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a b s t r a c t

This paper provides a linear time complexity method to obtain the bidiagonal
decomposition of Green matrices with high relative accuracy. In addition, when
the Green matrix is nonsingular and totally positive, this bidiagonal decomposition
can be used to compute the eigenvalues, the inverse and the solution of some linear
system of equations with high relative accuracy. A numerical example illustrates
the advantages of this method.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let us recall that an algorithm computes to high relative accuracy (HRA) when it only uses products,
quotients, additions of numbers with the same sign or subtractions of initial data (cf. [1]). In other words,
the only forbidden operation is the subtraction of numbers (which are not initial data) with the same sign.
Finding an adequate parameterization of the matrix is the first step to derive algorithms with HRA. Among
the classes of matrices for which algorithms to HRA have been constructed, we can mention some subclasses
of nonsingular totally positive matrices (see, for instance, [2–4]). Let us recall that a matrix is totally positive
TP) if all its minors are nonnegative and it is strictly totally positive (STP) if they are positive (see [5,6]).
s shown in [7], for a nonsingular TP matrix A, if we know its bidiagonal factorization BD(A), then we

an perform many algebraic computations with HRA with the software of [8]. For instance, its eigenvalues,
ts singular values, its inverse and the solution of linear systems Ax = b, where b has alternating signs. In
his paper, we provide a method of O(n) elementary operations to obtain bidiagonal factorizations of Green
atrices with HRA. Recall that the bidiagonal factorization BD(A) arises naturally in the process of Neville

limination (see [9]). This process is an elimination procedure alternative to Gaussian elimination, which,
oughly speaking, makes zeros in a column by adding to each row an adequate multiple of the previous one.
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Green matrices (see [5,6,10]) can be considered as discrete version of Green functions (see p. 237 of [10]).
These functions arise in the Sturm–Liouville boundary-value problem. They have important applications
(see [10]). A subclass of Green matrices is given by the Schoenmakers–Coffey matrices, which have important
financial applications (see [11,12]). For Schoenmakers–Coffey matrices, a parameterization of n parameters
eading to HRA computations was presented in [3]. We now present a parameterization of 2n parameters
eading to HRA computations for Green matrices. It is known that the matrix entries do not provide
n adequate parameterization for accurate computations with TP matrices, in contrast to the entries of
D(A). In Section 2, we first present in Theorem 2.1 the HRA bidiagonal factorization of Green matrices
nd its applications to other HRA computations when A is nonsingular TP. Section 3 includes a numerical
xperiment confirming the advantages of using our HRA methods.

. Main result

Given two sequences of nonzero real numbers (ui)1≤i≤n, (vi)1≤i≤n, a Green matrix A = (aij)1≤i,j≤n is
he symmetric matrix given by aij = uivj if i ≤ j.

Let us recall the characterization of TP Green matrices (cf. Theorem 4.2 of [6] or p. 214 of [5]): a Green
atrix is TP if and only if the sequences (ui)1≤i≤n, (vi)1≤i≤n are formed by numbers of the same strict sign

nd
(0 <)u1

v1
≤ · · · ≤ un

vn
. (1)

Taking into account (1), the initial parameters that we shall use to get HRA algorithms will be:

vi, ri := ui

vi
, i = 1, . . . , n. (2)

Observe, for instance, that the entries of the Green matrix A = (aij)1≤i,j≤n can be written as aij = rivivj

if i ≤ j and that (1) is transformed into (0 <)r1 ≤ · · · ≤ rn.
Let us now obtain the bidiagonal factorization of a Green matrix A with HRA. Therefore, when A is also

onsingular TP, we can also calculate with HRA its eigenvalues (which coincide with its singular values by
he symmetry of the matrix), its inverse and the solution of some linear systems.

heorem 2.1. If A is a Green matrix and we know the parameters (2), then we can compute the bidiagonal
actorization of A with HRA. If, in addition, A is nonsingular TP, then we can also calculate its eigenvalues,

−1 and the solution of linear systems Ax = b (where b has alternating signs) with HRA.

roof. We start by performing Neville elimination. In general, Neville elimination does not provide HRA
lgorithms because it uses subtractions. However, in this case it will allow us to obtain BD(A) to HRA. We
rst subtract vn/vn−1 times the last but one row to the last one in order to produce a zero at entry (n, n) of
. We can observe that this elementary operation also produces zeros in the remaining off-diagonal entries
f the last row. The (n, n) entry of the last row transforms into

dn := unvn − vn

vn−1
un−1vn = unvn

rn − rn−1

rn
= v2

n(rn − rn−1). (3)

nalogously (by symmetry), if we now subtract vn/vn−1 times the last but one column to the last one, we
btain a matrix M with zeros in the last column up to place (n, n), where dn remains.

Let us denote by Ei(α) (2 ≤ i ≤ n) the n×n elementary matrix that has unit diagonal, α in place (i, i−1)
nd 0 elsewhere. Then the matrix form of the previous step can be written as En

(
−vn

)
AEn

(
−vn

)T

= M .
vn−1 vn−1
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Continuing this procedure to make zeros in entries (n − 1, 1), (1, n − 1), . . . , (2, 1), (1, 2), we get the
actorization

E2

(
−v2

v1

)
· · · En

(
−vn

vn−1

)
AEn

(
−vn

vn−1

)T

· · · E2

(
−v2

v1

)T

= D, (4)

here D is the diagonal matrix with bidiagonal entries

d1 = u1v1, di = uivi
ri − ri−1

ri
= v2

i (ri − ri−1), i > 1. (5)

Taking into account that Ei(α)−1 = Ei(−α), we get the following bidiagonal factorization BD(A) of A:

A = En

(
vn

vn−1

)
· · · E2

(
v2

v1

)
DE2

(
v2

v1

)T

· · · En

(
vn

vn−1

)T

. (6)

Observe that all entries of the bidiagonal factorization (6) can be obtained with HRA.
If A is nonsingular TP, we can use the algorithms of [7] to derive the announced algebraic computations

with HRA from the bidiagonal factorization of A. □

Remark 2.2. The computational cost for the given bidiagonal factorization of the proof of Theorem 2.1
for an n × n Green matrix is O(n) elementary operations. Taking into account the computational costs
of the algorithms given in [7,13] for the corresponding algebraic computations of these matrices (with
the particular structure of their bidiagonal factorizations), we can conclude that, using the bidiagonal
factorization of a nonsingular Green matrix, the computational cost to compute the eigenvalues is O(n2)
elementary operations, whereas the computational cost to compute its inverse or solve a linear system of
equations is O(n) elementary operations.

3. Numerical tests

If the bidiagonal decomposition BD(A) of a nonsingular TP matrix A is known to HRA, Koev [7] devised
algorithms to compute the eigenvalues, the singular values of A and the solution of linear systems of equations
Ax = b, where b has an alternating sign pattern. Koev implemented these algorithms in order to be used with
Matlab and Octave in the software library TNTool available for download in [8]: functions TNEigenvalues,
TNSingularValues and TNSolve. In addition, the inverse A−1 can be computed by using the algorithm
presented in [13]: function TNInverseExpand in [8].

The bidiagonal decomposition of a Green matrix deduced in the proof of Theorem 2.1 has been
implemented in the function TNBDGreen to be used in Matlab and Octave.

Now we will illustrate the results presented in Section 2 with numerical examples. In our numerical
tests, we have considered the Green matrix A of order 20 whose bidiagonal decomposition is given by the
parameters v = (vi)20

i=1 and r = (ri)20
i=1 defined by

vi = i and ri = 1 + 1
230−i

for i = 1, . . . , 20.

t corresponds to the Green matrix with parameters given by the sequence v and the sequence u = (ui)20
i=1

efined by ui = i
(
1 + 1

230−i

)
for i = 1, . . . , 20. Since it satisfies (1), the matrix A is TP. Then, by

heorem 2.1, BD(A) can be computed to HRA and, in addition, using this bidiagonal decomposition and
he software library [8] the eigenvalues of A, A−1 and the solution of linear systems Ax = b (where b has
lternating signs) can also be computed to HRA. Observe that this matrix A is very ill-conditioned (its
ondition number is κ(A) = 1.97e + 12), as happens with many other TP matrices. This is the reason why
t is necessary to design adapted algorithms, since standard algorithms will give low accuracy.
3
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Fig. 1. Relative errors when computing the eigenvalues λi, i = 1, . . . , 20, with Matlab.

First we have computed the eigenvalues of matrix A with Mathematica using a 100-digit precision. In
addition, we have also computed the eigenvalues in Matlab with the usual function eig and with the function
TNEigenvalues using BD(A) to HRA obtained with TNBDGreen. Then we have calculated the relative errors
of the approximation to the eigenvalues obtained by both algorithms in Matlab considering the eigenvalues
obtained with Mathematica as exact. In order to show the relative errors we have considered the eigenvalues
ordered in decreasing order: λ1 > λ2 > · · · > λ20 > 0. In Fig. 1, we can see the relative errors of the
approximation to the eigenvalues λi, i = 1, . . . , 20, of matrix A by both methods. We can observe that the
bidiagonal decomposition BD(A) to HRA joint with Plamen Koev software library provide more accurate
results than these obtained by using the Matlab command eig.
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