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Abstract

Traffic congestion is ubiquitous in major cities around the world. Congestion is associated

with a slew of negative effects, including delays and local air pollution. Because of the nega-

tive effects of congestion, governments invest billions of dollars into the highway system to

try to reduce congestion and accommodate peak-hour automobile travel demand. The

COVID-19 pandemic presented a significant disruption to transportation systems globally.

One impact was a drastic reduction in travel, leading to free-flowing traffic conditions in

many previously-congested cities. As lockdowns eased, traffic volumes returned to near-

normal levels. However, the temporal pattern of demand may differ, due to increased

remote work or other factors. In this article, we examine the temporal distribution of highway

demand in California, using data from over 3,500 traffic sensors. We find that peak-hour

automobile travel is spreading in the post-lockdown period. In addition to decreased traffic

congestion, this finding also has implications for infrastructure investment. Roadways are

generally sized based on peak-hour demand. As the peaks spread, some highway construc-

tion project may prove unnecessary. It may be possible to reallocate road space to other

uses with fewer tradeoffs in terms of traffic congestion.

Introduction

Traffic congestion is common in urban areas. Congestion is a frequent target of interventions

from both traffic engineers and planners, who seek to reduce congestion for a variety of rea-

sons. Congestion imposes significant costs on the traveling public through lost time and

uncertain arrival times [1, 2]. Delayed freight shipments present a cost to businesses [2]. Con-

gestion is associated with significant local air pollution [3], though global effects are unclear

since congestion also discourages travel [4].

The COVID-19 pandemic caused massive reductions in automotive travel and thus in traf-

fic congestion, but now traffic volumes have returned to near-pre-pandemic levels. However,

congestion is caused not by overall traffic volumes, but by volumes at the peak hours. Even if

traffic volumes return to pre-pandemic levels, differences in the temporal distribution of travel

demand may lead to changes in congestion levels. Traffic flow is highly nonlinear. A small
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reduction in peak demand on a congested roadway can cause outsized reductions in traffic

congestion.

In addition to congestion, reductions in peak hour auto traffic have implications for infra-

structure design. Roadways are sized based on peak hour travel rather than overall travel [5].

While roadways present many economic benefits, they also have many costs. They are expen-

sive to construct and maintain; governments in the US spent over $220 billion on highways in

2016 [6]. They present significant opportunity costs because they often occupy valuable urban

land [7]. Roadway expansion may induce more driving, which presents significant negative

externalities, including pollution and traffic crashes [7]. Furthermore, large roadways create

barriers that disconnect communities [8]. Roadway construction also presents equity con-

cerns. Roadway construction often displaces low-income residents and residents of color—

both historically [9] and today [10]. Pollution from roadways disproportionately affects non-

white communities [11].

Planners have been trying for several decades to spread out the peaks of rush-hour traffic. A

number of projects in the 1970s attempted to reduce traffic congestion by staggering work

start and end times [12], with varying levels of success mostly related to getting buy-in from

employers. Programs in Manhattan [13] and Honolulu [14] both produced positive results.

Without an analysis of actual traffic data, it is difficult to predict from theory alone whether

traffic peaks would spread out after the pandemic. On the one hand, working from home has

made people’s schedules more flexible, allowing them to commute off-peak, or not at all, with-

out majorly impacting their work life [15]. This diminishes the economic value of arriving at

the office exactly at 9am. On the other hand, people are returning to in-person work [16].

Even if some people have shifted their commute schedules, historical decreases in roadway

congestion have been typically associated with subsequent increases in demand that restore

congestion, a phenomenon known as induced demand [17].

Studies of actual traffic data can aid in resolving these theoretical disagreements around

whether peak spreading should occur, but empirical analyses of peak spreading are challeng-

ing. There is no single unambiguous mathematical definition for the idea of peak spreading.

Different metrics of peak spreading can be based on different mathematical formulations, defi-

nitions of the peak, and even completely different underlying variables. Furthermore, because

of the nonlinearities between speed, flow, and density, metrics that are based on different

underlying variables may differ not only in magnitude but even in direction. Nonlinearities

also make it difficult to differentiate peak spreading from overall changes in traffic volumes.

Roadway operators deploy networks of automated sensors across their highway networks

to provide detailed, real-time information on traffic. This is a valuable data source for analysis

of travel patterns, because it covers a large portion of the urban freeway network at a fine spa-

tial and temporal resolution. However, analyses of sensor data must address issues with insta-

bility, missingness, and the computational and statistical challenges of working with large-

scale and correlated data. Survey data avoid some of these issues, but introduce others—these

data have smaller sample sizes, are expensive and time-consuming to collect, and may not be

representative of all people or roadways.

In this article, we use data from 3,691 automated roadway sensor stations that report data at

five minute intervals for over six years across the state of California, to analyze changes pre- vs.

post-pandemic in the temporal distribution of roadway travel demand. To overcome the theo-

retical and practical issues of measuring peak-spreading on real-world sensor data, we per-

formed our analyses on several alternative measures of peak spreading, and through a

multitude of robustness checks, demonstrated that our results were not affected by missing

data. We find that peak-hour travel is flattening on average, even as overall volumes near their

previous levels, and we quantify important heterogeneity across sensor and location.
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Literature review

Several popular-press outlets analyzed connected-vehicle or GPS tracking data in 2021 and

found that peaks were spreading. In New York and Los Angeles, July 2021 auto traffic was

more temporally spread than prepandemic, with an earlier start to the evening peak and less

morning travel [18]. Similarly, an analysis of four California cities found that congestion was

spreading, particularly in the afternoon and evening [19]. Another analysis found rush hours

shifting later and spreading nationwide [20]. A more recent study of a number of US urban

areas found peak periods extending later or starting earlier in some places [21].

A stated-preference survey in Australia conducted during the lockdown found that com-

muters expected their arrival times at work to spread post-pandemic [22]. Spreading of peaks

has also been observed on transit. On the Boston subway network, ridership has dropped

more in the peaks than during the midday, though this effect was most pronounced near the

start of the pandemic [23].

One likely explanation for spreading peak-hour travel demand is increasing in working

from home. Telecommuting can contribute to spreading peaks in several ways. The research is

unclear on whether telecommuters travel less [24] or more [25] than others, but it does seem

clear that they take more non-work trips [24, 26]. These non-work trips likely occur at off-

peak times.

Even on days when telecommuters do go to work, they may work from home part of the

day and commute at off-peak times to avoid traffic [15, p.33]. As mentioned above, staggering

work schedules is a strategy that has been deployed in the past to reduce congestion. The fore-

cast long-term shift to a hybrid workplace may effectively lead to staggered work schedules for

many workers.

Data

We obtained data from the network of roadway sensors maintained by the California Depart-

ment of Transportation (Caltrans). These sensors span the state highway network, but are con-

centrated in urban areas and on heavily-traveled intercity routes (Fig 1). After data cleaning

described below, we used data from 3,691 sensors, 82% of which were in urbanized areas, as

defined by the US Census Bureau [27]. We have sensor readings at 5-minute resolution from

January 1, 2016 to August 18, 2022.

Sensors exist on freeway and highway lanes as well as entry and exit ramps. Since ramps

may have disparate traffic flow characteristics (for instance, due to interactions with traffic

lights), we exclude them from our analysis and focus only on sensors classified as “mainline”

by Caltrans. These are predominantly on freeways, but a small number occur on rural undi-

vided highways.

Each sensor record indicated the percent of time the sensor was covered by a vehicle during

that period: the occupancy of the sensor. The data also include flow (the number of vehicles

that cross the sensor in a each five-minute period) and the average speed of these vehicles.

These three variables are nonlinearly and in some cases nonmonotonically related. The

“fundamental diagrams” of traffic flow demonstrate these relationships. Fig 2 presents empiri-

cal versions of these fundamental diagrams, calculated from our data. The fundamental dia-

grams relate speed, flow, and density (vehicles per mile of roadway). While density does not

appear in the sensor data, it is closely related to occupancy; the density reflects the percentage

of roadway surface covered by vehicles.

Fig 2A shows the relationship between density and flow. Initially, when the road is uncon-

gested, the density of vehicles and hourly flow of vehicles move in lockstep. However, at

around 30 vehicles/lane/mile, congestion sets in. Density continues to increase, but flow
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Fig 1. Locations of traffic sensors used in the analysis.

https://doi.org/10.1371/journal.pone.0290534.g001
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Fig 2. Empirical fundamental diagrams of traffic flow, showing nonlinear relationships between speed, flow, and

density.

https://doi.org/10.1371/journal.pone.0290534.g002
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increases at a decreasing rate, until eventually gridlock sets in and flow decreases as density

increases.

Fig 2B shows the relationship between speed and flow. As additional motorists travel on the

road, flow increases while speed remains relatively flat. Eventually congestion sets in and

speeds begin to drop. Once congestion becomes sufficiently severe, flows begin to drop as well

as motorists are unable to transit the roadway due to gridlock.

Finally, Fig 2C represents the relationship between density and speed. Unlike the other rela-

tionships, it is monotonic. Initially, the relationship is flat, as additional vehicles on the road-

way increase density but do not affect speed. Once congestion begins to set in, speed begins to

fall as density increases. Since density increases monotonically with traffic, unlike flow, we use

the closely-related occupancy measure as our primary metric to assess peakiness.

Some sensors were not stable over the analysis period. We removed sensors that were not

on the same highway in the same direction with the same number of lanes, or where the

reported location shifted by more than 100 meters, during the analysis period or immediately

thereafter. Many of these may have seen changes due to construction or reconfiguration of

roadways, which could affect the results, and excluding them avoids this potential bias. We also

removed sensors with no reported location in the dataset. These rules excluded 11% of sensors.

There are significant missing data concerns with the sensor data. Across the prepandemic

and post-lockdown periods, approximately 61% of sensor-days are imputed, at least in part, or

are completely missing. Reasons for missingness over time are shown in the top panel of Fig 3.

Most of the missing data has been imputed by Caltrans using a variety of reasonable methods,

primarily using linear regression or median imputation [28, 29]. Sometimes only a few min-

utes of sensor data are missing (orange in Fig 3), but often more than an hour and in many

cases the full day of data are imputed. Some detectors did not report data for all periods on a

given day, and data were not imputed, which are shown in brown. A few sensors were not

present in all data files from Caltrans, shown in teal. The reasons for missing data appear sta-

tionary over time, suggesting that missingness is similar in all periods and therefore less likely

to bias results.

In the analysis that follows, we include nonmissing and imputed data, and drop other

observations at the sensor-day level. We drop any sensors where more than 75% of observa-

tions were missing in either the pre-pandemic or post-lockdown periods. Our results are

robust to and actually become stronger with changes to this threshold (Table 1). There is some

variation by geography in patterns of missingness; the proportion of sensors excluded by this

threshold ranges from 29% in Fresno/Bakersfield to 73% in Los Angeles.

Some sensor-days have unreasonably-large percentages of daily occupancy happening in

the peak hour, with some as large as 100%. This could be due to only a single vehicle traversing

the road in a day, but is more likely due to data errors. We drop sensor-days in the top 1% of

the distribution of the proportion of traffic that occurs during peak, which in this case elimi-

nates sensor-days that report more than 22.8% of their traffic during the peak hour. We also

remove any sensor-days that reported 0 vehicles over the course of the day—possibly bad data,

or roads closed for construction or snow.

Methods

We want to determine if traffic has become less peaked in the post-lockdown period. We

define the post-lockdown period as February 16 to August 18, 2022. California’s statewide

mask mandate was lifted on February 16th [30]. By this time, traffic volumes had nearly

reached their pre-pandemic levels, with the mean sensor seeing 3.7% fewer vehicles per day;

the median was slightly lower at 4.8% fewer vehicles (see Fig 4).
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We define the pre-pandemic period as the equivalent periods in 2016–2019, starting on the

third Wednesday of February and extending for 183 days. To ensure comparable seasonality

effects while making sure our lockdown period was while many places were still under signifi-

cant lockdowns, we split the lockdown period into two parts. We use May 3–August 20, 2020,

and February 17–May 1, 2021 to avoid including prepandemic time or times when vaccines

were widely available. Our results are robust to alternative specifications of the period (see S1

Appendix).

We identify the “peak hour” for each sensor-day based on the hour with the highest average

occupancy. In congested areas, this does not perfectly correspond with the hour with the high-

est total flow, as at highly-congested times the number of vehicles passing the sensor may be

constrained by congestion (in the limit, a highway that is completely stopped could have 100%

occupancy across the hour but zero flow if a single car is sitting atop the sensor the entire

time). Intuitively, most people think of the peak as the most congested time, which this occu-

pancy-based definition captures.

Fig 3. Reasons for missing data across the analysis period, for sensors that were in stable locations and road configurations over the analysis

period.

https://doi.org/10.1371/journal.pone.0290534.g003
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Table 1. Permutation test results, overall and for selected subgroups.

Occupancy

(percentage

points)

Flow

(percentage

points)

Entropy

(centibits)

Daytime

entropy

(centibits)

Minutes of

congestion

Number of sensors

Δ p Δ p Δ p Δ p Δ p

Overall -0.56 0.0 0.03 0.22 2.66 0.0 2.01 0.0 -14 0.0 3691

Urban -0.58 0.0 0.11 0.0 2.02 0.0 1.82 0.0 -19 0.0 3013

Rural -0.44 0.0 -0.4 0.0 5.64 0.0 2.92 0.0 13 0.0 678

By Caltrans district

Sacramento (D3) -1.18 0.0 0.07 0.01 3.2 0.0 3.2 0.0 -8 0.0 159

Stockton (D10) 0.13 0.0 -0.72 0.0 10.08 0.0 3.84 0.0 36 0.0 307

San Francisco Bay Area (D4) -0.62 0.0 0.54 0.0 1.66 0.0 1.97 0.0 -35 0.0 919

Central Coast (D5) 0.26 0.0 0.27 0.0 -5.01 0.0 -0.34 0.0 -2 0.21 213

Fresno / Bakersfield (D6) -0.14 0.0 -0.13 0.0 1.32 0.0 0.72 0.0 0 0.86 265

Los Angeles (D7) -0.55 0.0 0.16 0.0 1.63 0.0 1.59 0.0 -24 0.0 508

Orange County (D12) -1.08 0.0 -0.54 0.0 5.3 0.0 2.94 0.0 -19 0.0 648

Inland Empire (D8) 0.09 0.04 -0.16 0.0 -1.23 0.0 -0.55 0.0 37 0.0 351

San Diego (D11) -0.97 0.0 0.27 0.0 3.92 0.0 3.39 0.0 -37 0.0 321

https://doi.org/10.1371/journal.pone.0290534.t001

Fig 4. Change in mean vehicles per day, pre- to post-pandemic, by sensor.

https://doi.org/10.1371/journal.pone.0290534.g004
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We use four metrics of peakiness. First, we calculate the percentage of the total time the sen-

sor is occupied over the course of the day that occurs during the peak hour. If the peaks are

becoming more spread, the percentage of occupancy occurring in the peak will be reduced.

Second, we calculate the percentage of total daily flow that occurs during the peak hour.

This metric most closely matches the k-factor used in evaluating roadway capacity in traffic

engineering [31]. This is an imperfect measure of peakiness, since the peak hour may have

either higher or lower flow than other hours, depending on the level of traffic congestion. For

instance, Fig 5 shows pre-pandemic and post-lockdown occupancy and flow for a freeway seg-

ment in the Bay Area over the course of an average weekday. During the pre-pandemic peak

hour, the occupancy during the peak hour is high, indicating congestion. However, the flow is

actually lower than other daytime hours, due to gridlock. Post-lockdown, spreading of the

peaks has somewhat decongested rush hour. Even though the peaks have spread out, the

reduction of gridlock has enabled a larger portion of daily vehicles to successfully transit the

intersection during the peak hour.

Third, we calculate the entropy of the normalized occupancy over the course of the day,

defined as �
PT

t¼1
otlog2

ot, where t is the 5-minute time period and ot the proportion of daily

occupancy occurring during time period t. This metric will be larger when traffic is more

evenly spread throughout the day. Due to the nonlinearity in the logarithm, moving occupancy

from a peaky time with high occupancy to a less peaked time with lower occupancy will

increase the metric. We also calculate the same metric for only the daytime period (5:00 AM to

8:00 PM), since the entropy is very sensitive to changes at low-occupancy times, when we are

less concerned about traffic congestion (because d
dx logx is large when x is small).

Finally, we calculate the number of minutes of congestion, defined as traffic speeds below

50 mph (80 km/h), which is roughly the inflection point in Fig 2B. This metric is more sensi-

tive to total daily traffic volumes than others, but provides a tangible check on our results.

We calculate each of these metrics for each sensor on the highway network for each day of

the analysis period. To determine if traffic has become more or less peaky after the pandemic,

we computed and compared mean values of peak-hour occupancy and entropy in the pre-pan-

demic and post-lockdown periods.

To determine if the observed difference in means is statistically significant, we use a permu-

tation test [32, ch. 15]. We randomly shuffle the days assigned to the pre-pandemic and post-

lockdown period 10,000 times, computing the difference in mean values for each permutation.

These permutations form a sampling distribution for the difference in means under the null

hypothesis of no change. We reject this null hypothesis if the observed change in means is

above the 97.5th percentile or below the 2.5th percentile of this empirical distribution.

We randomly permute days rather than individual sensors, because of expected correlations

between observations on the same day—both because many sensors observe adjacent sections

of the same road, and because there may be day-level idiosyncratic effects such as weather.

This block-bootstrapping methodology is commonly used for non-independent data [33].

All analysis was performed using Julia [34], Distributions [35], and Plots [36], among

others.

Results

Our metrics suggest that the peaks indeed spread out during the pandemic, and that they have

not fully returned to their pre-pandemic levels. Fig 6 shows cumulative distributions of peaki-

ness measures before the pandemic, and during and after the lockdown. The percent of daily

occupancy occurring in the peak hour shifted lower during the pandemic (left panel), and has

only partially moved back towards pre-pandemic levels. The entropy shows the opposite
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Fig 5. Flow and occupancy over the average day on southbound US 101 in Santa Clara, California, near the intersection

with Great America Parkway.

https://doi.org/10.1371/journal.pone.0290534.g005
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trend, as expected, with entropy moving higher during the pandemic (indicating peak spread-

ing), and it has only moved back a small amount (right panel).

The permutation test definitively shows that traffic is becoming more spread out, and this

change is statistically significant. As Table 1 shows, the percentage of daily occupancy that

occurs during the peak hour has decreased by 0.56 percentage points (a change of -5.5% from

the pre-pandemic value of 10.3%), and this difference is highly significant. Entropy has

increased by 0.0266 bits, and daytime entropy by 0.0201 bits, changes which are likewise statis-

tically significant. Congestion at the average sensor has dropped by 14 minutes, a mix of peak

spreading and lowered traffic volumes.

Flow, however, does not show a statistically significant difference. This is likely due to

rebound effects from decreased traffic congestion in places where peak-hour gridlock previ-

ously suppressed total flow during the peak hour, as discussed above.

Daytime entropy agrees in sign with overall entropy in all tests, though magnitude varies,

probably due to different traffic levels overnight when all-day entropy is very sensitive.

Where statistically significant, minutes of congestion mostly agrees in sign with the occu-

pancy metric. The exceptions are rural areas, where the mean sensor has seen an increase in

flow, and the robustness check where we specifically selected sensors that saw increased flow

(see S1 Appendix). Total congestion is more sensitive to changes in flow than other metrics,

explaining the discrepancy.

We performed a number of robustness checks to ensure our results are not overly sensitive

to missing data, pre-existing trends, changes in overall traffic volumes, and the exact specifica-

tion of the time period. None of these tests suggest different conclusions; they are presented in

detail in the S1 Appendix.

Heterogeneity

The cumulative distributions and permutation tests show clearly that peaks are spreading.

However, this is not universal. Based on proportion of occupancy occurring in the peak hour,

58% of sensors see a decrease in peakiness of more than 0.1 percentage points, while 33% see

an increase (Fig 7).

To understand the spatial patterns of heterogeneity in peak spreading, we computed per-

mutation tests for urban and rural sensors separately. In rural areas, where peak-hour conges-

tion is less common and thus peak-hour flows are less likely to be suppressed by congestion,

we see the expected negative and statistically significant difference in percent of flow occurring

Fig 6. Cumulative distributions of the portion of daily occupancy occurring the peak hour (left) and entropy of occupancy (right) by period.

https://doi.org/10.1371/journal.pone.0290534.g006
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during the peak hour. This suggests that the overall insignificant effect is related to congestion

suppressing flow during peak hours in urban areas pre-pandemic.

Caltrans divides the state into a number of districts, representing the major regions of the

state. In the four of the state’s largest metropolitan areas (Los Angeles, San Francisco, San

Diego, and Sacramento), and in urban areas overall, peakiness of flow actually increased signif-

icantly. This is likely because flow at peak hours was significantly suppressed by traffic conges-

tion in these metropolitan areas pre-pandemic.

Three regions show statistically significant increases in peakiness as measured by occu-

pancy. The Central Coast is composed of smaller towns and rural areas (including Santa Bar-

bara and San Luis Obispo), and Stockton is in the primarily agricultural San Joaquin Valley.

The less urban nature of these two districts may explain their divergent trend. The Inland

Empire consists of the relatively urban areas east of Los Angeles; the increase in peakiness is

only marginally significant here, though it is significant as measured by entropy as well. Rea-

sons for this are unclear and deserve further study.

Discussion

The data clearly show that travel demand is spreading out in the post-lockdown period, even

as many people’s lives start to settle into a new normal and workers return to the office. This

calls into question future infrastructure investments, as many are justified based on serving

peak-hour travel demand.

Fig 7. Heterogeneity in change in peakiness by sensor.

https://doi.org/10.1371/journal.pone.0290534.g007
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This may not translate to improved traffic, however. In general, increased roadway capacity

leads to “induced demand” rather than reduced traffic [17]. Travelers who were driving on dif-

ferent routes, at different times of day, using alternative modes, or not making trips at all

choose to travel on newly-enlarged roadways, often bringing congestion back to exactly where

it was before. In the long term, additional roadway capacity also guides development, and fur-

ther-flung areas are developed to take advantage of the increased capacity [2]. Spreading of

peaks may similarly lead to induced demand—resulting a roadway system that is still just as

congested at peak times.

There is one reason to believe why a capacity increase from peak spreading may not

induce the same level of demand that other capacity increases do, however. For untolled

roads, time spent in traffic can be considered the cost of using the road [1]. Telecommuting

and flexible work arrangements are likely the main contributor to peak spreading. How-

ever, they also reduce the value of arriving at work at exactly 9 AM, and thus may reduce

the amount drivers are willing to wait in traffic to do so. Since traffic only exists to the

extent people are willing to wait in it, this could lead to a long-term drop in absolute

congestion.

This analysis primarily relied on occupancy data, rather than the flows or vehicle counts

often used in traffic engineering. Results using occupancy data show a much clearer trend than

results using flow data, due to the nonmonotonic relationship between flow and congestion.

Occupancy data more directly measures the experience of motorists, as high occupancy

implies heavy traffic. For this reason, we encourage engineers to consider occupancy as well as

flow anytime they are performing forecasting in a congested corridor.

The pandemic also resulted in a significant increase in interest for bicycling and walking

[37], and many cities responded by making additional roadway space available for safe use

of these modes [38]. These results suggest cities should consider making these changes

permanent. As travel patterns shift, drivers may use the remaining motor vehicle lanes

more efficiently, and additional lanes may not be needed to achieve acceptable

performance.

Public agencies use traffic counts for a wide range of planning activities—anything from

determining whether additional lanes or infrastructure such as traffic lights are needed, to

whether there is space on a road to add safe bicycling facilities without causing gridlock for

motorists, to what mitigations developers are required to provide for their projects. Engineers

use a range of established factors to estimate peak travel demand from these counts. In the

wake of the pandemic, these factors may be changing. Using pre-pandemic factors that are no

longer correct could lead agencies to overbuild infrastructure, leading to increases in cost,

greater climate impacts, and ultimately induce more driving due to more widely available

infrastructure. Public agencies should carefully consider future expansion plans, and consider

planning for lower peak demand than they might otherwise based on pre-pandemic data. Even

if travel continues to increase post-pandemic, if that travel is distributed differently, additional

roadway capacity may not be warranted.

The pandemic is certainly not over, and a major question left open by this research is

whether this spreading of the peak will continue. We believe it will, for two reasons. First, the

level of spreading has was fairly consistent in Summer 2021 and Winter 2022 (see S1 Appen-

dix), even as people increasingly returned to their routines. If motorists were going to revert to

their old behaviors post-pandemic, we would expect to see a trend in that direction, but we do

not. Secondly, we believe working from home is a significant driver of peak spreading, and sur-

vey data indicates that many people expect their employers to continue to offer flexible work

arrangements indefinitely [37].
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Supporting information

S1 Appendix. Appendix: Robustness checks for “Rush hour-and-a-half: Traffic is spread-
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