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Abstract

Background—An inverse association between maternal smoking and preeclampsia has been 

frequently observed in epidemiologic studies for several decades. In the May 2015 issue of this 

journal, Lisonkova and Joseph described a simulation study suggesting that bias from left 

truncation might explain the inverse association. The simulations were based on strong 

assumptions regarding the underlying mechanisms through which bias might occur.

Methods—To examine the sensitivity of the previous authors’ conclusions to these assumptions, 

we constructed a new Monte Carlo simulation using published estimates to frame our data 

generating parameters. We estimated the association between smoking and preeclampsia across a 

range of scenarios that incorporated abnormal placentation and early pregnancy loss.

Results—Our results confirmed that the previous authors’ findings are highly dependent on 

assumptions regarding the strength of association between abnormal placentation and 

preeclampsia. Thus, the bias they described may be less pronounced than was suggested.

Conclusions—Under empirically-derived constraints of these critical assumptions, left 

truncation does not appear to fully explain the inverse association between smoking and 

preeclampsia. Further, when considering processes in which left truncation may result from the 

exposure, it is important to precisely describe the target population and parameter of interest 

before assessing potential bias. We comment on the specification of a meaningful target population 

when assessing maternal smoking and preeclampsia as a public health issue. We describe 

considerations for defining a target population in studies of perinatal exposures when those 

exposures cause competing events (e.g., early pregnancy loss) for primary outcomes of interest.

For several decades, epidemiologic evidence has consistently shown an inverse association 

between maternal smoking during pregnancy and the occurrence of preeclampsia.1,2 In a 

simulation study published in the May 2015 issue of EPIDEMIOLOGY, Lisonkova and 

Joseph assessed whether differential left truncation from early pregnancy loss (henceforth, 

early loss) by maternal smoking status could explain this counterintuitive but frequently 

observed result.3 For a given outcome and a given time scale, when individuals come under 

study after the time scale origin and the outcome can occur prior to the observed time, those 
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outcomes are referred to as ‘left truncated.’4 An analogous scenario arises when a competing 

event occurs prior to outcome follow-up, thus precluding observation of the event of interest. 

Lisonkova and Joseph also refer to this second process as left truncation; and we adopt their 

terminology here. In the context of this paper, left truncation can occur due to early loss (i.e., 

fetal death before 20 weeks of pregnancy), which results in some pregnancies being 

excluded from the study population. Left truncation can induce selection bias of exposure-

outcome associations if the magnitude of left truncation differs by exposure.5

Under a number of assumptions including no direct effect of smoking on preeclampsia, 

Lisonkova and Joseph concluded that such differential left truncation caused a biased risk 

ratio (RR) of 0.85 (−0.16 on the natural log scale, with 95% confidence interval, CI, −0.31, 

−0.02). We wholeheartedly agree with Lisonkova and Joseph that this puzzling association 

should be explored as a possible result of bias, and we commend their thoughtful insights 

into alternative mechanisms. However, the authors’ findings are dependent on three 

assumptions that merit additional consideration.

The simulation study assumed that: (1) All fetuses surviving past 20 weeks of pregnancy 

with abnormal placentation eventually progress to preeclampsia. (2) Zero fetuses surviving 

past 20 weeks of pregnancy without abnormal placentation progress to preeclampsia. (3) 

Maternal smoking has no effect on abnormal placentation. Regarding assumptions 1 and 2, 

pathological placental features are substantially more frequent in preeclamptic pregnancies 

as compared to non-preeclamptic pregnancies, but the two conditions are not 

deterministic.6–8 For example, Vinnars et al. reported that prevalence of pathological 

features (i.e., decidual arteriopathy, accelerated villous maturation, any placental infarction) 

ranged 4–20% in non-preeclamptic pregnancies and 35–80% in severely preeclamptic 

pregnancies.8 Regarding assumption 3, smoking during pregnancy has been associated with 

increased risk of impaired placental development.9,10

The first motivation for this study was to quantify the impact of these three prior 

assumptions on the conclusion that left truncation could explain the observed smoking-

preeclampsia association. Second, a precise discussion of bias must pertain to a well-defined 

target population.11 Thus, we also assessed the impact of the choice of target population on 

the potential for bias due to left truncation. We conclude with a discussion of our findings in 

the context of public health interpretation.

METHODS

To address the impact of these three assumptions on the conclusion that left truncation could 

explain the observed smoking-preeclampsia association, we performed a Monte Carlo 

simulation study using published studies to frame our data generating parameters. We 

estimated bias of the natural-log transformed risk ratio (lnRR) for smoking and preeclampsia 

across a range of scenarios. In a preliminary scenario, we used the same parameters as the 

previous authors and replicated their published RR of 0.85, with similar precision (95% CI 

0.72, 1.01). We provide a SAS program in eAppendix 1 (see SAS macro, Supplemental 

Digital Content 1) that allows the user to explore alternative ranges of assumptions that we 

considered.
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Target population and effect of interest

Though not often stated, in studies of the effects of smoking on preeclampsia, the target 

population has been the hypothetical population of pregnant women, were it possible to 

intervene to prevent all smoking-related early loss without also affecting the risk of 

smoking-related preeclampsia or sources of early loss not related to smoking. That is, the 

causal effect of implicit interest often compares preeclampsia risk between smokers with 

non-smokers, while ensuring similar early loss in both groups. Assuming a time-fixed 

exposure and no heterogeneity of the risk ratio, the hypothetical interventions for this target 

population would correspond to ensuring that all mothers smoke from the earliest point in 

pregnancy versus ensuring that none of them smoke at all, while also ensuring against 

smoking-induced early loss. For comparability with the results of Lisonkova and Joseph who 

appear to have used this target population, we also use this target population and these 

hypothetical interventions in our simulations. In the discussion section, however, we 

illustrate an example using a target population comprising all conceptions.

Simulation setup

Figure 1 shows the causal diagram12 that served as the basis for our simulation. We first 

assigned a Bernoulli (zero-one) random variable for smoking with mean probability of 20%, 

which we consider more plausible than 50%.13,14 We note that smoking prevalence does not 

impact bias, but this alteration leads to more realistic confidence limits.

To weaken the deterministic relation between abnormal placentation and preeclampsia 

(assumptions 1 and 2, represented in Figure 1 by edge ε), we examined a range of potential 

associations between abnormal placentation and preeclampsia based on data published by 

Vinnars et al.8 A detailed description of our approach to define data generating parameters 

using these published estimates is in eAppendix 2 (see Text and Tables, Supplemental 

Digital Content 2). Briefly, we considered two potential marginal risks of preeclampsia, 3% 

and 7%.2 Separately for each assumed marginal risk of preeclampsia, we used prior data8 to 

back-calculate risks of preeclampsia by abnormal placentation status across a range of 

scenarios. We selected data generating parameters for our simulations based on these results, 

so that our simulations would demonstrate how the strength of association between 

abnormal placentation and preeclampsia might impact potential left truncation bias. We 

selected two extreme scenarios (odds ratios, ORs, for abnormal placentation and 

preeclampsia of 2.2 and 96.0) and two middling scenarios (ORs of 7.3 and 21.0) that we 

believe are more plausible. Results pertaining to potential left truncation bias were similar 

for 3% and 7% marginal risk of preeclampsia; we therefore restrict our subsequent 

discussion to settings with marginal risk of preeclampsia of 3%. Given a marginal risk of 

preeclampsia of 3% and using the four ORs enumerated above, we modeled preeclampsia 

for pregnancies with abnormal placentation as a Bernoulli random variable with 

probabilities of 5.13%, 11.42%, 17.80%, and 38.22%; we modeled preeclampsia for 

pregnancies without abnormal placentation as a Bernoulli random variable with 

corresponding probabilities of 2.45%, 1.73%, 1.02%, and 0.64%. To compare our results 

with those derived from the previous authors’ assumptions, we also modeled preeclampsia 

as a Bernoulli random variable with probability of 99.99% for pregnancies with abnormal 
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placentation (assumption 1) and 0.01% for pregnancies without abnormal placentation 

(assumption 2).

To explore the impact of differential abnormal placentation by maternal smoking 

(assumption 3, represented in Figure 1 by edge β), we modeled abnormal placentation as a 

Bernoulli random variable with probabilities uniformly distributed at levels between 5–10% 

and 10–15%; we included settings where abnormal placentation was similar by smoking 

status (5–10% in both groups), higher in smokers (10–15%) than non-smokers (5–10%), and 

lower in smokers (5–10%) than non-smokers (10–15%).

Among non-smokers without abnormal placentation, we modeled early loss as a Bernoulli 

random variable with mean probabilities of 10% and 20%. We modeled the direct effects on 

early loss of smoking (Figure 1, edge α) and abnormal placentation (Figure 1, edge γ) with 

risk ratios of 1.0, 1.5, 2.0, and 2.5. We assumed no departures from multiplicativity of the 

risk ratios for early loss, though such departures can be accommodated in our SAS program. 

Dropping impossible parameter combinations (e.g., 20% referent risk of early loss and risk 

ratios for smoking and abnormal placentation of 2.5 each), we generated data for 746 

simulation scenarios. In each scenario, 1,000 cohorts were simulated, with 10,000 

individuals per cohort. Simulations were conducted using SAS software version 9.3 (SAS 

Institute, Inc.; Cary, North Carolina USA).

RESULTS

Some of our results were similar to those reported by Lisonkova and Joseph. As expected, 

downward bias increased as risk ratios increased for the independent effects of smoking and 

abnormal placentation on early loss. We found that assumptions 1 and 2 in particular had 

notable impact on magnitude of bias. Figure 2 shows apparent risk ratios for the association 

between maternal smoking and preeclampsia across a range of simulation scenarios 

involving abnormal placentation and early loss, given a true risk ratio of 1.0.

When we maintained the previous authors’ assumption of no causal relationship between 

smoking and preeclampsia, but relaxed the assumption of a deterministic relation between 

abnormal placentation and preeclampsia (assumptions 1 and 2), downward bias for the 

smoking-preeclampsia association was greatly attenuated. For example, the previous authors 

reported bias of the lnRR of −0.16 (RR(preeclampsia|smoking)=0.85) as shown in Figure 2B 

(solid line, RR(early-loss|AP)=2.0); this estimate is based on an assumption that all 

surviving pregnancies with abnormal placentation progress to preeclampsia, and zero 

surviving pregnancies without abnormal placentation progress to preeclampsia. When we 

increased the assumed risk of preeclampsia among those without abnormal placentation 

from 0% to 1.02% while maintaining a strong effect of abnormal placentation (AP) on 

preeclampsia (OR(preeclampsia|AP)=21.0), bias of the lnRR was reduced by half, from 

−0.16 to −0.08 (RR(preeclampsia|smoking)=0.92, Figure 2B, dashed-line). Reducing 

OR(preeclampsia|AP)) from 21.0 to 7.3 further decreased bias of the lnRR to −0.04 

(RR(preeclampsia|smoking)=0.96, Figure 2B, dotted-line). The previous authors’ bias 

estimates ranged approximately 20–30% more extreme than the most extreme bias estimates 

from our simulations.
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We also relaxed assumption 3 by allowing for a direct effect of smoking on abnormal 

placentation (Figure 1, edge β), which introduced a causal pathway from smoking to 

preeclampsia. Compared to when smoking was assumed to have no effect on abnormal 

placentation, downward bias was attenuated when smoking decreased risk of abnormal 

placentation, and was amplified when smoking increased risk of abnormal placentation. 

However, the relative impact of assumption 3 on bias was nominal compared to assumptions 

1 and 2 (see eAppendix 3, Text and Figure, Supplemental Digital Content 3).

As expected, downward bias increased markedly with increasing baseline risk of early loss. 

For example, when baseline risk of early loss was 10%, OR(preeclampsia|AP)=21.0, 

RR(early-loss|smoking)=2.0, and RR(early-loss|AP) took values of 1.5, 2.0 and 2.5, the 

apparent RRs(preeclampsia|smoking) were 0.96, 0.92, and 0.88, respectively (Figure 2B, 

dashed line). Holding all other parameters constant, when baseline risk of early loss was 

increased to 20%, the corresponding RRs(preeclampsia|smoking) changed to 0.87, 0.72, and 

0.54.

DISCUSSION

Lisonkova and Joseph posit that left truncation could fully explain the observed inverse 

smoking-preeclampsia association in the literature, based on their biased risk ratio estimate 

of 0.85. However, using published data on the relation between abnormal placentation and 

preeclampsia to inform parameters in our simulation setup, we show that their results are 

highly dependent on their assumptions regarding the strength of that association, and that the 

bias is likely less pronounced than Lisonkova and Joseph described. Summary measures in 

the literature for the relative risk for smoking and preeclampsia are near 0.70;1,2 for left 

truncation bias to explain the inverse association, we would expect the estimated bias in 

plausible simulation scenarios to be consistently stronger than 0.85. Under more 

empirically-derived constraints of these critical assumptions, left truncation does not appear 

to fully explain the inverse association between smoking and preeclampsia. Further, given 

the simulation implicitly contrasts all mothers smoking versus all mothers not smoking, we 

would expect an actual intervention to have a weaker effect since smoking prevalence of 

either 0% or 100% would be unrealistic.

In addition to abnormal placentation, other factors might introduce additional biasing 

pathways from smoking to preeclampsia. For illustrative purposes, we limited the causal 

structure in our simulations to include abnormal placentation as the key determinant of early 

loss that opened a potential biasing pathway. Because smoking is related to myriad health 

outcomes, it likely plays a key role in multiple etiologic pathways related to preeclampsia or 

early loss, leading to additional potential for bias.

Simulation studies and theoretical assessment of causal mechanisms are an essential tool in 

the field of perinatal epidemiology, where early loss limits our ability to directly assess 

many etiologic questions. Simulation studies provide the potential to evaluate hypotheses 

regarding unobservable but plausible phenomena. However, such approaches are strongly 

sensitive to assumptions underlying the simulated or causal mechanisms. Given frequent 

uncertainty regarding unobservable biologic processes in the field of perinatal epidemiology, 
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simulation parameters should be faithful to the existing epidemiologic and clinical evidence, 

and incorporate the full range of possibilities – not just those with the highest likelihood.15

Specifying a meaningful target population

The specification of a meaningful target population extends on general concerns in perinatal 

epidemiology regarding the proper identification of the population-at-risk of an outcome. 

Perinatal epidemiologists often wish to estimate gestational-age-specific occurrence 

measures, which can often be handled using the fetuses-at-risk approach.16,17 In the setting 

of smoking and preeclampsia, however, our primary interest is not in estimating gestational-

age-specific incidence of preeclampsia, but rather in estimating the extent to which smoking 

increases overall risk of preeclampsia. There is limited understanding of the complex 

mechanisms leading to early loss, which alters the population of mothers at risk for 

preeclampsia and is likely affected by maternal smoking. It is therefore in our interest to 

focus on a target population (e.g., all conceptions) which is not characterized by selection 

mechanisms that are exceedingly difficult for us to measure or control.

A risk ratio estimate that is internally valid for one population may be biased/invalid for 

another population, if the two populations differ in the distribution of modifiers on the risk 

ratio scale. Thus, a precise discussion of potential bias should include an explicit target 

population. We could imagine that the target population could include all conceptions 

(observed and unobserved pregnancies), all observed pregnancies, or all pregnancies that 

would be potentially at-risk for preeclampsia, whether the mother smoked or not.

Comparing expectations of the risk ratio in different target populations

For an illustrative example, we posit that a meaningful target of inference is the total 

(unobserved) population of conceptions. Under no confounding, the true risk ratio for all 

conceptions would be [(n preeclampsia events among smokers)/(N conceptions among 

smokers)]/[(n preeclampsia events among non-smokers)/(N conceptions among non-

smokers)]. Note that the denominators refer to conceptions rather than to pregnancies 

surviving at least 20 weeks. Given 1,000 total conceptions, 20% smoking prevalence, and a 

true risk ratio of 1.0 (for illustrative purposes only to serve as a basis for easy assessment of 

upward and downward bias), let us assume the components of the true risk ratio to be 

(10/200)/(40/800).

Previous authors have supposed that in the observed data the number of pregnancies among 

smokers would be disproportionately lower than among non-smokers, because smoking 

causes increased risk of early loss. Under that assumption, let us suppose that 12.5% of 

conceptions among non-smokers experience early loss, and that smokers experience an 

absolute excess risk of early loss due to smoking of 12.5%, resulting in 25% risk of early 

loss among smokers. The observed data would comprise 150 pregnancies for smokers and 

700 pregnancies for non-smokers, and the risk ratio using the observed (biased) data would 

then be (10/150)/(40/700)=1.17. Note that the numerator would not change since all 

preeclampsia events would have been observed in either scenario. In this scenario, where the 

only difference between the observed (biased) risk ratio and the unobserved (true) risk ratio 
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is the exclusion of early losses, the true risk ratio is actually biased upward (1.17>1.0) for 

the target population of all conceptions, counter to the previous authors’ findings.

As mentioned above, the authors’ implicit target population appears to be the hypothetical 

population of pregnant mothers, had we been able to prevent all smoking-related early loss 

(the competing event) without also affecting the risk of smoking-related preeclampsia or 

other sources of early loss. This implication corresponds to removing edge α from the causal 

diagram in Figure 1. Shifting smokers’ risk of early loss from 25% to 12.5% (the risk among 

non-smokers) would result in an increase of smokers in the hypothetical population from 

150 to 175. Based on the assumption that we were able to remove differential early loss 

without affecting the association between smoking and preeclampsia, we would suppose that 

the 25 additional smokers at risk of preeclampsia in the hypothetical population have the 

same risk of preeclampsia (10/150) as the smokers who did not experience early loss, 

resulting in (25×10)/150=1.7 additional preeclampsia events among smokers. The numerator 

would change in this scenario because we suppose that some early losses might have 

resulted in preeclampsia, had the early loss not occurred. The risk ratio in this hypothetical 

population would therefore be equal to (11.7/175)/(40/700)=1.17.

The unbiased risk ratio for this hypothetical target population is exactly equal to the biased 

risk ratio for the target population of all conceptions, which is not surprising since collider 

bias was prevented by the implicit removal of edge α from the causal diagram in Figure 1. 

Another way to prevent collider bias would be to assume we could prevent early loss 

altogether. Under the same assumptions as above, we would again arrive at a risk ratio of 

1.17, still biased for the target population of all conceptions but unbiased for the target in 

which we removed the effects of smoking on early loss. The term ‘bias’ is therefore not 

useful without anchoring it to a specific estimand and target population.

The assumption that an intervention to reduce smoking-related early loss would not affect 

smoking-related preeclampsia would depend strongly on the specific intervention, so these 

results are tenuous in terms of describing realistic interventions. Neither analysis of these 

target populations identifies a biologic effect of smoking on preeclampsia because an 

intervention to eliminate smoking may affect many other mechanisms that influence 

preeclampsia. In fact, the analysis is predicated on the lack of a direct effect of smoking on 

preeclampsia. This example underscores the profound difficulty of intuiting biologic 

mechanisms from epidemiologic data when competing events are caused by the exposure.

Conditioning on the future: target populations in a public health context

An intervention to prevent or reduce maternal smoking throughout pregnancy would have to 

take place no later than conception or, alternatively, at the time when the pregnancy is 

recognized. Choosing to begin follow-up for preeclampsia at a later time (e.g., at 20 weeks 

of pregnancy) because that is when women become at risk of that outcome18 has several 

implications. First, it reduces the target population for the estimand to a subset of the target 

population for the exposure intervention: the women who remain alive and pregnant after 

conception or pregnancy recognition for at least 20 weeks. This restricted target population 

corresponds to the one used by Lisonkova and Joseph and in our simulations.
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Second, given the effect of maternal smoking on early loss and (to a much lesser extent) on 

maternal mortality in that period, this restriction of the target population – if unintentional or 

unrecognized – creates potential for selection bias due to any condition or event that affects 

maternal mortality or early loss and preeclampsia (as shown by the dashed line in Figure 

1).19–23 The upshot is that the effect being estimated in this restricted target population is a 

controlled direct effect: an effect of the smoking intervention through causal paths not 

mediated by survival of the mother and pregnancy to 20 weeks. Without assumptions24 that 

are often implausible, the estimation of such an effect requires special analytic methods.25,26

Finally, restricting the target population in this way would require a second intervention to 

keep every woman alive and pregnant between the time of the smoking intervention (at or 

before pregnancy initiation or recognition) and week 20 of the pregnancy, whether or not she 

smokes in that interval. This second intervention would be highly desirable, but because it is 

not feasible, the estimated effect has no public health relevance.

A second possible approach would be to estimate the effect of the smoking intervention in a 

different restricted target population: one composed of the women whose survival and 

pregnancy status through 20 weeks would not be affected by the smoking intervention. 

Specifically, this ‘principal stratum’ would consist of the women who would remain alive 

and pregnant to at least 20 weeks, whether they smoke or not.27–29 Although this restricted 

target population is unidentifiable and its corresponding effect measure estimates would 

require strong assumptions and special analytic methods, those estimates would have some 

value as measures of potential public health benefit. The estimated benefit would be only 

partial, however, as there is seldom, if ever, any good reason to assume that this subset of 

individuals who receive a public health intervention would be the only ones to benefit from 

it.

A third possibility would be to begin outcome follow-up at the time of the exposure 

intervention.22,27 In the present context, the target population would be defined as all women 

who would be subject to the smoking intervention, at or before the time of conception or 

pregnancy recognition. (We consider this target population to be closely related to the target 

population of all conceptions from the illustrative example.) This target population requires 

a study design that would enroll women who might become pregnant, who are trying to 

become pregnant, or who have just recognized that they are pregnant. We would have to 

accept that no cases of preeclampsia would occur in the first few months of follow-up. In 

return, the considerable benefit would be an avoidance of selection bias caused by 

conditioning on information from the future. Just as it would be unachievable in real life to 

require women to remain alive and pregnant between the smoking intervention and week 20 

of pregnancy, the data analysis for this target population would not condition on such a 

requirement. It may be true that women are considered immune from preeclampsia until 

week 20 of pregnancy based on a commonly used demarcation of the risk period for 

preeclampsia; however, they are not immune during that period from outcomes that are 

affected by the smoking intervention and that also affect preeclampsia: specifically, early 

loss and maternal mortality. Finally, investigators wishing to account for smoking’s effects 

before pregnancy – such as its effect on fecundability30–32 – may need to shift the start of 

outcome follow-up further back in time to identify a relevant target population.
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We conclude that in simulation studies that explore prenatal exposures associated with 

increased risk of early loss and other perinatal outcomes, investigators should implement 

plausible assumptions to estimate hypothetical intervention effects in well-defined target 

populations. Implicit to our discussion is the observation that in the case of maternal 

smoking and preeclampsia, the label ‘left truncation’ may not be precise; however, 

conceptualizing early loss as a competing event for preeclampsia clarifies the consequences 

of analytic decisions intended to address potential collider bias. Future research is needed to 

improve understanding of the causes of early loss and to further develop analytic methods29 

for this setting. Without hypothesizing realistic, ethical interventions for well-defined target 

populations, however, it may be difficult to distinguish between statistical and public health 

measures of importance. Although investigators might have difficulty studying the separate 

effects of a smoking intervention on conception and implantation, early loss, and 

preeclampsia, they should maintain focus on estimating the population effects of realistic 

interventions (including interventions that do not eradicate smoking or early loss altogether).

Smoking may genuinely decrease preeclampsia among all observed pregnancies because 

women more prone to preeclampsia are at higher risk of smoking-related early loss, or 

through incidental effects of cigarette smoke components on placentation.33 Early maternal 

death or pregnancy loss, events that remove the mother from the population-at-risk for 

preeclampsia, are often tragic and should either be taken into account for the biases they can 

create or not omitted from the target population of inference.

As always, a reminder is required. Even if causal, the inverse association between maternal 

smoking and preeclampsia does not change the overall public health message about 

smoking. It is bad for human health in general, and for pregnant women and their 

pregnancies in particular.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Causal diagram representing associations between maternal smoking, abnormal 

placentation, early pregnancy loss, and preeclampsia. Collider bias, denoted by the dashed 

line connecting maternal smoking and preeclampsia, arises in observational studies which 

implicitly restrict to pregnancies that survive past the point of early loss. Some simulation 

scenarios represent settings that assume null associations between smoking and early loss 

(edge α), smoking and abnormal placentation (edge β), or abnormal placentation and early 

loss (edge γ), such that arrows representing those associations would be absent from the 

figure. All simulations were based on the assumption that early loss precludes the 

occurrence of preeclampsia (edge δ).
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FIGURE 2. 
Apparent risk ratio (RR) estimates for the association between maternal smoking and 

preeclampsia (PE) across a range of simulation scenarios involving abnormal placentation 

(AP) and early pregnancy loss (EPL), given a true RR of 1.0. The RR for the association 

between smoking and early pregnancy loss was set to 1.5 (panel A), 2.0 (B), or 2.5 (C). The 

RR for smoking and abnormal placentation was set to 1.0 (assumption 3), the risk of early 

pregnancy loss was set to 10% for non-smokers without abnormal placentation, and the 

marginal risk of preeclampsia (Pr(PE)) was set to 3%. Line types and shading represent 

different assumptions regarding the relation between abnormal placentation and 

preeclampsia (assumptions 1 and 2). Solid lines depict bias estimated under the previous 

authors’ assumptions. Shaded areas cover the range of bias estimated within extreme 

empirically-derived assumptions about the odds ratio (OR) for abnormal placentation and 

preeclampsia; the weakest extreme was OR(PE|AP)=2.2 (Pr(PE)=3%, Pr(PE|AP=1)=5.1%, 

Pr(PE|AP=0)=2.5%) and the strongest extreme was OR(PE|AP)=96.0 (Pr(PE)=3%, Pr(PE|

AP=1)=38.2%, Pr(PE|AP=0)=0.6%). Dashed and dotted lines depict bias estimated under 
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middling empirically-derived assumptions about the OR for abnormal placentation and 

preeclampsia. Justification for our extreme and middling assumptions (shading, dashes, 

dots) is in eAppendix 2.
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