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Abstract

In the absence of relevant data from randomized trials, nonexperimental studies are needed to estimate

treatment effects on clinically meaningful outcomes. State-of-the-art study design is imperative for mini-

mizing the potential for bias when using large healthcare databases (e.g. claims data, electronic health

records, and product/disease registries). Critical design elements include new-users (begin follow-up at

treatment initiation) reflecting hypothetical interventions and clear timelines, active-comparators (com-

paring treatment alternatives for the same indication), and consideration of induction and latent periods.

Propensity scores can be used to balance measured covariates between treatment regimens and thus

control for measured confounding. Immortal-time bias can be avoided by defining initiation of therapy and

follow-up consistently between treatment groups. The aim of this manuscript is to provide a non-technical

overview of study design issues and solutions and to highlight the importance of study design to minimize

bias in nonexperimental studies using real-world data.
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Rheumatology key messages

. Nonexperimental studies based on real-world data can provide timely answers to urgent clinical questions.

. Rigorous study design features, including active comparators and new users, minimize the potential for bias.

. Propensity scores can help us to identify study populations with equipoise between treatments compared.

Introduction

According to the US Food & Drug Administration’s latest

definition [1, 2], real-world data are ‘data relating to patient

health status and/or the delivery of healthcare routinely col-

lected from a variety of sources’. Primary data are collected

for research purposes, following pre-specified study proto-

cols, applying strong methods to monitor data quality and

ensure comprehensive follow-up, e.g. the data from

Norfolk Arthritis Register (NOAR) assessed patients on

the association of early treatment and disease activity

over 20 years [3]. In contrast, secondary health data are

pre-existing data [4] that have been collected for non-re-

search purposes, including administrative purposes, e.g.

insurance claims data such as US Medicare [5] or originally

for another research study. Such healthcare databases are

often large and representative of populations [6].

The US Food & Drug Administration defined real-world

evidence as ‘the clinical evidence about the usage and

potential benefits or risks of a medical product derived

from analysis of real-world data’ [1, 2]. Real-world evi-

dence can provide valuable information on the effective-

ness and safety of a medical product and inform patient

care and therapeutic development [7]. However, without a

valid methodologic approach, real-world evidence can

lead to flawed conclusions [8]. Thus, in the following

paper, we discuss important methodological consider-

ations when analysing and interpreting real-world data.

Data sources and data quality

Secondary health data are an important source for real-

world evidence as they often allow us to study less
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selected populations [1, 9], e.g. all patients actually trea-

ted [1, 6], than would be possible to recruit into a rando-

mized trial or prospective cohort study. In claims data,

enrolment data, demographic data, medical care and

pharmacy claims data are linked by a common patient

identification number, yielding a longitudinal record of

healthcare encounter data. Overall, claims data are often

‘almost ideal for prescription drugs in the outpatient set-

ting, i.e. for most of the drugs used’ [8]. Claims data are

obviously not perfect because we lack information on

over-the-counter drugs, sample use, and need to estimate

the end date of a prescription from the days’ supply when

patients stop taking a medication. Compared with expos-

ure assessment, the disease data are less accurate [8]

and usually require algorithms to identify important cov-

ariates and outcomes.

As medical practices increasingly become electronic,

more electronic health record (EHR) data become avail-

able. Compared with claims databases, EHR databases

tend to have better validity of diagnosis data [10], cover

results of diagnostic tests, including laboratory data, and

contain information on lifestyle (e.g. smoking and body

mass index). However, EHR databases often do not cap-

ture all medical encounters and therefore lack longitudinal

completeness (e.g. patient care received outside of a

given health system is unobservable) [1].

Treatment registries such as drug/device registries,

service/procedure registries, or disease registries

have been used for studies of the effectiveness and

safety of medical interventions. For example, the

British Society for Rheumatology Biologics Register

has provided valuable information on the safety and ef-

fectiveness of TNF inhibitors (TNFi) [11]. Treatment

registries are often limited, however, by lack of data

on alternative treatments.

With appropriate confidentiality safeguards [10], re-

searchers are increasingly able to link healthcare data-

bases, e.g. claims data with EHR data, which can

provide a more integrated picture of the patient’s health

and healthcare. The linked datasets have unique advan-

tages for epidemiologic research on medical interventions

because they can combine the defined population and

longitudinal completeness of claims data with the cross-

sectional richness of clinical or registry data [8].

The major limitation of secondary health data is that

important data, e.g. disease activity scores, which would

be collected in any primary data collection, are not sys-

tematically collected [10]. This limitation can, however,

sometimes be addressed by data linkages and minimized

by study design. Notably, the abundance of available data

alone does not provide valid answers to important ques-

tions. It is the quality of the data combined with sound

study design and statistical analysis that determines the

validity of the results, and we posit that study design has a

larger influence on validity of observational studies than

analysis [8]. Finally, while state-of-the art study design and

analysis will allow us to validly estimate treatment effects

in certain settings, this does not imply that they can be

implemented in all settings.

Study design

The three main epidemiologic designs for real-world evi-

dence are the cohort study, the case-control study, and

the self-controlled (e.g. case-crossover) study [12]. Cohort

studies enrol participants based on treatments at a certain

point in time and follow them over time to compare the

incidence of outcomes. Case-control studies identify

cases with the outcome of interest, select controls from

the source population (in the risk set for the outcome), and

then compare treatment histories between cases and

controls. Self-controlled studies compare treatments

and outcomes within individuals rather than across indi-

viduals by looking at different treatment periods within the

same person, assuming intermittent treatments and tran-

sient effects on outcomes. We will focus on cohort studies

in this paper.

Unlike randomized trials, where characteristics of par-

ticipants are balanced in expectation, treated and un-

treated groups in a nonexperimental study usually have

meaningful differences in their demographic and clinical

characteristics that can affect outcomes. Thus, sound

study design is needed to minimize such differences

and statistical approaches are typically needed to adjust

for remaining differences in measured characteristics to

estimate treatment effects.

These designs are informed by a causal framework and

can support a causal interpretation of the result given key

assumptions. That is, while statistical associations often

cannot be interpreted as causal effects, the causal frame-

work tells us exactly when they can. Interpretation for

causal effects requires a well-defined treatment as a

hypothetical intervention [13] and the concept of potential

outcomes (i.e. outcomes for the same person under all

treatments, both factual and counterfactual) to compare

the outcome, in fact, observed with counterfactual out-

comes that could have been observed had the treatment

taken on a different level that is actually not observed [14].

Potential biases

While the potential direction and magnitude of bias needs

to be evaluated for each specific study, there are some

common study design-related biases that will tend to

harm the internal validity of real-world evidence, most of

which are related to confounding/selection bias.

Sometimes, it may be hard to differentiate between con-

founding and selection bias. Epidemiologists may use the

term confounding (by indication) for the same thing stat-

isticians/econometricians may use the term selection

bias. For those interested in the distinction between

these two as used by epidemiologists, we refer to

Hernán et al. [15].

Confounding by indication

In observational studies, confounding by indication is a

major concern as treatments are prescribed to patients

by physicians based on their characteristics rather than

being assigned randomly [16, 17]. For example, Raaschou

et al. [18] compared TNFi initiators to biologic-naı̈ve pa-

tients with respect to risk for cancer recurrence. The



authors noted the potential for selection bias if patients

were prescribed TNFi after clinical guidelines cautioned

against TNFi use in patients with a history of cancer [19,

20]. In turn, the TNFi-treated patients may have a lower

baseline risk of recurrence (more favourable tumour char-

acteristics) than biologic-naı̈ve users [18]. In such a scen-

ario, it might be impossible to estimate the effects of TNFi

on cancer recurrence.

Confounding by frailty

Confounding by frailty has been identified as another po-

tential bias for real-world evidence using population-

based data, particularly those among older adults

[21�24]. Because frail persons (close to death) are less

likely to be treated with a multitude of preventive treat-

ments [21, 25], frailty would lead to confounding when

comparing treated with untreated. This confounding

would bias the association between treatments and out-

comes associated with frailty (e.g. mortality). In this set-

ting, the untreated cohort has a higher prevalence of frail

persons and therefore mortality risk irrespective of the

treatment effect on mortality. This will make the drug

look (too) good (more protective or less harmful than it

actually is). Here again the crux of the problem is that

frailty is difficult to measure and therefore hard to control

for [26].

Prevalent user related biases

Another common study design-related potential bias

stems from allowing participants to enter the cohort at

some time after treatment initiation [27]. In pharmacoepi-

demiology, such participants are called prevalent users

because they are already on treatment when they are

observed to enter the cohort and start of treatment is un-

known or ignored. The problem lies in the fact that preva-

lent-user designs will miss early events. Prevalent users

are survivors of the early period of treatment and thus

excluding individuals who experience early events may

lead to substantial bias [28�31]. Mixing incident and

prevalent users can obscure early harm if the person-

time is weighted toward the latter. Besides, if we try to

control for confounding in prevalent users, confounders

measured while on treatment may have already been af-

fected by the treatment itself [31]. The new-user design

avoids this conundrum. A good example for the differ-

ences between prevalent and new-user designs is the

Nurses’ Health Study, which reported a decreased risk

of major coronary heart disease in women who were

prevalent users of oestrogen with progestin, compared

with women who did not use postmenopausal hormones

[32]. After the results from the Women’s Health Initiative

randomized trial showed an increased risk of coronary

heart disease among postmenopausal women in the oes-

trogen plus progestin arm compared with placebo [33], a

re-analysis of Nurses’ Health Study cohort implementing a

new-user design (restricting original cohort to hormone

therapy nonusers during the prior ‘washout’ period, then

establish hormone therapy ‘initiators’ or ‘non-initiators’

and start follow-up) demonstrated results compatible

with the Women’s Health Initiative trial [34]. This example

shows that implementing a new-user design plays a key

role in reducing the potential for bias in observational

studies.

Immortal-time bias

Immortal-time bias arises when treatment is defined

based on some future event and the period of follow-up

prior to treatment initiation is inappropriately classified as

‘treated’ [35]. The term ‘immortal’ is used with respect to

the outcome of interest (e.g. mortality) and highlights the

fact that the outcome of interest cannot occur during this

period by logic, as exposure has yet to be defined. Thus,

the addition of immortal person-time to a given treatment

group leads to an underestimation of the true rate/risk in

that group and spurious beneficial effects of treatments.

Immortal-time bias often occurs when treatments are ad-

ministered in a certain sequence (for example, starting

biologic DMARDs only after synthetic DMARDs), or

when the follow-up starts at a different time point in trea-

ted and untreated groups [36]. The bias is often strong,

which can lead to its detection because results are ‘too

good to be true’. In many situations, however, immortal-

time bias cannot be distinguished from an expected treat-

ment benefit and can mask actual harm. Several practices

reduce the potential for immortal person-time, including

implementation of the new-user study design whenever

possible and avoiding the use of future information to

define cohorts (analyse the data as they are collected,

i.e. prospectively). For instance, in a cohort study ad-

dressing the effects of biologic DMARDs on mortality

and following patients from the beginning of the date of

the first diagnosis of rheumatoid arthritis, the biologic

DMARDs patients will have immortal-time as these pa-

tients have to survive to receive a biologic DMARD. If pa-

tients had the outcome of interest prior to initiating a

biologic DMARD, then their person-time and event

would be attributed to the non-DMARD group, which re-

sults in immortal-time bias favouring biologic DMARDs

[36]. Assigning person-time correctly, e.g. by comparing

biologic DMARDs initiators to patients who have not (yet)

initiated a biologic DMARD, follow-up will start from initi-

ation date and there will be no immortal time.

ACNU design

Over the past two decades, there have been rapid ad-

vances in study design to minimize the potential for bias

in real-world evidence. Arguably the most influential de-

velopment was the new-user study design [28�31]. With a

hypothetical intervention [13] (a well-defined treatment), a

new-user study design identifies all patients in a defined

population, i.e. patients who start a specific treatment

after a certain length of time free of the treatment (wash-

out period), and follows this patient cohort for endpoints

from the time of treatment initiation (T0) [27]. The new-user

design aligns treatment initiation with start of follow-up,

which is a prerequisite for dealing with time varying haz-

ards and solves issues of comparability between preva-

lent users and non-users.

The second influential development was to apply the

principles of the new-user design to all individuals in the



cohort, not just those who received the treatment of inter-

est. To do so, we identify initiators of the drug of interest

and initiators of an alternative treatment for the same in-

dication. By restricting both cohorts to patients with the

same indication for treatment and without contraindica-

tions [28, 37], this so called active-comparator, new-

user (ACNU) design can dramatically reduce the potential

for confounding by indication and frailty in some settings

[37, 38], a major argument previously used against the

usefulness of non-randomized treatment comparisons

[39]. Because the ACNU uses the same timeline for both

cohorts, it also minimizes the potential for immortal time

bias and obviously avoids prevalent user biases.

The implementation of the ACNU design depends on

the presence of an appropriate active-comparator treat-

ment used for the same (or at least: similar) indication as

the treatment of interest. The ACNU design requires that

patients are neither exposed to the drug of interest nor to

the comparator drug during the washout period.

Additional inclusion and exclusion criteria are applied as

in any other cohort study or randomized controlled trial.

Patients are then followed over time to ascertain the out-

come of interest. A general algorithm for the ACNU design

is shown in the study schematic in Fig. 1.

Although it is not always necessary to study patients

from the start of treatment [40, 41] or to use an active-

comparator [42] (e.g. assessing the effects of a dose

change following a laboratory test [41]), generally

speaking, non-initiator or non-active comparator designs

will be more prone to bias compared with the ACNU

design. Non-initiator cohorts usually suffer from difficulties

in establishing a clear and meaningful start of follow up

(T0), which may induce substantial bias.

New users do not necessarily need to be drug naı̈ve:

they are only required to be naı̈ve for the treatments com-

pared during the wash-out period (e.g. one year). The

ACNU design will not work in settings where a treatment,

e.g. TNFi, is generally used as a second line treatment

after a first line treatment, e.g. methotrexate, or in settings

where many patients are switched from a standard treat-

ment to a newly marketed one. From a purely methodo-

logical point of view, a better design in this setting might

be to compare two different TNFi added to methotrexate.

Admittedly, ACNU designs often exclude many patients.

The recently proposed prevalent new-user design [43]

allows patients to be on the comparator treatment

before initiating the treatment of interest and matches

these switchers to patients not switching with a similar

history of comparator drug use. In practice, the potential

gains in sample size will depend on the specific treatment

patterns and data availability and may be smaller than

anticipated [44]. Any gain in sample size will need to be

weighed against the difficulties in the interpretation of

causal effects of the treatment (switching to a drug of

interest from a comparator or not is not the same clinical

question as initiating a drug of interest or the comparator),

FIG. 1 ACNU study design schematics

Panel A illustrates why the active-comparator design (top) is superior to traditional design (bottom) by controlling for

unmeasured confounding by DAS (assuming for simplicity that DAS does not affect choice between etanercept and

infliximab). The same logic would apply for unmeasured confounding by frailty. DAS could obviously be controlled for

analytically if DAS data in proximity to the treatment decision were available. Panel B provides a detailed picture of how to

identify periods of new use of drug A (the same process would apply to drug B) in a claims or other healthcare database.

One individual can have multiple new use periods. The individual can also be a new user of drug A and later a new user of

drug B (or vice versa). Often, analyses will be restricted to the first period of new use. The date of discontinuation (or

switching or augmenting) may be used as a censoring date in as-treated analyses. ACNU: active-comparator, new-user.



and increased potential for confounding bias when com-

paring patients switching or adding treatments with those

staying on treatment [44]. Thus, the ACNU design is still

considered the current standard in pharmacoepidemiolo-

gic research [45]. The concept of ACNU design has been

applied by some of the biologics registers since 2001, e.g.

BSRBR [11] and RABBIT [46].

Treatment changes after initiation

Once new-user cohorts have been identified, it is then

necessary to make decisions about how to deal with treat-

ment changes over time. Similar to a randomized trial,

there are two general possibilities: use the actual treat-

ment received (as-treated), i.e. account for treatment

changes; or ignore treatment changes (initial-treatment)

(Fig. 2). Note that both of these depend on using time

since treatment initiation as the underlying timescale, as

we would do in a randomized trial.

The as-treated analysis approach is similar to the per-

protocol analysis in a randomized trial but not the same,

as there is no pre-specified protocol. For the as-treated

approach, the first challenge is to estimate the date when

the patient discontinued use of the initial treatment. As

this date is rarely known in secondary data, we typically

use the days’ supply of the last prescription plus a grace

period to allow for less than perfect adherence and

assume that treatment stopped at the end of this interval.

Other treatment changes include switching of treatment

groups and augmenting (adding the comparator treatment

to the initial treatment). The advantage of the as-treated

approach is that it considers periods at actual risk due to

the treatment. The disadvantage is that e.g. censoring pa-

tients stopping the initial treatment has the potential to

introduce selection bias because changing treatments is

usually due to a lack of effectiveness or side effects that

are very likely to affect outcome risk. Over time, we there-

fore end up with a select group of patients who do well on

the treatment and therefore are not representative of all

patients who initially received the treatment anymore.

Inverse-probability of censoring weights can be used in

as-treated analyses to address selection bias from inform-

ative censoring [15]. Censoring weights are not widely

used in pharmacoepidemiologic studies using secondary

databases as the prediction of adherence is often difficult

due to missing data on e.g. lab data that drive treatment

decisions, or subtle side effects [8]. In situations where we

do have data that allow us to predict treatment changes

over time (e.g. antiretroviral treatment in patients with HIV

[47]), censoring weights and other methods to reduce se-

lection bias should be used. These methods, including

marginal structural models [48] and g-methods [49], are

discussed below.

The initial-treatment approach is similar to the intent-to-

treat analysis in a randomized trial [50] but not the same

again, as we have no information on the physicians’ intent.

Patients would only be censored for death and end of

enrolment in the database. The advantage of the initial-

FIG. 2 Risk period for as-treated and initial-treatment analysis

The timeline in the Panel A illustrates as-treated analysis. aPatients are censored the earliest of the following: lag period

after change of initial Rx, end of enrolment, end of study (data), or death. If a treatment has an immediate effect on the

incidence rate for the outcome (i.e. no induction period) and there is no delay for diagnosis (i.e. no latent period), follow-

up could start at the date of the first prescription. Similarly, the lag period for stopping can be set to zero, i.e. the date of

discontinuation (or switching or augmenting) may be used as a censoring date, if the biologic carry-over period is short

and there is no latent period. The timeline in the Panel B shows initial-treatment analysis. bPatients will be followed for a

fixed period of time, e.g. 2 years, and are censored at the earliest of the following events: predefined follow-up length of

time after index date, end of enrolment, end of study (data), or death.



treatment analysis is that it protects against selection bias

introduced by conditioning on continuous treatment. It

will, however, introduce bias due to increasing misclassi-

fication of exposure over time, which tends to move the

effect estimate towards the null (but this is not guaran-

teed!). While this is seen as good (as it is more rigorous)

when comparing treatments to no treatment (placebo), it

will be worrisome for safety and for comparative effective-

ness because it may fail to detect differences. To minimize

exposure misclassification, researchers often restrict ini-

tial-treatment analyses to a predefined duration after drug

initiation (e.g. 6 months, 1 year, 2 years).

Risk periods

An additional advantage of the new-user design is that it

allows us to define various risk periods in relation to treat-

ment initiation. These risk periods are often determined

based on bio-mechanism and characteristics of the dis-

ease outcome of interest. With large data, also it may be

possible to empirically derive risk periods. If a treatment

has an immediate effect on the incidence rate for the out-

come (i.e. no induction period [12]) and there is no delay

for diagnosis (i.e. no latent period [12]), follow-up could

start on the day of the first prescription. Otherwise, induc-

tion and latent periods should be carefully considered.

After drug initiation, person-time and outcomes during

the induction and latent period should be ignored. After

treatment discontinuation, person-time and outcomes

during a period equivalent to the biologic carry-over

effect (usually: short) and the latent period combined

should be added to allow for the diagnosis of the end

point that was already present, albeit subclinical, before

the stopping of the treatment (Fig. 2). Very often, the two

periods at the start and the end of treatment are set to the

same duration, which results in lagging all time at risk by

e.g. 6 months. For instance, if the outcome of interest,

rheumatoid arthritis, is diagnosed a week after initiation

of a drug of interest, the rheumatoid arthritis would be

very unlikely caused by the drug, as it would require

time to develop and to be diagnosed. In this hypothetical

setting, it would be reasonable to start follow-up only e.g.

6 months after drug initiation. That is, patients with

rheumatoid arthritis diagnosis during the first 6 months

would be excluded [51]. Similarly, a latent period allowing

for the diagnosis of rheumatoid arthritis developed during

treatment should be added after discontinuation of the

treatment (Fig. 2).

Missing data

Missing data on comorbidities, disease activity (e.g.

DAS28), co-medications (e.g. over-the counter aspirin

use), body mass index, smoking/alcohol use, and lab

values (e.g. C-reactive protein level) will bias effect esti-

mates if they affect treatment choice and, independently,

the outcome of interest due to residual confounding.

Unless all risk factors for the outcome of interest are

known and measured (well) so that we can use analytic

techniques to control for any differences in these across

patient groups compared, our best bet to reduce the po-

tential for confounding bias is to compare treatments that

are generally used for the same patients (by the same or

different physicians), i.e. the ACNU design. For example,

using data from two external validation studies, Stürmer et

al. [52] could show that body mass index was well

balanced between initiators of insulin glargine and

human NPH insulin, two alternative second line diabetic

therapies, and thus could not confound a comparison of

outcomes for which body mass index would be a risk

factor. More recently, Wang et al. [53] demonstrated that

clinical measures available for a small proportion of

Medicare fee-for-service beneficiaries such as

Haemoglobin A1c, blood pressure, low-density lipoprotein

cholesterol are also well balanced between initiators of

incretin therapy and other similar treatments (e.g. dipepti-

dyl peptidase-4 inhibitor vs sulfonylurea).

When internal validation data are available, i.e. when we

have additional information on a potential confounder for a

subset of the patients, we can use this information to

adjust for confounding in the main study by using meth-

ods for handling missing data. Multiple imputation is ar-

guably the most widely used and easy-to-implement

method [54, 55], and rheumatology researchers have

used this technique to deal with missing data [56�59].

Using multiple imputation for confounding control does

require data on the outcome in the validation study. The

general idea is to fit a model predicting the missing cov-

ariate based on the measured covariates (the expected

value), the exposure, and the outcome. Instead of using

a single predicted value for the missing covariate, several

values of the missing covariate are created in separate

datasets by drawing parameters from the posterior distri-

bution of the prediction model [55]. These datasets with-

out missing values are then analysed separately using the

same analytic techniques. Finally, the treatment effect is

estimated by taking the mean estimate across the separ-

ate analyses using a simple formula for the variance. The

minimal assumption needed for multiple imputation is

missing at random, i.e. missingness is not related to the

unobserved values of the variables with missing data [54,

55]. The validation study does not need to be a random

sample of the main study. Absolute size of the validation

study will be more important than relative size [60]. The

above-mentioned study [53] also highlighted that multiple

imputation cannot replace selection of a good active com-

parator: comparing glucagon-like peptide-1 receptor

agonist initiators with insulin initiators (which is usually

reserved for more severe diabetes [61]), the HbA1c cate-

gories were not well-balanced, which led to residual con-

founding even after multiple imputation [53].

Misclassification and measurement error

Although missing information on treatments, covariates

and outcomes is common in real-world data, in claims

databases, it is often assumed there are no missing

data, as the presence of a code is used to define the

presence of a condition and the absence of a code is

used to define absence of the condition. In such a setting

we would be concerned about misclassification.

Misclassification of drug treatments can occur due to

free samples [62], out-of-pocket payments (e.g. $4



generics in the US), and non-pharmacy dispensing (e.g.

during hospitalizations, stays in nursing homes, etc.). The

extent of exposure misclassification will depend on the

specific setting and may often be small for drugs when

studies are based on dispensed prescriptions [8].

Outcome misclassification will be common and should

ideally be quantified based on a validation study [63].

Effects of outcome misclassification on treatment effect

estimates will depend on the scale of association (relative

vs absolute) and on whether misclassification is likely to

be differential with respect to the exposure (classification

error depends on the actual values of other variables [12])

or non-differential across treatment cohorts. When mis-

classification is nondifferential with respect to exposure,

high specificity definitions or algorithms will be preferred

for ratio measures, as perfect specificity will generate un-

biased estimates, even with imperfect sensitivity [64].

Absolute measures, however, will suffer from both low

sensitivity and low specificity. Misclassification of covari-

ates will generally lead to residual confounding. Using all

available information to define confounders, even if differ-

ential, will often improve confounding control [65].

Analysis methods

Propensity scores (and beyond)

Propensity scores (PSs) are increasingly used in epide-

miologic and comparative effectiveness research as an

alternative to multivariable outcome models to control

for measured confounding [66]. PSs can help to identify

study populations in ‘equipoise’ between treatments com-

pared [67�69] and can be used as a diagnostic to evaluate

covariate balance, i.e. a measure of their performance for

confounding control. PSs estimate the probability (pro-

pensity) for treatment for every patient based on the pa-

tient’s own measured characteristics, which can be

predicted using logistic regression, for example. In ex-

pectation, treated and untreated patients (or those treated

with drug A vs B) with the same PS will have the same

distribution of characteristics used to estimate the PS (are

‘exchangeable’) allowing us to directly compare outcomes

between treated and untreated patients without con-

founding. These methods still assume no unmeasured

confounding conditional on the balance of the measured

covariates, which is generally more plausible with the

above-mentioned ACNU design [68].

PS implementation

PSs can be implemented by matching, weighting, stratifi-

cation and modelling [68�71]. Matching untreated individ-

ual patients to each treated patient based on the

estimated PS can be conceptualized as counterfactuals,

representing the experience of the treated people if they

had been untreated. Being able to estimate this so-called

treatment effect in the treated is useful when the treatment

effect is not the same in all patient subgroups. While PS

matching is intuitive and widely used, King and Nielsen

[72] recently argued that it may increase covariate imbal-

ance and degrade causal inference. A recent paper by

Ripollone et al. [73] suggests that the issue raised by

King and Nielsen can be reproduced but has little rele-

vance for standard pharmacoepidemiologic settings.

Weighting strategies can be used with PSs to create re-

weighted pseudo-populations in which treatment is inde-

pendent of the measured confounders [74]. Similar to

matching, the standardized mortality/morbidity ratio

weighting ‘standardizes’ the covariate distribution of the

untreated patients to those of the treated patients. Both

PS matching (assuming we can identify untreated

matches for nearly all treated patients) and standardized

mortality/morbidity ratio weighting [75] seek to estimate

the average treatment effect in the treated, which answers

the question ‘what would have happened if those actually

initiating treatment, did, contrary to the fact, not initiate

treatment’ [75]. Inverse-probability of treatment weighting

estimates the treatment effect in a population whose dis-

tribution of covariates is equal to that found in the entire

study population [48]. Inverse-probability of treatment

weights allow us to estimate the average treatment

effect in the entire population, which answers the question

‘what would have happened if everyone had initiated

treatment vs what would have happened if no one had

initiated treatment’ [48]. Other weighting methods include

the average treatment effect in the untreated weights [75],

matching weights [76], and overlap weights [77]. These

different weighting methods will all result in the same

treatment effect estimate if the treatment effect is uniform

for all subgroups of patients (with slight differences in pre-

cision). Estimates will be different, however, if some pa-

tient subgroups have more benefit or harm [74].

PS trimming

Strong and implausible treatment effect heterogeneity

over the PS has been observed in previous studies [78,

79]. These studies showed that those patients very likely

to be treated (high PS) that were actually not treated and

patients that were very unlikely to be treated (low PS) but

were actually treated, i.e. the patients treated contrary to

prediction, had a very high mortality. The most plausible

explanation in the empirical examples is unmeasured con-

founding by frailty leading physicians to override the most

likely treatment based on measured characteristics [8].

Based on this assumption, Stürmer et al. [24] demon-

strated in a large-scale simulation study that trimming

the tails of the PS distribution reduces the impact of un-

measured confounding by frailty and proposed a range of

cut-points that allows the reporting and discussion of pat-

terns (Fig. 3). Various cut-points for trimming PS tails (or,

conversely, focusing on a population with better equipoise

between treatments) have been proposed [24, 80, 81].

The concept has recently been extended to more than

two treatments [82] and efforts are ongoing to provide

guidance on which trimming method and cut-points to

use [83].

PSs do not allow us to balance unmeasured covariates

and confounders [84]. As with any other analytic strategy,

they need to be combined with sound study design such

as ACNU design [66] to limit the potential for unmeasured

confounding.



Specific methods for time-varying treatments and
confounders

For time-varying treatments and confounders that are af-

fected by prior treatment, standard approaches for con-

founding adjustment can result in bias [85]. Intuitively, if an

exposure can plausibly affect confounders in the future,

then standard modelling approaches that put those con-

founders in the same model for the outcome as exposure

will end up controlling for a causal intermediate, which has

long been known to yield biased effect estimates [85, 86].

Marginal structural models allow us to adjust for time-

varying confounders by inverse-probability of treatment

weighting [48], which separates control for confounding

from the model for the outcome, which consequently

allows one to obtain valid estimates of treatment effects

[47, 48]. Rheumatology researchers have used marginal

structural model to handle time-varying confounders in

well controlled data collection situations [86�90].

An alternative set of strategies are (semi-parametric) g-

estimation and the (highly-) parametric g-formula. Both

these methods and inverse-probability of treatment

weights are rooted in using standardization, which

avoids the issue of adjusting for factors that are caused

by the exposure. G-estimation is an estimating equation-

based method (similar to maximum likelihood) to estimate

the parameters of structural nested models, which char-

acterize the effects of brief ‘blips’ of treatment [49, 91].

The parametric g-formula is an analytic approach that

relies on combining the causal framework with predictive

models and simulations to allow us to contrast health out-

comes in the same population under different treatment

regimens [91]. To our knowledge, neither g-estimation nor

the g-formula have been applied to analytic problems in

rheumatology, but both have seen applications to

problems of estimating effects of occupational exposures

that are subject to time-varying confounding [91�96], esti-

mating effects of multiple exposures on chronic condi-

tions, estimating overall effects of HIV treatments that

may vary over time or be subject to adverse events that

lead to treatment modification [97, 98], and many more

examples from complex longitudinal data. While a full ex-

planation of both of these methods is better left to longer

tutorial papers (e.g. Hernán et al. [98] and Keil et al. [91]),

we note here that the statistical machinery of both g-

methods can be based on standard regression

approaches such as generalized linear models in conjunc-

tion with standard data processing and variable creation.

Some software packages exist to routinize these methods

for simple cases [99�102]. Briefly, inverse-probability of

treatment weighting and g-estimation rely on models for

exposures and the outcome, while the parametric g-for-

mula relies on models for confounders and the outcome.

We note that, of these three approaches, the g-formula is

the most general and, in our experience, provides a valu-

able set of tools that can broaden our understanding of

how health is affected by when, where, and how patients

are treated. Crucially, this approach can open up the pos-

sible questions we can ask beyond what is possible from

comparisons of means or regression coefficients. For ex-

ample, we have used the g-formula previously to ask the

question ‘what would be the effect on mortality of a hypo-

thetical treatment that completely eliminated graft-vs-

host-disease in bone-marrow transplant recipients’ [91].

Having such answers from observational studies can

help target future research in areas where such treatments

might be of greatest benefit. Compared with ACNU

design, which limits unmeasured confounding by design,

confounding bias may be more difficult to control using

inverse-probability of treatment weights or g-estimation

because we often have limited data on the drivers of treat-

ment change (lack of effectiveness, side effects), which

complicates modelling of the treatment process. So-

called doubly-robust methods (such as augmented in-

verse-probability treatment weighting [103] or targeted

minimum loss estimation [104]) also require models for

treatment, and thus may also not improve inference in

this context [105]. The parametric g-formula requires

models for each time-varying-confounder as well as

each outcome, and is potentially subject to stronger mod-

elling assumptions, especially when there are several

time-varying confounders. These modelling assumptions

in the g-formula can potentially be relaxed using machine

learning algorithms. Machine learning classification tech-

niques or regression algorithms can be used to fit the g-

formula under far fewer assumptions about model form

relative to parsimonious parametric models. Crucially,

previous use of machine learning with the g-formula has

been hindered by the rich data needs of machine learning

algorithms. Leveraging large healthcare databases (real-

world data) could overcome this difficulty. Current work

on machine learning in causal inference is focused on

enhancing the validity of confidence intervals for causal

estimands, which remains a challenge [106].

FIG. 3 Schematic of asymmetric propensity score

trimming

In the untreated group (red line), a small portion of patients

were very likely to be treated (high propensity score) but

were actually not treated. Similarly, in the treated group

(blue line), a small portion of patients were very unlikely to

be treated (low propensity score) but were actually trea-

ted. Trimming both tails of the overlapping propensity

score distribution will remove some of the patients treated

contrary to prediction and thus tend to reduce unmeas-

ured confounding by frailty.



Conclusion

Real-world data is often population-based and un-

selected, already collected, and relatively easy to

access, all of which provide advantages for research on

the effects of medical interventions. Without randomiza-

tion nor the possibility to collect data on patient charac-

teristics needed to address confounding analytically,

however, we need to rely on study design to address con-

founding, including confounding by indication and frailty,

which can be achieved by the active-comparator, new-

user study design in specific settings. A promising

active-comparator is in treatment equipoise, i.e. there

are no known strong predictors of either treatment leading

to minor imbalances of measured covariates prior to ad-

justment. PSs can then be used to address remaining

covariate imbalances between treatment groups. Both

state-of-the-art study design and analysis methods are

needed to generate high quality real-world evidence.

Their impact on the potential for residual bias needs to

be carefully evaluated for each study.
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