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SUMMARY

How cells orchestrate their cellular functions remains a crucial question to unravel
how they organize in different patterns. We present a framework based on
artificial intelligence to advance the understanding of how cell functions are coor-
dinated spatially and temporally in biological systems. It consists of a hybrid phys-
ics-based model that integrates both mechanical interactions and cell functions
with a data-driven model that regulates the cellular decision-making process
through a deep learning algorithm trained on image data metrics. To illustrate
our approach, we used data from 3D cultures of murine pancreatic ductal adeno-
carcinoma cells (PDAC) grown in Matrigel as tumor organoids. Our approach
allowed us to find the underlying principles through which cells activate different
cell processes to self-organize in different patterns according to the specific
microenvironmental conditions. The framework proposed here expands the tools
for simulating biological systems at the cellular level, providing a novel perspec-
tive to unravel morphogenetic patterns.

INTRODUCTION

Organ morphogenesis can be studied in situ through the analysis of stained tissue sections taken at

different phases of embryonic development. This provides relevant, albeit static, information about the

evolution of the morphology and the interactions between the elements of the developing organ. Morpho-

genesis can also be studied using 2D in vitromodels built from stem cells properly stimulated with growing

factors and/or cocultured cells. These models replicate some of the cellular interactions that occur during

organ development, providing important information about the signaling pathways involved in normal or-

gan formation. 2D culture models, however, lack a key element of organ morphogenesis, namely, the com-

plex ensemble of three-dimensional spatial interactions that occur during the developmental process.

These interactions, which determine the successful series of events that end with the formation of a mature

organ, include not only interactions between cells but also, very importantly, interactions between the cells

and their local microenvironment. This has caused the birth of a growing trend in the study of morphogen-

esis, which is the use of 3D in vitro cellular models or organoids that recreate in vitro the process of organ

formation.1–3 Some organotypic models have also been developed that replicate the growth and develop-

ment of tumors (tumor organoids) from cancer stem cells and the appropriate stimulation of growth factors

and biomechanical cues.4,5 These complex models replicate the interactions that exist between cancer

cells and with other cells of the tumor microenvironment, most relevantly the cells of the immune system.

Tumor organoids can be of different complexity, from simple spheroids made of one or a few cell types

suspended in medium enriched with the appropriate growth factors6 to more complex models comprising

several cell types embedded in a biomimetic hydrogel. Finally, more advanced models are being devel-

oped based on microfabrication-bioprinting and microfluidic technologies that allow the simulation of

interstitial flows.7 Tumor organoids are becoming invaluable tools to study the response of tumors to

therapies, including those that stimulate the host immune system.

There are also different approaches to simulate morphogenesis in silico. On the one hand, continuummodels

permit the simulation of large cell populations at the tissue level. This is the case for reaction-diffusion systems

based on partial differential equations (PDEs)8 or positional information (PI).9 However, thesemethods neglect

the individuality of cells in favor of larger scales, disregarding the important role played by cell-to-cell
iScience 26, 107164, July 21, 2023 ª 2023 The Author(s).
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interactions and the phenotypic diversity of the biological system. Consequently, these methods struggle to

reproduce the way cell communities develop into complex structures, especially in three dimensions. On the

other hand, discrete approaches with agent-based modeling consider cells as autonomous entities that

interact among themselves and with the microenvironment.10 Thesemethods are usually classified into lattice

models, in which cell positions are fixed within a spatial grid,11 and lattice-freemodels, which allow continuous

cell positioning in space.12 Based on the way the cell shape is represented in lattice-free models, there are

center-basedmodels, in which cells are represented as spheres and are described by their centers and radii,13

and deformable cell models and vertexmodels, which account for the cell shape and deformability.14,15 These

models have beenwidely employed, for instance, to simulate tumor growth in vitro,16 to study the role of extra-

cellular matrix density in cell migration within tumor spheroids,17 collective cell migration,18 or tissue regen-

eration.19 These approaches seem appropriate to simulate morphogenesis, it being a process that evolves

from a single cell, and the emerging pattern emerges from cell interactions, cell heterogeneity, and cell pro-

cesses.20,21 Furthermore, agent-based modeling focuses on the cell level; therefore, it very flexibly simulates

in vitro experiments. However, these models have some challenges related to the designation of rules and

fitting parameters that govern decision-making heuristics and the behavior of cells.20,21 In addition, they

usually have a large number of parameters compared to continuous models, especially when considering

molecular events per cell,22 which makes their calibration difficult.

Data-driven models are widely used to predict the behavior of complex physical systems.23,24 They can un-

ravel unknown phenomena and reduce the degree of abstraction of computational models. In computa-

tional biology, there are examples of data-driven models used to find the optimal parameter values in

gene regulatory networks to reproduce the growing limb bud25 or Bayesian inference of agent-based

cellular automaton to study kidney branching morphogenesis.26 These methods combining data-driven

and computational models aim to obtain the required parameters of the computational model, which is

an optimization method that lacks generalization, as in the case of the data changing, the parameters

must change as well. In the context of data-driven methods, there is an increasing use of artificial intelli-

gence and, in particular, machine learning and deep learning algorithms.27 However, data-driven models

are considered black boxes and are difficult to relate to physical interpretations, because they are mainly

focused on finding input-output relationships.

In this work, we propose a hybrid approach that combines deep learning and agent-based models as a novel

computational framework to simulate cellular biological systems. In other approaches, the coordination be-

tween cells is fixed beforehand and then adjusted to reproduce a certain behavior. On the one hand, in con-

tinuummodels, cell processes are included in constitutive equations and these cell functions are performed at

the same time.28,29 Then, they are adjusted through a sensitivity analysis to obtain the fitting solution. However,

there is no competition between cell functions, because they occur simultaneously. On the other hand, in sto-

chastic models, cells change between cell states through cell state rules, Boolean circuits, gene regulatory cir-

cuits (GRNs), and biochemical reactions from the more abstract to the more detailed.30,31 These relationships

between cell states are complex to establish and describe.32 Both approaches are usually made to simulate

oneparticular case ormedian cases fromexperiments. However, it is difficult to reproduce different cases since

their parameters are adjusted to reproduce one observed behavior and the variability is obtained by the intro-

duction of noise. Moreover, they usually fail to reproduce dynamical processes because of the intricacy of rec-

reating distinct behaviors temporarily with fixed parameters and even more taking into account the variability

between cells. In this new work, we do not determine how cells behave before defining the relationships be-

tween cell states to perform a sensitivity analysis to find the parameters that allow us to reproduce an observed

behavior. Instead, we eliminate all the parameters in the physics-basedmodel that preestablish the behavior of

cells and incorporate the mechanical cell interactions and biological cell functions in an agent-based model

that uses a neural network to drive the cellular decision-making of the agents during the simulation, replicating

how cells make decisions and behave in vivo. This deep learning algorithm coordinates cell decision-making

by evaluating the simulation in real time and comparing it with metrics that define the final architecture of

the morphogenetic pattern extracted from cell-level images of real organoids or in vivo data.

To validate and illustrate this framework, we show three different applications. First, we explain how to particu-

larize this approach to simulate the formation and growth of tumor organoids fromamouse pancreatic adeno-

carcinoma cell line grown in a 3DbiometricMatrigelmatrix. These organoids form cystic structures, namely, an

organized architecture of cells around a fluid-filled space called the lumen. Then, we show the simulations of

these experiments. In addition, we show the application of the approach to simulate the formation and growth
2 iScience 26, 107164, July 21, 2023
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Figure 1. Framework of the hybrid physics-based and data-driven model

(A) Schematic overview of the hybrid data-driven and physics-based algorithm. It consists of an agent-based model that

incorporates mechanical interactions and cell biological functions. To orchestrate the cell functions within the simulation,

the agent-based model employs a data-driven algorithm. Thus, to determine which function the cell has to perform, the

agent-based model goes into the data-driven algorithm. The data-driven algorithm extracts from the desired

morphogenetic pattern data metrics that characterize the pattern, which are introduced, together with simulation

metrics, into the neural network as inputs. The neural network evaluates the inputs and determines the cell function that

the cell must perform. This process is repeated until the simulation time of the agent-based model reaches (tsim). Finally, a

fitness value is given to the simulation by comparing the simulated and desired morphogenetic patterns.

(B) Schematic overview of the training algorithm of the neural network. The training starts with the creation of a random

generation (Gen) composed of a population (Pop) of ten neural networks. Then, the physics-based algorithm performs a

simulation with each neural network, following a similar methodology as (A). Finally, the genetic algorithm selects the two

best populations based on their fitness and creates a new generation through crossover and mutation algorithms. The

training is concluded when the number of generations reaches the specified number of generations (Genmax ).
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of solid tumor organoids from other mouse pancreatic adenocarcinoma cell lines grown in a 3D biometric

Matrigel matrix, which consists of dense aggregates of cells. Finally, we apply this framework to simulate a

theoretical case of the evolution of solid tumor organoids with time-dependent quantitative data.

RESULTS

Hybrid physics-based and data-driven framework

Wepresent a novel hybrid physics-based and data-driven framework that combines agent-basedmodeling

and deep learning to simulatemorphogenetic patterns (Figure 1). The purpose of the physics-basedmodel

is to replicate a specific morphogenetic pattern. The data-driven algorithm in turn coordinates, through a

neural network, the cell functions required in the physics-based model to achieve that pattern (Figure 1A).

Thus, the physics-based part consists of an agent-based model that couples mechanical interactions and

the cell biological functions that are decisive in the morphogenetic process, namely, proliferation,

quiescence, secretion, migration, cell death, etc. The selection of these cell functions depends on the

morphogenetic process being simulated.
iScience 26, 107164, July 21, 2023 3
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The physics-based model coordinates the biological behavior of cells to form a specific pattern, which also

requires the appropriate mechanical interactions. For that coordination, instead of using parameters that

fix the relationships between them, we introduce a data-driven algorithm that performs the cellular deci-

sion-making of the cell functions. Therefore, during the simulation of the agent-based model, the neural

network determines which cell function each cell has to perform (Figure 1A). To this end, given a morpho-

genetic pattern, we first define the data metrics that characterize the pattern and establish target values.

These data metrics set the objective of the simulation. Then, when a cell needs to decide which function to

perform, the neural network receives as inputs the predefined data metrics and the simulation metrics from

the agent-based model that evaluates the actual state of the simulation. In this way, the neural network

compares the simulation with the target values andmakes a decision (see the data-driven box in Figure 1A).

Each node of the output layer is related to one cell function; therefore, the activated node determines the

biological function that the cell will perform. This decision is fed to the agent-based model, which initiates

the corresponding cell function for that cell. This process is repeated during the predefined time of

simulation every time a cell finishes the biological function that it was performing. When the simulation fin-

ishes, a fitness value is reported, which indicates how close the simulated morphogenetic pattern is

compared to the desired morphogenetic pattern. Therefore, the result depends on how well the neural

network evaluates the simulation and coordinates cell functions through adequate decision-making.

Learning by the neural network framework

To simulate themorphogenetic pattern, the neural network needs to learn how to evaluate the simulation and,

depending on the target values, decide which biological function the cell has to perform. To make the neural

network learn, we propose a learning methodology based on a genetic algorithm (Figure 1B). Initially, the ge-

netic algorithm creates a randompopulation of ten neural networks with different weight values assigned, i.e.,

a generation. Then, we perform a simulation of the agent-based model with each neural network of the gen-

eration. When the simulation finishes, we obtain a simulated pattern for each population. Subsequently, each

neural network of the generation is given a fitness value, which represents how well they performed in the

simulation. Finally, it selects from the current generation the two fittest neural networks and obtains, through

a genetic algorithm (further details are included in learning algorithm in STAR Methods), the next generation

of neural networks. This process is repeated for a predefined number of generations.

Application of the physics-based framework to the simulation of cystic organoids

To show the potential of our approach, we simulated cystic tumor organoids, i.e., organoids formed by an

outer shell made of cancer cells surrounding a lumen (Figure 2). Lumen morphogenesis implies the devel-

opment of an organized architecture of cells around a fluid-filled space. This inner space, called the lumen,

is found in many parts of metazoan organisms and allows them to perform specific functions. The develop-

ment of a lumen requires sophisticated coordination of several cell processes. Specifically, three basic

mechanisms are crucial33: Initially, cells proliferate and polarize to determine the landmark where the

lumen will be initiated. Next, cells secrete fluid into that central site and generate luminal hydrostatic pres-

sure that makes the lumen enlarge.34–37 To preserve the overall cystic structure, a balance between strong

cell-cell junctions and spatially controlled cell mitosis is needed. Finally, the stiffness of the extracellular

matrix (ECM) plays an important role38 by balancing the luminal hydrostatic pressure and providing phys-

ical cues that regulate cell behavior.39

To simulate the morphogenesis of the lumen, we built a three-dimensional agent-based model. This physics-

based model is based on a previous three-dimensional lattice-free, center-based model.40 Here, we use the

structure of that model, but we eliminate the parameters that coordinate the relationships between cell func-

tions, the effect of the cell net forces on the cell cycle, and multiluminal polarization mechanisms. To repro-

duce themorphogenesis of organoids composed of cells enclosing a fluid-filled lumen, we consider two types

of agents: cells, which are the biological entities, and particles, which are secreted by cells and simulate the

lumen fluid. Themechanical equilibrium between cells anchored to the ECMand the luminal pressure ensures

the maintenance of the luminal architecture (further details are included in agent-based modeling in STAR

Methods). To model this mechanical equilibrium, we use agents that interact mechanically to generate and

maintain the lumen. Thus, cells interact among themselves based on pairwise potential functions in an adhe-

sive-repulsive manner. The repulsion between agents mimics cell resistance to deformation when their mem-

branes touch, and the attractive forces are the result of the cell junctions exerted through specialized protein

complexes. Moreover, particles also interact via pairwise potential functions and interact with cells in a repul-

sive manner. This interaction mimics the luminal hydrostatic pressure generated by the cells’ fluid secretion,
4 iScience 26, 107164, July 21, 2023



Figure 2. Particularization of the framework for organoids with lumen

The physics-based model consists of an agent-based model that integrates mechanical interactions and cell functions.

Cells are biological entities, and the particles simulate the lumen fluid. Three cell functions are considered: proliferation,

quiescence, and fluid secretion. Dtq is the minimum period of time that a cell remains quiescent and Dtexo is the fluid

production time.
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and it is responsible for the movement of cells and generation of the luminal space. Finally, agents interact

with the extracellular matrix by means of a friction coefficient that represents the dynamic viscosity of the

matrix (Figure 2 top left).

Three decisive cell functions are considered to achieve the cystic morphogenetic pattern: proliferation,

quiescence, and fluid secretion (Figure 2 top right). First, we define a mathematical model for simulating

the cell cycle that regulates cell proliferation. Overall, it consists of a growth phase, in which the cell pro-

gressively increases its volume as a result of DNA replication, and a mitosis phase, in which the cell divides

into two daughter cells (see cell division in STAR Methods). In addition, we include a quiescent state in

which the cell remains inactive for a period of time (Dtq). Finally, cells can produce fluid during a period

of time (Dtexo) and then secrete it inside the lumen, increasing the lumen volume. To simulate this process,

we assume that cells generate particles that simulate the lumen fluid (further details are included in char-

acterization of the lumen fluid in STAR Methods). Consequently, the lumen is in a state of hydrostatic pres-

sure because of this cell secretion.

Application of the data-driven framework to the simulation of cystic organoids

In the data-driven framework, we first define the metrics that characterize the pattern using target values. In

the case of organoids with lumen, we defined the target number of cells (Nt
c ) and target lumen volume (Vt

l )

to describe the morphology of the organoid (Figure 2 middle). We also define several simulation metrics

that are updated when a cell has to decide its next cell function. Specifically, these simulation metrics
iScience 26, 107164, July 21, 2023 5



Figure 3. Learning of the neural network

The fitness value represented corresponds with the highest fitness of the population within the generation. Snapshots of

the achieved organoid inserted in a cube with 100 mm sides featuring one population at generations 1, 100, 200, 300, and

400 are represented. The spheres represent the nuclei of cells with radius Rc=2 and the green hull is an estimation of the

cell membrane through alpha shapes of the cells with a = 2Rc .
41 The lumen fluid is represented in black through the alpha

shapes of particles with the smallest alpha that produces an alpha shape enclosing all of the particles.
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are the total number of cells, the lumen volume, the eccentricity between the cells center of mass and the

lumen fluid center of mass (see eccentricity in STAR Methods), and the number of proliferating, quiescent

and secreting cells. These values are given as inputs to a neural network (Figure 2 bottom right). We assume

that each cell can only perform one cell function at a time. Hence, the neural network determines the appro-

priate cell function that cells must perform. The neural network consists of an input layer with six nodes, one

hidden layer with four nodes and a hyperbolic tangent activation function, and a layer with three outputs

and a sigmoid activation function. Each node of the output layer identifies the function that the cell must

perform: proliferation, quiescence, or fluid secretion.

Learning of the neural network to simulate cystic organoids

The success of the morphogenetic pattern depends on how well the neural network coordinates cell func-

tions during the simulation. To make the neural network learn to form organoids with a lumen, we trained

the neural networks for 400 generations. For this purpose, we did not use any of the experimental data;

instead, we used a synthetic pattern consisting of an organoid with 8 cells and a lumen of 1000 mm3. To

illustrate this process, we show the increase in performance for each generation of neural networks (Fig-

ure 3). As shown, the first generation of neural networks did not coordinate the cell functions properly,

because the fitness (see fitness function in STAR Methods) of this generation was 0.1869. In fact, the neural

network only allowed cells to proliferate, thus generating an organoid without a lumen. Then, the perfor-

mance increased to 0.6136 in generation 100, because cells were also secreted to generate the lumen.

However, the fluid of the lumen leaked because of the poor coordination between proliferation and secre-

tion. In generation 200, the fitness increased to 0.8846, and better coordination than in generation 100 was

found, in that lumen fluid did not leak, but the organoid was too asymmetrical. Generation 300 achieved a

symmetrical organoid with lumen with a better approximation of the number of cells and lumen volume.

Finally, in generation 400, an organoid composed of 7 cells and a lumen volume of 1245 mm3 was achieved.

Simulation of pancreatic cystic tumor organoids

We simulated 3D cultures of murine pancreatic ductal adenocarcinoma cells grown in a biomimetic matrix

made of Matrigel (4 mg=ml). Real 3D cultures of PDAC93-GFP cells were generated and incubated for

5 days. In the experimental setup, we generated a randomly distributed population of organoid seeds

ranging from single cells to small clusters of 2–3 cells (Figure S2). Then, multiphoton microscopy images

of the grown organoids were segmented and quantified to characterize their morphology. In particular,
6 iScience 26, 107164, July 21, 2023



Table 1. Experiment and simulation of pancreatic tumor organoids with lumen

Organoid

Experiment Simulation

Nt
c Vt

l ðmm3Þ Nc Vlðmm3Þ
1 29 11263 30 11330

2 37 13233 41 14097

3 13 1985 14 2174

4 59 42762 59 43239
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we obtained the number of cells in the organoid and the lumen volume, which were used as target values

for the simulation. We chose organoids of different sizes to test the generalization potential of the meth-

odology (Table 1). Specifically, we used two intermediate-size samples (organoids #1 and #2), one small-

size sample (organoid #3), and one large-size sample (organoid #4). We initiated the simulations with

one cell and ran the simulations for 7 days. Although the PDAC93-GFP cells were incubated for 5 days,

we extended the simulation time to 7 days to prove that the model was able to reach steady-state patterns.

The parameter values used in the simulations are described in Table S1.

We show images of the experimental organoids used as targets of the simulation, the achieved solution of

one of the simulations performed, and the coordination of cell functions (Figure 4) corresponding to the

organoids in Table 1. As shown, sophisticated coordination of cell functions is required to form an organoid

with a lumen (Figure 4B). In our simulations, cells first proliferated, generating a closed volume. Then, some

cells started secreting fluid, whereas other cells continued proliferating to create more luminal space to

secrete and prevent fluid leakage. In organoid #1, 2 out of 16 cells (13%) started secreting after 84 h,

and then at 105 h, the rest of the cells also contributed to lumen enlargement by producing and secreting

fluid (Video S1). In the case of organoid #2, 23 out of 32 cells (72%) were secreting at 105 h, whereas 9 cells

continued proliferating. After these 9 cells finished proliferating, the target lumen volume was already

reached, so no more fluid secretion was needed (Video S2). In organoid #3, cells started secreting earlier

(63 h) than in organoids #1, #2 and #4. In this situation, only two cells were secreting over approximately 8 h

since the lumen volume of this organoid was small (Video S3). In the case of organoid #4, 5 cells out of 32

cells (16%) started secreting at 105 h, and 21 h later, the remaining cells that initially were proliferating were

also secreting. Finally, cells entered a quiescent state in all four organoids when they achieved the final

pattern.

To demonstrate the robustness of the neural network to properly coordinate cell functions, we performed

10 simulations with the same neural network for each organoid. Both the number of cells (Figure 4C) and

the lumen volume (Figure 4D) obtained in the simulations consistently approximated the target data. The

fitness of the simulations was evaluated similarly to the fitness function used for the training of the neural

network but neglected the penalization of the eccentricity, since we were not aiming to approximate the

eccentricity of the in vitro experiments, because it was not used as input data (Figure 4E). The minimum

median value of the fitness was 0.978 for organoid #2. The median values for organoids #1, #3, and #4

were all above 0.983.

Moreover, a sensitivity analysis was performed to investigate the influence of the main parameters of the

model on the coordination of cells. For that purpose, organoid #1 was simulated in situations where the

cell cycle time was decreased and increased by 20% from 30 h to 24 h and 36 h respectively (Figure S7).

Originally, the cells finished proliferating after 105 h. A cell cycle time reduction makes cells proliferate

faster; therefore, cells finished proliferating after 84 h. Conversely, cells proliferate slower when the cell cy-

cle time increases, thus requiring approximately 125 h to finish proliferation. In addition, a similar sensitivity

analysis for the fluid production time ðDtexoÞwas performed (Figure S8). When the fluid production time was

15 min, cells secreted during 23 h. A reduction of the fluid production time to 6 min caused cells to secrete

during 21 h, only 2 h less than in the previous case. However, in this case, only two cells were secreting, since

they were able to produce more fluid over the same time period. Finally, when the fluid production time

increased to 60 h, cells were secreting over 34 h. Although the variation in these parameters produced

changes in the temporal evolution of the process, neither the variation in the cell cycle time nor the differ-

ences in the fluid production time altered the coordination of cell functions. Therefore, there might exist a

specific organization of cell functions independent of cell type.
iScience 26, 107164, July 21, 2023 7
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Figure 4. Simulation of experimental pancreatic tumor organoids with lumen

(A) Image of in vitro organoids and a slice view. Maximum Intensity Projection (MIP). Snapshots of the full view, a slice of the simulated organoids, and a slice

of the simulated organoids with the lumen particles representation. The spheres represent the nuclei of cells with radius Rc=2 and the green hull is an

estimation of the cell membrane through alpha shapes of the cells with a = 2Rc . The lumen fluid is represented in black (fourth column) through the alpha

shapes of particles with the smallest alpha that produces an alpha shape enclosing all of the particles. All scale bars are 30 mm.

(B) Coordination of cell functions, in which blue represents proliferation, red represents secretion, green represents quiescence, and white represents an

unborn cell.

(C) Target number of cells (Nt
c ) and the number of cells (Nc ) in the 10 simulations for each organoid.

(D) Target lumen volume (Vt
l ) and lumen volume (Vl ) in the 10 simulations for each organoid.

(E) Boxplot of the fitness value of the 10 simulations for each organoid.
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Table 2. Experiment and simulation of solid tumor organoids

Organoid

Experiment Simulation

Nt
c Nc

1 23 23

2 34 34

3 53 53

4 60 60
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Finally, an analysis of the effect of the noise on the parameters was performed. Accordingly, the cell cycle

time and fluid production time parameters varied G20%. Thus, every time a cell is set to perform either

proliferation or fluid secretion, a random variation of the parameter for that individual cell is made between

[-20, +20] % of the value from Table S1 and assigned for its cell cycle time or fluid production time. To deter-

mine how this variation could affect the results, we simulated an intermediate cystic organoid (organoid

#2). Thus, we performed 10 simulations of this organoid to determine the effect of the fluctuation of the

parameter. We found that the coordination of cell functions when the parameters are variable is similar

to the case without any variability (Figure S9). However, there is a desynchronization between cells in terms

of cell functions caused by the variability of the duration of their functions. To better compare the coordi-

nation of the cell functions, we represented the evolution of the normalized number of proliferating cells,

secreting cells, and quiescent cells over time (Figure S9C). In the three cases, the evolution of the functions

performed by the cells in the case with variable parameters was aligned with the case without variation.

Despite the introduction of this noise, the median value of the fitness of the ten simulations was 0.9956,

and the minimum was 0.9537 (Figure S9D).

Application of the framework to solid tumor organoids

To illustrate the possibility of applying this framework to other morphogenetic patterns, we applied our

methodology to simulate the formation of solid tumor organoids (Figure S10). These solid tumor organoids

consist of dense spherical aggregates of cells. To simulate the formation of this pattern, we considered two

cell functions: proliferation and quiescence. Furthermore, we consider cell-cell mechanical interactions

based on pairwise potential functions and the interaction of cells with the extracellular matrix by means

of a friction coefficient. In the data-driven part of the model, we employed the target number of cells

(Nt
c ) as the metric that defines the size of the organoid and fixes the objective of the simulation. We also

extracted some simulation metrics, which are the total number of cells, the number of proliferating cells,

and the number of quiescent cells. The neural network consists of an input layer of three nodes, a hidden

layer of two nodes, and an output layer of two nodes, which represents either proliferation or quiescent

states of the cell. Therefore, the neural network coordinates both processes to achieve the target size of

the organoid.

Simulation of solid tumor organoids

We simulated the corresponding experiments of 3D cultures of PM12500-GFP tumor cells grown also in a

biomimetic matrix (Matrigel 4 mg=ml). This cell line is characterized by the formation of organoids

composed of aggregates of cells that do not form a lumen. Here, real 3D organoids of PM12500-GFP tumor

cells were also generated and incubated for 5 days. Then, their morphology was segmented and quantified

frommultiphoton microscopy images of the grown organoids. In this case, we obtained the number of cells

to quantify the size of the organoids. Different-size organoids were chosen again to prove the adaptive

response of the computational-based methodology to the data. In particular, we used one small sample

(organoid #1), one intermediate sample (organoid #2), and two large samples (organoids #3 and #4) (Ta-

ble 2). The simulations were initiated with one cell and run for 7 days to prove that themodel is able to reach

steady-state patterns. The parameters of the simulations can be found in Table S2.

We show images of the experimental organoids, the simulation of the organoids, and the coordination of

cell functions (Figure 5), which represent the organoids in Table 2. The simulated organoids matched the

target number of cells of the experimental data by day 5. Here, precise coordination between proliferative

and quiescent cells is needed, because the organoids approximate the target number of cells (Figure 5B).

In organoid #1, after 67 h, 7 cells continued proliferating, and 9 cells entered quiescence, reaching the

target number of cells at 84 h. In organoid #2, most of the cells (93.75%) became quiescent at 84 h, whereas
iScience 26, 107164, July 21, 2023 9
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Figure 5. Simulation of experimental solid tumor organoids

(A) Image of in vitro organoids. Snapshots of the simulated organoids. The spheres represent the nuclei of cells with

radius Rc=2 and the green hull is an estimation of the cell membrane through alpha shapes of the cells with a = 2Rc .

All scale bars are 30 mm.

(B) Coordination of cell functions, in which blue represents proliferation and green represents quiescence.
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2 cells continued proliferating to finally form the target pattern at 101 h. In organoid #3. Twenty-two cells

(68.75%) were proliferating after 84 h to increase the number of cells up to 53 at 101 h. Organoid #4 was the

case in which more cells continued proliferating after 84 h, 28 out of 32 (87.5%).

Application of the framework to the evolution of solid organoids

To demonstrate not only the application of the methodology to other patterns but also the possibility to

mimic the temporal evolution of patterns, we show an extrapolation of our methodology to simulate the

evolution of solid organoids without lumen, which consists of dense spherical aggregates of cells (Fig-

ure S11). With this methodology, we aim to reproduce the growth of solid organoids so that the evolution

of this organoid matches the target evolution. To do that, target data is specified at different time points

(tt ). In this case, the target data consisted of the number of cells (Nt
c ). In the agent-based framework, we

consider cell mechanical interactions and the cell interactions with the extracellular matrix. Moreover, cells

can either proliferate or stay in a quiescent state during a period of time (Dtq). When a cell finishes the cell

function that it is performing, the neural network decides the next cell function that the cell has to perform.

Thus, we extract some simulation metrics (number of cells, number of proliferating cells, number of quies-

cent cells, and the simulation time) that characterizes the state of the simulation. Then, we obtain from the

target time (tt ) the target time immediately superior to the simulation time (t) and the number of cells (Nt
c )

corresponding to that target time. These data are transferred to the input layer of the neural network in the

following manner: the first node receives the comparison between the target number of cells and the num-

ber of cells of the simulation (
�
Nt

c � NcðtÞ
��

Nt
c ); the second node receives the normalized number of
10 iScience 26, 107164, July 21, 2023



Table 3. Target data for the evolution of solid organoids

Organoid

Target number of cells ðNt
cÞ

Day 3 Day 5 Day 7

A 7 15 40

B 5 5 17

C 6 20 60
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quiescent cells, and the third node receives the normalized number of proliferating cells. Finally, the neural

network determines the next function to perform.

Simulation of the evolution of solid organoids

To show the possibilities of the methodology, we consider three synthetic cases of solid organoids with

different temporal evolutions (Table 3). Organoid A represents a proliferative organoid. Case B represents

an organoid that proliferates, then remains quiescence between day 3 and day 5, and proliferates again

between day 5 and 7. Finally, case C corresponds to a proliferative organoid with a higher proliferation

rate than case A. The parameters used for the simulation are collected in Table S3.

The simulations matched the evolution of the number of cells in the three cases (Figure 6), adapting to the

changes in input data over time. In organoid A, as cells proliferate, they become quiescent whereas some

cells still proliferate to match the target values (Figure 6A and Video S4). In the case of the organoid B, cells

proliferate until day 3, and between day three and five they enter into a quiescent state to finally proliferate

after day 5 (Figure 6B and Video S5). In organoid C, cells have a higher proliferative capacity than organoids

A and B, so cells tend to proliferate against quiescence (Figure 6C and Video S6). Also, we simulated the

evolution of a larger solid tumor organoid to demonstrate that themodel works for any size. In this case, the

target number of cells was established to 100 cells on day 7 and 500 cells on day 10 (Table S5). The simu-

lation matched the evolution of the number of cells (Figure S12). Thus, this methodology is also able to

mimic the temporal evolution of morphogenetic patterns of any size as long as the final result is feasible

to achieve.

DISCUSSION

We present a novel hybrid physics-based and data-driven approach that combines agent-based modeling

and deep learning for the simulation of developmental biology at the cellular level. Thus, we hypothesized

that the different patterns that cells form are consequences of the distinct spatial and temporal coordina-

tion of their cellular functions. The following question is then how cells determine which cellular function to

perform, since if we are able to replicate the decision-making of cells, we can reproduce the coordination of

cell functions to achieve any pattern. Thus, we built a novel computational framework in which a neural

network manages the decision-making of biological cell functions within a physics-based model to achieve

an objective morphogenetic pattern. To accomplish the simulation of morphogenetic patterns, we do not

fix the relationships between cell functions beforehand; instead, we consider cell functions as independent

processes that cannot occur simultaneously, and the deep learning algorithm decides for each cell which

cellular function they will be performing during the developmental process, properly coordinating all

cellular functions for pattern formation. Thus, this artificial intelligence-based method learns the intrinsic

mechanisms of the morphogenetic process and, therefore, is capable of reproducing similar morphoge-

netic patterns with different dynamical processes without optimizing the parameters ad hoc just by chang-

ing the target data about the pattern transferred to the input of the neural network. Therefore, with this

approach, we can understand how cells must behave both spatially and temporarily to form different

patterns.

In this work, we showed how to integrate a physics-based model with a deep learning algorithm to

simulate morphogenetic patterns in 3D organoids. This modular framework offers a wide flexibility

to change and adapt the physics-based and the data-driven models involved. On the one hand, in

the physics-based part, agent-based modeling offers a broad range of types of models: from center-

based models to deformable or vertex models.10 This allows us to take advantage of a chosen model

to better adapt to a specific application. On the other hand, regarding the data-driven part of the

framework, different types of neural networks and activation functions can be considered. Indeed,
iScience 26, 107164, July 21, 2023 11



Figure 6. Simulation of the evolution of solid organoids

Snapshots at days 3, 5, and 7 of the temporal evolution of the solid organoids inserted in a cube of 200 mm side and the

evolution of their number of cells. The spheres represent the full cell volume, and the green hull is an estimation of the cell

membrane through alpha shapes of the cells with a = 2Rc .

(A) Organoid A.

(B) Organoid B.

(C) Organoid C.
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the architecture of the neural network could be simplified to reduce the computational cost of the

learning process or incremented to unravel complex features, trying to find the optimal conditions

for each case depending on the type of morphogenetic pattern, the quantity of input data, and the

different cell states considered.42 In addition, there exist different learning algorithms that can be in-

tegrated into this approach (genetic algorithm, gradient descent, conjugate gradient, Levenberg-

Marquardt algorithm, among others43) for different computational speeds and memory requirements

given a set number of parameters of the chosen neural network. Therefore, our framework is scalable

with different types of models and permits modification to improve the computational cost and to

better capture the specific biological process.

To evaluate the potential of the approach, we showed two applications mimicking in vitro data of the final

pattern of organoids and one application reproducing synthetic time-lapse data. Thus, one advantage of

this approach is that it requires little information about the morphogenetic processes, being able to under-

take pattern formation using just final morphological information about the pattern extracted visually. In

pattern formation, generally, the information is obtained from the observed final pattern (in general image

data), and the efforts move to unravel how it was formed. In particular, time-lapse experiments could alter

the viability of cell cultures by inducing cellular damage (e.g., imaging-induced phototoxicity, leading to

cell-cycle arrest or cell death44). However, it is possible not only to obtain the coordination from the

data of the final pattern but also to reproduce the temporal evolution of patterns. This permits us to

mimic the exact evolution of the pattern formation when having time-lapse data, since it matches the

known temporal constraints.
12 iScience 26, 107164, July 21, 2023
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Regarding the simulation of in vitro data of lumen morphogenesis in PDAC organoids, physiologically, the

generation of a cystic organoid requires the orchestration of proliferation, fluid secretion, and quiescence.

On the one hand, if cells secrete fluid too early, the preapical patch, which is the closed volume necessary to

secrete fluid, will not be formed, resulting in fluid leakage. On the other hand, if cells secrete toomuch fluid,

the hydrostatic pressure excessively increases, and the lumen opens. In addition, if cells proliferate too

much, they will not fit in the monolayer around the lumen, and cystic structures will not be formed. In

contrast, if cells do not proliferate, they will not create enough inner space for the fluid, resulting in leakage.

Only if cell functions are coordinated in a sophisticated manner will cystic structures form. In particular, first

cells must proliferate to create an inner volume and then secrete fluid while continuing to proliferate to

create more inner space as the fluid increases, before finally entering into a quiescent state. Therefore,

the success of lumen generation depends on the proper coordination between cell proliferation, cell secre-

tion, and quiescence. In fact, what the neural network learns is that if it generates too much pressure

through fluid secretion with an insufficient number of cells, it leaks. In addition, it learns that cells must first

proliferate to generate the organoid and, as the organoid reaches its final size, enter into a quiescent state.

Despite the great biological variability in terms of the final size of in vitro experiments (Figure S13), we were

able to obtain the developmental process to finally predict their size in each case. This quantitative valida-

tion with in vitro data proves that this approach does not produce ad hoc solutions and confirms that the

different coordination of processes determines the final pattern. This is very suitable to simulate biological

systems, which display variability and fluctuations around a solution. In the case of solid tumor organoids,

the neural network coordinates proliferation and quiescence to achieve the final size of the organoid. This

regulation of the dynamics of the population of cells is a helpful tool that could be used in many types of

simulations. This permits the integration of data into simulations to determine cell proliferation, which is

sometimes a difficult task, especially when the dynamics of the population of cells change over time. There-

fore, our model is designed to predict the order in which cells behave to achieve a specific pattern.

Moreover, from a biological perspective, we found in our simulations that some cells are predisposed to

perform a specific function over others. This is the case for the initial cell or first cells, which tend to prolif-

erate more than daughter cells (Figure 4B). These initial precursor cells might have a higher proliferative

potential, and as they divide, the daughter cells are more specialized with a higher differentiation grade.

Inside an organoid, there exists heterogeneity of cellular functions, and we hypothesize that the cellular

functions that cells perform in a morphogenetic process are not governed by the maturation of cells but

by the stimuli to which they are exposed when they determine which function to perform. This implies

that some cells are more specialized in division and others in secretion within the organoid. We also found

that the final size of the organoid depends on the morphological characteristics of the organoid when the

lumen is initiated. In our simulations, the initiation of the lumen, determined by the beginning of the fluid

secretion, was different for each case, being earlier the smaller the final size of the organoid was (Figure 4B).

We were able to establish that, initially, cells have a less differentiated phenotype and have a higher pro-

liferative capacity. Then, as they proliferate, the daughter cells adopt a higher differentiation grade and

specialize into secretory cells because of the stimuli that they are exposed when they are born. Thus,

when they start secreting, the proliferative capacity of the organoid is reduced, so the final size of the

organoid is limited by its size at the lumen initiation time. Therefore, we hypothesize that the proliferation

capacity of cells may be hindered by the initiation of lumen formation and that the final size can be pre-

dicted at the initiation of lumen formation. These hypotheses could be validated by performing cell culture

immunostaining with a mitotic cell marker to determine the number of proliferative cells in the biological

system.45

Another potential of this approach is that once the neural network has learned how to orchestrate cells to

form the morphogenetic pattern, the parameters of the physics-based model can be modified to study the

morphogenetic process under different scenarios. This allows the simulation of morphogenesis with

different extracellular matrix properties, cell cycle times, or even organ-specific morphogenesis. In the

case of morphogenesis, similar patterns are found in many parts of the organism, but the dynamic process

differs in each organ since cell cycle time phases vary considerably between different types of cells and

secretory cells may require different amounts of time to produce fluid. This implies that similar morphoge-

netic patterns can result in different sizes and require different lengths of time to achieve the final shape.

However, althoughmorphogenesis depends on cell type and the dynamics of the process vary, the require-

ments of the morphogenetic process are conserved among similar patterns. To this aim, we conducted a

sensitivity analysis (Figures S7 and S8) varying the cell cycle time and fluid production time for the
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pancreatic cystic tumor organoids. This variation in these two parameters represents either the fluctuation

of the behavior between the same type of cells or other types of cells that can also form cystic organoids.

We also performed an analysis of the influence of the introduction of noise in the cell cycle and fluid secre-

tion parameters (Figure S11), showing that the model is robust in forming the patterns and that the neural

network can orchestrate cells despite the fluctuations of these parameters. With these analyses, we showed

that in addition to the alteration of the dynamical processes of cells, the coordination to form the same

pattern with the same morphological features (in this case, the number of cells and lumen volume) is

conserved.

The potential of the proposed framework combining physics-based and data-driven modeling opens the

door to a novel way of performing biological simulations at a cellular level, understanding how cell func-

tions must coordinate to generate morphogenetic patterns by replicating how cells make decisions and

adapting dynamically their responses to the variability found in biology.
Limitations of the study

In the applications shown in this work, some simplifications have been assumed. First, we employed a cen-

ter-based lattice-free model to simulate the formation and growth of organoids, which entails some sim-

plifications. The most important one is that cells are assumed to be nondeformable spheres, and their

shape was not represented accurately. This simplification allowed us to approximate the size of the organo-

ids through their number of nuclei with a reduced computational cost. Since the deformation of cells is not

simulated, there are differences between the volume of the simulated organoids and the experiments (Fig-

ure 5A). However, this simplification does not influence the coordination that cells must follow to form

morphogenetic patterns. Here, we did not aim to reproduce the exact shape and volume of the organoids;

instead, we focused on showing the potential of the framework to unravel the orchestration of cell functions

from a morphogenetic pattern, which is independent of the cell shape and volume. Second, we repre-

sented the lumen fluid through a particle-based model comparable to other works.40,46 Although this rep-

resentation is a simplification, we showed that our approach accurately reproduces the expected velocity

and shear stress profiles for a Newtonian fluid, similar to water (see the characterization of the lumen fluid in

STARMethods). This confirms the capability of our method to model real fluids, serving as a minimal model

that aims to recapitulate certain features such as mass conservation and momentum exchange. However, it

does not rigorously reproduce bulk-scale physical properties. Furthermore, our approach enables us to

simulate the interaction between cells and the fluid during a morphogenetic process, in which the lumen

initiates de novo and grows through a fluid deposition process by cells, thus evolving the interface between

cells and fluid over time. In addition, we investigated the influence of particle radius on the rheological

properties of the fluid (further details are included in particle radius influence on the rheological properties

of the fluid in STARMethods). We have justified the choice of the particle radius and demonstrated that the

rheological properties of the fluid play a crucial role in cystic organoid morphogenesis (see particle radius

influence on fitness in STAR Methods).

Another limitation of the approach relates to the selection of cell functions and the question of whether the

hypothesized functions are sufficient to generate the specific pattern. In our model, the decision-making

possibilities are limited to the cell functions considered, which in this work were proliferation, secretion,

and quiescence. Indeed, there are many cellular functions and processes that could be simulated. Howev-

er, including more cell functions does not guarantee that all of them might be activated to reach a specific

morphogenetic pattern. This allows us to underestimate them and reduce the complexity of the neural

network and the number of outputs. Furthermore, in this first work, we created this data-driven approach

with a neural network that receives the quantitative data as inputs. However, the neural network aims to

reproduce the cell signaling through which cells sense, receive, and transduce external factors from their

microenvironment (such as pressure, chemical signals, nutrients, etc.), or even internal factors (such as cell

damage and cell deformation). Therefore, this approach permits the introduction of those factors as inputs

of the neural network to enrich cell signaling and response. The final concern is related to finding the

optimal neural network architecture for each specific application. Although some rules help to select the

number of nodes and hidden layers, trial and error are commonly used. The neural network architecture

determines the capacity to solve the problem and must be appropriate for the application. Moreover,

the choice of the fitness function is fundamental to make the neural network learn. The fitness function eval-

uates the neural network performance depending on how close the simulated pattern is compared to the

objective pattern. Therefore, this interplay between the neural network and the fitness function regulates
14 iScience 26, 107164, July 21, 2023
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the learning of the morphogenetic pattern. Despite the simplifications made in the applications of this

framework, it allowed us to reproduce the morphogenetic patterns of organoids, understating how cells

orchestrate their cellular functions to achieve those patterns.
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13. Sepúlveda, N., Petitjean, L., Cochet, O.,
Grasland-Mongrain, E., Silberzan, P., and
16 iScience 26, 107164, July 21, 2023
Hakim, V. (2013). Collective cell motion in an
epithelial sheet can be quantitatively
described by a stochastic interacting particle
model. PLoS Comput. Biol. 9, e1002944.
https://doi.org/10.1371/journal.pcbi.
1002944.

14. Van Liedekerke, P., Ghysels, P., Tijskens, E.,
Samaey, G., Roose, D., and Ramon, H. (2011).
Mechanisms of soft cellular tissue bruising. A
particle based simulation approach. Soft
Matter 7, 3580–3591. https://doi.org/10.
1039/C0SM01261K.

15. Okuda, S., Inoue, Y., Eiraku, M., Adachi, T.,
and Sasai, Y. (2015). Vertex dynamics
simulations of viscosity-dependent
deformation during tissue morphogenesis.
Biomech. Model. Mechanobiol. 14, 413–425.
https://doi.org/10.1007/s10237-014-0613-5.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Advanced DMEM F12 Gibco 12634-010

HEPES Lonza 17-737E

GlutaMax Gibco 35050-038

Penicillin/Streptomycin Gibco 15140-122

A83-01 TOCRIS 2939

EGF Life Technologies PMG8041

FGF Peprotech 100-26

Gastrin I TOCRIS 3006

Noggin Peprotech 250-38

Y-27632 Sigma Y0503

N-acetylcysteine Sigma A9165

Nicotinamide Sigma N0636

B-27 Life Technologies 17504-044

Experimental models: Cell lines

Mouse ductal pancreatic cancer organoids Boj, et al.47 https://doi.org/10.1016/j.cell.2014.12.021

Deposited data

Original data and code Github, Zenodo https://github.com/daniel-camacho-gomez/AIOrganoids

https://doi.org/10.5281/zenodo.8019619

Software and algorithms

StarDist 3D Weigert, et al.48 https://github.com/stardist/stardistl

ImageJ Schneider, et al.49 https://imagej.nih.gov/ij/

MATLAB MathWorks https://es.mathworks.com/products/matlab.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Maria Jose Gomez-Benito (gomezmj@unizar.es).

Materials availability

This study did not generate unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d Original codes are available on request to the corresponding authors and are also publicly available at

https://github.com/daniel-camacho-gomez/AIOrganoids. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Murine PDAC cells culture and maintenance

Cystic organoids formed from PDAC93-GFP and solid organoids formed from PM12500-GFP pancreatic

ductal adenocarcinoma (PDAC) cells derived from Pdx1-Cre; Kras+/LSL-G12D; Trp53+/LSL-R172H male
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mice (KPC) were kindly donated by Dr. Mariano Ponz and Dr. Silvestre Vicent. Authentication of cell lines

was not required. The cell line used to generate the organoids was a primary line donated by a collaborator,

generated from a transgenic mouse model of pancreatic cancer. It is not a commercial line, thus authen-

tication is not possible. The organoid cell line was tested for mycoplasma contamination using

MycoAlert�Mycoplasma Detection Kit (Lonza). Cells were thawed from frozen stock in 50 ml Falcon tubes

containing 10 ml of DMEM and centrifuged to remove any traces of the cryoprotectant DMSO. Then, the

cells were incubated in T75 flasks (TC treated; Nunc EasyFlask, Thermo Scientific) containing 10 ml of

DMEM supplemented with 10% FetalClone III (SH30109.02, Cytiva) at 37 �C and 5% CO2. Once cells

reached 90% confluence, cell cultures were passed to a new T75 flask using 0.05% Trypsin-EDTA (25300-

096, Gibco) followed by centrifugation and resuspension in 10 ml of fresh DMEM supplemented with serum

and subsequent incubation at 37 �C and 5% CO2.

3D cultures of murine PDAC cells in matrigel

PDAC93-GFP and PM12500-GFP cells were grown in T75 flasks (TC treated; Nunc EasyFlask, Thermo Sci-

entific) containing 10 ml of DMEM supplemented with 10% FetalClone III (SH30109.02, Cytiva). Once the

cells reached 90% confluence, they were detached using 0.05% trypsin-EDTA (25300-096, Gibco), centri-

fuged, and resuspended in 1 ml of fresh DMEM supplemented with serum. Then, the cell suspensions

were embedded in 4 mg/ml growth factor reduced (GFR) Matrigel at a final concentration of 300,000

cells/ml. A total of 20 ml of this cell-hydrogel mixture was added to individual 5 mm diameter wells of a

homemade PDMS device followed by a 15 min incubation at 37 �C to complete the Matrigel gelation pro-

cess. Finally, 800 ml of organoid feedingmedia (a detailed description of the cell culturemedia used is avail-

able in Table S4) was added to the organoid culture device, and the 3D cell culture was incubated at 37 �C
and 5% CO2 as needed.

METHOD DETAILS

Learning algorithm

In order to make the neural network learn, we employed a genetic algorithm based on selection, crossover,

and mutation algorithms. For the sake of simplicity, we illustrate how the weights of one node of the neural

network are updated.

Selection

selection is how the progenitors are chosen from the generation. Thus, the two fittest progenitors of the actual

generation are chosen as parents of the next generation. Let A be the best of its generation and B the second

best. These two are also selected as offspring (parent A = off.1 and parent B = off.2). Then, the rest of the

offspring (off.3, off.4, ., off.10) are obtained through crossover and mutation algorithms.

Crossover

parent A and parent B are mixed to obtain the offspring. Four-different crossover algorithms are

implemented:

single point crossover: beginning with one parent ending with other:
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two point crossover: first and final values are chosen from one parent and middle values from the other

parent:
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arithmetic crossover: sum of parents:
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uniform crossover: offspring values are randomly copied from A or B parent:
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Mutation

The purpose of mutation is to introduce diversity into the sampled population, avoid local minima and get

faster to the solution (randð� 1; 1Þ is a function that chooses the value -1 or 1 and mutrate is a parameter):
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2
664
1
2
3
4

3
775

zffl}|ffl{Parent A

+ mutrate $ ½ randð�1;1Þ randð� 1;1Þ randð� 1;1Þ randð� 1;1Þ �$

2
664
1
2
3
4

3
775

zffl}|ffl{Parent A

(Equation 1)
off : 10 =

2
664
5
6
7
8

3
775

zffl}|ffl{Parent B

+ mutrate $ ½ randð�1;1Þ randð�1;1Þ randð�1;1Þ randð�1;1Þ �$

2
664
5
6
7
8

3
775

zffl}|ffl{Parent B

(Equation 2)

Agent-based modeling

Mechanical interactions between agents make them move and change their positions. To describe these

interactions we follow our previous work.40 We illustrate how the cell position xc and particle position xp are

calculated. Let Nc be the set of cells Nc = f1;.;Ncg, and let Np be the set of particles Np = f1;.;Npg.
First, the velocity of each i-cell vci and each k-particle vpk

are calculated from the balance of forces:

mci

dvci

dt
=
X
j˛Nc

�
Fcicj

�
+
X
j˛Np

�
Fcipj

�
+ Fcidrag

z0; (Equation 3)
mpk

dvpk

dt
=
X
j˛Np

�
Fpkpj

�
+
X
j˛Nc

�
Fpkcj

�
+ Fpkdrag

z0: (Equation 4)

Here, mci and mpk
are the cell and particle masses, respectively, Fcicj represents cell-cell interaction force,

Fcipj
indicates the cell-particle interaction force, Fpkpj

is the particle-particle interaction force, Fpkcj denotes

the particle-cell interaction force and Fcidrag
and Fpkdrag

are the friction of the cell and particle with the extra-

cellular matrix, respectively. The inertial termsmci
dvci
dt andmpk

dvpk
dt are neglected because Re � 1. The drag

forces Fcidrag
and Fpkdrag

are obtained from Stoke’s law:

Fcidrag
= � 6phRcivci ; (Equation 5)
Fpkdrag
= � 6phRpvpk

; (Equation 6)

where h is the dynamic viscosity of the extracellular matrix, Rci is the radius of the i-cell, Rp is the radius of the

particle and vci and vpk
are the velocities of the i-cell and k-particle.
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Cell-cell interaction forces are usually modeled as repulsive-attractive forces. The repulsion between cells

arises from cell resistance to deformation when their membranes touch, and the attractive forces are the

result of the junctions that cells form between themselves through specialized protein complexes (50). In

the case of particles, the repulsive-attractive forces represent the intermolecular forces in fluids. Accord-

ingly, we modeled the interaction forces Fdigj
(both subindexes d and g denote c or p, depending on

whether the i and j agents are cells (c) or particles (p)) following,12 as follows:

Fdigj
= Fdg

rij��rij�� (Equation 7)

where:

rij = xgj
� xdi ; (Equation 8)

and:

Fdg =

(
Frepdg

cð� sÞ3=2; s <0
�
repulsion

�
;

� Fadhdgc
n
ðs+ s0Þe� lðs+s0Þ2 � v0e

� ls2
o
; sR0 ðadhesionÞ: (Equation 9)

Consequently, c, s, x0 and v0 are defined as:

c =
Rdi

2

 
1

Rdi

+
1

Rgj

!
; s =

d � mindist

Rdi

; Equation (10)
x0 =

ffiffiffiffiffi
1

2l

r
; v0 = x0e

� lx2
0 : (Equation 11)

Frepdg
and Fadhdg are the strengths of the adhesive and repulsive forces, respectively. rij is the distance be-

tween the centers of the agents, and Rdi and Rgj
are the radii of the corresponding agents. x0, v0 and l are

matching constants, and c is a geometric correction factor. The value of mindist = � 0:1Rdi is chosen such

that the equilibrium state where the adhesive and repulsive forces are balanced is slightly less than zero,

following,12 and d =
��rij�� � Rdi � Rgj

is the distance between the agents’ surfaces.

Since cells do not present any attraction towards the lumen fluid, the interaction force between cells and

particles is only repulsive (Fadhcp = Fadhpc = 0).

Finally, the velocity of the i-cell and the k-particle at time t can be calculated explicitly:

dxci ðtÞ
dt

= vci ðtÞ =
1

6phRci

0
@X

j˛Nc

�
Fcicj

�
+
X
j˛Np

�
Fcipj

�1A; (Equation 12)
dxpk
ðtÞ

dt
= vpk

ðtÞ =
1

6phRp

0
@X

j˛Np

�
Fpkpj

�
+
X
j˛Nc

�
Fpkcj

�1A: (Equation 13)

Cell functions

To reproduce the biological characteristics of tumor pancreatic organoids with lumen, three cell functions

are considered within the agent-based model: proliferation, quiescence, and fluid secretion. Proliferation

is modeled by a growth phase, in which the cell progressively increases its volume as a result of DNA repli-

cation, and by amitosis phase, in which the cell divides into two daughter cells. Thus, we track the volume of

each cell ViðtÞ and calculate the volume growth from40:

dViðtÞ
dt

= aViðtÞ; (Equation 14)

where a = 1=Tc is the growth rate, which is related to the cell cycle time Tc . When the volume of the cell

reaches twice its initial volume, DNA replication is concluded, and the cell divides. In this regard, cell divi-

sion is performed using a random cleavage plane that contains the line that passes through the cell center

and the lumen center of mass.
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Quiescent cells remain inactive for 6 minutes (Dtbio) and do not perform any cell function.

Finally, through the fluid secretion function, cells generate particles inside the lumen after fluid production

time Dtexo. First, when the lumen does not yet have any fluid, the cell secretes into the cell’s center of mass.

Then, when another cell secretes, some random particles are duplicated to recreate the increment in the

fluid volume.
Cell division

When the volume of the cell reaches twice the value of its initial volume, DNA replication is concluded, and

the cell divides. A spatially controlled division is a fundamental condition to maintain the lumen

architecture and to enhance its growth by enlarging the lumen volume. In this regard, a complex molecu-

larly controlled process regulates the spindle orientation, so mitosis occurs in the plane of the

monolayer.51–56 Here, we distinguish the division between nonpolarized cells and polarized cells. Nonpo-

larized cells are those that have not yet formed a lumen, and polarized cells are those that belong to a

lumen and face it. In the case of nonpolarized cells, the division direction is chosen randomly. Polarized

cell division is performed using a random cleavage plane that contains the line that passes through the

cell center and the lumen center of mass. The position of the two daughter cells ðxdaughtersÞ are calculated

similarly to other models57,58 from the center of the parent cell xparent at:

xdaughters = xparentG



Rc � 1ffiffiffi

23
p Rc

�
n; (Equation 15)

where Rc is the radius of the parent cell and n is the unit orientation vector. When a nonpolarized cell di-

vides, the unit orientation vector n is chosen randomly. However, when a polarized cell divides, the unit

orientation vector n is normal to the random cleavage plane that contains the line that passes through

the cell center and the lumen center of mass.
Fitness function

The fitness function is an objective function that assesses neural network performance. When the simula-

tion finishes, a fitness value is given to the neural network depending on how close the obtained result

is with respect to the target solution. LetNt
c and Vt

l be the number of cells and lumen volume target values.

The fitness function for cystic organoids is formed by three components: the first relates to the number of

cells, the second to the lumen volume and the third is a penalty term for the eccentricity. Therefore, the

fitness is evaluated through this equation:

FitnessðNc ;Vl;dcmÞ = 0:5 $ 100
�ðNc �Nt

cÞ2
2ðNt

cÞ2 + 0:5 $ 100
�ðVl �Vt

l Þ2
2ðVtl Þ2 � 250

 
ec�

Vt
l

�
10
�!2

; (Equation 16)

whereNt
c is the target number of cells, Vt

l is the target lumen volume and ec is the eccentricity (the distance

between the cells’ center of mass and the lumen’s center of mass). Thus, the better the neural network ap-

proximates the target number of cells and target lumen volume, the better the solution. However, the

higher the eccentricity ec is, the worse the solution. In the case of the fitness function for solid organoids,

the fitness function is only dependent on the number of cells.
Eccentricity

In the process of the generation of a cystic organoid, fluid secretion, proliferation, and quiescence must be

orchestrated. If cells secrete fluid too early, the preapical patch, which is the closed volume necessary to

secrete fluid would not form, so the fluid would leak. Also, if cells secrete too much the lumen would

open. Also, if they do not proliferate, they would not create more inner space for the fluid and it would

leak. To maintain the structure, there is competition between these processes. Therefore, to make the neu-

ral network understand that these cell functions must coordinate to preserve the structure, we introduce a

metric called eccentricity that permits us to take into account the structure. This metric refers to the dis-

tance between the cells’ center of mass and the lumen’s center of mass. The lower this value is, the

more spherical the organoid is (Figure S1A). Conversely, the higher this value is, the less spherical the or-

ganoid is, reaching a certain moment that it opens (Figure S1B). Therefore, the neural network uses this

metric to evaluate the state of the cystic structure.
22 iScience 26, 107164, July 21, 2023



ll
OPEN ACCESS

iScience
Article
Characterization of the lumen fluid

We conducted a shear test to validate that our approach represents an actual fluid. In this regard, we used a

bulk domain consisting of fluid particles with a radius Rp = 2 mm (Figure S3) The top layer of particles

(depicted in black in Figure S3) was subjected to a velocity u in the X direction, while the bottom layer

(depicted in blue in Figure S3) had fixed displacements in the X and Y directions.

Then, to obtain the steady flow curve to assess the behavior of particles, we set the shear stress experiment

with a time duration of texp = 30min and varied the velocity of the top layer within the values u = ½0:01;0:05;
0:1;0:2;0:5�=texp mm=min. Finally, we were able to determine the viscosity of the fluid ðhÞ by measuring the

shear stress ðtÞ as the sum of the reaction forces (Fx ) of the particles forming the bottom XY -plane of the

cube of side length l in the X direction



t =

P
Fx

l2

�
for each shear rate ð _g = vv =vzÞ.

h =
t

vv

vz

: (Equation 17)

We show the linear regression of the shear stress on the deformation rate (Figure S4). We obtained that the

shear stress is linearly proportional to the shear strain, resulting in a constant viscosity of 1:072$10� 3 Pa.s,

with an R-Squared value of 0.9996. Therefore, this analysis confirms that our approach accurately repro-

duces the expected velocity and shear stress profiles for a Newtonian fluid similar to water (� 10� 3 Pa.s)

and demonstrates the capability of our method to model real fluids, serving as a minimal model that

aims to recapitulate certain features such as mass conservation and momentum exchange. However, it

does not rigorously reproduce bulk-scale physical properties.

Particle radius influence on the rheological properties of the fluid

The particle radius in a particle-basedmodel has a great influence on the mechanical and rheological prop-

erties of the fluid. Viscosity is a physical property of a fluid that describes its resistance to deformation or

flow. In particle-based approaches, the viscosity coefficient is typically calculated from the smoothing

length and the particle spacing and depends on the strength of the interaction forces between neigh-

boring particles.

Reducing the particle radius while keeping all other properties constant, results in a change in the mechan-

ical and rheological properties of the fluid. Therefore, to maintain the rheological properties of the fluid

while changing the particle radius it is necessary to modify other parameters such as the interaction forces

between the particles to maintain a consistent viscosity coefficient so that the macroscopic behavior of the

fluid remains the same. On the one hand, if the particle radius is reduced for a given volume, the number of

particles increases. Consequently, the fluid becomes more viscous than when the particle radius is greater

since more particles oppose the shear stress. On the other hand, increasing the particle radius reduces the

viscosity of the fluid. Thus, it is necessary to adjust the interacting forces so that the behavior remains the

same when integrating the response of the fluid to deformation.

We have modified the interacting forces between particles for particle radii of 1; 4 and 6 m m, through the

optimization of the parameters Freppp
and Fadhpp in Equation 9 so we obtain the same response of the rheo-

logical properties of the fluid as for the particle radius of Rp = 2 m m (Figure S5A). In this case, the mean

value of the viscosity obtained for all particle sizes is 1:078$10� 3 Pa.s with a standard error of 1:210$

10� 5. Finally, we show a comparison between the interacting forces for Rp = 2 m m and the modified inter-

acting forces for particle radii of 1; 4 and 6 mm to obtain the same response (Figure S5B). Since the number

of particles increases when the particle radius decreases, the interacting forces reduce so when integrating

the contribution of the particles to the viscosity it is equivalent across different particle sizes.

Particle radius influence on fitness

We analyze the effect of the variation of the particle radius. For this purpose, we simulated an intermediate-

size cystic organoid (organoid 2 from Table 1 of the manuscript) with different particle radii to determine

how it affects the results. We show the influence of particle radii on the fitness value and computation time

while keeping the interacting forces the same as for the case of Rp = 2 m m (Figure S6A). We found that

increasing the particle radius from 1 mm to 2 mm causes an absolute decrease of the fitness value of

0.15% and a relative decrease in the computation of 96.02% (from 1029 min to 41 min). An increase of
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the particle radius from 2 mm to 4 mm entails an absolute worsening of the fitness of the approximation of

4.16% and a relative improvement of the computing time of 93.88% (from 41 to 3 min). Therefore, this anal-

ysis shows that the rheological properties of the fluid are important in the cystic morphogenetic process

and require proper interaction to develop the organoid correctly. In particular, making the fluid less viscous

(increasing the particle radius) entails a worsening of the simulated organoid. Then, we studied the influ-

ence of the particle radii on the fitness value and computation time with the interacting forces obtained

in Figure S5B to have the same viscosity as water. In this case (Figure S6B) the fitness is above 0.91 for

all particle sizes simulated. However, increasing the particle radius results in a slight decrease in fitness

due to a higher increase in lumen volume per fluid secretion compared to smaller particle sizes, leading

to a reduced sensitivity in the secretion process. Therefore, a particle radius of 2 m m is optimal for main-

taining low computational costs while having sufficient sensitivity in the fluid secretion process.
Multiphoton microscopy of PDAC organoids

3D cultures of PDAC93-GFP and PM12500-GFP cells were generated and incubated for 5 days as described

in the previous section. Then, samples were fixed with 4% paraformaldehyde in DPBS solution at 37 �C for

30 minutes and washed thoroughly with DPBS followed by cell nuclei staining with a 5 mg=ml solution of

Hoechst 33342 for 16 h at room temperature. Image acquisition was performed using a Zeiss LSM 880

AxioObserver inverted confocal microscope equipped with a 25x LD LCI Plan-Aprochomat 0.8 NA W

objective. A total sample volume of approximately 1065x1065x200 mm3 was acquired using a Mai Tai�
DeepSee� Ti:Sapphire laser sequentially set to 740 nm and 920 nm for multiphoton microscopy of stained

nuclei and endogenous cytoplasmic GFP, respectively.
Quantification of 3D PDAC organoid morphology

Nuclei and cytoplasmic GFP segmentation masks were generated using StarDist 3D48 and the Trainable

Weka Segmentation 3D59 plugin for Fiji, respectively. The StarDist 3D model was trained from scratch

for 50 epochs on 45 paired image patches (patch size: (72,72,32), batch size 1, number of rays: 32, augmen-

tation: true),60 accelerated using an NVIDIA Quadro P1000 GPU. Afterward, the generated masks were

analyzed using a homemade script for Fiji. Briefly, cytoplasmic GFP masks were preprocessed using a

GPU-accelerated 3D median filter and binary closing available in the CLIJ2 library61). Then, each individual

organoid was labeled, and the intersection between the cytoplasmic GFP mask and the nuclear mask was

calculated using a logical AND operator. The number of nuclei and morphological descriptors, such as the

organoid volume or sphericity, were quantified using MorpholibJ.62
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses and figure generation were performed using MATLAB (MathWorks). The exact number

of simulations conducted to test the robustness in Figure 4 was indicated in the legend. The R-squared

values of the linear regressions in Figures S4 and S5 were also specified in the legend.
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