further at the cost of reducing productivity.

Figure 6 shows that PWWAL performs better than manual FWAL in terms of PLine at
all levels of W. However, with W = 2 operators it is no longer possible for PWWAL to
achieve the target +25% increase in PLine compared to manual FWAL.

Figure 6. Line productivity improvement of semiautomated FW and parallel walking-worker with
respect to manual FW line configuration for reduced no. of workers (W, scenario iv).

3.3. High-Mix Low-Volume Demand Scenario

Simulation scenario v considers a combination of scenarios ii and iii demand conditions:
small batch size (Q = 12 units) and frequent product family changeovers (BCO = 1 batch).
Table 11 shows the KPIs resulting from scenario v.

Table 11. Operational KPIs for manual FWAL, semiautomated FWAL, and parallel walking-worker
assembly line configurations under high-mix low-demand demand conditions (scenario v).

KPI Units Manual FWAL Semiauto FWAL PWWAL

PLine u/oper-h 2.63 2.82 3.42
LTB min 51 53 88
Th u/h 21.0 22.6 27.4
PLabor % 70.3 58.0 70.4
LTU min 18.6 24.8 34.5
PS u/oper-h-m2 0.041 0.031 0.010

PLine and Th for semiautomatic FW and PWW lines are greater than those of manual
AL configuration. However, only the PWWAL configuration allows a similar PLabor under
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high-mix low-volume conditions. PLabor decreases sharply under high-mix low-volume
demand compared to standard conditions (cf. results of scenario i on Table 9), which affects
semiautomated FWAL more intensely than PWWAL. This explains why PLine improves only
by +7% for semiautomated FWAL, compared to +30% for PWWAL, as shown in Figure 7.

On the other hand, LTB is worse for semiautomated than for manual lines. LTB for
PWWAL is significantly greater than for FWAL. This is deduced from the fact that LTU
almost doubles for PWWAL compared to manual FWAL (34.5 min vs. 18.6 min). This also
indicates that the WIP levels of PWWAL must be superior to those of FWAL lines. Finally,
PS shrinks slightly under high-mix low-volume demand conditions compared to scenario i.

Figure 7. Line productivity improvement of semiautomated FW and parallel walking-worker with
respect to manual FW line configuration under high-mix low-volume demand conditions (scenario v).

In summary, under both standard (scenario i) and high-mix low-volume demand
conditions (scenario v), the parallel walking-worker line configuration achieves greater
line productivity, which is the main goal of the industrial case presented. However, par-
allel walking-worker lines suffer from a higher batch lead time than fixed-worker line
configurations. The parallel walking-worker configuration allows meeting the target line
productivity improvement of 25% even under the most challenging conditions simulated.
In contrast, the semiautomated FWAL presents perform better on secondary KPIs, such as
lead time and surface productivity.

3.4. Degree of Automation

Simulation scenario vi tests the performance of semiautomated AL configurations
for varying degrees of automation, in terms of the percentage of manual work content
that has been assigned to automated stations. Scenario vi also considers the influence of
demand conditions (Q, Bco) and number of manual operators (W). The results of scenario vi
simulations are shown in Table 12, with the behavior of the most significant KPIs depicted
in Figure 8.
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Table 12. Operational KPIs of semiautomated FWAL and PWWAL for varying degrees of automation
and number of workers (W), under base or high-mix low-volume demand conditions (Q, Bco).

Degree of Automation (%)

KPI AL Configuration W (Oper) 10 20 23 30 40 50

Standard Demand (Q = 48 Units, Bco = 3 Batches)

PLine PWWAL 4 3.89 4.29 4.42 4.78 5.55 5.04
(u/oper-h) 6 3.81 4.21 4.34 4.64 4.23 3.38

8 3.66 4.10 4.23 4.12 3.19 2.54

Semiauto FWAL 8 3.52 3.86 3.98 3.89 2.96 2.35

LTB PWWAL 4 411 375 366 338 298 320
(min) 6 290 261 254 239 258 321

8 232 209 203 208 260 327

Semiauto FWAL 8 122 113 112 121 157 196

Th PWWAL 4 15.6 17.2 17.7 19.1 22.0 20.2
(u/h) 6 22.8 25.3 26.0 27.8 25.4 20.3

8 29.3 32.8 33.8 33.0 25.6 20.3

Semiauto FWAL 8 28.2 30.9 31.9 31.1 23.6 18.8

PLabor PWWAL 4 84.9 83.1 82.5 80.7 77.0 64.6
(%) 6 80.9 78.6 77.8 74.6 62.3 44.6

8 74.8 71.7 70.4 64.6 49.3 33.7

Semiauto FWAL 8 63.2 59.3 58.0 54.9 44.4 32.1

LTU PWWAL 4 45.7 41.4 40.1 37.1 32.2 35.2
(min) 6 36.2 32.7 31.7 29.7 32.6 40.9

8 32.2 28.7 27.9 28.6 37.0 46.8

Semiauto FWAL 8 23.5 23.4 23.4 29.9 38.4 46.8

PS PWWAL 4 0.012 0.013 0.013 0.014 0.017 0.015
(u/oper-h-m2) 6 0.012 0.013 0.013 0.014 0.013 0.010

8 0.011 0.012 0.013 0.012 0.010 0.008

Semiauto FWAL 8 0.038 0.042 0.043 0.042 0.032 0.026

High-Mix Low-Volume Demand (Q = 12 Units, Bco = 1 Batch)

PLine PWWAL 4 3.53 3.88 4.02 4.31 4.80 4.83
(u/oper-h) 6 3.36 3.68 3.78 3.99 3.88 3.34

8 3.11 3.36 3.42 3.45 3.04 2.53

Semiauto FWAL 8 2.63 2.77 2.82 2.94 2.76 2.41

LTB PWWAL 4 151 137 133 124 112 110
(min) 6 111 102 99 95 96 110

8 96 89 88 87 96 115

Semiauto FWAL 8 56 54 54 55 63 75

Th PWWAL 4 14.1 15.5 16.1 17.3 19.2 19.3
(u/h) 6 20.2 22.1 22.7 23.9 23.3 20.0

8 24.9 26.9 27.4 27.6 24.6 20.2

Semiauto FWAL 8 21.0 22.2 22.6 23.5 22.1 19.2

PLabor PWWAL 4 84.9 83.1 82.5 80.7 77.0 64.6
(%) 6 80.9 78.6 77.8 74.6 62.3 44.6

8 74.8 71.7 70.4 64.6 49.3 33.7

Semiauto FWAL 8 63.2 59.3 58.0 54.9 44.4 32.1

LTU PWWAL 4 50.5 45.8 44.3 41.2 37.0 36.8
(min) 6 41.1 37.5 36.5 34.6 35.5 41.4

8 38.1 35.2 34.5 34.2 38.5 47.0

Semiauto FWAL 8 25.1 24.9 24.8 25.7 30.7 38.7

PS PWWAL 4 0.011 0.012 0.012 0.013 0.015 0.015
(u/oper-h-m2) 6 0.010 0.011 0.011 0.012 0.012 0.010

8 0.009 0.010 0.010 0.010 0.009 0.008

Semiauto FWAL 8 0.029 0.030 0.031 0.032 0.030 0.026
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Figure 8. Performance of semiautomated FW and parallel walking-worker line configurations, for
different number of manual workers, under standard and high-mix low-volume demand conditions
(scenario v): (a) line productivity (PLine), (b) throughput (Th).

Figure 8a shows the assembly line productivity as the degree of automation increases.
Note that the base scenario corresponds to 23% automated WC. The simulation results show
that the productivity is at a maximum for the base scenario with eight manual operators
(W = 8). This is coherent with the number of manual and automated stations being
chosen, aiming for line balance. From this point, decreasing the degree of automation
reduces the line productivity, since the manual labor becomes the bottleneck. Increasing
the degree of automation while keeping W constant also reduces the line productivity, due
to the automated stations becoming the bottleneck. Note that this trend is maintained for
both standard demand conditions (solid line series) and high-mix low-volume conditions
(dashed line series). Productivity falls because the workers are increasingly idle and the
output does not increase. The assumption that manual WC can be automated, increasing
the processing time by 20%, plays an important role here. The study case assumes that this
is reasonable since a well-trained operator assembles faster than a regular collaborative
robot (see Section 2.3). Therefore, reducing W should increase the line productivity when
the degree of automation is high. Unfortunately, for traditional FWAL lines (yellow), this
change cannot be carried out without degrading the line balance. On the other hand,
walking-worker lines can reduce the number of manual operators without incurring any
penalty. This situation was simulated for W = 6 and W = 4 total manual operators
(medium and light blue series, respectively, in Figure 8a. By decreasing W, PWWALs allow
to achieve an even greater line productivity with a higher degree of automation. This is
due to the fact that the manual and automated process times are being balanced.

However, this productivity increase comes at the expense of reducing the throughput
of the assembly line, since W has been reduced, as shown in Figure 8b. Note how a smaller
W results in gradually lower Th for all levels of automation and for all demand conditions.
The Th of both line configurations (PWWAL and semiauto FWAL) for all levels of W tends
towards a common point as the degree of automation increases, because Th is governed by
the process time of the bottleneck.

In conclusion, PWWALs offer greater flexibility than fixed-worker lines in terms of
benefiting from an increased degree of automation because they allow to easily rebalance
the manual/automated workload by seamlessly removing operators, thus achieving greater
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line productivity. On the other hand, this comes at the expense of reducing the throughput
and significantly increasing the batch lead time.

4. Discussion

Simulation results indicate that PWWALs have better operational performance than
semiautomated or manual FWALs in terms of line productivity, throughput, and labor pro-
ductivity, especially when facing high-mix low-volume demand, which makes it necessary
to perform frequent family product changeovers, use small batch sizes, or use a reduced
number of assembly operators. On the other hand, PWWALs present longer batch and unit
lead times and require additional WIP stock and shopfloor space.

Automation-driven reduction of the products’ manual work content by −23% leads
to a productivity increase of +33% for PWWAL (vs. +25% increase for semiautomated
FWAL) compared to manual AL configuration under standard demand conditions. Under
high-mix demand conditions, PWWAL achieves a +30% productivity increase, significantly
superior to the +7% productivity increase for semiautomatic FWAL—compared to manual
FWAL, as shown in scenario v. In conclusion, the main goal of a +25% line productivity
increase when producing small batches of highly mixed products can be achieved by the
PWWAL, and not by the FWAL.

The PWWAL configuration suffers less from line unbalance caused by automated sta-
tions and product variety, provided that the workers-to-stations ratio remains low and that
each worker moves through all the assembly stations. The WWAL cells within a line [21]
reintroduce the problems of line balancing, but they reduce the need for operator training.
Note that although total WC increases for WWAL compared to FWAL due to operator
walking times, these losses are offset by superior labor productivity. PWWAL configuration
also suffers less from setup time losses because each AL branch has fewer workers, which
minimizes the waiting/blocking time losses caused by cycle time differences between the
products involved in the changeover.

Introducing automated stations does not improve the average batch lead time, since
the increased throughput is offset by the increased total work content and the superior
number of workstations. PWWAL configurations present significantly worse batch lead
times than semiauto or manual FWALs under any demand situations. It is also important to
note that the average unit lead time to complete a unit increases for semiautomated FWAL,
and especially for PWWAL configurations, compared to manual FWAL, which means that
the WIP stock held at the line at any given moment would be greater. This is caused by
the capacity buffers placed before and after the automations, which are required to hold
twice as many WIP units in the PWW line since each automated QC station is served by
two (slower) assembly lines which could have different cycle times.

Labor productivity decreases due to the introduction of automation and the reduction
of batch sizes—which increases the percentage of time dedicated to setups. The PWWAL
configuration is less affected than semiautomated FWAL by frequent changeovers since
shorter ALs suffer less from operator idle times generated by cycle time differences between
incoming and outgoing products. These idle times increase as the number of operators
increases. Nonetheless, labor productivity losses are offset by the reduction in work content
caused by automation.

Lastly, PWWAL presents high requirements in terms of shopfloor space compared
to the fixed-worker assembly lines. PWWAL surface productivity is, under high-mix
low-volume conditions, 0.010 units/operator-h-m2, which is considerably lower than that
of manual (0.041) or semiautomated configurations (0.031). The higher surface needs
derive from the additional WIP and operator space buffers that the PWWAL needs to
operate efficiently.

Increasing the degree of automation creates an imbalance between manual and au-
tomated work content that requires adjusting the number of workers. PWWALs offer
greater flexibility than fixed-worker lines because they can seamlessly adjust the number of
manual operators. However, the increased line productivity resulting from simultaneously
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increasing the degree of automation and decreasing the number of operators reduces the
line throughput and increases significantly the batch lead time.

Besides the KPIs already exposed, PWWAL presents other advantages in terms of
flexibility and reconfigurability. Production level changes are made simple by modifying
the number of operators working on each AL branch independently—within the limits
imposed by the capacity of the automated stations—without changes in the operators work
organization. In fact, the number of workers could be temporarily increased beyond the
designatedfour operators per AL branch at the expense of productivity. A parallel line
configuration also brings additional sequencing possibilities, for example, being able to
assemble a batch of products in both lines simultaneously to reduce the batch lead time—
effectively working with half the batch size—at the cost of line productivity. Finally, the
introduction of products to the PWWAL would present fewer drawbacks due to the reduced
sensitivity of this line configuration to work content differences and poor line balance.

In conclusion, PWWAL configurations would be particularly beneficial in assembly
operation situations where line productivity needs to be maximized under high-mix low-
volume demand conditions, and when batch lead times are not a critical factor.

5. Conclusions

To address the need for more flexible and more productive assembly operations
brought about by mass customization demand trends, this article presented a concept of a
multimodel parallel walking-worker assembly line with shared automations. Based on an
industry real-study case, discrete events simulation was utilized to model this assembly line
concept, along with manual linear and semiautomated fixed-worker assembly lines. The
models were used to compare the performance of the different line configurations under
standard demand as well as different scenarios of increasingly challenging conditions in
terms of reduced batch sizes and more frequent product changeovers. To evaluate efficiency,
a set of six key performance indicators (KPIs) were employed: line productivity, batch lead
time, throughput, labor productivity, unit lead time, and surface productivity.

It was found that under high-mix low-volume demand conditions requiring small
batch sizes and frequent product family changeovers, the parallel walking-worker line
configuration achieves greater line productivity and throughput than the semiautomated or
manual fixed-worker line configuration. On the other hand, semiautomated fixed-worker
assembly lines present better batch lead time, unit lead time, and surface productivity. Man-
ual fixed-worker configuration productivity is inferior to the semiautomated alternatives
according to all KPIs except for surface productivity. Increasing the degree of automation
allows to increase the line productivity under all demand conditions, only if the number of
workers can be reduced smoothly—which is the case for walking-worker configurations
but not for fixed-worker lines. However, this comes at the expense of reducing the line
throughput and increasing the lead time.

A key current research limitation lies in considering multiple layouts and shared
automation configurations in order to find optimal line configurations or the performance
of reconfigurable systems over long periods of time.

Areas for future work include (1) optimizing the actual layout of the parallel walking-
worker configuration, to minimize the surface footprint; (2) the actual implementation of
the parallel walking-worker concept in an industrial setting, which would enable validating
the parallel walking-worker assembly line model; (3) expanding the simulation models
to include machine breakdowns and quality problems, in terms of rework times and
scrap products; and (4) a supply chain simulation layer feeding parts to the assembly
lines. Future developments based on current research limitations would include assessing
the operational performance of different line configurations in terms of both automation
and layout.
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Abstract: Mass customisation demand requires increasingly flexible assembly operations. For the
in-plant logistics of such systems, milkrun trains could present advantages under high variability
conditions. This article uses an industrial study case from a global white-goods manufacturing
company. A discrete events simulation model was developed to explore the performance of multi-
model assembly lines using a set of operational and logistics Key Performance Indicators. Four
simulation scenarios analyse the separate effects of an increased number of product models and three
different sources of variability. The results show that milkruns can protect the assembly lines from
upstream process disturbances.

Keywords: milkrun; in-plant logistics; flexible assembly; simulation; high-mix low-volume; lean
manufacturing

1. Introduction

Since the end of the 20th century, it is considered that demand trends are shifting
from mass production towards mass customisation [1] and mass personalisation [2]. To
address this situation, manufacturing companies need to produce an increasing number
of different products, in smaller quantities each, without compromising on quality or
price [3]. For consumer goods manufacturers, this means shifting from large batches of
very similar products towards high-mix low-volume production. To gain an advantage
or simply remain competitive, production flexibility, reconfigurability and resilience are
key [4].

In a typical discrete production process—e.g., automobiles, white goods, home elec-
tronics, furniture, toys—the assembly stage taking place after manufacturing is also of
capital importance [5]. Traditional assembly operations are performed in manual or semi-
automated lines or cells, which are usually dedicated to one product or a small family
of products closely related [6]. These products are assembled in batches to minimise the
losses incurred due to product changeovers [7,8]. Looking at existing assembly operations
approaches to build upon, Lean Manufacturing [9] proposes a methodology inherently
oriented towards reduced batch sizes, frequent product changeovers, multi-product as-
sembly cells and cross-functional operator teams [10,11]. In this context, it seems clear
that traditional assembly lines face serious threats when confronted with the high-mix
low-volume demand brought by the mass customisation paradigm. The main challenges
include dealing with complexity, uncertainty and disturbances, successfully deploying
disruptive digital technologies [12]—i.e., Industry4.0 [13] or smart manufacturing [14]—
and further integrating the sub-systems related to assembly: supporting functions such as
internal logistics [15], maintenance [16] or quality control [17].
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Internal logistics is the supply chain function most closely related to the assembly
operations since it is tasked with feeding components to the assembly line or cell without
introducing production constraints [18,19]. Flexible assembly lines driven by mass cus-
tomisation and featuring mixed- or multi-model production pose additional challenges
to internal logistics [20], which impact directly on the classic Lean supply performance
indicators [21]. In-plant milkruns [22] (misuzumashi [23], tow-train [18]) are one of the
best available Lean tools for efficiently supplying parts to flexible multi-model assembly
lines [24].

The brief literature review that will be presented in Section 2 shows that despite an
increasing research depth on the topic of milkrun logistic systems for flexible assembly
lines, there are still limited published works which include variability. Two papers are very
closely related to our research topic: Korytkowski et al.’s [25] is great but features a single-
model assembly line, while Faccio et al.’s [26] article considers mixed-model assembly
lines, but the sources of variability considered there are limited to milkrun train capacity
and refilling interval. This connects with the key avenues for future work identified by
Gil-Vilda et al. [19], which point to including variability and disturbances to the study of
milkrun systems.

In consequence, the goal of this article is to continue exploring the use of milkrun
trains for the internal logistics of flexible assembly operations featuring multiple manual
assembly lines. In particular, we aim to look at scenarios where demand presents mass
customisation characteristics (i.e., high-mix low-volume). The work presented here aims
to evaluate the performance of milkrun trains and assembly lines in this demand context
by focusing on two main aspects, following the lines for further investigation detected by
Gil-Vilda et al. [19], namely the product mix (multi-model in opposition to single-model
assembly) and the impact of variability and stochastic disturbances.

To address the aforementioned objectives, the following research questions are formulated:

1. What is the effect on the operational and logistics Key Performance Indicators (KPIs) of
producing multiple models in an assembly line compared to single-model production?
Are there significant differences between mixed-model and multi-model production
from the milkrun internal logistics point of view?

2. How is the milkrun-assembly lines system affected by variability? In particular, to what
extent is it impacted by assembly process variability and supply chain disturbances?

To carry out this research, Discrete Events Simulation (DES) was the chosen tool. A
real industrial study case from a global white-goods manufacturer site located in northern
Spain is presented and used to provide the foundations of the different simulation scenarios
analysed to address the research questions.

The structure of this article is the following: Section 2 presents a brief literature review
on the topic, highlighting the key findings made by previous research and the open lines of
research derived from them. Section 3 Methodology introduces the assumptions used to
build the simulation model, details the study case data and the parameters as well as the
performance indicators selected to define and assess the simulation scenarios. Section 4
Results presents the outcome of the simulation, which is then discussed in Section 5.

2. Literature Review

Feeding the components to assembly lines requires complex in-plant logistics to
do so in an efficient, flexible and responsive manner. Although many feeding policies
could be used [27], some have clear advantages when facing a demand situation of mass
customisation or mass personalisation.

In the context of Lean logistics, milkruns (also named ‘tow-trains’ or shuttles) are
defined as ‘pickups and deliveries at fixed times along fixed routes’ [18]. Inbound and outbound
milkrun delivery systems work analogously, sharing a key aspect: ‘milkruns are round tours
on which full and empty returnable containers are exchanged in a 1:1 ratio’ [22].

Several authors have proposed different approaches for classifying milkrun systems.
For instance, Kilic et al. [28] proposed that the main problem for milkrun design is to
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determine the routes and time periods aiming to minimise total cost, which are composed
of transportation and Work In Process (WIP) holding costs. Their framework classifies
milkrun problems depending on the need to determine the time periods, the routes or
both; for one- or multiple-routed milkruns; and considering either equally or differently
timed routes. On the other hand, Mácsay et al. [29] described four milkrun-based material
supply strategies, while Klenk et al. [30] modelled milkrun systems using Methods-Time
Measurement (MTM) parameters and explored six major milkrun concepts.

Alnahhal et al. conducted a literature review in 2014 [31] that found a scarcity of
studies looking at in-plant milkrun systems as a whole, and that there was a research
tendency to drift away from Lean goals to look for optimality based on restrictive objectives
in its stead. Later articles, however, addressed in-plant milkruns from multiple angles;
in particular, for mixed-model assembly systems closely related to multi-model systems,
which are the focus of this article. A plethora of study cases have also been published in
recent years, helping to illustrate the benefits of milkruns and the production challenges
they help to overcome. The following subsections look into some of them in further detail.

2.1. In-Plant Milkruns for Mixed-Model Assembly Lines

Alnahhal et al. [32] looked into using milkruns for mixed-model assembly lines
from decentralised supermarkets. Variables such as train routing, scheduling and loading
problems were considered, aiming to minimise the number of trains, loading variability
route length variability and assembly line inventory costs. Different analysis tools were
employed: analytical equations, dynamic programming and Mixed-Integer Programming
(MIP). On the other hand, Golz et al. [33] used a heuristic solution in two stages to minimise
the number of shuttle drivers, focusing on the automotive sector.

This sector was also the focal point of Faccio et al.’s work [26], in which they proposed
a general framework using short-term (dynamic) and long-term (static) sets of decisions
allowing to size up the feeding systems for mixed-model assembly lines composed of
supermarkets, kanbans and tow-trains. In another article [34], Faccio et al. dived deeper into
the subject by investigating kanban number optimisation. It was highlighted that traditional
kanban calculation methods fell short under a multi-line mixed-model assembly systems.

Emde et al. also looked at optimising some aspects of mixed-model assembly lines,
namely (1) the location of in-house logistics zones [35] and (2) the loading of tow-trains to
minimise the inventory at the assembly and to avoid material shortages, using an exact
polynomial procedure [36]. Discrete Events Simulation was used by Vieira et al. [37] in an
automated way (using a tailored API on top of a DES commercial software) to model and
analyse the costs of mixed-model supermarkets.

2.2. Other Aspects of In-Plant Milkruns

A few articles examined the performance evaluation of milkrun systems. Klenk et al. [38]
evaluated milkruns in terms of cost, lead time and service level. Their article used real
data from the automotive industry with a focus on dealing with demand peaks. Bozer
et al. [39] presented a performance evaluation model used to estimate the probability of
(1) exceeding the physical capacity of the milkrun train and (2) exceeding the prescribed
cycle time. This model assumed a basic, single-train system and that assembly lines are
never starved of components. It highlighted some of the milkrun advantages: low lead
times, low variability and low line-side inventory levels. Other articles describe milkrun
systems evaluation methods which employ cost efficiency [29] or the required number
of tow-trains [40]. Many authors used discrete event simulation to evaluate the potential
performance of milkrun systems as a tool for milkrun design [41], evaluating dynamic
scheduling strategies [42] or digital twin verification and validation [43].

The Association of German Engineers (VDI—Verein Deutscher Ingenierure) proposed
the standardisation guidelines VDI 5586 [44] for in-plant milkrun systems design and di-
mensioning. Schmid et al. [45] discussed the draft VDI norm and found several drawbacks.
Their article states that algorithms can support the milkrun design process; however, this
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system’s design cannot be formulated as a regular optimisation problem. In a later article,
Urru et al. [46] highlighted that VDI 5586 was the only norm for milkrun logistics systems
design and that it is only applicable under severe restrictions. A methodology was then
proposed to complement the VDI guideline. Kluska et al. proposed a milkrun design
methodology which includes the use of simulation as supporting tool [41].

Gyulai et al. [47] provided an overview of models and algorithms for treating milkrun
systems as a Vehicle Routing Problem (VRP). This article introduced a new approach with
initial solution generation heuristics and a local search method to solve the VRP.

Gil-Vilda et al. [19] focused on studying the surface productivity and milkrun work
time of U-shaped assembly lines fed by a milkrun train using a mathematical model. This
article established promising avenues for future research: (1) assessing the impact of the
number of parts per container and (2) analysing the impact of variability.

On the topic of variability, two articles stand out. Korytkowski [25] posed the research
question about ‘how disturbances in the production environment and managerial decisions affect
the milkrun efficiency’. This work analyses a single-model assembly line by employing
discrete events simulation including three variability parameters—assembly process co-
efficient of variability, probability of a delayed milkrun cycle start and the magnitude
of such delay—in addition to other three parameters: WIP buffer capacity, TAKT time
synchronisation, and the milkrun cycle time. The KPIs used were throughput, WIP stock,
milkrun utilisation and workstation starvation. The key conclusions were that TAKT sync
does not affect the KPIs, even in conjunction with limited WIP buffer capacity. It was also
found that a higher milkrun cycle time decreases the milkrun utilisation and increases the
assembly line stock. Finally, this article concluded that milkrun systems mitigate the impact
of production variations, which implies that they do not require large safety times built
into them. Faccio et al. [26] also introduced variability sources in their dynamic milkrun
framework for mixed-model assembly lines. In particular, this article includes tow-train
capacity variability (related to the number of parts per kanban container, which is linked to
the stochastic demand considered) and refilling interval variability.

2.3. In-Plant Milkrun Study Cases

There is no scarcity of published articles featuring study cases of in-plant milkrun
systems. However, there are not so many articles specifically focusing on milkruns feeding
multi-model assembly lines, and only a few articles consider stochastic variables. It is
also noteworthy that the majority of study cases on the topic belong to the automotive
industry. Table 1 summarises the study case articles found in this brief review, which
includes the articles mentioned previously as well as a few additional documents [48–52]
which specifically present milkrun study cases.

Table 1 shows some noteworthy points. First of all, no article specifically shows study
cases of multi-model assembly lines, although there are some articles on mixed-model
systems. Secondly, very few articles present real industrial study cases outside of the auto-
motive sector. Finally, variability has not been commonly considered by research articles on
the topic so far. The work presented here aims to cover the three highlighted shortcomings.
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Table 1. Key aspects of selected research articles on in-plant milkrun systems which include study cases.

Article Analysis Tool Objective No.
Lines

No.
Vehicles

Product
Mix

Variability Real
Industry

Case

Sector

Aksoy [51] MILP and heuristics MR route optimisation Multi Multi Single No Yes Automotive
Alfonso [53] Simulation Ergonomy and material

flow improvement
Multi Single Single No Yes Automotive

Alnahhal [32] MIP, DP and
math modelling

Min WIP, variability,
handling cost

Multi Multi Mixed No No NS 1

Coelho [43] Simulation Verify and validate digital
twin framework for in-
plant logistics

Multi NS NS Yes Yes Automotive

Costa [52] Simulation Train loading Multi Single Single No Yes Electronics
Emde [48] MIP and heuristics Min WIP Single Single Mixed No No Automotive
Faccio [26] Math model Min no vehicles and

WIP
Multi Multi Mixed Yes Yes Automotive

Faccio [34] Math model Optimal no. kanbans Multi Multi Mixed Yes Yes Automotive
Gil-Vilda [19] Math model Max surface

productivity
Single Single Single No Yes Unknown

Golz [33] MILP and heuristics Min no. trains Multi Single Mixed Yes No Automotive
Gyulai [47] Heuristics and local

search method
Min no. vehicles Multi Multi NS No NS Automotive

Kilic [28] Mixed Integer
Programming (MIP)

Min cost (no vehicles ×
distance travelled)

Multi Multi NS No Yes Automotive

Klenk [38] Math model Handling demand peaks Multi Single NS Yes Yes Automotive
Korytkowski [25] Simulation Effect of disturbances

and management deci-
sions

Single Single Single Yes No NS

Pekarcikova [54] Simulation Improve logistic flows Single Single Single No NS Automotive
Rao [42] Simulation Improve material flow,

reduce no. vehicles
Multi Multi Single No NS NS

Satoglu [50] Math model
and heuristics

MR route to minimise
handling and stock costs

Multi Single Single No Yes Electronics

Simic [49] Particle swarm
optimisation

Min stock costs Single Single Single No No Automotive

1 NS: Not Specified.

3. Materials and Methods

In this article, the operational performance of two assembly lines and the milkrun train
that feeds them is evaluated under different conditions. The system consisting of assembly
lines and internal logistics was studied by considering a set of inputs, a Discrete Events
Simulation model and a set of output KPIs, as depicted in Figure 1. The model consists
of two main parts: the assembly lines and the supply chain feeding the components to
the Assembly Line (AL) in containers using a milkrun train. Simulation was chosen for
building this model because it allows the introduction of stochastic elements [55], such
as process or logistics variability, which is necessary to achieve this work’s goals. The
simulation tool employed was FlexSim® (2022.0, FlexSim Software Products, Inc., Orem,
UT, USA). Several simulation scenarios are created by modifying different parameters and
disturbances values to analyse desired aspects of the system behaviour. Section 3.1 details
the modelling assumptions. Section 3.2 includes the notation and definitions employed,
and Section 3.3 includes the input data used in the models, which are used for validation
(Section 3.4) and the experiment design (Section 3.5).
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Figure 1. In-plant milkrun for multi-model assembly lines. Input parameters and disturbances are
changed when analysing the performance of the system using simulation. Model output includes
relevant operational and logistics Key Performance Indicators (KPIs) for evaluation.

3.1. Assumptions

The simulation model depicted in Figure 1 is made of two main subsystems: (1) two
manual assembly lines, which feature operators, workstations, product buffers and compo-
nents racks; and (2) internal logistics, which include a milkrun train, the components Points
Of Use (POUs), a warehouse and the information flow necessary to ensure the assembly
line receives the required components on time; see Figure 2.

Assembly lines: Figure 2a,b show the elements of the assembly lines used in this
model, which feature the following assumptions following the classification of assembly
systems by Boysen et al. [6]:

• The assembly systems are unpaced, buffered lines.
• These are fixed-worker assembly lines: operators are assigned to stations.
• There is manual assembly only (no semi- or fully automated work content).
• The number of workstations is constant. Each station can process only one product

unit at a time.
• Operators need to gather all components specified by the Bill of Materials (BOM) to

proceed to assemble at their stations; see Figure 2a.
• The demand mix is known and it continues for the whole simulation horizon.
• The assembly lines can be single-model, mixed-model or multi-model. Single-model

lines only produce one product variant per AL. Mixed-model lines can produce more
than one model, but there is no setup time between products. Multi-model lines are
similar to mixed-model lines but they do incur setup time losses when changing over
from one product model to another.

• Setup times, where present, are not dependent on the product sequence.
• The product sequence consists of an alternating pattern of batches of products. The

batch size is stochastic, based on a discrete uniform distribution to represent the prob-
ability of a batch being released to the assembly line with fewer units than standard.
This represents the disturbances caused by upstream manufacturing processes. The
probability distribution is governed by the batch size coefficient of variability (CVq).
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• Processing and setup times are stochastic. They follow a lognormal distribution based
on mean values and standard deviations, which are expressed by the coefficients of
variability (CVp, CVs).

• Slightly different processing times on each station mean that these are unbalanced
assembly lines, as shown in the ‘Input’ subsection.

Figure 2. Simulation model subsystems interaction. (a) Assembly line stations; (b) Milkrun operator
loading and unloading containers to assembly station; (c) Milkrun train picking at the warehouse,
followed by the components replenishment cycle across all Points Of Use (POUs) of the route.

Internal Logistics: Figure 2 shows the main components of the internal logistics, which
consists of four subsystems:

• Information flow between the assembly lines and the milkrun train, so that the milkrun
picks up the right components for the product models that will be needed in the AL.
This includes the calculations of the number of containers of each component Ni. This
is worked out based on the expected consumption over the milkrun cycle time (d), the
no. of pieces of component i per product unit (ni) and the no. of pieces per container
(qi), with a minimum of 2, as shown in Equation (1). This minimum of 2 containers is
required to prevent assembly line starvation, which could occur otherwise since the
milkrun logic implies taking empty containers and replacing them with full ones on
the next cycle.

Ni = max
(⌈

di · ni
qi

⌉
, 2
)

(1)

• The number of pieces in each component container is stochastic, based on the standard
number of pieces per container and a coefficient of variability (CVc). A discrete
uniform distribution is employed, which uses CVc as the lower limit and the standard
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no. of pieces as the upper limit. This represents the probability of a certain number
of pieces being non-conforming due to quality problems, inaccurate counting at the
external suppliers’ production site or incorrect re-packing at the in-plant warehouse,
especially for components packed in bulk, such as nuts and bolts.

• Milkrun train picking at the warehouse (see Figure 2c) is modelled as a single POU.
The milkrun train is emptied upon arrival, and it is thereafter filled again with the
required containers for the next supply cycle.

• The milkrun transportation time from/to all POUs (Figure 2c) is based on historical
time measurements from the industrial study case. Since the data show very little
variability, the model assumes a deterministic transportation time given by the input
parameter Tt.

• Supply chain operator loading and unloading of component containers to the assembly
lines at each POU, as shown in Figure 2b. There are two possible situations: (1) Regular
cycle (same product model): the operator replaces the empty boxes in the ‘returns rack’
with full boxes of the same component. The handling time is different for full and
empty containers; see the input subsection. (2) Product changeover cycle (before the
assembly line changeover): in which the milkrun operator firstly replaces any current
product empty container to ensure that the current batch can be finished and then
loads the next containers of the next product components so that they are available to
the assembly operators when they finish the stations’ changeover.

3.2. Notation

The following notations are introduced:
Input: Parameters

Q Batch size
CT Assembly cycle time
CTMR Milkrun cycle time
L No. of assembly lines, index l.
K No. of assembly workstations (no. POUs) per assembly line, index k.
M No. of product models, index m.
Tp Processing time
Ts Setup time
WC Work content (i.e., total process time)
WIP No. of work in progress units between workstations
Tt Milkrun transportation time to/from assembly line
Te

h Milkrun operator container handling time, empty container
T f

h Milkrun operator container handling time, full container

Input: Disturbances

CVp Process time coefficient of variation: CVp = σTp/µTp

CVs Setup time coefficient of variation: CVs = σTs/µTs
CVc Conforming units per container coefficient of variation
CVq Batch size coefficient of variation

Output: Key Performance Indicators

P Productivity (units/operator-h): production rate of conforming units per assembly
operator.

LT Lead Time (min): average time for a batch of units to be finished from the moment
the last unit of the previous batch is finished.

U Milkrun Utilisation (%): fraction of total available time that the supply chain
operator is busy (picking components at the warehouse, driving the milkrun train
and handling containers to load/unload the components at the POUs).

S Stock in the assembly line (units): average stock of components held in the assembly
line measured in equivalent finished product units.
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3.3. Input Data

The simulation model uses data provided by the industrial study case, which presents
a common situation faced by plenty of manufacturing businesses globally. Table 2 shows
the model parameters base, min and max values.

Table 2. Input parameters and disturbances base and range values.

Parameter Units Min Max Base Value

Q units 48
CT s see Table 3
CTMR min 140
L lines 2
K stations 5
M models 2 4 4
Tp s see Table 3
Ts s 480
WC s see Table 3
WIP units 1
Tt min 4
Te

h s 1

T f
h s 2

CVp 0 0.50 0.15
CVs 0 0.50 0.15
CVq 0 0.50 0.10
CVc 0 0.20 0.00

The operations considered in this model include two manual assembly lines which
assemble four product models, two on each line. The mean processing times for each
model and station along with work content and cycle time is summarised in Table 3.
These processing times were obtained from the industrial company standard operating
procedures, which in turn are calculated using MTM.

Table 3. Product processing time input data.

Line m
Tp (s)

CT (s) WC (s)
k = 1 k = 2 k = 3 k = 4 k = 5

1 1 192.8 187.5 185.5 188.2 190.1 192.8 944.1
2 214.3 210.2 215.4 212.0 210.7 215.4 1062.6

2 3 237.6 238.5 236.7 233.0 232.1 238.5 1177.9
4 176.1 176.1 175.1 173.2 173.0 176.1 873.5

The products within a line share materials, technological features and general pur-
poses, but they require different components, assembly fixtures and tooling. This calls
for changeovers to adjust the workstations when a batch of a different product model is
required. The parameter governing setup times is Ts, which takes each operator approxi-
mately 6 min (see Table 2), independently of the product sequencing.

Each product unit consists of many different components, as shown in Table 4. Most
components are required only once per finished product unit, although some components,
especially the smaller ones, may be required in larger numbers.
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Table 4. Bill Of Materials summary data.

m
No. Components Total No.

Components
Total

Piecesk = 1 k = 2 k = 3 k = 4 k = 5

1 16 6 10 11 4 47 62
2 28 4 14 13 13 72 132
3 20 7 20 18 21 86 160
4 16 9 9 24 14 72 105

Components are transported to the POUs and then presented to the assembly operators
in containers, i.e., boxes, trays or small trolleys. Each container carries a certain number of
pieces of one component, typically a few dozens for middle- and large-size components,
and about one hundred pieces for small components, such as bolts, screws and washers.

In this particular study case, an important number of components are packed in
very large quantities per container compared to the number of pieces needed to feed the
assembly line for the duration of the milkrun cycle. Note that the the milkrun cycle time is
approximately similar to the time required to complete a production batch. To illustrate this
fact, Table 5 shows the number of components of each product model that are packed in
large quantities. Here, large quantities refers to the case in which one single container includes
a number of pieces allowing to assemble more than two full batches of products—i.e., it is
equivalent to the assembly line consumption of two milkrun cycles.

Table 5. Details of the high number of components served in large quantities 2 to the assembly lines.

Number of Components
Product Model

Avg
m = 1 m = 2 m = 3 m = 4

Total no. components 47 72 86 72 69
Packed in large quantities 2

No. components 13 25 29 37 26
Percentage components 28% 35% 34% 51% 28%

2 Containers including a no. of pieces equivalent to the consumption of more than two milkrun cycles.

When the milkrun operator arrives at each POU, the containers are handled between
the train and the back side of the POU racks. Based on measurements at the industrial
partner facility, one second was estimated for handling empty containers and two seconds
for containers full of components, as shown in Table 2. When walking from the milkrun
train to the POU, the milkrun operator’s speed was considered 1 m/s. The milkrun train
speed in the assembly line area was found to be around 1 m/s, and the POU positions
are separated approximately 2 m from each other, resulting in a 12 m long assembly
line. Regarding the milkrun train travel from the warehouse to either assembly line, the
industrial partner measurements showed little variability for an average travel time of
approximately 4 min each way. The milkrun preparation time at the warehouse (picking
time) was simulated considering the warehouse as a single picking point and treated as
any POU of the assembly line.

The DES model takes into account the inherent variability of manual assembly op-
erations by using lognormal distributions for processing and setup times, following the
recommendations of [56]. The lognormal distribution is generated using the mean (µ)
values of Tp and Ts—see Table 3—and the standard deviation (σ), which is given as a
percentage of the mean by the coefficients of variation CVp and CVs. The base values for
the coefficients were estimated from historical data provided by the industrial partner of
this study case. The data allowed estimating CVp and CVs to be in the range of 0.15–0.20
for manual assembly lines. Note that since one of the goals of this work is to analyse the
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influence of processing and setup times variability on the internal logistics performance,
CVp and CVs will take a range of values in certain simulation scenarios. Another two
sources of variability, introduced in Section 3.1, are considered: the conforming units per
container variability (CVc) and the batch size quantity variability (CVq). They are relevant
along with the processing and setup variability because the logistic performance of the
milkrun system is directly related to them.

3.4. Verification and Validation

The validation and verification of the simulation models were performed separately
for assembly operations and internal logistics.

For the assembly operations section, historical production KPIs data were gathered
and compared against the results of a simple parametric model and a discrete events simu-
lation model. The results presented by the authors in [57] allowed the validation of both
models by comparison against real industry study case data. It was also possible to verify
the parametric model against the simulation model (considering no variability) because
their results difference was smaller than 3.5% for any considered performance metric. In
summary, the results indicated that both parametric and simulation models slightly under-
estimate total output and that they overestimate the production rate, labour productivity
and line productivity. Both models were found to be reliable for the context considered
here since the mean relative error was 1.63% and the max relative error was 4.9%.

Regarding the internal logistics part of the simulation model, the validation was
carried out using measurements at the industrial partner assembly lines from June 2022.
A total of 18 milkrun cycle measurements were registered, finding an average milkrun
utilisation of 78.4%. This was compared with the equivalent simulation model results
(U = 71.6%) to calculate a relative error of 8.7%, slightly below 10%, which was considered
satisfactory for the scope of this work.

3.5. Experiment Design

To address the research questions laid out in Section 1, several simulation scenarios
were designed and then implemented on the simulation model by modifying the model’s
parameters. Table 6 summarises the parameters and range of values used to set up the
simulation scenarios.

Table 6. Simulation scenarios.

Scenario Parameter Units Range

i. Product mix M models {2, 4}
Ts s {0, 480}

ii. Process variability CVp, CVs per unit [0, 0.50]
iii. Batch size variability CVq per unit [0, 0.50]
iv. Components quantity var. CVc per unit [0, 0.20]

The first research question—‘(1) What is the effect on the operational and logistics KPIs of
producing multiple models in an assembly line compared to single-model production? Are there
significant differences between mixed-model and multi-model production from the milkrun internal
logistics point of view?’—is examined by changing the number of product models under
demand (one model per assembly line for single-model, M = 2; two models per assembly
line per mixed- and multi-model, M = 4) and the setup time duration parameter (Ts set
to 0 s for mixed-model, 480 s for multi-model). For this scenario i., process and batch
quantity coefficients of variability take their base values (Tp and Ts 0.15, CVq 0.10 ), and the
conforming units per container coefficient of variability is set to 0, as stated in Table 2.

The second research question—‘(2) How is the milkrun-assembly lines system affected by
variability? In particular, to what extent is it impacted by assembly process variability and supply
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chain disturbances?’—will be decomposed into the three variability sources considered in
the simulation model. Firstly, process variability is governed by parameters CVp (assembly
processing time variability) and CVs (setup time variability). These parameters will take
values ranging from 0 (no variability at all) up to 0.50 (high variability), making up scenario
ii. Secondly, the batch size variability coefficient will be used to represent in-plant manu-
facturing issues leading to smaller-than-standard batches of products being released for
assembly. Similarly to the previous scenario, in scenario iii. CVq values will range from 0
to 0.50, covering from no disturbances up to half of the batches having fewer units than
it was intended. Finally, scenario iv. looks into external supplier perturbations which are
simulated using the components quantity coefficient of variability. CVc will take values
in the range of 0 to 0.20, meaning that each components container can have up to 20%
fewer valid pieces in the less favourable case. The effect of the interactions between the
variability parameters was not analysed because a preliminary two-level full factorial
design of experiments showed that two-factor interactions were not significant for the KPIs
under study in comparison to the effects of the variability parameters by themselves.

The following Section 4 Results shows the outcome of the simulation scenarios intro-
duced here.

4. Results

This section includes the outcome of the simulations corresponding to scenarios i.-iv.
Section 4.1 addresses the first research question, and Section 4.2 includes scenarios ii.-iv.,
which jointly address the second research question.

The results shown here are obtained with a simulation horizon of 74 h with a warm-up
time of 2 h (i.e., nine production shifts after the warm-up is finished). To account for the
stochastic nature of the results, each simulation scenario is run 20 times. This number was
chosen because it was found that using a larger number of runs did not affect the resulting
output in a statistically significant manner. At the start of each simulation run, all assembly
stations and buffers between them are empty as well as all the components racks and the
milkrun train.

The results shown in this section are presented in boxplots where the upper and lower
limit of the boxes corresponds to the first and third quartiles. The coloured line is the mean
and the whiskers limits are set to 1.5 times the interquartile range. Outlier data points
(beyond the whiskers) are marked by a circle. The charts scale has been kept constant
across all simulation scenarios to facilitate comparison.

4.1. Single-Model vs. Mixed-Model, Multi-Model Assembly

The selected operational KPIs comparing the performance of the assembly lines under
scenario i. demand conditions are shown in Figure 3 and summarised in Table 7.

The productivity of single- and mixed-model lines is significantly superior to multi-
model lines, as is expected considering that the setup time becomes zero (from 480 s per
batch of 48 units, which represents just below 5% of the time needed to complete the batch
on average). The difference in productivity between single- and mixed-model lines is
related to operator idle and blocked times following product model changeovers as a result
of cycle time differences between the incoming and outgoing products. Said difference does
not account for significant productivity results in this case. Batch lead time, as expected, is
slightly larger for mixed- and multi-model lines compared to single-model lines.

On the internal logistics KPIs side, milkrun utilisation and assembly line stock show a
clear differentiation between single-model assembly lines and the other two. Incorporating
multiple product models increases greatly the utilisation (from 51% to 72%, a +44% incre-
ment). Note that this steep increase could be linked to the high percentage of components
packed in large quantities. This will be examined in the next Section 5 Discussion.
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Figure 3. Scenario i.: Mean and deviation values of KPIs for single-, mixed- and multi-model
assembly lines. (a) Line productivity, (b) batch lead time, (c) milkrun utilisation and (d) assembly line
stock levels.

The component stock in the assembly line also suffers an increase for mixed- and
multi-model lines driven by the same reason: single-model assembly lines see their average
component stock decrease as the containers with very large quantities of pieces are con-
sumed over time. Contrarily, mixed- and multi-model lines are constantly fed with small
component boxes full of pieces. In the case shown here, the difference is significant but not
dramatic, at an approx. +22% increase (from 182 to 223 units).

In summary, increasing product mix negatively affects operational KPIs (reduces
productivity, increases batch lead time), which was expected. It also increases greatly
supply chain operator utilisation (+44% rise), although the magnitude of this sharp increase
could be attributed to the high percentage of components packed in large quantities.

Table 7. Scenario i: Mean and standard deviation (SD) of main KPIs for single-, mixed- and multi-
model assembly lines.

Product Mix
P (u/oper-h) LT (min) U (%) S (u)

Mean SD Mean SD Mean SD Mean SD

Single-model 3.33 0.015 188.9 1.5 50.60 0.82 181.7 1.9
Mixed-model 3.31 0.006 192.0 1.4 72.05 1.23 222.8 6.2
Multi-model 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4

4.2. Variability and Disturbances

This subsection looks at how increasing levels of variability affect the operational (P,
LT) and internal logistics KPIs (U, S). As described in Section 3.5, simulation experiments
were set up to independently analyse the influence of assembly line process variability (CVp
and CVs, scenario ii.), batch size variability (CVq, scenario iii.) and conforming components
variability (CVc, scenario iv.).

4.2.1. Process Variability

To analyse the impact of the assembly line process and setup variability, the respective
coefficients were modified increasingly from 0 up to 0.50 (the base value for the industrial
case study is 0.15; see Table 2). Figure 4 shows the results of this simulation scenario, and
Table 8 includes the results’ numeric values for average and standard deviation.
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Figure 4. Scenario ii.: Mean and deviation values of KPIs for varying levels of process and setup
coefficients of variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation, and (d) assembly
line stock level.

In terms of operational KPIs, Figure 4a,b show that, as expected, an increase in process
variability negatively the performance of the assembly line, especially considering that this
lines’ number of work-in-process units is limited to one. In particular, it can be seen that
the productivity deteriorates greatly when CVp and CVs are greater than 0.20 both in terms
of mean and standard deviation. Batch lead time follows the same trend.

Figure 4c shows that U does not suffer any changes, although its standard deviation
increases slightly. On the other hand, the assembly line components’ stock levels are
severely impacted, rising from approx. 220 units for none or very small variability (CVp
and CVs at 0–0.10) up to an average of approx. 270 units for CVp, CVs 0.50, which represents
a noticeable +23% increase. Standard deviation also rises, but it remains small compared to
the mean values of S, as shown in Figure 4d. In summary, only AL stock levels are affected
by in-process variability, while the milkrun driver’s workload remains unaffected.

Table 8. Scenario ii.: Mean and standard deviation of main KPIs for increasing values of process variability.

CVp, CVs

P (u/oper-h) LT (min) U (%) S (u)

Mean SD Mean SD Mean SD Mean SD

0.00 3.27 0.012 183.0 1.2 71.75 1.33 220.4 4.9
0.10 3.24 0.011 187.8 0.8 71.25 1.16 218.7 5.8
0.20 3.12 0.015 195.4 1.1 71.45 1.05 238.5 7.6
0.30 2.98 0.019 205.2 1.8 71.30 0.99 238.1 8.8
0.40 2.83 0.021 216.0 2.2 71.45 1.23 252.6 7.8
0.50 2.67 0.025 228.7 2.3 71.28 4.06 272.1 10.7

4.2.2. Batch Size Variability

To understand the impact that upstream manufacturing process issues would have
on the assembly operational and internal logistics performance, scenario iii. was set up by
changing the value of CVq, which determines the probability of an assembly production
batch smaller than standard. CVq takes values between 0 (no disruption) and 0.50 (meaning
that on average, half the batches released to the assembly lines have between 36 and 48 units.
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The simulation results of scenario iii. are summarised in Figure 5, and average and standard
deviation data are shown in Table 9.

Figure 5. Scenario iii.: Mean and average values of KPIs for varying levels of batch size coefficients of
variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation, and (d) assembly line stock.

Figure 5a,b shows that the average of both line productivity and lead time remains
constant despite changes in CVq. Although P standard deviation increases slightly, it
remains very low at about 0.25–0.43% of the average value. The lead time StDev, on the
other hand, does increase more than five-fold while remaining very low compared to
average values (StDev of 0.24–1.39%). Therefore, the data show that batch size variability
has no significant impact on the operational KPIs. Although variability rises as CVq grows,
it remains at very low levels in relative terms.

Figure 5c,d show very little impact on internal logistics KPIs as a result of an important
rise in batch size variability. The milkrun utilisation average does increase slightly (from 71
to 73%, c.+4% rise), but the StDev reduction (from 1.25% to 0.82%) is not statistically signifi-
cant. In a similar fashion, assembly line components stock decreases slightly in both average
and standard deviation values, but none of these changes are statistically significant.

Table 9. Scenario iii.: Mean and standard deviation of main KPIs for increasing values of batch size
variability.

CVq

P (u/oper-h) LT (min) U (%) S (u)

Mean SD Mean SD Mean SD Mean SD

0.00 3.18 0.008 191.7 0.5 70.68 1.25 225.6 8.0
0.10 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4
0.20 3.19 0.012 191.1 1.2 71.74 1.37 222.6 9.1
0.30 3.19 0.019 191.0 2.0 72.84 1.07 225.8 8.5
0.40 3.18 0.011 191.1 2.8 73.17 0.92 224.7 6.7
0.50 3.17 0.014 191.9 2.7 73.32 0.82 218.1 6.8

4.2.3. Components Quantity Variability

The goal of this subsection is to analyse the impact of the components quantity
coefficient of variability CVc. This coefficient is employed to represent disturbances within
in-house or external suppliers’ processes, resulting in a lower-than-standard number of
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conforming pieces in each component container. As explained in Section 3, the number of
conforming pieces per container is simulated using a discrete uniform distribution which
has the inferior limit set to CVc percent of the nominal value. Scenario iv. considers CVc
values from 0 to 0.20, as shown in Table 10.

Figure 6a shows that productivity is affected negatively by an increase in CVc, al-
though the magnitude of the impact is very limited: only a −2.2% reduction from the base
scenario when components containers have up to 20% less conforming pieces than expected.
Similarly, lead time is impacted negatively by CVc increase, as depicted in Figure 6b. The
LT average rises slightly (c.+2%) and suffers a greater dispersion of results (StDev increases
by +54%). All in all, even a substantial increase in components quantity variability does
not affect the assembly lines’ operational KPIs severely.

Figure 6. Scenario iv.: Mean and deviation values of KPIs for varying levels of components quantity
coefficients of variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation, (d) assembly
line stock.

Regarding internal logistics KPIs, Figure 6c,d show that an increase of CVc has no
significant impact on either milkrun utilisation or assembly line component stock levels.

Table 10. Scenario iv.: Mean and standard deviation of main KPIs for increasing values of component
quantity variability.

CVc

P (u/oper-h) LT (min) U (%) S (u)

Mean SD Mean SD Mean SD Mean SD

0.00 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4
0.05 3.17 0.015 192.4 1.2 72.17 0.99 217.5 6.2
0.10 3.16 0.016 193.5 1.2 72.26 0.81 220.0 6.8
0.15 3.15 0.019 194.0 1.6 72.00 1.05 222.0 5.6
0.20 3.12 0.019 195.2 1.7 72.40 0.50 221.9 5.9

5. Discussion

The results shown in the previous section have been summarised in Table 11.
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Table 11. Summary of KPI change trends resulting from each scenario considered.

Scenario Productivity Lead
Time

Milkrun
Utilisation

Line
Stock

Goal ↑ ↓ ↓ ↓
i. Product mix ↘ ↗ ↑↑ ↑↑
ii. Process variability: CVp, CVs ↑ ↓↓ ↑↑ = ↑↑
iii. Batch size variability: CVq ↑ = = ≈ ≈
iv. Components quantity variability: CVc ↑ ↘ ↗ ≈ ≈

Increasing the product mix from single- to mixed- and multi-model assembly lines
results in a moderate impact on operational performance (P, LT) but a very significant
negative effect on internal logistics KPIs, which could have further implications. For
instance, the rise of assembly line component stock would increase the required floor space
and decrease the assembly line surface productivity.

It is important to note that according to the results shown in Section 3.1, the greatest
factor affecting U is the product mix, with a remarkable +44% increase resulting from
changing from single- to multi-model assembly.

This sharp increase in U is caused by the rising number of containers that need to be
handled, which is due to two main reasons.

(1) First of all, the number of component containers to be handled is larger every time
there is a product changeover, which is the case for almost every milkrun cycle under the
assumption that the milkrun cycle time is approximately similar to the time required to
complete a batch of products (cf. CTMR, Q in Table 2 and CT in Table 3). The increased
number of containers to be handled is due to the fact that the supply chain operator needs
to take all the containers of the outgoing model from the POU racks regardless of how many
component pieces are left and replace them with components for the incoming product
model. During regular supply cycles, on the other hand, containers are only replaced if
needed (empty boxes work as kanban signals).

(2) The second reason is related with the compound effects of the first reason and
the fact that in this particular study case, we find a large number of components packed
in large quantities (see Table 5). This fact means that for a significant percentage of the
components, each milkrun train carries enough pieces to assemble more than four times
the required amount of pieces. Furthermore, the milkrun train will need to take back to the
warehouse a full container and a half-empty container every time a changeover is needed.

Thus, it seems reasonable to conclude that milkrun utilisation is higher on mixed- and
multi-model lines compared to single-model assembly lines. However, the magnitude of
the increase shown in the Results must be considered carefully, since it it would be strongly
related to the container quantities of this particular industrial study case.

As a closing remark on this subject, two aspects could be looked at in order to reduce
the milkrun utilisation for multi-model assembly lines. Firstly, if enough shop-floor space
is available, small components packed in large quantities could be left by the workstations,
forming an assembly line supermarket, independent of the regular milkrun cycles. For
larger components, relaxing the rule of minimum two containers (see Equation (1)) could
be considered. Secondly, packing components in smaller quantities (so that two containers
cover approximately the consumption of a milkrun cycle) could also reduce the milkrun
workload so that it is only slightly higher than for single-model assembly lines.

Production variability (CVp, CVs) is the most important disturbance factor affecting
productivity, lead time and assembly line components stock. However, it does not affect
supply chain operator utilisation because the productivity reduction implies a reduction
of output rate (which slows down components consumption). The reason behind this is
that the milkrun work logic establishes a fixed replenishment frequency (milkrun cycle
time), resulting in a supply chain operator workload effectively unaffected by several minor
variations over the course of a full replenishment cycle.
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Despite the previous expectation that variability would always impact performance
negatively, results from Sections 4.2.2 and 4.2.3 show that the internal logistics KPIs are not
sensitive to disturbances originated by batch size and components quantity variability (CVq
and CVc respectively). This implies that employing milkruns for the internal logistics of
flexible multi-model assembly lines under high-mix low-volume demand is a way to shield
this part of the supply chain from upstream disturbances, arriving from either external or
internal processes.

It was also found that variability regarding batch size (CVq) does not have any notice-
able negative impact on operational performance, as shown in Figure 5c.

Note that as mentioned in Section 2, this article addresses a gap in the literature by
specifically addressing in-plan logistics for multi-model assembly operations, including
variability, and using a real study case—specially from an industry sector other than
automotive.

The fact that the simulation model used in this work is based on a real industry study
case provides valuable insight into the behaviour of similar assembly operations—internal
logistics systems under increasingly hard conditions in terms of variability and product
mix. However, it is important to note that this also limits the generalisation extent of the
results obtained due to certain aspects listed below.

First of all, the case employed here considers only a relatively small product variation
within each assembly line (∆WC 13% and 34% for AL no.1 and AL no.2, respectively) and
almost no difference in terms of average WC per model when comparing both lines (∆WC
c.2%). Understanding how much product variability affects the operational and internal
logistics KPIs could be a potential avenue for further research to understand the extent of
the potential benefits of employing milkruns for high-mix low-volume assembly.

Secondly, it could be argued that the number of conforming components coefficient of
variability (CVc) only modifies the number of pieces per container available to the assembly
operator, but it does not realistically capture the possibility of components actually arriving
at the assembly line and then causing quality control failures or unexpected assembly
process time increases, which would imply additional productivity losses due to reasons
such as product rework and idle/blocked assembly operators.

Thirdly, milkrun transportation time was considered deterministic because the industry
case measurements indicated this time were consistent. However, for multi-train production
sites, variability caused by occasional milkrun train traffic jams could be considered.

Finally, modelling the milkrun train as a single wagon could be slightly underesti-
mating its utilisation despite the satisfactory validation results. Specifically, in potential
scenarios featuring longer milkrun cycle times—note that the CTMR parameter was un-
changed through scenarios i. to iv.—this would entail a greater number of component
containers and therefore potentially a greater number of required wagons leading to an
increased walking time for the supply chain operator, which the current simulation model
would not capture.

6. Conclusions

To address a mass customisation demand context that drives high-mix low-volume
assembly operations, this article studied the implications of using milkrun trains for the
internal logistics of multi-model assembly lines. Based on a real industrial study case from
the white-goods sector, a discrete events simulation model was employed to set up four
different scenarios which evaluate the effect of product mix and three different sources
of variability. To measure such impact, a set of four Key Performance Indicators (KPIs)
were used, two corresponding to assembly operations and two corresponding to supply
chain efficiency.

It was found that multi-model lines increase significantly the milkrun utilisation
and the assembly line components stock compared to single-model lines. However, the
magnitude of this large increase could be partially attributed to particularities of the study
case. Operational KPIs were also affected negatively but to a much lesser extent. Internal
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logistics performance is greatly affected by the variability of assembly line processing
time, especially in terms of component stock. Other sources of variability, such as the
ones affecting the number of units per production batch or the components quantity per
container, have very limited impact on the selected KPIs. This would imply that employing
milkruns for the internal logistics of flexible multi-model assembly lines under high-mix
low-volume demand is a way to shield this part of the supply chain from upstream
disturbances, arriving from either external or internal processes.

Two key limitations of this work are the relatively low product variability in terms of
work content and the milkrun train physical features simplification.

Further research paths include exploring the implications of much greater product
work content variability, incorporating more detailed physical models of the milkrun train
and expanding the simulation model to include adjacent layers that could constrain the
performance of the assembly system as a whole, such as quality (defects, reworks, quality
controls) or breakdowns and maintenance.
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