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Pooled testing has been successfully used to expand SARS-CoV-2 testing, especially in settings requiring
high volumes of screening of lower-risk individuals, but efficiency of pooling declines as prevalence rises. We
propose a differentiated pooling strategy that independently optimizes pool sizes for distinct groups with different
probabilities of infection to further improve the efficiency of pooled testing. We compared the efficiency (results
obtained per test kit used) of the differentiated strategy with a traditional pooling strategy in which all samples are
processed using uniform pool sizes under a range of scenarios. For most scenarios, differentiated pooling is more
efficient than traditional pooling. In scenarios examined here, an improvement in efficiency of up to 3.94 results
per test kit could be obtained through differentiated versus traditional pooling, with more likely scenarios resulting
in 0.12 to 0.61 additional results per kit. Under circumstances similar to those observed in a university setting,
implementation of our strategy could result in an improvement in efficiency between 0.03 to 3.21 results per test
kit. Our results can help identify settings, such as universities and workplaces, where differentiated pooling can
conserve critical testing resources.
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Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; UNC,
University of North Carolina.

Coronavirus disease 2019 (COVID-19) was the third
leading cause of death in the United States in 2020 (1) and
remains a leading cause of death globally (2, 3). Public
health professionals have emphasized that increased testing
is a key strategy to minimize transmission of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and
decrease subsequent COVID-19 mortality (4–9). In settings
such as universities and workplaces, wide-scale testing of
asymptomatic individuals is gaining traction as an infection
control mechanism, with many administrators implementing
mandated testing policies, generally in lieu of proof of
vaccination (10–12). For example, unvaccinated students
enrolled in courses at the University of North Carolina
(UNC) at Chapel Hill in Fall 2021 were required to test
twice weekly and unvaccinated employees were required to
test once weekly (13). Testing for individuals who were
either symptomatic or were known close contacts of an

individual testing SARS-CoV-2 positive was recommended
regardless of vaccination status (13). However, as new
SARS-CoV-2 variants emerge and sweep the globe, facility-
and system-level barriers such as supply chain bottlenecks
and laboratory throughput capacity continue to impede
efficient scale-up of testing efforts across a number of
settings (6, 14–18).

Pooled testing, also called group testing, is an estab-
lished and effective testing strategy that can conserve test-
ing resources, save personnel time, minimize turnaround
time from testing to receipt of results, and improve testing
efficiency (i.e., increase the number of results obtained or
individuals screened per test kit used) (10, 19–32). Pooled
testing is a process by which multiple specimens are com-
bined (or “pooled”) and the pooled samples are screened
for the agent of interest (in this case, SARS-CoV-2). Pools
that screen positive are then tested again in subpools or



population of interest. Given the loss in diagnostic sensitivity
that can result from pooling specimens together (as posi-
tive samples are diluted with negative samples) (34, 37), a
maximum allowable dilution, or the proportion of diagnostic
sensitivity one is willing to lose through pooling, should be
established. This determines the maximum allowable pool
size, or maximum pool size that preserves the diagnostic
sensitivity established by the maximum allowable dilution
(19). Additional details regarding dilution effects and esti-
mation of the maximum allowable dilution and pool size
are provided in Web Appendix 1 (available at https://doi.
org/10.1093/aje/kwac178).

With these input parameters defined, the efficiency of
a particular testing strategy can be calculated using the
methods and viral dynamics model originally developed by
Pilcher et al. (19). We have adapted these methods for our
specific test strategy approach and outlined the details in
Web Appendix 1.

Estimating efficiency of a differentiated pooled testing
strategy (ψ)

In calculating the efficiency, or number of results obtained
per test kit used, in our differentiated pooling strategy (ψ),
we first estimated the optimal pool size for each of our 2
groups (symptomatic or exposed individuals; asymptomatic
and unexposed individuals) separately. To estimate these
pool sizes, we used the prevalence of infection among
symptomatic or exposed individuals (P(D|G = 1)) and the
prevalence of infection among asymptomatic and unexposed
individuals (P(D|G = 0)). We considered 2 sets of assay
performance scenarios: 1) a conservative diagnostic assay Se
of 0.75 and Sp of 0.95 among symptomatic or exposed indi-
viduals and Se of 0.50 and Sp of 0.95 among asymptomatic
and unexposed individuals; and 2) a higher Se of 0.85 and Sp
of 0.99 among symptomatic or exposed individuals and Se
of 0.60 and Sp of 0.99 among asymptomatic and unexposed
individuals (38–40). We allowed the diagnostic assay
sensitivity and specificity to differ between the 2 groups as
literature suggests that assay performance is diminished in
cases of mild infection (41–44). In each scenario, we set the
maximum allowable dilution at 0.20 to ensure the reduction
in analytical sensitivity of pooled SARS-CoV-2 testing was
less than 20% relative to individual-specimen testing. Using
the viral dynamics model proposed by Pilcher et al. (19) and
further outlined in Web Appendix 1, this corresponds to a
maximum allowable pool size of 25 in all scenarios.

After determining the optimal pool size for each group,
we used the adapted viral dynamics model outlined in Web
Appendix 1 to calculate the efficiency, or number of results
obtained per test kit used, in each group, separately. Finally,
we calculated ψ by taking a weighted average of the effi-
ciency in symptomatic or exposed individuals (ϕG=1) and
the efficiency in asymptomatic and unexposed individuals
(ϕG=0) using the formula:

ψ = (ϕG=1 × P(G = 1)) + (ϕG=0 × P(G = 0)) ,

where P(G = 1) is the proportion of individuals in the
population being tested who self-report symptoms or known

as individual samples (33). In a recent article on pooled 
testing as a means for optimizing the efficiency of SARS-
CoV-2 testing, the authors demonstrated that for a given 
number of test kits, testing programs using pooled testing 
could screen between 2 and 20 times as many specimens 
when compared with programs using individual-specimen 
testing (19). However, in high-prevalence settings where 
a large proportion of individual samples would be SARS-
CoV-2-positive, the efficiency gains of pooled testing are 
reduced or eliminated, and improvements in turnaround time 
obtained through pooling are lost because a large proportion 
of pools would screen positive, necessitating further subpool 
or individual-specimen testing (34).

We propose a differentiated pooled testing strategy, sim-
ilar to the Informative Dorfman Screening strategy previ-
ously proposed by McMahan et al. for use in chlamydia 
and gonorrhea testing (35), to improve efficiency gains 
of pooled SARS-CoV-2 testing across a range of settings, 
including high-prevalence settings and lower-prevalence set-
tings where identifiable subgroups of the testing population 
are at substantially higher risk of infection. In this paper, 
we explore the improvement in efficiency, expressed as the 
number of additional test results that can be obtained per test 
kit used, through implementation of our considered strategy 
versus a traditional 2-stage hierarchal (i.e., “pooling”) test-
ing strategy where samples are processed in uniform pool 
sizes (27).

METHODS

Overall strategy

In a traditional 2-stage pooling strategy, samples are 
processed in uniform pool sizes, and the calculation of the 
optimal pool size is based on the prevalence of SARS-CoV-
2 in the overall population being tested. In a differentiated 
pooled testing strategy (i.e., “differentiated pooling”), 
pool sizes are independently optimized for 2 or more 
distinct groups with different test-positive probabilities. 
Here we will consider 2 easily distinguishable groups with 
characteristics shown to be reliable predictors of infection: 
1) a higher-risk group in which individuals have known or 
probable exposure to SARS-CoV-2 or self-report symptoms 
consistent with COVID-19 (i.e., “symptomatic or exposed 
individuals”); and 2) a lower-risk group in which individuals 
are asymptomatic and have no known or probable expo-
sure to SARS-CoV-2 (i.e., “asymptomatic and unexposed 
individuals”) (36). Optimal pool sizes are determined 
separately for the 2 groups based on a range of SARS-CoV-2 
prevalences in each group, and pools screening positive are 
subsequently tested as individual samples.

Calculating efficiency

We consider the average number of individual results 
obtained per test kit used as a measure of efficiency. Comput-
ing testing strategy efficiency requires assumptions regard-
ing the diagnostic test performance, specifically the assay 
sensitivity (Se) and specificity (Sp), and local viral dynamics, 
specifically the prevalence of SARS-CoV-2 (P(D)) in the
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or probable exposure to SARS-CoV-2 and P(G = 0) is
the proportion of individuals in the population being tested
who self-report no known symptoms or exposure to SARS-
CoV-2.

Estimating efficiency of a traditional pooled testing
strategy (ϕ)

In estimating the efficiency of a traditional pooling strat-
egy in the overall testing population (ϕ), we first estimated
the optimal pool size using the prevalence of infection in
the overall population of individuals being tested, P(D), and
the assay sensitivity and specificity in the overall population
of individuals being tested. P(D) was calculated via using
P(D|G = 1), P(D|G = 0), P(G = 1), and P(G = 0):

P(D) = (P(D|G = 1) × P(G = 1)) + (P(D|G = 0)

× (P(G = 0))

Assay sensitivity and specificity in the population being
tested were determined in a similar manner using weighted
averages. After determining the optimal pool size and assay
sensitivity and specificity in the testing population overall,

we then used the adapted viral dynamics model outlined in
Web Appendix 1 to estimate ϕ.

Estimating change in efficiency (�) from
implementation of differentiated versus traditional
pooling

To demonstrate the improvement in efficiency (�) asso-
ciated with differentiated versus traditional pooling in the
overall population of individuals being tested, we compared
the results obtained per test kit used in a differentiated
pooling strategy (ψ) with the results obtained per test kit
used in a traditional pooling strategy (ϕ) via � = ψ − ϕ.
Here, the difference in estimates, �, is the total improvement
in efficiency, or number of additional individual test results
that can be obtained per test kit used through implementation
of differentiated compared with traditional pooling.

First, we examined � for scenarios similar to those
observed in the Carolina Together Testing Program at UNC-
Chapel Hill between August 18, 2021, and August 31, 2021,
during the first 2 weeks of classes. During this period, 12,629
individuals were tested, 91% of whom self-reported to be
asymptomatic and unexposed, and were tested as a part of
the requirement for unvaccinated students and faculty (13).
The percent testing positive was 1.9 among asymptomatic
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Figure 1. Improvement in efficiency, or additional results obtained per test kit used (�) through implementation of a differentiated versus
traditional pooling strategy, in settings similar to those observed at the University of North Carolina at Chapel Hill, August 2021. Settings with a
probability of infection given symptomatic or exposed (P(D|G = 1)) ranging from 0% to 20%, a probability of infection given asymptomatic and
unexposed (P(D|G = 0)) ranging from 0% to 5%, and a probability of being symptomatic or exposed in the population being tested (P(G = 1))

of 10% were explored. A) Assay sensitivity and specificity were set to 0.75 and 0.95 among symptomatic or exposed individuals and 0.50 and
0.95 among asymptomatic and unexposed individuals. B) Assay sensitivity and specificity were set to 0.85 and 0.99 among symptomatic or
exposed individuals and 0.60 and 0.99 among asymptomatic and unexposed individuals.
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Figure 2. Improvement in efficiency, or additional results obtained per test kit used (�) through implementation of a differentiated versus
traditional pooling strategy in settings with a probability of infection given symptomatic or exposed (P(D|G = 1)) ranging from 0% to 60%, a
probability of infection given asymptomatic and unexposed (P(D|G = 0)) ranging from 0% to 20%, and a probability of being symptomatic or
exposed in the population being tested (P(G = 1)) of 1%. A) Assay sensitivity and specificity were set to 0.75 and 0.95 among symptomatic or
exposed individuals and 0.50 and 0.95 among asymptomatic and unexposed individuals. B) Assay sensitivity and specificity were set to 0.85
and 0.99 among symptomatic or exposed individuals and 0.60 and 0.99 among asymptomatic and unexposed individuals. White areas represent
scenarios in which P(D|G = 0) is greater than P(D|G = 1) or traditional pooling is more efficient than differentiated pooling (i.e., � < 0).

P(G = 1) values range from 0.00 to 0.99) that could represent
the circumstances of nearly all testing programs are
presented in Web Videos 1 (conservative assay performance)
and 2 (higher assay performance).

RESULTS

Under conditions similar to those observed at UNC-
Chapel Hill during the first 2 weeks of classes, assuming
a conservative assay sensitivity of 0.75 and specificity of
0.95 among symptomatic or exposed individuals and 0.50
and 0.95 among asymptomatic and unexposed individuals,
the efficiency estimates for differentiated pooling (ψ) were
typically higher than the efficiency estimates for traditional
pooling (ϕ) (i.e., � > 0) when P(D|G = 1) exceeded
P(D|G = 0). Specifically, an improvement in efficiency of
between 0.03 and 2.37 results per test kit could be obtained
through implementation of differentiated versus traditional
pooling (Figure 1A). Slightly higher estimates of � could
be obtained when utilizing a higher-performing assay (� =
0.03 to 3.21; Figure 1B).

In a population where just 1% of individuals are symp-
tomatic or exposed and P(D|G = 1) exceeds P(D|G = 0),
ψ is, under most scenarios, similar to ϕ (i.e., � ∼ 0)
(Figure 2). However, an improvement in efficiency of up

and unexposed individuals and 6.2 among symptomatic or 
exposed individuals (13). To explore scenarios similar to 
the observed data, we allowed P(D|G = 1) to range from 
0.00 to 0.20 and P(D|G = 0) to range from 0.00 to 0.05 
at P(G = 1) of 0.10. These estimates of � are presented 
visually in a heat map in which we highlight scenarios where 
differentiated pooling is equivalent to or more efficient than 
traditional pooling (i.e., � ≥ 0) and P(D|G = 0) is less 
than P(D|G = 1) (Figure 1; Web Figure 1). These scenarios 
are most plausible in settings where there is screening 
both for asymptomatic and unexposed individuals and 
for symptomatic or exposed individuals (e.g., universities, 
workplaces).

We then explored � under a range of scenarios for 
P(D|G = 0), P(D|G = 1), and  P(G = 1). Specifically, 
we estimated � for P(D|G = 1) values ranging from 0.01 
to 0.60 and P(D|G = 0) values ranging from 0.00 to 0.20 at 
P(G = 1) values of 0.01, 0.10, 0.50, and 0.75. Under this set 
of parameters, P(D) values ranged from <0.01% to 40%. 
Estimates of � in each of these scenarios are presented in 
an additional series of heat maps (Figures 2–5; Web Figures 
2–5). We present estimates of the optimal pool size for select 
values in tables (Tables 1 and 2). A comprehensive range of 
scenarios (i.e., where P(D|G = 1) values range from 0.00 
to 0.99, P(D|G = 0) values range from 0.00 to 0.50, and
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Figure 3. Improvement in efficiency, or additional results obtained per test kit used (�) through implementation of a differentiated versus
traditional pooling strategy in settings with a probability of infection given symptomatic or exposed (P(D|G = 1)) ranging from 0% to 60%, a
probability of infection given asymptomatic and unexposed (P(D|G = 0)) ranging from 0% to 20%, and a probability of being symptomatic or
exposed in the population being tested (P(G = 1)) of 10%. A) Assay sensitivity and specificity were set to 0.75 and 0.95 among symptomatic or
exposed individuals and 0.50 and 0.95 among asymptomatic and unexposed individuals. B) Assay sensitivity and specificity were set to 0.85
and 0.99 among symptomatic or exposed individuals and 0.60 and 0.99 among asymptomatic and unexposed individuals. White areas represent
scenarios in which P(D|G = 0) is greater than P(D|G = 1) or traditional pooling is more efficient than differentiated pooling (i.e., � < 0).

to 1.70 results per test kit (i.e., � up to 1.70) could be
obtained (Figure 2). In a population where 10% of indi-
viduals are symptomatic or exposed, an improvement in
efficiency of up to 3.97 results per test kit could be obtained
through implementation of a differentiated versus traditional
pooling strategy (Figure 3). In a population where 50% of
individuals are symptomatic or exposed, an improvement in
efficiency of up to 2.95 results per test kit could be obtained
through implementation of a differentiated versus traditional
pooling strategy (Figure 4). In a population where 75% of
individuals are symptomatic or exposed, an improvement in
efficiency of up to 1.48 results per test kit could be achieved
(Figure 5). In these scenarios, the improvement in efficiency
obtained through differentiated versus traditional pooling
was most often between 0.12 and 0.61 results per test kit.
There were some circumstances where traditional pooling
was more efficient than differentiated pooling, with values of
� between −1 and 0 (see white portion of figures; Table 1).

Results observed under improved assay sensitivity and
specificities (i.e., Se = 0.85 and Sp = 0.99 among symp-
tomatic or exposed individuals and Se = 0.60 and Sp =
0.99 among asymptomatic and unexposed individuals) were
largely similar to those observed under more conservative
assay sensitivity and specificities but consistently resulted
in higher estimates of � (Figures 2–5, Table 1, Table 2).

DISCUSSION

Differentiated pooling can improve efficiency in settings
where subgroups with different test positivity can be reason-
ably defined. Here, we have illustrated an example where
differentiated pooling may be worthwhile in settings where
the prevalence of SARS-CoV-2 is predicted by symptoms or
known or probable exposure to SARS-CoV-2 versus absence
of symptoms and no such probable exposure. Specifically,
we see advantages to this approach when testing is required
for both symptomatic and unvaccinated individuals, where
there are at least 2 groups of easily distinguishable individ-
uals being tested, and group status is predictive of infection.
In a university setting, our results suggest between 0.03
and 3.21 more results could be obtained per test kit used
when using differentiated versus traditional pooling. Under
a broader range of settings, up to 3.97 more results could be
obtained per test kit used.

The demand for SARS-CoV-2 testing continues to exceed
test supply in numerous locations across the globe (7, 8, 17,
18, 45–47). In most cases, same-day testing for symptomatic
or exposed individuals remains unavailable. High demand
for testing has placed unprecedented strains on health-care
systems broadly, which has contributed to test result pro-
cessing times often exceeding 4–5 days (8, 45, 47). Given
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Figure 4. Improvement in efficiency, or additional results obtained per test kit used (�) through implementation of a differentiated versus
traditional pooling strategy in settings with a probability of infection given symptomatic or exposed (P(D|G = 1)) ranging from 0% to 60%, a
probability of infection given asymptomatic and unexposed (P(D|G = 0)) ranging from 0% to 20%, and a probability of being symptomatic or
exposed in the population being tested (P(G = 1)) of 50%. A) Assay sensitivity and specificity were set to 0.75 and 0.95 among symptomatic
or exposed individuals and 0.50 and 0.95 among asymptomatic and unexposed individuals. B) Assay sensitivity and specificity were set to 0.85
and 0.99 among symptomatic or exposed individuals and 0.60 and 0.99 among asymptomatic and unexposed individuals. White areas represent
scenarios in which P(D|G = 0) is greater than P(D|G = 1) or traditional pooling is more efficient than differentiated pooling (i.e., � < 0).

utilizing symptom or exposure-based risk-screening tools.
Using this approach, unique testing barcodes that indicate
the appropriate specimen testing group could be generated
at the time of specimen collection, reducing the operational
complexity of the strategy.

Other variables, such as vaccination status and type of
testing location (e.g., diagnostic center versus screening
center for asymptomatic individuals), may also be used to
define subgroups in a differentiated pooled testing program,
provided the grouping variables are reliable predictors of
test positivity. Pool sizes could be further optimized
for more than 2 groups (e.g., those who self-report as
exposed or symptomatic and unvaccinated; those who self-
report as exposed or symptomatic and vaccinated; those who
self-report as asymptomatic, unexposed, and vaccinated;
and those who self-report as asymptomatic, unexposed, and
unvaccinated) provided the test-positive probability of each
group is distinct and the characteristic used to differentiate
each group is a reliable predictor of infection. This approach
could further improve the efficiency of a differentiated
pooling strategy.

In addition to these advantages, differentiated pooling
can reduce result turnaround time, similar to other pooling
strategies (19, 31, 53, 54). Given that a finite number

the short duration of viral shedding in individuals with less 
severe COVID-19 (48, 49), results may be far less relevant 
to public health efforts a week or more after symptom 
onset (29). These considerations suggest that individual-
specimen testing strategies are ineffective at meeting current 
testing needs, and simple, easy-to-implement strategies for 
improving testing efficiency are needed.

Many proposed SARS-CoV-2 testing strategies, including 
other pooled testing strategies proposed in the literature, 
are suboptimal for various reasons. Traditional pooling and 
other multistage hierarchical testing strategies originally 
proposed by Dorfman (27) improve testing efficiency 
when compared with individual-specimen testing strategies. 
However, these gains are substantially diminished in higher-
prevalence settings (34). Other pooling strategies, such 
as the P-BEST strategy (50), slice testing or hypercube 
strategy (51), and novel context-sensitive approaches (52), 
can improve testing efficiency beyond what is anticipated 
through traditional pooling but are logistically difficult 
to implement in real-world settings. The differentiated 
pooling strategy considered here can be easily employed 
in settings where there are separate screening locations 
for symptomatic or exposed individuals and asymptomatic 
and unexposed individuals (e.g., universities), or in settings
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Figure 5. Improvement in efficiency, or additional results obtained per test kit used (�) through implementation of a differentiated versus
traditional pooling strategy in settings with a probability of infection given symptomatic or exposed (P(D|G = 1)) ranging from 0% to 60%, a
probability of infection given asymptomatic and unexposed (P(D|G = 0)) ranging from 0% to 20%, and a probability of being symptomatic or
exposed in the population being tested (P(G)) of 75%. A) Assay sensitivity and specificity were set to 0.75 and 0.95 among symptomatic or
exposed individuals and 0.50 and 0.95 among asymptomatic and unexposed individuals. B) Assay sensitivity and specificity were set to 0.85
and 0.99 among symptomatic or exposed individuals and 0.60 and 0.99 among asymptomatic and unexposed individuals. White areas represent
scenarios in which P(D|G = 0) is greater than P(D|G = 1) or traditional pooling is more efficient than differentiated pooling (i.e., � < 0).

of assays can be performed in a period of time, pooling
combines samples that would otherwise be processed
individually, thereby collapsing samples in the testing queue.
Depending on pool size and the number of pools that screen
positive, even accounting for subsequent individual testing
of samples in pools that screen positive, the total number
of assays processed can be smaller than in the absence of
pooled testing (especially in the event of larger pool sizes
and a smaller proportion of pools screening positive). This
can eliminate bottlenecks in result processing that have
been frequently observed in settings using an individual-
specimen testing strategy (8, 45, 47), thereby improving
population-level result turnaround time. Moreover, this
approach allows for individual-specimen testing in groups
where the prevalence of infection is relatively high while
still allowing for pooling in groups where the prevalence of
infection is relatively low and pools are less likely to screen
positive.

As noted, SARS-CoV-2 viral titer among symptomatic
and infected individuals may be higher than that among
asymptomatic and infected individuals. Therefore, test
sensitivity may differ and the dilution effects of pooling may
be more extreme among the asymptomatic and unexposed
group. The approach and efficiency calculations described

here allow for differential sensitivity and specificity by
groups. Ultimately, the relatively low assumed performance
of the utilized assay among asymptomatic and unexposed
individuals resulted in few scenarios where � was negative
(i.e., traditional pooling was more efficient compared with
differentiated pooling). While the differentiated pooling
strategy was not beneficial in these instances, we readily
identified such scenarios, further highlighting the applica-
bility of our approach to the establishment of evidence-
informed, tailored testing strategies.

In summation, differentiated pooling improves efficiency
in testing settings where strong predictors of infection
define easily distinguishable groups of people. Here we
have demonstrated the improvements obtained through
implementation of a differentiated versus traditional pooling
strategy in settings such as universities and workplaces
and where the prevalence of SARS-CoV-2 in symptomatic
or exposed individuals is high, the prevalence of SARS-
CoV-2 in asymptomatic and unexposed individuals is low,
and the proportion of individuals in the testing population
who self-report as symptomatic or exposed is at least 10%.
Drawing on existing testing program setup and symptom and
exposure screening tools, differentiated pooling imposes
a minimal increase in operational complexity, offering
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a simple-to-implement opportunity to conserve critical
testing resources. Broadly, this approach holds the potential
to increase SARS-CoV-2 testing capacity and should be
considered a viable option in testing program planning and
implementation across the United States and globally.
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