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1. Introduction

Singularly perturbed systems are a good model for different physical phenomena, as reaction-diffusion enzyme model,
saturated flow in fractured porous media, tubular model in chemical reactor theory, combustion process, diffusion process
in electro-analytic chemistry or neutron transport model (see by instance [ 1-5]). In general, the solution of these problems
has boundary layers and/or internal layers, depending of the coefficients in the differential equation and/or in the
boundary conditions, which appear near the boundary or at the interior of the domain; in those regions, the exact solution
has extremely higher gradients. So, appropriate numerical methods are needed to find a good approximate solution in
the domain where the problem is defined. Then, uniformly convergent methods are necessary, i.e., methods for which the
numerical approximation is adequate independently of the value of both positive convection and diffusion parameters,
which can be very small.

Problems having two small parameters in the differential equation, affecting to the convection and the diffusion terms,
are interesting in the context of the singular perturbation problems. For instance, in [6,7], the case of one elliptic scalar
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equation was considered and efficient numerical method was developed to solve this type of problems. More recently,
in [8-10], one dimensional parabolic scalar problems, having also a delay term in the differential equation, were analyzed.
In all those works, the numerical method combines the implicit Euler method to discretize in time, on a uniform mesh,
together with the classical upwind scheme to discretize in space on some special nonuniform meshes of Shishkin type,
which includes the Shishkin, the Bakhvalov-Shishkin and the Duran-Shishkin meshes; it was proved that the fully discrete
method is uniformly convergent with respect both small parameters, and also that the use of the Bakhvalov-Shishkin mesh
gives better numerical results that when the Shishkin mesh is used.

In the literature, there are many works where adequate numerical methods have been constructed for solving elliptic
or parabolic singularly perturbed coupled systems, for one or two dimensional problems in space, so much for reaction-
diffusion as convection-reaction-diffusion problems. In [11-14], 1D convection-diffusion elliptic systems were analyzed.
In [15,16], and elliptic 2D system of reaction-diffusion and convection-diffusion type, respectively, was considered. In [17-
20] parabolic one dimensional weakly coupled systems of convection-diffusion type, with equal or different diffusion
parameters were solved. In [21,22] parabolic two dimensional weakly coupled systems of convection-diffusion type, for
which the diffusion parameter is the same in both equations of the system, were studied. In all previous papers, uniformly
convergent numerical methods were constructed to solve the corresponding singularly perturbed problems.

A different and considerably more complex problem appears when in the coupled system there are two small
parameters affecting to both the diffusion and the convection terms. So far, we only know the work [23] for that type
problems; in that work, a parabolic one dimensional weakly coupled system of convection-diffusion type, which has a
discontinuity in the source term and small parameters at both the diffusion and the convection terms, was considered;
then, combining the implicit Euler method to discretize in time, on a uniform mesh and the upwind scheme to discretize
in space, on a piecewise uniform Shishkin mesh, the resulting fully discrete scheme is an almost first order uniformly
convergent method. Nevertheless, up to our knowledge, there are not any work where a elliptic two dimensional weakly
coupled system of convection-diffusion type, with small parameters at both the diffusion and the convection terms, is
considered.

In this paper, we are interested in solving this type of coupled systems by using a upwind scheme to discretize in space,
which is defined on a special nonuniform Bakhvalov-Shishkin mesh. Concretely, we consider a two-parameter singularly
perturbed weakly-coupled system of 2-D elliptic convection-reaction-diffusion equation, given by

23 25 > >
codtmn=e(3a+ o) +u(Awni +Ben)il ) -G =T, Vxe 2
X ay X ay

Z(x,y) =gx,y), V(x,y)€ i,

(1.1)

where
2 =(0,1) x (0, 1), Zx,y) = (z:1(%, ), 2% ), {x, ) = (%, ¥), olx, ), 8%, ¥) = (ga(%, ¥), galx, Y,

=234 M= ("7 o0,) Ben= ("G 40 ) = (063 S

The two small perturbation parameters satisfy 0 < €, u < 1. We assume that the convection and reaction terms satisfy
a(x,y) > a1 >0, bi(x,y) >y >0, i=1,2,
(cia(x,y) — c2(x,¥)) = B > 0, ci(x,y) > 0, i = 1,2, (1.2)
Gi(x,y) > le(x, y)l, L,j=1,2,i#],

for some positive constants a1, a; and B. Let be

. . ) Gi —Cj Gi — G . .
o = min(a, @y), A = miny ———, , fori,j=1,2,i . 1.3
O 1-.,-{ % } j #] (13)
We will also assume that the components of .7\, ﬁ, f and C are sufficiently smooth on the domain £2, g € C*7(3£2), for
some y € (0, 1], and they satisfy sufficient compatibility conditions in order that the continuous problem has an unique
solution Z such that z € C*7(£2). (see [24,25], Theorem 3.2).

We denote the four sides of §2 by

o — A ={0,y)1(0<y<D}, A ={x0)](0<x<1),
As={(1L,y)[(0<y<1)}, As={x1D]0=<x=<1},

and A = A7 U Ay U A3 U A4, Recalling from (1.1) that Z = g on the boundary, we denote by g;, i = 1,2, 3, 4, the
restriction of g onto A;, i=1,2, 3, 4.

Following [26], we write the compatibility conditions at the corner point (0, 0), for the first equation of the coupled
system; similarly can be made for the other three corners and the second equation of the system. We denote g{(y) =
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211(0,), g2(x) = g21(x, 0) and g3(y) = £12(0, ¥). To short, we only write the compatibility conditions up to second order,
but in the same way that in [26], higher order compatibility conditions can be given. These conditions are

£1(0) = 22(0),

—&(g;(0) + g{(0)) + 11(a1(0, 0)g;(0) + b1(0, 0)g;(0)) — c11(0, 0)g1(0) — c12(0, 0)g3(0) = f1(0, 0).

The paper is structured as follows. In Section 2, we prove a minimum principle for the continuous problem, we establish
a stability result and we also give appropriate estimates for the exact solution and its derivatives, from which it follows
their dependence on both singular perturbation parameters ¢ and . In Section 3, we define the numerical approach by
using the standard 5-point finite difference scheme built on a Shishkin-type mesh. In Section 4, we prove estimates for
the error; from them, if follows that the scheme is a first-order uniformly convergent method on a Bahkvalov-Shishkin
mesh. In Section 5, some test problems are solved to corroborate in practice the theoretical results. Finally, in Section 6,
some conclusions are given.

Henceforth, we denote by || - || the continuous maximum norm; moreover, C denotes a generic positive constant which
is independent of the diffusion parameter ¢, the convection parameter p and the discretization parameter N.

2. Asymptotic behavior of the exact solution

The present section contains the continuous minimum principle, a stability result and some useful bounds for the
derivatives of the exact solution of the continuous problem (1.1). In addition, we obtain some appropriate bounds for the
regular, singular and corner components of the solution, which are defined below.

We follow the approach in ([23], Lemma 2.2), where a parabolic 1D system with two parameters was considered, to
prove a continuous minimum principle for problem (1.1), where an elliptic 2D system with two parameters is considered.

Lemma 2.1 (Minimum Prmaple) Let Le be the differential operator given in (1. 1) and we assume that (1.2) holds If
¢(x y) > 0 on 2052, Lg_ﬂqﬁ(x y) < Ofor al (x,y) € £, and there exists a function v = (vq, vy) satisfying v(x,y) > 0 on
02, and £, ,v(x,y) < 0 for all (x,y) € £2, then it holds ¢(x y) > 0for all (x,y) € 2.

Proof. We consider the functions

Yy = max <—@)(x, y), ¥, = max (—@>(x,y),
(x.y)e V1 (x,y)ef2 V2

and we denote ¥ = max{¥;, ¥,}. Let be £, , = =(cl . ez,

e,u° N

Let be ¢(x y*) = min, y)eg{qb(x y)LIf qS(x V) = 0 there is nothing to prove. Suppose ¢(x ,¥*) < 0 implies that
Y(x,y) > 0. Then, by the assumption on the boundary values, the point (x*, y*) € £2 for which ¥; = ¥ or ¥, = ¥ or
U =W =¥ and (¢ + ¥r)x,y) = 0, V(x,y) € 2.

Let us consider the point (x*, y*) € £ and ¥; = (—f—:)(x*,y*) = ¥ and (¢1 + Yv,)(x*, y*) = 0. This exhibits that
(¢1 + ¥vq) having minimum at the point (x, y) = (x*, y*). We have

92 02 B
£l (@1 + W)t y*) = 8(@ + 3y >(¢>1 + Yu)(x*, y )+M<ala— +b1—>(¢1 + Wu)(x*, ¥")
— (X", ¥y )1 + W)X, y*) — (X", y* N1 + Pur)(x*, y*) = 0,

which contradicts the hypothesis. Similarly, we can prove the contradiction if we choose ¥, = (—%)(x*, y*) = ¥. This
completes the proof. O

A consequence of this minimum principle is the parameter uniform boundedness of the solution of (1.1) given below.
Lemma 2.2 (Stability Result). Let Z(x, y) be the solution of (1.1) and we assume that (1.2) holds. Then, we have
I1Z(x, y)lle < i”ﬁs,ui”f) + maX{ IZl1 4,5 1Z] 4,5 121 45 ||2||A4},
where « is defined in (1.3).
Proof. We define the barrier functions
*(x,y) = %”l:e,ui”fz + maX{llillAl, IZll 455 11Z11 455 ||i||A4} +Z(x,y),

and with the help of Lemma 2.1 we can get the required result. O

For the posterior analysis of the uniform convergence of the numerical method, we need appropriate estimates of the
derivatives of the exact solution; these estimates depends, of course, of the parameters ¢ and x and also on the ratio
between them, because the nature of the exact solution change depending on this ratio. The first step to deduce those
estimates, is the following result, which gives vast estimates for derivatives.
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Lemma 2.3. lLet Z = (z1,2)" be the solution of continuous problem (1.1) and we assume that (1.2) holds. Then, for
1 <i+j <4, it holds
(i) If ap® < Le, then

‘ 0i+7z

xiay ||
(i) If apu® > e, then

9itiz £ —(i+))
‘ <C (—) R (2.2)
o 123

< Ce~ )2, (2.1)

oxioy

where A is defined in (1.3) and C is a positive constant independent of ¢ and p.

Proof. We follow the standard procedures given in [24,27]. The bounds of the solution and its derivatives can be obtained
by splitting the arguments into two cases: apu® < Ae and au® > Ae.

Case 1: If o> < As. Now, we consider the transforming variables ¢ = x/. /e, £ = y/f The transformed domain is
given by 2% = (0, 1//¢)% On the domain £2*, the transformed functions are defined as z*(;“ £) = z(x,y), A*(§ &) =
;\(x,y), ﬁ*(;‘, &)= f;(;, &)= z (¢, £). Now, we denote the rectangle 2« ,+ = (k* — v*, k* + v*)? N 2%, and A+ is
the closure of A+ ,+, where }x* € £2* and v* > 0. For every («*, v*), the above classical differential equation holds the
following estimate for 1 <i+j < 4:

iz
aciogl
Hence, these estimate holds for any point (¢, &) € £2* and therefore, in the original variables (x, y), (2.1) follows.

Case 2: If o > Ae. Now, we consider the two stretched variables T = ux/e, ¢ = uy/e. The transformed domain now
is given by £2** = (0, u/s) On the domain_§2**, the stretched functions are defined as z**(T @) =1Z(x,y), A**(T Q)=
A(x y), B*(T, ¢) = B(x,y), C**(T Q) = C(x y) and f**(T Q) = f(x y). We _apply the above transformation for the
governing problem (1.1); from this transformed equation we get the solution z**(7", ¢). Again, we denote the rectangle

Wers it = (K — U™ 1™+ 0™)2 N Q2% and A, = is the closure of YA, -+, where k** € 2** and v** > 0. For every
(k™*, v™*), the above classical differential equation holds the following estimate for 1 <i+j < 4:

<C.

*
A, U

K** _U** < C.
Hence, these estimate holds for any point (7", ¢) € £2** and therefore, in the original variables (x, y), (2.2) follows. O

Previous bounds are not adequate to prove posteriorly the uniform convergence of the numerical method, because they
do not reflect the existence of boundary and internal layers in the exact solution of (1.1). To obtain good estimates, we
follow a usual technique in the context of singular perturbation problems. Then, we decompose the continuous solution
Z(x, y) into the three components, Z = r+w+s. The first component is the smooth component (non-layer); the second and
thlrd components are the boundary and corner layer components, respectively, which can be split into Wy, W;, W;, W,
and Sy, Spr, S, Sy, respectively.

The smooth component F(x, y) is obtained as the solution of the problem

Lo % y) =X, y), Vv, y) e 2
Fxy)=8(y)., Vxy)e A, Txy)=gk), Vxy) €A, (2.3)
g

(
( ) 3(y) V(X7 .V) € A3’ F(X, y) = g4(x)7 V(X7 .y) € A4,

Lemma 2.4. The smooth component ¥(x, y) and their derivatives hold the following bounds:
(i) If ap? < re, then

aiJrj_' .
E <14 m2) for 1<itj<4,
X'y || o
(i) If au® > e, then
ai+ji: & 2—(i+j)

<C|1 , for 1<i+j<4,
vl =c(+ () ) vz
where A is defned in (1.3).

Proof. Let us consider separately the two cases.
Case(i): Firstly, we assume that o.u? < Ae holds. Then, we decompose the smooth component I(x, y; €, i) as

F(x,y) =To(x, ¥, &, ) + Vet (x, y, &, ) + eFa2(X, ¥, &, 1), (2.4)
4
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where
- - - 02 9% \_ w (=9 =0\
—Cho(x,y) =f(x,y), Chi(x,y) = Ve 75 + - |folx, )+ —=( A + B |to(x, ), (2.5)
0x ay e\ 0x ay
and
Lofr = —/E > L fiey) — (A2 B2 Voxy). F=0. Yy e 4 (2.6)
eul2 = 8x2 8y y «/E Ix 3y 11X,y 2 =0, Y . .
Note that Ty and F; satisfy zeroth order differential problems (2.5) and therefore there are no issue of coglpatibilzity. The
term ¥, denotes the solution of an elliptic problem on the domain £2. Since, Ty € C*7(£2), we get Fy) + 3—}/2 Iy €
C27(82).
Applying Lemmas 2.2 and 2.3 to the problem (2.3), it results that ¥ € C*¥(£2) and also that it holds
ai+ji-' o
| <Cc(14+7H2), 1<i+j<a. (2.7)
dax'ay

Case(ii): In second place, we assume that ou® > Xie holds. In this case, the smooth component ©(x,y; €, 1) can be
decomposed as

H(x,yi e, 1) = Fo(x, y; p) + eF1(x, y; 1) + *Fa(x, y; £, 1),
where now the functions Ty, T, and ¥, are the solutions of the following problems:

LTy = f, To(x, y) = Z(x, y), ¥(x,¥) € A3 U Ay,

- % 92
Lyt = _(axz 8y2>ro, f1(x.y) = 0. ¥(x.y) € A3U A4,

92 92 -
Loyt =—|—+— |F1, FAx,y)=0, V(x,y)e A
e w2 <8x2 + 8y2> 1 2(%,¥) (x,¥)
Applying again Lemmas 2.2 and 2.3 to the problem (2.3) we get
9T ° 2—(i+j)
— | =<Cl1+(~— , I<i+j<4, (2.8)
axtoy! w

which is the required result. O

Now, let us consider the first order IBVP

-

LuZ(X,y) = < (x y) + B(x, y)— ) — Cx, )2 =f(x, ), V(x,y) € 2, (2.9a)

Z(x,y) =8, (x.y)€ A;, i=3,4. (2.9b)

Note that £,, satisfies the following comparison principle.

Lemma 2.5. Let £, be the dszerentzal operator given in (2.9). If¢(x y) > 0on Aj, 1=3,4, E,Ld)(x y) < 0for all (x,y) € £2,
then it is ¢(x y) > Ofor all (x,y) € £2.

Proof. The proof is similar to this one of Lemma 2.1. O

Lemma 2.6. Let Z(x, y) be the solution of problem (2.9). Then, it holds the stability estimate
I1Z(x, y)lle < illﬁ,ﬁllg + max{ IZ11 455 IIillA4},

where « is defined in (1.3).

Proof. This lemma can be proved similarly to Lemma 2.2. O

Corresponding to the left edge x = 0 in §2, a boundary layer component w; exists that is the solution of the problem

Lo, Wi=0, Y(xy) e, (2.10a)
Wi(x,y) = (Z—F)xy), Vxy)e€ A, (2.10b)
Wix,y) =0, V(x,y)e AU A3 U Ay (2.10c)
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The following Lemmas give some bounds on the derivatives of this layer component, which are necessary for the posterior
analysis of the uniform convergence of the numerical method.

Lemma 2.7. Let w; be the boundary layer component satisfying the equations in (2.10). If ¢u® < Ae, then it holds

IWi(x, y)| < Cexp(—\/ ) H alwl

On the other hand, if ap? > Ae, then it holds

Yy
Wi(x, y)| < Cexp<—;“ ) ‘ !

where A is defined in (1.3).

C14+12y j=1,23,4. (2.11)

-
5C(1+(6> ) j=1,2,3,4, (2.12)
%

. X
Proof. To obtain the bounds for the left boundary layer component w;, we consider the stretched variables ¢ = 7 for
3

X
ap? <ireand T = mx for ap® > Ae; then, the resulting continuous problems after this change of variable, are given by
e

oyl

2w 9w I v owr . .
a2 +e oy + e 2A%(L, y)— + uB*(Z, ) 3y —C (&, ywr =1, y), V(¢ y) € 251,

WAL y) = (& — F)E.Y). V(E.y) e AW (2.13)
v,

w(¢,y) =0, yeAsluayluazl
in the case that ap? < Ae, where 21 = (0, %f) (0, 1) and AT;, i=1, 2, 3, 4 are the relative boundaries of the domain
21, and by
92w 92w, . W . W
8—1 P -2 g_lA** T, —lB** T, _
( ayz et oy )+ (79— (7.y) 3y
UTECH(Y, Y)W = wTR (T, y), V(T y) € 2%, (2.14)

w1, y) = (2% — )T, y), Y(T,y) e AT

l,e >

w1, y) =0, V(T,y) € ARt u AT U A,

when au? > Ae, where .Q;‘**l = (0, %) x (0, 1) and Af: 1 i=1,2,3,4 are the corresponding boundaries of the domain

.Q;‘*']. Then, using the same techniques that in [28,29], we can obtain the bounds (2.11) and (2.12) for the left boundary
layer function w**;. O

Similarly, as has been done for Wy, the left edge of £2, we can consider the corresponding boundary layer components
Wy, W, W; for which we can obtain similar bounds as those in Lemma 2.7.

Finally, related to the corner at (0, 0) in £2, we consider the corner layer component Sy, which is the solution of the
problem

LeSp%y) =0, V(xy) e, (2.15a)
Sp(x,y) = —Wi(x,¥), V(x,y) € Ay, (2.15b)
S(x,¥) = —Wp(x,y), V(x,y) € A;, (2.15¢)
Sp(x,¥) =0, V(x,y) € A3U A4 (2.15d)
Lemma 2.8. Let sy, be the corner layer component satisfying the equations in (2.15). If au? < Ae, then it holds
- N 2 as o
Bi(x. ) < Cexp( —/ 22x ) exp( —/ 222y ). 20 o1 e H2) 1<itj<a (2.16)
€ g axtayl
On the other hand, if apu? > Ae, then it holds
R 5itig —(i+))
Bi(x. )l < Cexp( —2Ex) exp( — 222y, LY e L 1<itj<a4, (2.17)
g € axtoy! w

where A is defined in (1.3).
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ux

X
Proof. We consider the stretching variables { = —, £ = R forapu? < Ae and ¥ = , Q= — for ap? > As
& & £

to obtain the bounds for the corner layer component s;; then, the resulting continuous problems after this change of
variable, are given by

2 o 2 o
<8 S* 1y 9°8*

G 8S lb
a2 T e

)+M8’1/2A*(§ £)—— g b 4 e 2B, ) 5
CH(¢, E)s%p = F4(2, £), V(L. &) € 212,

Sulc.£) = —W (£, 6), V(T §) € A7, (218)
Sn(¢.§) = —Ws(5, §), V¢, §) € A7,
(¢, §) =0, (¢, €) € A2 U ALY,
in the case that apt?> < Ag, where .(25**2 = (0, 7) and A,*f, i=1,2,3, 4 are the relative boundaries of the domain £ 2
and by
<s—1 BZS;;”’ te 82;;”’> + e AT, w)ag*;”’ + e BT, w)asa*(;”’ -
PIACH(Y, @)sT = (T, 9), V(T 9) € 2172,
(T, @) = —WH(T, ), V(T ¢) € AT, 219
s*n(Y, @) = —WH(T, ), V(T 9) € 4577,
s (Y, 9) =0, Y(T, ¢) € A}2 U AL,
when au? > ie, where 252 = (0, £)? and A;*?, i = 1,2, 3, 4 are the relative boundaries of the domain £2;*2. Then,

using the same techmques that in [28,29]. we can get the bounds (2.16) and (2.17) for the corner layer functlon Sp. O

Similarly, we can describe the other corner layer components S, s;; and sy, corresponding to the different corners of
£2, which satisfy similar bounds as those ones in Lemma 2.8.

Following result give bounds on derivatives of the exact solution of problem (1.1) in the continuous maximum norm;
this result is required posteriorly for the analysis of the uniform convergence of the numerical method defined below.

Theorem 2.9. The solution Z of (1.1), assuming that (1.2) holds, can be written as

Z(x,y) = K(x, y) + W(x, y) + S(x, y),

where

-

Lo ¥, y) =fX,y), Lo, Wxy)=0, £L.,5(x,y)=0,

and

W(X, ¥) = Wi, y) + W (X, ¥) + Wp(X, ¥) + We(x, ¥),
S(x, ) = S(X, ¥) + Spr(X, ¥) + Spe(x, ) + Spe(x, ).

Furthermore, the regular and singular components and their derivatives satisfy the following bounds

A
575y <C1+e=R2) 1 <i+j<4, ifap? <ie,
ai+jiﬁ i
‘ sy | = €O+ G) " 1siti<4ifap’ > e,
IWi(x,y)| < Cem101%; [S(x,y)] < Ce~*101xe=x20y,
Wy (x,y)| < Cem2f1Y; [Spr(x,y)| < Ce1f2(10g=e2f1y,
Wy () < Cemr®20; | S y)| < Cementai ey,
[We(x,y)| < Cem2%21-¥); [Sie(x, y)| < Cem1f1xe=e202(1=y),
A 2 A 2
S, ap” < Ae, 500 AU < Ag,
where 6, = \[ ’ 6, = V2 (2.20)
£, U2 > Ae, ﬁ, ap? > Ae,

7
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a'w, dw, .
H ax,b , d } <C(1+&17072) where 1 <i<4, ifau® <2e,
W, e\
Pl<cf1+(= , where 1 <i<4, ifau?®> ie,
axt 1%
AW, 1\
! 1+ — , where 1<i<4, ifau®> e,
oxt uw
dw || | o'w. .
= "I < c(14+1972) where 1<j<4, ifau? < ie,
ayl oy
W, e\
ol <cl1+ (= , where 1 <j <4, ifau®> As,
ay! u
W 1\
Tl <cl1+(— , where 1<j <4, ifau®> re,
ay! u
9itig 9itis 9itis 9itis L
max b 2o o 2 - coH2 where 1 < i+j<4, ifap® <2ire,
ax'ay’ dax'ay ax'ay’ axtoyl
9t —(i+)
bl < £ where 1 <i+j<4, ifau®> Ae,
dax'ay "
ais 1
2l cc(=) (2 where 1 <i+j<4, ifau’®> Ae,
ax'oy’ "
8l+]s
"l <c i - where 1 <i+j<4, ifau®> Ae,
oxtay
aH-js
(=) where 1 <i<4, ifau®> is.
axtoy! U

Proof. The proof follows directly from Lemmas 2.4, 2.7 and 2.8. O

3. Discretization of the problem
3.1. Bakhvalov-Shishkin mesh

In this section, we construct the B-S-mesh for the problem (1.1) and we define the finite difference scheme on the
domain VN = {(x,-,y;) :0<i,j< N}. To make an appropriate fitted nonuniform mesh, we first subdivided the unit
interval in x- and y-directions into three subintervals each as

[Os 1] = [07 01] ) [615 1-— 02] U [1 — 02, 1]3

where the transition point o and o, are given by
1 2 1 2
oy =min{ -, —InN}, oo, =miny -, — InN ¢, (3.1)
4" 6, 4" 0,

where 0, and 6, are defined in (2.20).

For simplicity, we take the same number of mesh points for both spatial variables. On each subinterval in x and y-axis,
[o1,1 — 03] are N/2 length, while the rest subintervals [0, o¢], [1 — o2, 1] are divided by using the mesh generating
functions @;(t), i = 1, 2, where @ and &, are monotonically increasing and decreasing, respectively, which satisfy

@1(0) =0, &1(1/4) =1InN, &,(3/4)=InN, &,(1)=0

As it is usual, in the context of this type of meshes, now we define two new functions ¥;, i = 1, 2, that are closely related
to ®;, i=1,2,by &1 = —In¥y, and &, = —In s,

In the literature, there are numerous mesh characterizing functions, but we will only use those that correlate to
B-S-mesh [30], which is defined in the following way.

e Bakhvalov-Shishkin mesh (B-S-mesh). The function ¥, is given by
() =1—41=N"Nt, &(t)=1—41—-N"1)(1-1t).

8
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Uniform grid points
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Bakhvalov-Shishkin mesh

(a) B-S mesh for p =1.e —7,e =1.e —6 (b) B-S mesh for p=1l.e—T7,e=1le—4

Fig. 1. Bakhvalov-Shishkin meshes.

The grid points of the x-space variable are defined by

7 Pilty), if 0<i<N/4-—1,
Xi=1 o1+ 2(1—o1—op)i— %), if N/4<i<3N/4,
122 &(ty), if 3N/44+1<i<N,

where t; = i, i=0,1,...,N. The step sizes are given by hy = x; — xi_1,i = 1,2,...,N, by = hj + hiy1,i =
1,2,...,Ni\]1.

To see the type of mesh that we obtain, Fig. 1 displays the mesh for two different cases.

Using the preceding definition, on the coarse mesh we have

2
hi=Hi = S(1-01—0y).for N/4<i<3N/4. (32)

and on the fine mesh it holds

hi > hipq, for 0<i<N/4+1,
hi < hiyq, for 3N/4+1<i<N.

Similarly, we can define the mesh points and the mesh-generating functions for y;, j = 0, 1, ..., N. The boundaries of
the domain 2NN are denoted as

AN = {(0y1|0<]<N] ANN {x,, |O<1<N}
AN = {(1y,|0<]<N} ANN {x,, |0<1<N}
and ANN = AVN U ASN U APY U AN

Remark 3.1. Note that the mesh-generating functions in x-space, ®;, i = 1, 2, satisfy the following conditions

max |@1(t)] < CN, max |P;(t)] <CN, (3.3)
te[0,1/4] te[3/4,1]
and
1/4 1
/ {@1()}2dt < CN, | {@)(t)}*dt < CN. (3.4)
0 3/4

Using the above assumptions and a similar argument to this one given in [31], we can prove that h; < CN~! for
1 <i < N. Analogous estimates hold true for the y—variable.

9
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3.2. Finite difference method (FDM)

On an arbitrary mesh, 2V, in order to discretize the problem (1.1), we define the standard upwind finite difference
operator, given by

CNNZ(xi, ) = B, yp), Y, ) € 2NN,
(xi,y) € AN, Z(xi, y) = Balx), (%0, y5) € AYN, (3.5)

Z(xi, y;) = &1(yj
(i, ) € AYN Z(xi, ) = Ba(xi), (xi,y5) € ALY,

),
Z(x., y)) = &),

where

LYNZ(xi, y;) = e(85, + 87 )L(xi. y;) + 1(A(Xi, ¥;)D5 + B(xi, y))D) VZ(xi, yj) — Cxi, ¥,)Z(xi, y;).

2
podd

As it is usual, the discrete differential operators D}, D; , 8%, and 6§y are given by

- -

2.’._i". . Z(x. vi) — Z(Xi_1, Y
(Xit1 .VJ) (i .Vj)7 D;Z(xi,yj): (i .VJ) (Xi—1 .VJ)

D Z(xi, ;) =

)

hiyq hi
5 Zxi, yiv1) — 2%, ) > Z(xi, yj) — Z(Xi, yj-1)
Dy Z(x, yj) = === =2 Dy ) = = m
1 kj
- 2 - - - 2 - =
SeZ(xi, yj) = E(D:Z(Xivyj) — D Z(xi, 7)), 8p,Z(xi, yj) = ?(D;Z(Xi’)’j) — Dy Z(x;, y;)),
i Jj

fori,j=1,2,...,N—1.

Lemma 3.2 (Discrete Minimum Principle). Let £ be the discrete operator given in (3.5), If B(x;, y)) = 0 on ANN, and
L’S\{ﬁ@(xi,yj) <0, ¥(x;,y;) € 2NN, then ¢(x;, y;) > 0, V(x;,y;) € NN,

Proof. We can prove this Lemma following the ideas in [29,32]. O

Lemma 3.3 (Discrete Stability Result). Let i(x,-, ;) be the solution of (3.5). Then it holds

. 1 . . . . .
N,N
1Z(xi, yi)llgnw < &HE Z|onn + maX{IIZIIAflv,N, IIZIIArzv,N, IIZIIAISV,N, IIZIIAZ,N }

e,
where ||.||gn.~n denotes the discrete pointwise maximum norm on QNN

Proof. We consider the barrier function

3+ T NNg = > = = =

@ (xi, ) = ;IIES,,LZH@N,N + maxy [1zl] v 1zl s 121 g 21 g ¢ 2= 203, 37),
and it can be proved easily using Lemma 3.2. O
4. Uniform convergence of the numerical method

In this section we prove the uniform convergence of the numerical method (3.5) when it is constructed on the B-S
mesh. As like for the continuous solution, we decompose the discrete solution into smooth component, boundary and
corner layer components, to estimate the nodal error independently, such as

Z(x;, y;) = R(x;, y;) + W(xi, y) + S(xi, y;),
where

W(xi, y;) = Wilxi. ¥;) + Wi (xi, ;) + Wh(xi. ) + Wi, 35),

S(xi, i) = Sw(xi, ¥;) + Sor(%i, ¥j) + See(Xi, ¥3) + Su(xi, y5)-
First, the smooth component ﬁ(x, y) is the solution of the problem
VR, y) = F(x,y),  ¥(xi,y;) € VN, 1)
R(xi. yj) = F(xi, yj).  V(xi,y;) € ANN.
Hence, the boundary and corner layer components \7V(x, y) and §(x, y), are defined as the solutions of the problems
L NW(x;, y;) =0, Y(xi,y;) € 2NN,

. . (4.2)
W(x;, ) = W(x;, ;). V(x:,y;) € ANV,

10
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and

£,

LVNS(x, yi) =0, Y(x,y;) € 2NN,
{ (Xi YJ) (xi .VJ) (4.3)

S(x.) = S0, y). () € AN,

respectively.

Lemma 4.1. Consider T and R are the continuous and the discrete solutions of (2.3) and (4.1), respectively. Then, for both the
cases ap? < e and apu® > Ae we have

IR(x;, yj) — F(xi, yj) < N,
where A is defined in (1.3).

Proof. The truncation error for the regular components (4.1) gives the following estimates based on the results in

Lemma 2.4:
- . 3%r 9%r 3r 0%r
|£[5\J,'ZLV(R(Xi,J’j) —r(x, ¥ < C|:(h,- + hi+1)<5 Pyl + H«H Pyl > + (ki + kj+1)<<9 8y3H + MHayz )] (4.4)
Therefore, it follows
- . C(N~'\/e), ifau? < is,
1YY (R, yj) — F(xi, y7))| < (4.5)
e 0 e C(N"'w), if au? > Xs.
Using a suitable barrier function and Lemma 3.2, we can obtain
IR(xi, y;) — ¥(x;, yj)ll < CNT', V(x;, y5) € 207, (4.6)

which is the required result. O

Applying the arguments of ([29], Theorem 8.1), we show the e-uniform bounds of the corner and edge components
errors using evidence-based on suitable barrier functions. The following barrier functions are considered:

B A_{Hi_1(1+h[01)1, i#£0, o ,_{H[N_,-“(Hhtez)k i#N,
\/H - .

1, i=o0, "', i=N,
we [T +ken™ j#0. o [TIL(+ke)™ j#N,
Wil T 14 i—0 Wel 71 i=N
s J , ) J )
and for all i, it holds
i
exp(—01x;) = [ [ exp(—01h) < B, (4.7)
=1
and for N/4 <i < N, we have
8 InN\ N4 1
By, < Biayyy = 1+ N <CN™". (4.8)

For the remaining boundary layer functions, equivalent bounds can be obtained.

Lemma 4.2. Ifw; and \7V, are the continuous and the discrete solutions of (2.10) and (4.2), respectively, then it holds
- e CN717 lf auzf)‘-e,
lwixi, y;) — Wilxi, yj)| < . ,
CN~', if au* > As,
where A is defined in (1.3).

Proof. If o; = 1/4, the proof can be obtained using standard techniques by taking into account that e~! < C In> N when
ap? < reand (£)7! < CInN when au? > As.

Thus, we will assume that oy = 1/4, which is the most interesting case. Here we merely provide the details
corresponding to the edge layer function w;. Similar results hold for the remaining boundary layer components. From
(4.2) and Theorem 2.9, we have

IWi(xi, )l = IWi(x;, )| < Ce ™ < CBg,, V(x;,y;) € ANN. (4.9)
11



C. Clavero, R. Shiromani and V. Shanthi Journal of Computational and Applied Mathematics 436 (2024) 115422

Further, for all grid points (x;, y;) € 2NN from (4.2), (4.7), and the discrete minimum principle, we have

IWixi, )l < B (4.10)
After applying (4.10) and Theorem 2.9, we conclude that

Wi, y7) — Wilxi, )| < Wi, )l + [Wi(xi, yj)| < CBy,,-
Finally, from (4.8), we have

IWixi, ;) — Wi(xi, )l SCN™', N/4<i<N, 0<j<N. (4.11)

To get appropriate bounds of the error in the region Qf"” = {(xi,yj) |0 <i<N/4,0<j< N}, we proceed as
follows. Applying Taylor expansions, we get
) + C/L(hi+1 ) (4.12)

FETA
. . o L B N1 3
LN WX, y;) — Wilxi, )] | < C(N“Te™ 2 + w(N"Te )+ N 1)56(\/5 +N 1).

|5sN,’,lLV[‘7V1 — wWil(x;, yj)] <Ce (h,

0w
+ k]' !

0y3

%w;
x2

%w;
0y?

j+1

0x3
If epu® < \e, then, from Theorem 2.9, we have
£, 1L

Taking the suitable barrier function for the edge layer component w; as

-1
\/ElnN(U

and using the discrete minimum principle and the above barrier function on Qf’ N we can obtain

TE(x, yp) = C( 1— X))+ N_]) + (Wl(xiv.)/j) — Wi(xi, ),

Wi(xi, y;) — Wi(xi, ;)| < N1, (%, 37) € 21V, (4.13)

Then, the required result follows easily from (4.11) and (4.13).
If «u? > Ae, then, from Theorem 2.9, we have

2
- - iy _
LN [Wi(xi, y3) — Wixi, yj)]| < C<N " +N 1>.
&
Taking the suitable barrier function for the boundary layer component w; as

N-'u _ - .
(61 —x))+N 1) £ (Wixi, y;) — wi(xi, ¥5)),

TE(x, y)=C
(i, ;) (slnN
and using the discrete minimum principle and the above barrier function on fzf N we obtain

IWi(xi, ¥;) — Wik, y)l < ONT' (i) € 23V, (4.14)
Then, the required result easily follows from (4.11) and (4.14). O

Analogous results hold for the remaining edge layer components wy,, W, and w;, which can be seen in the following
lemma.

Lemma 4.3. At each grid point (x;, y;) € QNN the error estimate of the bottom, right and top edge layer components for
both the cases au? < e and apu® > re are as follows:

IWh(xi, ;) — Wi(xi, )l < CN7Y,

W (i, ¥j) — Wi (%, )] < CN~,

W (x1, ;) — We(xi, ) < CN
where A is defined in (1.3).

Lemma 4.4. Ifs; and §1b are the continuous and discrete solutions of (2.15) and (4.3), respectively, then
- > CN~', if ap® < ke,
ISiw(xi ;) = Sw(Xi y)l < 5 (4.15)
CN~', if au” > Ae,
where A is defined in (1.3).

12
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Proof. We only provide the error estimate proof of (4.15) for the corner layer component sy, in the case o; < 1/4, which
is the most interesting case. Proceeding similarly as in Lemma 4.2, we obtain
1S(xi, ;)| < C min{Bg,, Ba,},  if (x,y;) € ANN,
and also
ISi(xi, ¥j) — §lb(xi,)/j)| < Cmin{Bg,, By, }, if (x;,y;) € AVN.
Then, from (4.8) we can conclude that

S(xi. y5) — S, y)l < CNT' (%, yp) € VM7, (4.16)

)

where, .fo’zN = {(x;,¥;) | 0 <1i,j < N/4}. Ultimately, in QiV,’ZN the truncation error holds
83§[b
W +CM hi

83§[b
ay3

22
d Sip
0x2

823“,
ay?

+ kj

+ kj

£ [Si(Xi, ¥7) — Si(xi, )| < CS(H:"
If epu® < e, from Theorem 2.9 it follows that
Fli + l_(]' < CN;7
N

—_

1LY [Si(xi, y) — Si(xi, ¥l < C

B

and using the suitable barrier function
- N1 N-1
UEx, y) = C| ——(01 — %) + ——
(i YJ) (ﬁlnN(U] i)+ \/EIHN(

and applying Lemma 3.2 on S_Zf{’zN we obtain

oy — }’j)> + (Sp(xi, Vi) — Sw(xi, 7))

8%, ) — Sw(xi, )l < ONTY, (i, ) € 205 (4.17)

Then, the result follows from (4.16) and (4.17). If au? > Ae, from Theorem 2.9, we have

3

|y [Si(xi. ¥;) — Sw(xi. y)II < Clhy + /_Cj)gj,

and using the barrier function

N—l 2 N—] 2

U - -
m(fﬁ — X))+ m(az —J/j)> =+ (Si(xi, ¥;) — Si(Xi, ¥;))

lf/i(xi,yj) = C(
to attain a feasible bound on the error in the layer region .Qf’ ’2N , and the discrete minimum principle on fz{f ’ZN , we obtain

|Gi(xi. ¥7) — Sw(i. y) < N1 (i) € 275 (4.18)
Then, the result follows from (4.16) and (4.18). O

Analogous results hold for the remaining corner layer components Sy, s,; and s, which can see in the next lemma.

Lemma 4.5. At each grid point (x;,y;) € QNN the error estimate of the remaining corner layer components for both the
cases ap? < Ae and ap® > Ae are as follows:

ISer(xi, ¥j) — Sor(xi, y))l < CN 71,

ISre (X, ;) — Sre(xi, y;)l < N7,

ISie(Xi, ¥;) — Sie(xi, y)l < CN7',
where A is defined in (1.3).

Then, we are in disposition to prove the main result of the work, which proves the uniform convergence of first order
of the numerical method when it is defined on the Bakhvalov-Shishkin mesh.

Theorem 4.6. Consider Z and Z are the continuous and discrete solutions of problems (1.1) and (3.5), respectively, on the
constructed nonuniform Bakhvalov-Shishkin mesh, assuming that (1.2) holds. Then, for both the cases « u? < reand ap?® > As,
the error at the mesh points (x;, y;) € 2NN satisfies

|Z(x:, y;) — Z(xi, y;)] < CN~.

Proof. Combining Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5 the required result follows. O

13
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5. Numerical experiments

We describe the implementation of the standard 5-point finite difference method with B-S-mesh in Section 3 and to
illustrate the performance of the numerical method developed in the preceding sections, and focused on two examples
of the type given in (1.1). These problems are solved using MATLAB R2022a on a system with 32 Gb RAM, and an i5
processor associated with 1.8 GHz. We observed that the computational time to achieve the result is relatively longer as
the current problem is complex. However, the sparse matrix is being used to solve the linear system in the algorithm to
reduce the computational time and the storage of the system.

To solve the test problems, we have ordered the numerical solution in the following form:

Ui(Xo0, yo), Ur(x1, yo), - . ., Ui(xn, Yo),
Ui(x0, y1), Ur(x1, 1) - - ., Ur(xn, y1)s
Ui(x0, y2), Ur(x1,y2), . . ., Ui(xn, y2),
U= Ui(xo,yn), Ui(X1, ¥n), . - ., Ui(xn, Yn),
Ua(Xo0, Yo), Ua(x1, Yo), - . ., Ua(xn, Yo),
Ua(x0, ¥1), Ua(X1, Y1), - .., Ua(Xn, Y1)

Ua(x0, yn), Ua(X1, Yn), - - ., Ua(Xn, YN),

where Uq(Xo, ¥i), U1(xi, Yo), Ur(xn, ¥;) and Uq(x;, yn), i =0, ..., N, are calculated by using the boundary conditions. Then,
the resulting linear system can be written as

’

[A](z(N+1)2,2(N+1)2)[U](2(N+1)2.1) = [F](Z(N+l)2,l)v

and we solve this system by using MATLAB taking into account that the matrix A is sparse.

Example 5.1. First, we consider the two-parameter weakly-coupled system of two-dimensional boundary value problem

-

%z 9%z - 0z - 9z - L -
e\ =+ =5 ) + | AKX Y)— +Bx,y)— | = Clx,y)z=1f(x,y), V(x,y)e€ £,
ax2  9y? ox ay

where boundary conditions as well as convection, reaction coefficients and source terms are given by

Z(x,0) =2Z(x, 1) =1(0,y) = Z(1,y) = 0,

> (24 exp(xy) 0 = (14 exp(xy) 0 > _[4+xy 24Xy
A(X, y) —_ < O 1 + exp(xy) k] B(xv .V) - 0 2 + exp(xy) ] C(xa _V) - 2 +Xy 4 +Xy ’

>

T
f(x,y) = (sin(nxy), cos(%xy)) .

Example 5.2. The data of the second example are given by

2(X7 O) = 2(X7 1) = X(] —X), z(ory) = i(]vy) :y(l _y)v

= 14 x%y? 0 - 2 + sin(x + 0
A(x,y):( Oy 3_Xy>,B(X,J/)=( 0( V) 3—cos(x~|—y))’

- <4+x+y 3—xy

T
Clx,y)= 3+ exp(xy) 4 —x2y2) , f(x,y) = (cos(nxy/Z), sin(nxy)) .

Figs. 2, 3 and 4, 5 display the two components of the numerical solution for Examples 5.1 and 5.2, respectively, taking
different values of the diffusion and the convection parameters ¢ and u, and a value of the discretization parameter N.
From them, we clearly observe the boundary and the internal layers in the solution.

As the exact solution of these problems is unknown, to approximate the maximum point-wise errors we use, in a usual
way, the double mesh technique (see [33]). Then, we calculate

EVY = max

(x;.yj)e 2NN

22NN (. yaj) — ZNN(x;, yil

where Z2V-2N(xy;, y5;) is the numerical solution obtained on a mesh with 2N subintervals taking the mesh points of the
coarse mesh and their midpoints on each direction. The parameter uniform maximum point-wise errors are determined
applying the formula

ENN = maxENN.
€n ’
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Fig. 2. When € = 107>, u = 10~7, N = 128 for Example 5.1.

Computed Solution Zz

Computed Solution Z1

53
35
S

55
S
5

55

5

S

3
3995
55

%
5

RS
SR
KIS

BRI

X
R

-0.25

-axis

X

y-axis

x-axis

y-axis

(b) Surface graph of the numerical solution za;

(a) Surface graph of the numerical solution z1;

128 for Example 5.1.

When € = 1076,y = 1077, N

ig. 3

F

Computed Solution Zz

1

Computed Solution Z,

-axis

X

y-axis

x-axis

y-axis

(b) Surface graph of the numerical solution za;

(a) Surface graph of the numerical solution z;;

128 for Example 5.2.

When € = 105, p = 1077, N =

Fig. 4.

15



C. Clavero, R. Shiromani and V. Shanthi Journal of Computational and Applied Mathematics 436 (2024) 115422

Computed Solution Z1 Computed Solution Z2

0.6
0.5

0.4

0.2
-0.6

07 05
-0.8

-0.9

0.5 -0.2

y-axis ) eEiis y-axis 0 o0 x-axis
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Fig. 5. When € = 1076, x = 1077, N = 128 for Example 5.2.

Table 1

For Example 5.1, maximum point-wise errors EN'N and orders of convergence QMM calculated for z; using B-S-mesh.
n=1le—-7
B N =32 N = 64 N = 128 N = 256 N =512 N = 1024
le—4 1.330e—3 3.923e—4 1.069e—4 2.823e—5 7.274e—6 5.259e—6
le—6 1.340e—3 3.929e—4 1.070e—4 2.821e—5 7.260e—6 1.847e—6
le—8 1.335e—-3 3.896e—4 1.060e—4 2.779e—5 7.115e—6 1.804e—6
l.e—10 1.265e—3 3.545e—4 9.480e—5 2.942e—5 1.182e—5 5.199e—6
le—12 1.861e—3 8.383e—4 3.756e—4 1.762e—4 8.515e—5 4.183e—5
le—14 8.366e—3 5.141e—3 2.858e—3 1.510e—3 7.762e—4 3.936e—4
l.e—16 1.379e-2 8.224e—3 4.501e—3 2.369e—3 1.216e—3 6.164e—4
l.e—18 1.383e—2 8.241e—3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
l.e—20 1.383e—2 8.241e—3 4.510e—3 2.374e—3 1.218e—3 6.175e—4
le—22 1.383e—2 8.241e—3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
l.e—24 1.383e—2 8.241e-3 4.510e—3 2.374e-3 1.218e-3 6.175e—4
EN-N 1.383e—2 8.241e—3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
QNN 0.7469 0.8697 0.9258 0.9628 0.9800 -

Using the previous values, the uniform numerical orders of convergence are given by
EN,N
NN _
Q™" =log, (EZN2"’>

Tables 1, 2 5, 6 show the maximum errors and the uniform orders of convergence for Examples 5.1 and 5.2, respectively,
for the first component, and Tables 3, 4 7, 8 the corresponding ones for the second component, using the B-S mesh;
from them, we clearly see the first order of uniform convergence of the numerical method. So, the numerical results
are according with the theoretical result proved in Theorem 4.6. In Tables 9, and 10, we show the comparison between
the maximum point-wise errors and the order of convergence using S-mesh and B-S-mesh for Examples 5.1 and 5.2,
respectively; from these two tables, we observe that the use of the Bakhvalov-Shishkin mesh gives better results than

the corresponding ones when the Shishkin mesh is used, something that is usual in the numerical resolution of singularly
perturbed problems.

6. Conclusions

This work is concerned with a two-parameter weakly-coupled elliptic system of singularly perturbed 2-D convection-
reaction—diffusion problems. A finite-difference scheme with layer-adapted nonuniform Bakhvalov-Shishkin mesh that
yields first-order of uniform convergence, is used to generate a parameter-uniform discrete solution. The analytical and
the discrete solutions are split into a sum of smooth, boundary and corner components to address the convergence analysis
and to obtain appropriate bounds for the error. The numerical experiments, for two test problems, show that the numerical
results corroborate in the practice the theoretical analysis.
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Table 2

For Example 5.1, maximum point-wise errors EN'N and orders of convergence QN calculated for z; using B-S-mesh.
n=1le—4
3 N =32 N = 64 N = 128 N = 256 N =512 N = 1024
le—4 1.251e-3 3.532e—4 9.442e—5 2.955e—5 1.189e—5 6.576e—6
le—6 1.864e—3 8.392e—4 3.759e—4 1.764e—4 8.525e—5 4.187e—5
le—8 8.366e—3 5.141e—3 2.858e—3 1.510e—3 7.762e—4 3.936e—4
l.e—10 1.379e—-2 8.224e—3 4.501e—3 2.369e—3 1.216e—-3 6.164e—4
le—12 1.383e—-2 8.241e—-3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
le—14 1.383e—2 8.241e—-3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
l.e—16 1.383e—-2 8.241e-3 4.510e—-3 2.374e-3 1.218e—3 6.175e—4
l.e—18 1.383e—-2 8.241e—-3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
l.e—20 1.383e—2 8.241e—-3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
le—22 1.383e—-2 8.241e—-3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
le—24 1.383e—-2 8.241e—-3 4.510e—3 2.374e—-3 1.218e—3 6.175e—4
EN-N 1.383e—-2 8.241e—-3 4.510e—3 2.374e-3 1.218e—3 6.175e—4
QNN 0.7469 0.8697 0.9258 0.9628 0.9800 -

Table 3

For Example 5.1, maximum point-wise errors EN'N and orders of convergence QN calculated for z, using B-S-mesh.

nw=1le—7

e N =32 N = 64 N = 128 N = 256 N =512 N = 1024
le—4 1.345e—3 3.993e—4 1.081e—4 2.836e—5 7.292e—6 4.600e—6
le—6 1.356e—3 3.999e—4 1.080e—4 2.833e—5 7.278e—6 1.849e—6
le—8 1.350e—3 3.965e—4 1.067e—4 2.791e-5 7.132e—6 1.806e—6
1e—10 1.277e—3 3.596e—4 9.529e—5 3.038e—5 1.365e—5 6.665e—6
le—12 2.170e—3 1.021e—3 5.019e—4 2.489e—4 1.239e—4 6.183e—5
le—14 1.382e—2 8.497e—3 4.733e—3 2.505e—3 1.290e—3 6.543e—4
1le—16 2.716e—2 1.625e—2 8.916e—3 4.696e—3 2411e-3 1.223e-3
le—18 2.765e—2 1.648e—2 9.020e—3 4.747e—3 2.436e—3 1.235e—3
1.e—20 2.766e—2 1.648e—2 9.021e—3 4747e-3 2.437e-3 1.235e—3
le—22 2.766e—2 1.648e—2 9.021e—3 4.747e-3 2.437e—-3 1.235e—3
le—24 2.766e—2 1.648e—2 9.021e—3 4.747e-3 2.437e-3 1.235e—3
ENN 2.766e—2 1.648e—2 9.021e—3 4747e-3 2.437e-3 1.235e—3
QNN 0.7471 0.8694 0.9263 0.9619 0.9806 -
Table 4

For Example 5.1, maximum point-wise errors EN'N and orders of convergence QNN calculated for z, using B-S-mesh.
n=1le—4

& N =32 N = 64 N = 128 N = 256 N =512 N = 1024
le—4 1.263e—3 3.583e—4 9.490e—5 2.965e—5 1.352e—5 6.748e—6
le—6 2.165e—3 1.020e—3 5.011e—4 2.484e—4 1.237e—4 6.171e—5
le—8 1.382e—-2 8.497e—-3 4.733e-3 2.505e—-3 1.290e—-3 6.543e—4
l.e—10 2.716e—2 1.625e—2 8.916e—3 4.696e—3 2411e-3 1.223e-3
le—12 2.765e—2 1.648e—2 9.020e—3 4.747e-3 2.436e—3 1.235e-3
l.e—16 2.766e—2 1.648e—2 9.021e-3 4.747e-3 2.437e-3 1.235e-3
l.e—18 2.766e—2 1.648e—2 9.021e-3 4.747e-3 2.437e-3 1.235e-3
l.e—20 2.766e—2 1.648e—2 9.021e—3 4.747e-3 2.437e-3 1.235e-3
l.e—22 2.766e—2 1.648e—2 9.021e-3 4.747e-3 2.437e-3 1.235e-3
le—24 2.766e—2 1.648e—2 9.021e-3 4.747e-3 2.437e-3 1.235e-3
EN-N 2.766e—2 1.648e—2 9.021e-3 4.747e-3 2.437e-3 1.235e—-3
QNN 0.7471 0.8694 0.9263 0.9619 0.9806 -
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Table 5
For Example 5.2, maximum point-wise errors EN'N and orders of convergence QN calculated for z; using B-S-mesh.

nw=1le—7

& N =32 N = 64 N = 128 N = 256 N =512 N = 1024
le—4 1.033e—2 3.872e—-3 1.345e—3 4.444e—4 1.396e—4 4.135e—5
le—6 1.150e—2 4.597e—3 1.730e—3 6.331e—4 2.285e—4 8.185e—5
le—8 1.157e-2 4.652e—3 1.766e—3 6.531e—4 2.383e—4 8.634e—5
le—10 1.092e—2 4.328e—3 1.620e—3 5917e—4 2.135e—4 7.651e—5
le—12 7.127e-3 2.556e—3 1.313e-3 8.004e—4 4.406e—4 2.310e—4
le—14 4.816e—2 2.944e—2 1.627e—2 8.548e—3 4.385e—3 2.221e-3
l.e—16 6.641e—2 4.058e—2 2.247e-2 1.180e—2 6.039e—3 3.052e—3
le—18 6.844e—2 4.236e—2 2.361e—2 1.243e-2 6.436e—3 3.388e—3
l.e—20 6.847e—2 4.23%e—2 2.363e—2 1.244e—-2 6.445e—3 3.393e—3
le—22 6.847e—2 4.23%e—2 2.363e—2 1.244e-2 6.445e—3 3.393e—3
le—24 6.847e—2 4.239e—-2 2.363e—2 1.244e-2 6.445e—3 3.393e—-3
ENN 6.847e—2 4.239e—2 2.363e—2 1.244e—-2 6.445e—3 3.393e-3
QNN 0.6917 0.8431 0.9256 0.9487 0.9256 -
Table 6

For Example 5.2, maximum point-wise errors EN'N and orders of convergence QN calculated for z; using B-S-mesh.
e=1e—-5

m N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
le—4 8.993e—3 3.330e—3 1.164e—3 3.981e—4 1.359e—4 6.312e—5
le—6 1.118e—2 4.390e—3 1.619e—3 5.790e—4 2.033e—4 7.041e—5
le—38 1.120e—2 4.401e-3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
l.e—10 1.120e—2 4.401e—3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
le—12 1.120e—2 4.401e—3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
le—14 1.120e—2 4.401e—3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
l.e—16 1.120e—2 4.401e-3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
l.e—18 1.120e—2 4.401e-3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
l.e—20 1.120e—-2 4401e—3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
l.e—22 1.120e—2 4.401e-3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
le—24 1.120e—2 4.401e-3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
ENN 1.120e—2 4401e—-3 1.624e—3 5.810e—4 2.041e—4 7.069e—5
QNN 1.3476 1.4383 1.4829 1.5093 1.5297 -
Table 7

For Example 5.2, maximum point-wise errors EN'N and orders of convergence Q"N calculated for z, using B-S-mesh.

nw=1le—7

e N = 32 N = 64 N = 128 N = 256 N =512 N = 1024
le—4 1.206e—2 4.540e—3 1.584e—3 5.259e—4 1.660e—4 4.772e—5
le—6 1.330e—2 5.317e—3 2.001e—3 7.327e—4 2.646e—4 9.480e—5
le—38 1.336e—2 5.372e—3 2.039%e—3 7.541e—4 2.752e—4 9.971e—5
1e—10 1.259e—2 4.987e—3 1.867e—3 6.818e—4 2.459e—4 8.815e—5
le—12 9.096e—3 3.401e—3 1.616e—3 9.770e—4 5.353e—4 2.800e—4
le—14 6.081e—2 3.731e—2 2.083e—2 1.102e—2 5.673e—3 2.879e—3
le—16 8.316e—2 4.972e—2 2.725e—2 1.434e—2 7.357e—3 3.727e—3
1le—18 8.298e—2 4.945e—2 2.706e—2 1.424e—2 7.311e—-3 3.705e—3
1.e—20 8.298e—2 4.945e—2 2.706e—2 1.424e—2 7.310e—3 3.705e—3
le—22 8.298e—2 4.945e—2 2.706e—2 1.424e—2 7.310e—3 3.705e—3
l.e—24 8.298e—2 4.945e—2 2.706e—2 1.424e—2 7.310e—3 3.705e—3
ENN 8.316e—2 4.972e—2 2.725e—2 1.434e—2 7.357e—3 3.727e-3
QNN 0.7421 0.8676 0.9262 0.9629 0.9811 -
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Table 8
For Example 5.2, maximum point-wise errors EN'N and orders of convergence QN calculated for z, using B-S-mesh.
e=1e—-5
" N =32 N = 64 N = 128 N = 256 N =512 N = 1024
le—4 1.034e—-2 3.833e—-3 1.342e—3 4.595e—4 1.572e—4 7.698e—5
le—6 1.296e—2 5.092e—3 1.880e—3 6.734e—4 2.368e—4 8.211e-5
le—38 1.298e—2 5.106e—3 1.886e—3 6.758e—4 2.378e—4 8.244e—5
le—10 1.298e—2 5.106e—3 1.886e—3 6.759e—4 2.378e—4 8.245e—5
le—12 1.298e—2 5.106e—3 1.886e—3 6.759e—4 2.378e—4 8.245e—5
le—14 1.298e—2 5.106e—3 1.886e—3 6.759e—4 2.378e—4 8.245e—5
l.e—16 1.298e—2 5.106e—3 1.886e—3 6.759e—4 2.378e—4 8.245e—5
le—18 1.298e—2 5.106e—3 1.886e—3 6.759e—4 2.378e—4 8.245e—5
l.e—20 1.298e—2 5.106e—3 1.886e—3 6.759e—4 2.378e—4 8.245e—5
l.e—22 1.298e—2 5.106e—3 1.886e—3 6.759e—4 2.378e—4 8.245e—5
le—24 1.298e—2 5.106e—3 1.886e—3 6.759e—4 2.378e—4 8.245e—5
ENN 1.298e—2 5.106e—3 1.886e—3 6.759¢—4 2.378e—4 8.245e—5
QNN 1.3460 1.4369 1.4804 1.5071 1.5282 -
Table 9
For Example 5.1 maximum point-wise errors EN'N and orders of convergence QV'N, using the B-S-mesh and S-mesh.
N First Component z; Second Component z,
B-S-mesh S-mesh B-S-mesh S-mesh
EN‘N QN,N EN‘N QN,N EN’N QN.N EN'N QN,N
32 1.383e—2 0.7469 2.473e—-2 0.1648 2.766e—2 0.7471 4.946e—2 0.1648
64 8.241e—3 0.8697 2.206e—2 0.3582 1.648e—2 0.8694 4.412e-2 0.3578
128 4.510e—3 0.9258 1.721e-2 0.4976 9.021e—3 0.9263 3.443e—2 0.4974
256 2.374e—-3 0.9628 1.219e—-2 0.5872 4.747e-3 0.9619 2.439e—-2 0.5876
512 1.218e—3 0.9800 8.114e—-3 0.6830 2.437e—3 0.9806 1.623e—2 0.6829
1024 6.175e—4 - 5.054e—3 - 1.235e—-3 - 1.011e—-2 -
Table 10
For Example 5.2, maximum point-wise errors EN'N and orders of convergence QV-V, using the B-S-mesh and S-mesh.
N First Component z; Second Component z,
B-S-mesh S-mesh B-S-mesh S-mesh
EN’N QN,N EN‘N QN,N EN’N QN.N EN'N QN,N
32 1.120e—2 1.3476 3.187e—2 0.9603 1.298e—2 1.3460 2.974e-2 1.0443
64 4.401e—3 1.4383 1.638e—2 0.7226 5.106e—3 1.4369 1.442e—2 0.5023
128 1.624e—3 1.4829 9.926e—3 1.2367 1.886e—3 1.4804 1.018e—2 1.1583
256 5.810e—4 1.5093 4.212e-3 1.3468 6.759e—4 1.5071 4.561e—3 1.4078
512 2.041e—4 1.5297 1.656e—3 1.3342 2.378e—4 1.5282 1.719e—-3 1.4304
1024 7.069e—5 - 6.568e—4 - 8.245e—5 - 6.378e—4 -
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