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Abstract

Nonparametric regression models do not require the specification of the functional form between 

the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in 

comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for 

nonparametric regression models with linear smoother form. In particular, we apply this testing 

framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: 

whether covariates that are not currently in the model need to be included, and whether the current 

model fits the data well. The proposed method derives estimated residuals from the model. Then, 

statistical dependence is assessed between the estimated residuals and the covariates using the 

HSIC. If dependence exists, the model does not capture all the variability in the outcome 

associated with the covariates, otherwise the model fits the data well. The bootstrap is used to 

obtain p-values. Application of the method is demonstrated with a neonatal mental development 

data analysis. We demonstrate correct type I error as well as power performance through 

simulations.
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1. Introduction

Nonparametric regression models can provide a better fit when parametric assumptions are 

too restrictive (e.g., linearity of the mean). A popular nonparametric model from the 

machine learning literature is kernel ridge regression (KR) ([1, 2]). In KR regression, the 
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input covariates are mapped to a high (possibly infinite) dimensional space through a kernel 

function, but which is only represent through a kernel matrix of the sample points. Another 

popular method is k-nearest neighbor (KNN) regression ([3]), in which for each observation, 

an average of the outcome is taken across all k-closest values with respect to the covariates. 

The fitted values KNN regression look jagged and are hard to interpret. Smoothing spline 

ANOVA models (SS-ANOVA) are also a popular nonparametric regression methodology 

this time arising from the statistical literature ([4, 5, 6, 7, 8]). SS-ANOVA models estimate 

the mean of an outcome as a smooth function with an ANOVA decomposition which 

partitions the variation of the outcome attributed to the covariates into main effects, two-way 

interactions, and all other higher-level interactions, but as a summation of functions, not 

constants, as with classical ANOVA. The KR, KNN, SS-ANOVA regressions as well as 

kernel smooth regression, local polynomial regression and others are linear smoothers, 

meaning that the fitted values are a linear function of the outcome.

Several goodness-of-fit tests exist for nonparametric regression models. The literature 

contains results on testing a parametric form under the null hypothesis against a 

nonparametric (semiparametric) one under the alternative hypothesis. Examples include tests 

of deviation from the parametric linear regression [9, 10]. Another method tests the 

goodness-of-fit of a linear model, which can potentially detect a nonparametric form under 

the alternative [11]. A test that allows a nonparametric form under the null exists [12], but it 

is only defined for a model with one covariate. A test that allows for multiple covariates in 

the Nadaraya–Watson (NW) regression model [13] exists in the literature. Although similar 

to our method, the usage of the NW regression model is different from our current research 

for two fundamental reasons. First, the NW regression jointly models the mean of the 

outcome conditional on the covariates. Therefore, it is difficult to build examples where the 

conditional mean suffers from lack-of-fit and the test is essentially for heteroscedasticity of 

the residuals. The simulation scenarios are examples where the lack-of-fit comes only from 

the variance of the residuals being dependent on the covariates, and lack-of-fit coming from 

modelling the mean is never explored. Second, nonparametric methods like GAMs and SS-

ANOVA models are not considered. Examples where the lack-of-fit comes from modelling 

the mean incorrectly could be explored by using these models. Given the popularity of these 

regression models, we believe it is important to develop a goodness-of-fit methodology for 

them.

Another article [14] generalizes a Tukey-type test of additivity proposed in[15]. This test can 

only detect two-way interactions that are a product of the main effects, which limits the type 

of departures of goodness-of-fit it can detect. Also, using generalized additive models 

(GAMs) a test for specific interaction terms exists [16]. That means that under the null the 

GAM has some main effects and interactions, and under the alternative the same model 

holds but with the addition of one more interaction. This is not a goodness-of-fit test since 

the user of this test has to specify the model under the alternative. A methodology exists to 

test whether an extra set of variables should be included in a nonparametric regression 

model [17].

Our literature review shows that a general test for nonparametric regression that detects lack-

of-fit in modelling the mean does not exist. This paper resolves these issues by proposing a 
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goodness-of-fit test for nonparametric regressions that are linear smoothers as defined in (2) 

(i.e., regression models that make use of a matrix to transform the outcome vector into a 

vector of fitted values).

Our method is an innovation with respect to previous methods in that:

• Our goodness-of-fit methodology tests a nonparametric model under the null 

against a general alternative, which can include parametric as well as 

nonparametric forms. Other methods require the model under the null to be 

parametric [18, 9, 11, 10], the regression to be univariate [12], require the form 

to be multiplicative, or have specific interactions[14], none of which are 

limitations in the current research.

• Other methods exist for testing the independence between residuals and 

covariates, as in the current research, but only in the context where the lack-of-fit 

comes from departures from the homoscedasticity assumption [19, 13]. The case 

where the lack-of-fit comes from incorrectly modelling the mean has not yet 

been analyzed. This is of importance given the fact that models like GAMs and 

SS-ANOVA have become highly popular as nonparametric models and they can 

suffer from lack-of-fit of the mean.

• Our method can incorporate testing of external variables, as [17]. Thus, we 

present a unified framework to test both for goodness-of-fit with respect to 

variables used to build the model or a set of external variables, an unification that 

was not attempted in the literature cited above.

• Our methodology provides a degree of freedom adjustment for the bootstrap null 

distribution, which was missing from the reviewed literature [11, 13].

We will use SS-ANOVA models throughout in examples, theory and simulations, but we 

emphasize that this methodology can be applied to any nonparametric linear smoother. The 

assessment of goodness-of-fit will be accomplished by fitting the model of interest and 

obtaining estimated residuals. The residuals contain the leftover information that remains 

unexplained by the model. Statistical dependence is then assessed between the estimated 

residuals and the covariates in the model, with the Hilbert-Schmidt independence criterion 

(HSIC). If dependence exists, the model does not capture all the variability in the outcome 

associated with the covariates. If no dependence exists, the model fits the data well. This 

process can also be used with covariates that are not in the model, in order to assess whether 

their absence contributes to lack-of-fit. A test statistic is created from the HSIC between 

residuals and covariates to test for lack-of-fit. The bootstrap is used to derive p-values. The 

degrees of freedom of the model are calculated as the trace of the hat matrix and are used to 

adjusted the variance of the bootstrap distribution. The current article is an extension of the 

goodness-of-fit test for linear models proposed by Sen and Sen [11]. The major 

contributions we make to the literature include: identifying the need for assessing goodness-

of-fit in a nonparametric regression, developing a test statistic, creating a variance 

adjustment to the bootstrap to improve the finite sample performance of the method, 

providing theoretical justification the use of the HSIC, and demonstrating correct type I error 

as well as power performance through numerical simulations.
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This paper is organized as follows. In section 2 the method for goodness-of-fit for linear 

smoothers is introduced. Section 2 includes an introduction to linear smoothers, a formal 

definition of SS-ANOVA, a description of the evaluation of goodness-of-fit using the HSIC, 

the bootstrap for deriving p-values for the test statistic, and illustrative cases of lack-of-fit. In 

section 3, simulation results are presented, in section 4 application of the method is 

demonstrated with a neonatal mental development data analysis, and section 5 is a 

concluding discussion of the proposed method.

2. Goodness-Of-Fit Test For Nonparametric Regressions

This section describes linear smoothers, SS-ANOVA models, the HSIC, our proposed 

goodness-of-fit test based on residuals, and the bootstrap approximation to the null 

distribution. Then, theoretical results and illustrative cases are discussed.

2.1. Linear Smoothers

The current article will develop a goodness-of-fit test for nonparametric regression models 

which are linear smoothers. However, on the next section and the rest of the paper the focus 

will be in one such type of linear smoothers: SS-ANOVA models. The reasons for this is that 

the ANOVA decomposition is very useful in creating examples where interactions and main 

effects are the source of lack-of-fit.

We assume the observed data consists of (Y,X), where Y is a dependent variable, X ∈ [0, 1]p 

is a vector of covariates, and

Y = f 0(X) + η, (1)

for an unknown function f0 and random residual η, which is independent of X, with E[η] = 

0. An i.i.d. sample (Xn,Yn) = {(x1, y1),…,(xn, yn)} is drawn from (1). In the current context, 

a linear smoother is a nonparametric regression that estimates f0 in (1) such that

f = AYn (2)

that means that the vector of fitted values Ŷn can be written as a linear function of the 

outcome vector Yn. This is important because for a nonparametric regression that estimates f̂ 

with the form of (2) the degrees of freedom of the model can be defined as

d f (Yn) = Tr(A), (3)

where Tr(A) is the trace of the hat matrix A. In the context of the current research, the 

degrees of freedom defined in (3) will be used to rescale the estimated residuals such that 

they have the correct variance. This is an essential step in generating the null distribution 
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through the bootstrap for our proposed goodness-of-fit test. When the degrees of freedom 

are not accounted for, the variance of the null distribution is severely underestimated, 

something that was not address in the work by Sen and Sen [11].

2.2. SS-ANOVA

SS-ANOVA models are a special case of linear smoothers. In this section we describe how 

they work. A sample of size n denoted by (x1, y1),…,(xn, yn) is drawn from (1). We assumed 

throughout that the response has been centered. Estimation of f0 can be done through 

minimization of the following penalized least squares with respect to f:

1
n ∑

i = 1

n
(yi − f (xi))

2 + λnJ( f ) . (4)

In the case where p = 1, then f(x) is just a univariate function and J( f ) = ∫ 0
1 f (k)(x)2dx, and 

f(k) is the k-th derivative of f. In the case where p > 1, then f (X) = ∑ j = 1
p f j(X( j)), where X(j) 

is the j-th element of X, and J( f ) = ∑ j = 1
p θ j

−1∫ 0
1 f j

(k)(x)2dx. This corresponds to a 

semiparamtric additive model. In the general case

f (X) = ∑
j

f j(X( j)) + ∑
j < k

f j, k(X( j), X(k)) + ⋯

and J( f ) = ∑
α

θα
−1‖Pα f ‖ℋα

2 + ∑
αβ

θαβ
−1‖Pαβ f ‖ℋαβ

2 + ⋯,

(5)

where λn and θ are tuning parameters which are selected through Generalized Cross 

Validation (GCV). We define the averaging operator as

ℰα f = ∫
0

1
f (t1, …, tp)dtα . (6)

Then, the main effects are defined as fα = (I − ℰα)Πβ≠α ℰβf, two-way interactions as fα,β = 

(I − ℰα)(I − ℰβ)Πγ≠α,β ℰγf, and so forth. Because of this construction the terms of the 

decomposition satisfy side conditions of orthogonality and ℰαfα = 0. Also, Pαf is the 

projection of f into the main effect space indexed by α after subtracting the first k-th 

polynomial terms depending on α, Pα,βf is the projection into the two-way interaction space 

indexed by α and β after subtracting the first k-th polynomial terms and their multiplicative 

interactions depending on α and β, each space with corresponding norms 

‖g‖ℋα
= ∫ 0

1(g(k)(tα))2dtα and ‖g‖ℋαβ
= ∫ 0

1(g(k)(tα, β))2dtα, β, respectively. Higher order terms 

are defined similarly. For more details we refer the reader to [20].
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2.3. Solution to Penalized Least Squares

For simplicity, this section assumes that the functional form of f is additive. Discussion of 

more complicated forms, i.e., which includes two-way and other higher level interactions, 

can be found in [6]. The form in (4) will be minimized assuming that the data generating 

mechanism is (1) such that f(x) = Σj fj(x(j)) or that f ∈ ℋ = ⊕β = 1
p ℋβ. In this case, 

J( f ) = ∑
j = 1

p
θ j

−1∫ 0
1 f j

(k)(x( j))2dx j.

RKHS ⊕ j = 1
p ℋ j: To each fj ∈ ℋj corresponds a reproducing kernel. This happens because 

fj can be decomposed by Taylor expansion at 0 as

f j(x( j)) = ∑
v = 0

k − 1 xv( j)
v! f j

(v)(0) + ∫0
1 (x( j) − u)+

k − 1

(k − 1)! f j
(k)(u)du .

Then ℋj can be decomposed into a tensor sum ℋj = ℋj,0 ⊕ℋj,1, where ℋj,1 is an RKHS 

with the following reproducing kernel

R j, 1(x( j), y( j)) = ∫0
1 (x( j) − u)+

k − 1

(k − 1)!
(y( j) − u)+

k − 1

(k − 1)! du .

The space ℋj,0 has a polynomial basis of degree k − 1 such that 

ϕ j
k(x) = {1, x( j), x2( j), …, xk − 1( j)}. Let ϕk be the polynomial basis of degree k of the tensor 

sum ⊕ j = 1
p ℋ j, 0, such that 

ϕk(x) = {ϕ1
k(x), ϕ2

k(x), …, ϕp
k (x)} = {1, x(1), x2(1), …, xk − 1(1), …, x(p), x2(p), …, xk − 1(p)}. 

Moreover, the reproducing kernel of ⊕ j = 1
p ℋ j, 1 will be RJ (x, y) = Σj=1 θjRj,1(x(j), y(j)).

Solution as a Linear Smoother: With an i.i.d. sample (Xn,Yn) = {(x1, y1),…,(xn, yn)} and 

form of f (x) = ∑ j = 1
p f j(x), by the representer theorem ([8], [21]) the minimizer of (4) has 

the form

f (x) = ∑
j = 1

p
d jϕ j

k(x) + ∑
i = 1

n
ciRJ(xi, x),

where dj is a vector of coefficients of length k. Then the estimation reduces to minimizing

(Yn − Sd − Qc)T(Yn − Sd − Qc) + nλncTQc .
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with respect to the vectors c and d of length n and m, respectively, where m is the length of 

the basis ϕk(x). Here, S is n × m matrix, with the ith row corresponding to ϕk(xi), Q is n × n 
with the (i, j)th entry RJ (xi, xj). Then by taking derivatives and setting equal to 0, we get that 

the solution of (4) with additive function is of the form

Yn = A(λn, θ)Yn,

such that

A(λn, θ) = I − nλn(M−1 − M−1S(STM−1S)−1STM−1), (7)

where M = Q + nλnI. The fitted values Ŷ = A(λn, θ)Yn are in the form of linear smoothers 

as described in (2) and the degrees of freedom of the SS-ANOVA model are Tr(A(λn, θ)).

The parameters λn and θ are chosen by generalized cross-validation (GCV). The GCV 

statistic, as defined by [4], corresponds to

GCV(λn, θ) =
n−1‖(I − A(λn, θ))y‖2

(n−1Tr(I − A(λn, θ)))2
,

where Ŷn = A(λn, θ)Yn. λn and θ are chosen to minimize GCV(λn, θ). In the current 

research, the model used throughout will be the Cubic SS-ANOVA. This corresponds to the 

case where k = 2, or when the integral of the second derivative is being penalized, namely 

∫ 0
1 f j″(x j)

2dx j.

After fitting a SS-ANOVA model (or any other nonparametric linear smoother), it is 

important to do some model diagnostics. Model diagnostics are statistics that check how 

well a model fits to the data. In the current research, the independence of the estimated 

residuals with respect to a set of covariates will be assessed using an independence statistic. 

The independence statistic that we will use is HSIC. A formal definition will be presented in 

the next subsection.

2.4. HSIC

Recent developments in tests of statistical independence are Brownian Distance Covariance 

([22, 23, 24]) and HSIC ([25, 26]). Distance Covariance (DC) is defined as the weighted 

norm between the product of two random vectors’ individual characteristic function and the 

joint characteristic function of these two vectors. If this normed difference is 0 then these 

two vectors are statistically independent. The authors developed a sample version of DC that 

depends only on the Euclidean distances between the points. The HSIC is the Cross-

Covariance Operator between two reproducing kernel Hilbert spaces (RKHSs). When this 
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operator equals 0 for two vectors of random variables that are defined on the domain of two 

different RKHSs with universal kernels, then these two vectors are statistically independent. 

The sample version HSIC is exactly the same as the one for DC except that Euclidean 

distances are replaced by kernel distances.

The HSIC allows us to evaluate the statistical dependence between two random vectors of 

arbitrary dimensions. The goodness-of-fit statistic is based on the HSIC, because it can 

evaluate the statistical dependence between the estimated residuals and a set of covariates.

Let X and Y be vectors of random variables on the domain  and , respectively, with  ⊂ 
ℝp and  ⊂ ℝq, and with joint probability measure Pxy. Let ℱ and  be RKHSs on  and 

 with reproducing universal kernel functions k and l. Gaussian kernels fulfill this 

requirement ([27]). The HSIC(Pxy,X, Y) between X and Y is defined as

Ex, x′, y, y′[k(X, Y′)l(Y , Y′)]] + Ex, x′[k(X, X′)]Ey, y′[l(Y , Y′)] − 2Ex, y[Ex′[k(X, X′)]Ey′[l(Y , Y′)]],

where the subscript under the operator E denotes which random variables we are taking the 

expectation with respect to. We will rely on the following theorem ([25]):

Theorem 1: HSIC(Pxy,X, Y) = 0 if and only if X and Y are statistically independent, i.e., 
Px,y = Px × Py.

With an i.i.d. sample (Xn,Yn) = {(x1, y1),…,(xn, yn)} from Pxy, HSIC(Pxy,X, Y) can be 

estimated consistently with

Tn(Xn, Yn): = n−2Tr(KHLH),

where H,K,L ∈ ℝn×n, Hi,j:= δi,j − n−1, Ki,j:= k(xi, xj), Li,j:= l(yi, yj), and δi,j is the kronecker 

delta. The statistic can be rewritten as

1
n2 ∑

i, j

n
Ki jLi j + 1

n4 ∑
i, j, q, r

n
Ki jLqr − 2 1

n3 ∑
i, j, q

n
Ki jLiq .

The kernels k(xi, xj) = exp(−||xi − xj ||2/σ2) and l(yi, yj) = exp(−||yi − yj ||2/σ2) are called 

Gaussian and satisfy the universal kernel conditions and will be the ones used throughout 

this paper with σ2 held fix at 1 and ||·|| being the Euclidean norm. In the next subsection it 

will be shown how the ability of HSIC to discover arbitrary statistical dependencies can be 

used in conjunction with the estimated residuals from the SS-ANOVA model and a set of 

covariates to form a goodness-of-fit statistic.
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2.5. Goodness-Of-Fit Test Based on Residuals

This subsection introduces the proposed goodness-of-fit test. After fitting a nonparametric 

regression with linear smoother form as in (2), the goodness-of-fit of the model can be 

evaluated by looking at the relationship between a set of covariates and the estimated 

residuals. If dependence exists, the model does not capture all the variability in the outcome 

associated with the covariates and further terms are needed. If no dependence is detected, all 

information in the covariates that is present in the response has been explained through the 

model. The test can consider two sources of lack-of-fit: whether the current model fits the 

data well, (i.e, whether the model captures all the variation in the outcome associated to the 

covariates,) and whether covariates that are not currently in the model need to be included.

The method will be developed in the context of SS-ANOVA models, meaning that theory, 

examples and simulations will be developed using SS-ANOVA models. This is so because 

SS-ANOVA models are particularly useful in illustrating lack-of-fit in a nonparametric 

setting (e.g., by non inclusion of ANOVA terms that should be included in the model). 

However, the test we developed can be applied to any nonparametric regression model with 

solution of the form (2).

We assume that the true data generating mechanism is as in (1). We specify a SS-ANOVA 

model between Y and X. Thus, our model is

Y = f (X) + ε, (8)

and f(X) has a ANOVA decomposition as in (5), but (most likely in applications) does not 

included all possible interactions. For example, a popular choice of model would be the 

main effects only model

f (X) = ∑
j

f j(X( j)), (9)

or the model with all main effects and all two-way interactions

f (X) = ∑
j

f j(X( j)) + ∑
j < k

f j, k(X( j), X(k)) . (10)

We denote η by the true error and ε by the model error.

2.5.1. Lack-of-fit—To assess the goodness-of-fit of the SS-ANOVA model in (8) we define

ε: = Y − f (X),
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and test the following hypotheses:

H0:HSIC(Px, ε, X, ε) = 0
HA:HSIC(Px, ε, X, ε) > 0.

(11)

If the null holds, the model error equals the true error (ε = η), ε is independent of X and 

HSIC(Px,ε,X, ε) = 0. If the alternative holds, then ε = ε(X) ≠ η, ε is dependent on X and 

HSIC(Px,ε,X, ε) > 0. Dependence between ε and X would indicate lack-of-fit because the 

nonparametric model does not capture all the variation in the model with respect to X. It is 

important to emphasize that the alternative where ε is dependent on X can be capture a large 

class of lack-of-fit scenarios.

For example, if the model in (9) is taken in consideration, the alternative can hold because 

the assumption of main effects only model is incorrect, but for example because the true 

model is (10), and in reality we have

ε = ∑
j < k

f j, k(X( j), X(k)) + ⋯ + η,

which still depends on X and η is the true error term. Naturally, not all the terms of the 

decomposition have to exist under the alternative.

Let (Yn,Xn) = {(y1, x1), …, (yn, xn)} be a random sample from the data generating 

mechanism described in (1), and we want to test the null and alternative hypotheses in (11). 

To accomplish this, we define

εi: = yi − f (xi),

for i = 1, …, n, where f̂ is the solution to (4), with f(X) having a ANOVA structure as in (5), 

and let ε̂n = {ε̂1, …, εn̂}. Then, the statistic

nTn(Xn, εn), (12)

is used to test the hypotheses. This test procedure is intuitive, since Tn(Xn, ε̂n) is an estimate 

of HSIC(Px,ε,X, ε), and later we show it is consistent both under the null and the alternative 

hypotheses.

2.5.2. Testing for Significance—We can also test whether covariates that are currently 

not in the model should be included. We assume a model for the data as in (8), meaning that 

f(X) has a ANOVA decomposition as in (5). There exists another set of covariates, which is 

denoted by Z. To assess whether Z should be included in the model, in other words, if there 

is a lack-of-fit with respect to Z, we define
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ε: = Y − f (X),

and test the following hypotheses:

H0:HSIC(Pz, ε, Z, ε) = 0
HA:HSIC(Pz, ε, Z, ε) > 0.

(13)

If the the null holds, the model error equals the true error (ε = η), ε is independent of Z, and 

HSIC(Pz,ε, Z, ε) = 0. This means that Y, after taking into account the effect of X, is 

independent of Z. If the alternative holds, then Y depends on Z even after taking into 

account the effect of X, HSIC(Pz,ε, Z, ε) > 0, and there is a lack-of-fit with respect to Z (i.e., 

Z should be included in the model).

With an i.d.d. sample (Yn,Xn,Zn) = {(y1, x1, z1), …, (yn, xn, zn)} from the data generating 

mechanism described in (1), we can test the null and alternative hypotheses in (11). To 

accomplish this, we define

εi: = yi − f (xi),

for i = 1, …, n, where f̂ is the solution to (4) and let ε̂n = {ε̂1, …, εn̂}. Then, the statistic

nTn(Zn, εn) . (14)

is used to test the hypotheses. This makes sense since Tn(Zn, ε̂n) is an estimate of HSIC(Pz,ε, 

Z, ε), and later we show it is consistent both under the null and the alternative hypothesis.

The test statistic in (12) and (14) is the proposed statistic to test the goodness-of-fit of the 

SS-ANOVA. The test statistic also works for any linear smoother of form (2), but by 

calculating the residuals in (12) or in (14) with their respective models (e.g., using the 

residuals of KNN, KR or any other linear smoother). The model fit can be easily assessed by 

first estimating the residuals and then calculating the test statistic in (12) or (14) to check for 

a lack-of-fit, with respect to the covariates used to create the model (denoted above by Xn) 

or a set of external covariates not previously included in the model (denoted previously as 

Zn), respectively.

To perform the test, we need a valid distribution of (12) and (14) under the null hypothesis. 

An approximation to the null distribution is used. Details are shown in the next section.

2.6. Approximation to the Null Distribution of the Test Statistic with the Bootstrap

The difficulty in using (12) as a test statistic is that it is hard to derive analytically a 

distribution under the null hypothesis that will provide the critical values for a given 
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significance level. One obvious first approach would be to randomly permute the vector ε̂n 

to obtain ε̂π, calculate nTn(Xn, ε̂π) and repeat this process many times to obtain a 

distribution under the null. This approach happens to be flawed. When the vector ε̂n is 

permuted with respect to Xn, complete independence between the two is created. Under the 

null, ε and X are independent. However, even under the null, εn̂ and Xn are not independent 

because of the simple fact that ε̂n is a statistic based on Xn. Under the null, εn̂ is just a good 

approximation of ε. Therefore, a different procedure is needed.

A model based bootstrap, which needs to address the following issues: the bootstrap 

generating process must account for the fact that under the null X and ε are independent, and 

the bootstrap samples Xn
∗ and εn

∗ must be correlated in a similar way that Xn and ε̂n are 

correlated. A bootstrap that fulfills these requirements, and which will be used to derive a p-

value for the test statistic, is described below.

Bootstrap Algorithm

Step 1: Calculate the estimated residuals ε̂i = yi − f̂(xi) and create an empirical distribution 

Pn,eo of the residuals with mass 1/n at each ei
o = σ

σ′(ε i − ε), where 

ε = ∑i = 1
n εi

n , σ′2 =
∑i = 1

n (εi − ε)2

n  and σ2 = ‖Y − AY‖2
Tr(I − A) . Below it will be explained why the 

term σ
σ′  is present in the empirical distribution Pn,eo.

Step 2: Draw a bootstrap sample η* from the empirical distribution Pn,eo and draw a 

bootstrap sample Xn
∗ from the empirical distribution Pn,X of the Xn’s independently of η*. 

Then set yi
∗ as

yi
∗ = f (xi

∗) + ηi
∗ for i = 1, …, n .

Step 3: We estimate f̂* from Yn
∗ and from Xn

∗, and create new bootstrap residuals as

εi
∗ = yi

∗ − f ∗(xi
∗) for i = 1, …, n .

Step 4: Calculate the test statistic as nTn(Xn
∗, εn

∗).

Step 5: Repeat Step 1 through 4 B times, so as to create B bootstrapped test statistics 

nTn(Xn
∗, ε∗)

b
, for b = 1, …, B. This distribution approximates the distribution of nTn(Xn, ε̂n) 

under the null. The p-value is then calculated as
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p‐value = 1
B ∑

i = 1

B
I(nTn(Xn, εn) ≤ nTn(Xn

∗, εn
∗)

b
) .

Remark 1: If hypotheses in (13) need to be tested using test statistic in (14) the same 

bootstrap can be used with small changes. Details are shown in section A.1 of the appendix.

Remark 2: In Step 1, the matrix A corresponds to the hat matrix for linear smoothers as 

defined in (2). Thus, bootstrap procedure described above would work for any 

nonparametric linear smoother model. In the current context of SS-ANOVA models, it 

corresponds exactly to A(λn, θ) as defined in (7).

The variance of a random draw from the empirical distribution of the estimated residuals ε̂i, 

i = 1, …, n, in Step 1, is σ̂′2. Under the null-hypothesis model, σ′2 →p σ2, the true error 

variance. However, σ̂′2 underestimates σ2 whenever the degrees of freedom of the model 

Tr(A) increase relative to n, in finite samples, as shown in figure 1. Hence, if we draw from 

the distribution of the estimated residuals, our sample will have lower variance than what we 

want. One simple solution is to use an estimator of σ2 that takes into account p. The 

estimator we use is σ̂2 whose denominator takes into account the degrees of freedom of the 

model. Whenever we rescale the empirical distribution of the estimated residuals by σ
σ′  then 

a random draw from this empirical distribution will have variance equal to σ̂2, which does 

not underestimate σ2. Asymptotically, there is no difference in rescaling or not because 
σ∘
σ′ →p 1, but simulations show that it makes an important difference for small and moderate 

sample sizes in estimating the null-hypothesis appropriately even when Tr(A) is only 

moderately big. This is an improvement over the bootstrap procedure in Sen and Sen [11], 

which was used in the goodness-of-fit setting too, but for linear models. This finite sample 

variance adjustment is a key contribution of our approach.

2.7. Large Sample Approximation of the Test Statistic and the Bootstrap Procedure

The rationale of using Tn(Xn, ε̂n) is that it approximates HSIC(X, ε). The following theorem 

helps to justify this choice. Assume the true data generating mechanism is as in (1). A 

function f is assumed for the relationship between Y and X. Estimated residuals are obtained 

by finding a solution to (4) and setting ε̂i = yi − f̂(xi) for i = 1, …, n. Below we assume A.1–
A.3, found in the appendix, hold.

Theorem 2: Under H0,

Tn(Xn, εn) →p HSIC(X, η) = 0.

Under HA,
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Tn(Xn, εn) →p HSIC(X, ε(X)) > 0.

Under both H0 and HA,

Tn(Xn
∗, εn

∗) →p 0.

The notation ε(X) emphasizes the fact that under the alternative ε is dependent on X. The 

proof of this result can be found in section A.1. Under the null ε = η, in its turn η is 

independent of X, and hence HSIC(X, η) = 0. Thus under the null, Tn(Xn, εn̂) approximates 

0. Under the alternative, ε depends on X, and HSIC(X, ε) > 0. Thus under the alternative, 

Tn(Xn, ε̂n) will be greater than 0. This is the behavior needed for the test statistic in (12) to 

work. Moreover, the bootstrapped version of the test statistic Tn(Xn
∗, εn

∗) converges to 0 in 

probability under both the null and the alternative. This is what the behavior of the bootstrap 

needs to be, since it must reflect the situation where the correct model is being specified and 

there is no leftover information in the residuals.

Remark: The theorem also holds when ( Xn
∗, Xn, X) is replaced by ( Zn

∗, Zn, Z), where ( Zn
∗, 

Zn, Z) is defined in the section on the bootstrap.

2.8. Illustrative Cases

The framework presented in the current article is a test for the Goodness-of-fit for 

nonparametric regression. SS-ANOVA models are particularly useful for creating examples 

of lack-of-fit in a nonparametric context because we can specify a model were one of the 

ANOVA components is missing that does exist in the true data generating mechanism. This 

subsection presents three examples of lack-of-fit in SS-ANOVA models. In all three cases, 

the null-hypothesis will correspond to the situation where the specified model equals the true 

model, and under the alternative hypothesis, the model is misspecificed by not containing 

one or more terms from the ANOVA decomposition that are present in the true model. 

Constructing examples of lack-of-fit like these would have been difficult through KR or 

KNN regression models.

Case I: Missing Interactions Beyond the Main Effects: After fitting a main effects only 

model with p covariates, a goodness-of-fit test is run. The SS-ANOVA model specified is

Y = ∑
j = 1

p
f j(X( j)) + ε,

which, under the null, equals the true model, but under the alternative hypothesis in (11) the 

true model is:
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Y = ∑
j = 1

p
f j(X( j)) + f 1, …, p(X(1), …, X(p)) + η,

where f1,…,p(X1, …, Xp) is an unspecified function that could be in any functional space 

except for the main effects only space from the SS-ANOVA decomposition. Under the 

alternative assumption, the test will pick up any possible interactions that exist beyond the 

main effects. This case is relevant because in most situations it is hard to know which 

interactions to include among the combinations of main effects, but it is very possible that 

interactions exist even when they are hard to conceptualize.

Case II: Missing Interactions Beyond the Within Group Interactions: Two groups of 

variables indexed by the sets A and B exist. The sets A and B are disjoint and their union is 

equal to {1, …, p}. An SS-ANOVA model is fit which includes all p main effects and all 

possible interactions between variables with indexes in set A and B, separately. The SS-

ANOVA model specified is

Y = f A(X(A)) + f B(X(B)) + ε,

which, under the null, equals the true model, but under the alternative hypothesis in (11) the 

true model is:

Y = f A(X(A)) + f B(X(B)) + f A, B(X(A ∪ B)) + η .

Here, fA(X(A)) includes main effects and all possible interactions among the variables 

indexed by the set A. The same holds for fB(X(B)) but over the set B. The form fA,B(X(A ∪ 
B)) remains unspecified and includes any possible interactions between variables in group A 
and B. Under the alternative assumption, the test should detect any possible interactions 

between covariates in group A and covariates in group B not included in the model 

described in H0. This case is relevant because it is possible to know two groups of covariates 

that are known to be interacting and hence all the interactions are included. However, some 

cross interactions could also happen.

Case III: Testing for Significance: We can test whether a model that includes covariates X 
needs also to include covariates Z. The SS-ANOVA model specified is

Y = f (X) + ε,

which, under the null, equals the true model, but under the alternative hypotheses in (13) is:

Y = f (X, Z) + η .
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Here, f(X) includes main effects and could also include interactions, among the elements of 

X, if they are believed to exist. The same definition holds for f(X, Z), but over the set both X 
and Z. However, the form of f(X, Z) remains unspecified, but covariates Z are specified. 

Under the alternative assumption, the test will detect any covariate Z that is present in f(X, 

Z). This case is relevant because many situations arise where the interest comes in detecting 

a set of covariates which affect the outcome beyond a previously defined set of variables.

In all three cases shown above, in order to perform the test, the model under H0 is fitted and 

a vector of estimated residuals ε̂ is obtained. For the first two cases, nTn(Xn, ε̂) is calculated 

as the test statistic. For the third case the test statistic is nTn(Xn(B), ε̂). These three cases 

represent possible departures of fitness, but they do not exhaust all possibilities. However, no 

matter what the departure is, the goodness-of-fit can always be assessed with respect to an 

Xn (either the matrix used to fit the model or a completely new set of covariates), by 

checking its independence from the estimated residuals.

3. Simulation Studies

This section will present simulation results comparing the variance of the empirical measure 

of the estimated residuals before and after the degrees of freedom of the model adjustment 

described in Step 1 of the bootstrap algorithm. Also, it will present type I error and power 

results of the goodness-of-fit test under the three illustrative cases described above. It is 

important to reiterate that, for all three cases, a specific lack-of-fit has been specified under 

the alternative hypothesis, but that this is not known nor specified previously by the 

researcher. The only objective of the test is to know if the current model under the null is 

sufficient. All simulations use SS-ANOVA models.

Variance Adjustment to the Bootstrap by the Degrees of Freedom of the Model: The 

left panel of figure 1 shows the box plots of σ̂′2 for 500 simulations of the null hypothesis 

for varying p and with a fixed sample size of 100. The right panel shows the same simulation 

scenarios but for σ̂2. The true variance for all the simulations is σ2 = 1 denoted by the 

horizontal line. It can be seen that for moderate increments in dimension σ̂′2 underestimates 

the actual variance, whereas σ2̂ on average estimates σ2 correctly. Thus, if the degrees of 

freedom of the model, as defined in (3), are not accounted for, the bootstrap procedure will 

not work properly for finite samples and will underestimate the actual variance of the 

residuals. Hence, our proposed adjustment is essential for the correct performance of the 

method.

In all cases shown below we simulated ε as N(0, 1) and all X(j) as Uniform(0,1) independent 

of ε. Specific details of all simulations can be found in Appendix A of the supplementary 

materials.

Case I: Missing Interactions Beyond the Main Effects: Simulations were created where the 

null hypothesis only includes main effects. Therefore, we have f (X) = ∑ j = 1
p f j(X( j)), and 

under the alternative f1,…,p(X(1), …, X(p)) is an interaction between covariates. The SS-

ANOVA model specified is
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Y = f (X) + ε,

whereas the models simulated under the null and alternative hypotheses of (11) are

under H0, Y = f (X) + η, and
under HA, Y = f (X) + f 1, …, p(X(1), …, X(p)) + η .

When p = 2, the null model is f(X) = 5sin(πX(1))+2X(2)2 and the interaction added under 

the alternative is f1,2(X(1), X(2)) = 0.75cos(π(X(1) − X(2))). When p = 4, 6 similar models 

were used.

A model of this nature would be hard to fit with a linear model given that the response 

depends sinusoidally on X1 and depends quadratically on X2, hence the handiness of SS-

ANOVA. This simulation setting demonstrate how the ANOVA decomposition can be useful 

in picking up signals from interactions. After fitting a main effects only model, if the 

goodness-of-fit test is significant, then this would mean that main effects are insufficient and 

possibly some interactions exist. When the alternative is f1,2(X(1), X(2)) = 0.75cos(π(X(1) − 

X(2))), the user of the test does not know between which covariates the interaction is 

happening. However, when the test is rejected, it is known that the main effects only model 

is not sufficient and extra interactions might be needed. Thus, the test can be useful in 

finding interactions. From the simulation results in table (1) it can be seen that the method 

preserves the correct type I error both at the 0.01 and 0.05 significance levels. The size of the 

test gets sharper with increasing sample size. This happens because the bootstrap is a large 

sample method and will work best for larger sample size. For a given number of covariates, 

it can be seen that the power increases with larger sample size. Moreover, when more 

covariates are present in the main effects only model, the power decreases. This is due to the 

fact that the more main effects are included, the greater the number of possible interactions, 

and hence the alternative space becomes larger.

Case I: Departures from linearity through interactions: We created another set of 

simulations of Case I in order to compare our method to competitors. Under the null, the 

model is linear in the covariates, but under the alternative the covariates also have quadratic 

interactions. Our method tests the goodness-of-fit of a SS-ANOVA model with main effects 

only. Under the alternative the test statistic nTn will detect the quadratic interactions. The 

test statistics T AN, 1
∗  and Sn, described in [9] and [10] respectively, fit a linear model and 

detect departures from linearity. Although they are not testing the same null and alternative 

hypothesis, all three tests should have power to detect the alternative and should, in theory, 

approach the specified type I error under the null. In table 2 we show the results of the three 

tests, but below we only provide details of the hypotheses formulation for our method.

Simulations were created where the null hypothesis only includes linear main effects. 

Therefore, we have f (X) = ∑ j = 1
p X( j)β j, and under the alternative 
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f 1, …, p(X(1), …, X(p)) = ∑ j < k
p X2( j)X2(k)α j, k contains quadratic interactions between 

covariates. The SS-ANOVA model specified is

Y = f (X) + ε,

whereas the models simulated under the null and alternative hypotheses of (11) are

under H0, Y = f (X) + η, and
under HA, Y = f (X) + f 1, …, p(X(1), …, X(p)) + η .

When p = 2, the null model is f(X) = 2X(1)+2X(2) and the interaction added under the 

alternative is f1,2(X(1),X(2)) = 4X2(1)X2(2). When p = 3 similar models were used.

Our method fits a main effects only SS-ANOVA model and tests its goodness-of-fit. The two 

competing tests fit a linear model and then test if the form is non-linear. The simulation 

results in table (2) show that our methodology has correct type I error and good power 

performance. The type I error is sharp and power increases significantly with increased 

sample size. Across different n and p, our method has sharper type I error than the other two 

methods. For p = 2, our method outperforms the competitors in terms of power. However, 

for p = 4 it underperforms with respect to T AN, 1
∗ . This makes sense since this latter test is 

specific to detecting deviations from linearity whereas our method is trying to detect any 

departures from the main effects only model, which is succeptible to the curse of 

dimensionality. Nevertheless, we have shown that our method performs similarly in this 

scenario when compared to other methods in the literature.

Case II: Missing Interactions Beyond the Within Group Interactions: Simulations were 

created where the null hypothesis includes two distinct groups of variables which contain all 

the main effects and all the interactions within each group, and the alternative adds 

interactions across the groups. Therefore, we have f(X) = fA(X(A))+fB(X(B)) and 

fA,B(X(A∪B)), where fA,B(X(A∪B)) contains interactions between variables in group A and 

B. The SS-ANOVA model specified is

Y = f (X) + ε,

whereas the models simulated under the null and alternative hypotheses of (11) are:

under H0, Y = f (X) + η, and
under HA, Y = f (X) + f A, B(X(A), X(B)) + η .

The first simulation has as null model fA(X(A)) = 5sin(πX(1)) + 2X(2)2 and fB(X(B)) = 

2sin(πX(3)) + X(4)2, and the interaction between group A and B added under the alternative 

is fA,B(X(A ∪ B)) = 0.75cos(π(X(1) − X(3))). Under the alternative, there exists an 
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interaction across group A and B between variables X(1) and X(3). In the second simulation 

setting, similar models were used. This setting is similar to Case I, but here under the null 

model, inter actions have been included as well as main effects. The simulation results in 

table (3) show that the methodology has correct type I error and good power performance. In 

the first scenario, a model with 4 covariates with two sets of variables of size 2 each was 

fitted to the data. The two-way interaction between the 2 covariates in each group was 

included. The second scenario, denoted by a 4* on the table (3), corresponds to the same set-

up defined previously of a model with 4 covariates and two groups of variables, but now in 

the first group there is only one covariate and in the second one there are 3 covariates. The 

model includes all the 3 two-way interactions and the 1 three-way interaction which 

corresponds to all the possible interactions between the 3 covariates in the second group. We 

see that power performance is comparable in either scenario. Moreover, comparing this to 

Case I we see that including extra interactions under the null-hypothesis increases power of 

the test. This is because it reduces the number of possible interactions under the alternative.

Case III: Testing for Significance: We compare our method with the test in [17] used to 

select variables for nonparametric regression. We denote this test statistic as Dn, which 

requires fitting a nonparametric kernel regression under the null. The null and alternative 

hypotheses are the same for both Dn and our test. In the simulations the null hypothesis 

includes only main effects and the alternative adds covariates to the model. Therefore, we 

have f (X) = ∑ j = 1
p f j(X( j)) and fp+1,…,p+q(Z(1), …, Z(q)), where fp+1,…,p+q(Z(1), …, Z(q)) 

are variables leftover not included in f(X). The SS-ANOVA model specified is

Y = f (X) + ε,

whereas the models simulated under the null and alternative hypotheses of (13) are:

under H0, Y = f (X) + η, and
under HA, Y = f (X) + f p + 1, …, p + q(Z(1), …, Z(q)) + η .

When p = 2, the null model is f(X) = 5sin(πX(1))+2X(2)2 and the covariate added under the 

alternative is f3(Z(1)) = sin(π(Z(1))). When p = 4 similar models were used.

Under the alternative, the model fitted under the null is insufficient because f3(X(3)) = 

sin(π(X(3))) also belongs in the model. However, this might not be known to the researcher 

or he/she might want to investigate this question precisely, i.e., through testing. This 

simulation setting shows that this can de done and that the goodness-of-fit test can be used 

as an omnibus test of the likes of [1], [28] and [17] where a set of covariates is tested to see 

if it is related to the outcome after a set of covariates have already being included in the 

model. From the simulation results in table 4, it can be seen that the proposed test has the 

appropriate size and power increases with sample size. In this simulation scenario, the 

setting with 4 covariates included in the model had more power compared to the setting with 

only 2 variables included in the model. This happened because under the former, 2 

covariates were missing under the alternative whereas under the latter only 1 is missing. 
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However, unlike Case I, in this scenario the number of variables included in the model under 

the null does not affect the power of the test, only the covariates added under the alternative 

affect the power. On the other hand, table 4 shows that the test statistic Dn has some 

problems. For the case p = 2, the type I error is moderatly larger than the specified level. 

However, as the sample size increases the actual type I error gets closer to its specified level, 

but never as close as our method. In terms of power, Dn outperforms our method, but this is 

expected given that it has larger type I error than our test. When p = 4, the test Dn performs 

quite badly. The type I error rate is wrong and the power does not increase with sample size 

as rapidly as our method does. It seems Dn does not perform properly when the dimension of 

p increases even moderatly. Thus, it seems our methodology is a better suited for larger p 
situations. We note that although Dn performed badly, there exist improved versions of this 

test adapted to high-dimensional situations [29]. We do not use those modifications as 

comparisons in our simulations since our focus is not in high-dimensional scenarios.

4. Application to Neonatal Psychomotor Development Data

TheMount Sinai Children’s Environmental Health Cohort samples a prospective multiethnic 

cohort of primiparous women who presented for prenatal care with singleton pregnancies at 

the Mount Sinai prenatal clinic or two private practices ([30]). The target population was 

first-born infants with no underlying health conditions that might independently result in 

serious neurodevelopmental impairment. The continuous outcome of interest is the 

Psychomotor Development Index at age 2 (PDI), obtained by administration of the Bayley 

scales of infant development version 2. It is believed that PDI is affected by chemical 

exposures that can be assessed through urine and blood samples. Potentially, PDI could be 

affected by the mother’s age (AGE), and certain chemical exposures, such as the amount of 

Bisphenol A (BPA), uM/L of di-2-ethylhexyl phthalate (DEHP) phthalate metabolites, and 

the amount of dialkylphosphate metabolites (DAP). Maternal exposure biomarkers were 

collected to asses the magnitude of exposure to the compounds. The data set consists of a 

sample of 237 maternal-child dyads. An SS-ANOVA model is built with PDI as the outcome 

and the four predictors variables as follows:

PDI = f 1(BPA) + f 2(DEHP) + f 3(DAP) + f 4(AGE) + ε . (15)

The following paragraph provides an investigation into whether the model in (15) fits the 

data. A series of tests are conducted to evaluate the goodness-of-fit of this model, as well as 

possible alternative models. All p-values are shown in table (5). The first column of table (5) 

shows the null hypotheses that are tested, the second column shows the interaction terms that 

have been added to the basic model in (15), and the third column shows the p-value for each 

null hypothesis. Any p-value less than 0.05 is deemed as evidence of lack-of-fit.

Initially, we test the null hypothesis H0, which corresponds to testing if the model in (15) fits 

the data well. The p-value of H0 is 0.044, hence we detect a lack-of-fit. Since the model in 

(15) is not sufficient, it is possible that interactions need to be considered. Three models are 

possible extensions, and they only differ from (15) with the addition of one of the following 

two-way interactions, respectively: f1,2(BPA,DEHP), f1,3(BPA,DAP), and f2,3(DEHP,DAP). 
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These additions to each model correspond to interactions between the chemical exposures. It 

is theoretically unlikely that interactions exist between the exposures and the mother’s age, 

or that there is a three-way interaction among the exposures; hence models that include such 

interactions are not considered. Testing null hypotheses H1,2, H1,3 and H2,3 corresponds to 

testing the goodness-of-fit of these three models, which include three different two-way 

interactions between exposures. We detected lack-of-fit in the model with the interaction 

f2,3, but we did not detect lack-of-fit for the models with the other two interactions: f1,2 and 

f1,3. We want to include all interactions that could potentially explain the outcome, so we 

include f1,2 and f1,3 in the model, since both models with those interactions do not show a 

lack-of-fit. As a last step, we check the goodness-of-fit of the model that includes the two 

relevant two-way interactions among exposures, and this corresponds to the null hypothesis 

H1,2+1,3. The p-value of this hypothesis is 0.114. Thus, we do not have enough evidence for 

lack-of-fit of the model that includes both two-way interactions. The final form of our model 

is:

PDI = f 1(BPA) + f 2(DEHP) + f 3(DAP) + f 4(AGE) + f 1, 2(BPA, DEHP) + f 1, 3(BPA, DAP) + ε .

5. Discussion

In this article we have developed a general Goodness-of-fit statistic and test for 

nonparametric regression models which are linear smoothers. Particularly, examples, 

simulations, theory and the application were done in the context of the SS-ANOVA model 

with continuous outcome, one type of linear smoother. The method developed works by 

fitting a model currently of interest and tests for independence between the estimated 

residuals and the covariates used to fit the model, or covariates not yet in the model. A 

model based bootstrap is used to get critical values that preserve the correct type I error. In 

comparisons with competing methods, our tests performs favorably. The bootstrap method 

incorporates the degrees of freedom of the linear smoother. The test developed can deal with 

a useful variety of lack-of-fit settings. The major contributions we make to the literature 

include: identifying the need for assessing goodness-of-fit in nonparametric regression, 

developing a test statistic, creating a variance adjustment to the bootstrap to improve the 

finite sample performance of the method, providing theoretical justification of the use of the 

HSIC, and demonstrating correct type I error as well as power performance through 

numerical simulations. We note that our method can easily be extended to detect departures 

from homoscedasticity of variance, but we choose not to analyze it in the current research as 

we believe this was already done extensively in [13, 19].

Some caveats of the method are that when dimension increases and not many interactions 

have already been included in the model, the power decreases. This method might only be 

suitable for small models when the need is to detect any possible interactions among main 

effects. Once extra interactions are included, power increases and the problem becomes 

more manageable. On the other hand, when testing if extra variables not yet included in the 

model need to be included, there is no such problem with the power. This is of importance 

because the test can be used as an omnibus or global test for testing significance of variables. 

One possible criticism of the method is that it rests on the assumption of homogeneity of 
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variance. If this assumption is violated, then the test will pick up the lack-of-fit 

corresponding to the heterogeneous variance, and it will be more difficult to identify where 

the lack-of-fit is coming from. Another problem could arise if there exists a missing 

confounder correlated with a covariate in the current model. If the goodness-of-fit test were 

performed in this setting, with sufficient power it would reject the null, but it would be 

difficult to assess where the lack-of-fit is coming from, since the confounder is not available.

One of the possible extensions of this test would be to allow for heterogeneity of variance in 

the SS-ANOVA model, where the variance could be dependent on the covariates. In this 

way, whenever the homogeneity of variance is violated, the test would still have correct type 

I error and would be more powerful. Another aspect left unaddressed in the current research 

is how to choose the degree of the derivative being integrated in to the penalty term. We have 

used the second derivative in our examples. Other choices are possible too. Further research 

could extend this method to deal with dichotomous outcomes. Also, the Gaussian kernel in 

the HSIC has a parameter that has been fixed to 1 in the current report. However, further 

research could elucidate how to best choose this parameter following a suitable optimality 

criterion.
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Appendix

A.1. Details on the Bootstrap Algorithm

If hypotheses in (13) need to be tested using the test statistic in (14), the following bootstrap 

variation can be used:
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Bootstrap Algorithm

Step 1—Calculate the estimated residuals ε̂i = Yi − f̂(Xi) and create an empirical 

distribution Pn,eo of the residuals with mass 1/n at each ei
o = σ

σ′(ε i − ε), where 

ε = ∑i = 1
n εi

n , σ′2 =
∑i = 1

n (εi − ε)2

n  and σ2 = ‖Y − AY‖2
Tr(I − A) .

Step 2—Draw a bootstrap sample η* from the empirical distribution Pn,eo and draw a 

bootstrap sample ( Xn
∗, Zn

∗) from the empirical distribution Pn,X,Z of the (Xn,Zn)’s 

independently of η*. Then set Y i
∗ as

Yi
∗ = f (Xi

∗) + ηi
∗ for i = 1, …, n .

Step 3—We estimate f̂* from Yn
∗ and from Xn

∗, and create new bootstrap residuals as

εi
∗ = Yi

∗ − f ∗(Xi
∗) for i = 1, …, n .

Step 4—Calculate the test statistic as nTn(Zn
∗, εn

∗).

Step 5—Repeat Step 1 through 4 B times, so as to create B bootstrapped test statistics 

nTn(Zn
∗, ε∗)

b
, for b = 1, …, B. This distribution approximates the distribution of nTn(Zn, ε̂n) 

under the null. The p-value is then calculated as

p‐value = 1
B ∑

i = 1

B
I(nTn(Zn, εn) ≤ nTn(Zn

∗, εn
∗)

b
) .

A.2. Details on Simulation Studies

In this section, specific details on each simulation study of section 3 provided. We simulated 

η as N(0, 1), and all X(j) and Z(i) as Uniform(0,1) independent of each other. Three 

simulation cases are described. First, the general case is described, and then, for each 

subcase, the corresponding true model used under the null and under the alternative are 

shown. The form shown under the null is the model that was used both under the null and 

under the alternative. Hence, the alternative simulates lack-of-fit in the model.

Case I: Missing Interactions Beyond the Main Effects

This case corresponds to the simulation results shown in table 1. Simulations were created 

where the null hypothesis only includes main effects. We have f (X) = ∑ j
p f j(X( j)) and 

f1,…,p(X(1), …, X(p)) is any interaction between covariates. The hypotheses then become
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H0:Y = f (X) + η,
HA:Y = f (X) + f 1, …, p(X(1), …, X(p)) + η .

Below are shown all the instances of Case I.

Case I.1, p=2

f (X) = 5sin(πX(1)) + 2X(2)2,

f 1, 2(X(1), X(2)) = 0.75cos(π(X(1) − X(2))) .

Case I.2, p=4

f (X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) + X(4)2,

f 1, …, 4(X(1), …, X(4)) = 0.5cos(π(X(1) − X(2))) + 0.5cos(π(X(3) − X(4))) .

Case I.3, p=6

f (X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) + X(4)2 + 2sin(πX(5)) + 3X(6)3,

f 1, …, 6(X(1), …, X(6)) = 0.75cos(0.5π(X(1) − X(2))) + 0.5X(2)X(3) + 0.5cos(π(X(4) − X(5) + 2X(6))) .

Case I: Departures from linearity through interactions

This case corresponds to the simulation results shown in table 2. Simulations were created 

where the null hypothesis only includes linear main effects. Therefore, we have 

f (X) = ∑ j = 1
p X( j)β j, and under the alternative f 1, …, p(X(1), …, X(p)) = ∑ j < k

p X2( j)X2(k)α j, k

contains quadratic interactions between covariates. The hypotheses then become

H0:Y = f (X) + η,
HA:Y = f (X) + f 1, …, p(X(1), …, X(p)) + η .

Below are shown all the instances of table 2.

Case I.4, p=2

f (X) = 2X(1) + 2X(2),
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f 1, 2(X(1), X(2)) = 4X2(1)X2(2) .

Case I.5, p=3

f (X) = 2X(1) + 2X(2) + 2X(3),

f 1, 2, 3(X(1), X(2), X(3)) = 4X2(1)X2(2) + 4X2(2)X2(3) .

Case II: Missing Interactions Beyond the Within Group Interactions

This case corresponds to the simulation results shown in table 3. Simulations were created 

where two distinct groups of covariates, A and B, exist. Under the null hypothesis the model 

contains all main effects, and all the interactions within each group. Under the alternative, 

interactions across both groups also exist. Define f(X) = fA(X(A)) + fB(X(B)) and fA,B(X(A 
∪ X(B)), where f(X) = fA(X(A)) + fB(X(B)) contains all main effects and all possible 

interactions within A and B, but not between A and B, and fA,B(X(A ∪ B)) are any 

interactions between covariates in group A and B. Our hypotheses then become

H0:Y = f (X) + η,
HA:Y = f (X) + f A, B(X(A ∪ B) + η) .

Below are shown all the instances of Case II.

Case II.1, p=4

f (X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) + X(4)2,

f A, B(X(A ∪ B)) = 0.75cos(π(X(1) − X(3))),

with A = {X1, X2} and B = {X3, X4}.

Case II.2, p=4

f (X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) + X(4)2 + 0.75cos(π(X(2) − X(3))),

f A, B(X(A ∪ B)) = 0.75cos(π(X(1) − X(4))),

with A = {X1} and B = {X2,X3,X4}.
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Case III: Testing for Significance

This case corresponds to the simulation results shown in table 4. Simulation were created 

where under the null hypothesis the model only includes main effects, and under the 

alternative, covariates are added to the model. Therefore, we have f (X) = ∑ j
p f j(X( j)) and fp

+1,…,p+q(Z(1), …, Z(q)), where fp+1,…,p+q(Z(1), …, Z(q)) are covariates not yet included in 

f(X). The hypotheses then become

H0:Y = f (X) + η,
HA:Y = f (X) + f p + 1, …, p + q(Z(1), …, Z(q)) + η .

Below are shown all the instances of Case III.

Case III.1, p=2

f (X) = 5sin(πX(1)) + 2X(2)2,

f 3(Z(1)) = sin (πZ(1)) .

Case III.2, p=4

f (X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) + X(4)2,

f 5, 6(Z(1), Z(2)) = 0.5Z(1) + sin (πZ(2)) .

A.3. Theoretical Results

The main purpose of this section is to provide a justification for Theorem 2. This theorem 

shows that under the null and alternative Tn(Xn, ε̂n) and Tn(Zn, εn̂) converge to the 

population HSIC, and that the bootstrap version Tn(Xn
∗, εn

∗) and Tn(Zn
∗, εn

∗) converge to 0 

under both the null and the alternative. To simplify the theoretical results, it is assumed that 

the alternative corresponds to the case were covariates are missing from the model, and 

goodness-of-fit is assessed with respect to Zn. Other cases where interactions are missing 

from the model, and where the goodness-of-fit is assessed with respect to Xn follow a 

similar proof and are omitted. Next, we present the setting and Lemmas needed for the proof 

of Theorem 2.

Set-Up

The theoretical results presented here are for the estimation of f0 in (1) through the solution 

of the penalized least squares in (4). For simplicity, it will be assumed throughout that f0 is 

additive. Let the metric ||·||n be defined by
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‖ f ‖n
2 = 1

n ∑
i = 1

n
∣ f (Xi) ∣2 .

Let ℱ j = { f j: [0, 1] R, ∫ ∣ f j
(m) ∣2 < M j}, Mj ≥ 1, and ℱ = ⊕

j = 1
p

ℱ j. Let (y1, x1), …, (yn, xn) 

∈ ℝ × [0, 1]p be a sample from

Yi = ∑
j = 1

p
f 0, j(X( j)) + ηi, i = 1, …, n,

where ∑
j = 1

p
f 0, j(X( j)) ∈ ℱ. Moreover, we have

Z j, n =

1 x1( j) … x1( j)m − 1

⋮ ⋮ … ⋮

1 xn( j) … xn( j)m − 1
.

Let ∑ j = lim
n ∞

1
nZ j, n

T Z j, n, where we assume this limit exists in probability, and let ϕ j, 1
2  be 

the smallest eigenvalue of Σj.

Assumptions

A.1 We assume ϕ j, 1
2 > 0 for all j.

A.2 Uniform subgaussianity of the residuals: there exist β > 0 and Γ > 0 such that

sup
n

max
1 ≤ k ≤ n

E[ exp ∣ βηk ∣2] ≤ Γ < ∞ .

A.3 The tuning parameter is chosen such that λn
−1 = Op(n2m/(2m + 1)) and λn → 0.

Lemma 3—If we solve the penalized least squares model defined in (4) over the RKHS ℱ, 
and A.1–3 hold, then we have that

‖ f 0 − f ‖
n
2 = Op(n−2m/(2m + 1)) .

Proof: Fix δ > 0. We know that 𝒩n( δ
p ; σ, ℱ j) ≤ exp A(

M j
δ/ p)

(1/m)
, where 𝒩n( δ

p ; σ, ℱ j) is the 

smallest number of δ balls needed to cover the open ball B(f0,j, σ) = {fj ∈ ℱj : ||f0,j − fj || ≤ 
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σ} with respect to the ||·||n norm, as defined in Lemma 2.1 in [31]. Let f0 = f0,1 + ··· + f0,p ∈ 
ℱ and let fj be the function in the δ/p-covering such that ||f0,j − fj||n < δ/p. Then,

‖ f 0 − ( f 1 + … + f p)‖
n

≤ ‖ f 0, 1 − f 1‖
n

+ ⋯ + ‖ f 0, p − f p‖
n

≤ δ/ p + ⋯ + δ/ p = δ .

Hence, we have that

𝒩n(δ; σ, ℱ) ≤ 𝒩n(δ/ p; σ, ℱ1)⋯𝒩n(δ/ p; σ, ℱp)

≤ exp pA( Mp
δ )

(1/m)
with M = max {M1, …, Mp} .

From here the proof of Theorem 6.2 in [31] follows for the additive model, hence proving 

the result.

As stated before the proof shown here corresponds to the alternative where covariates are 

missing from the model.

Lemma 4—We fit the following model using penalized least squares in (4):

yi = f (xi) + εi, i = 1, …, n,

where f (xi) = ∑
j = 1

p
f j(xi( j)). Under the alternative, the model is misspecified by several 

additive terms, in other words εi = ∑
j = p + 1

p + q
f j(zi( j − p)) + ηi. Under this situation, we still 

have convergence of the properly specified terms fj, j = 1, .., p, namely

‖ ∑
j = 1

p
f 0, j − ∑

j = 1

p
f j‖

n

2
= Op(n−2m/(2m + 1)),

provided that ε follows subgaussianity in A.2 and that (X(1), …,X(p)) ⊥ (Z(1), …,Z(q)).

Proof: If the εi are uniform subgaussian and (X(1), …,X(p)) ⊥ (Z(1), …,Z(q)) then Lemma 

3 holds in this situation.

Lemma 5—We fit an additive model by minimizing the penalized least squares in (4). 

Under the assumptions A.1–3 we have that
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sup
x ∈ [0, 1]p

∣ f (x) − f 0(x) ∣ = Op(n−m(2m − 2)/(2m + 1)(2m − 1)) .

Proof: By [32], we know that ‖ f − f 0‖2
2 = Op(n−2m/(2m + 1)) where ||·||2 is the L2 norm. By 

applying Lemma 6 we conclude that

‖ f − f 0‖∞ = Op(n−m(2m − 2)/(2m + 1)(2m − 1)) .

Lemma 6—Let {fn} be a sequence of functions such that fn : [0, 1] → ℝ, ||fn||2 → 0, and 

limn ∞ ∫ 0
1( f n

(k)(u))2du < ∞, then

‖ f n‖∞ = O(‖ f n‖2
(2k − 2)/(2k − 1)) .

Proof: Let f : [0, 1] → ℝ and Jk
2( f ) = ∫ 0

1( f (k)(u))2du < ∞ for some integer 1 ≤ k < ∞. Let 

Δ=1/m for some integer 1 ≤ m < ∞. Let f̃ be an approximation to f such that

f
∼(x) = ∑

j = 1

m
f
∼

j(x − ( j − 1)Δ)1{( j − 1)Δ ≤ x < jΔ}

with f
∼

j(x) = f (( j − 1)Δ) + f (1)(( j − 1)Δ)x + ⋯ + f (k − 1)((k − 1)Δ)xk − 1
(k − 1)!  for x ∈ [0, Δ].

For x ∈ [0, Δ] we have that,

∣ f
∼

j(x) − f (x + ( j − 1)Δ) ∣ ≤ ∣ ∫( j − 1)Δ
( j − 1)Δ + x∫( j − 1)Δ

( j − 1)Δ + uk − 1

⋯∫( j − 1)Δ

( j − 1)Δ + u1
f (k)(w)dwdu1⋯duk − 1 ∣

= Γ(3/2)
Γ(k + 1/2) xk − 1/2Jk( f ) .

We also have that

‖ f ‖∞ ≤ ‖ f
∼‖∞ + ‖ f − f

∼‖∞
≤ ‖ f

∼‖∞ + Γ(3/2)
Γ(k + 1/2)Δk − 1/2Jk( f ) .
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For x ∈ [0, Δ],

‖ f
∼

j‖Δ, ∞ = sup
x ∈ [0, Δ]

∣ f
∼

j(x) ∣ ≤ sup
x ∈ [0, Δ]

∣ ∑
l = 0

k − 1
a j, lx

l ∣ ,

where a j, l = f (l)(( j − 1)Δ)
l! . Now,

sup
x ∈ [0, Δ]

∣ ∑
l = 0

k − 1
a j, lx

l ∣ = sup
u ∈ [0, 1]

∣ ∑
l = 0

k − 1
a j, lΔ

lul ∣

≤ ( ∑
l = 0

k − 1
(a j, l)

2Δ2l)
1/2

where the last inequality follows from Cauchy-Schwarz inequality and setting u = 1. Now 

let,

Mk(u) =

1 u u2 … uk − 1

u u2 u3 … uk

⋮ ⋮ ⋮ ⋱ ⋮

uk − 1 uk uk + 1 … u2k − 2

,

where u is a uniform [0, 1] random variable. Now let Ck be the smallest eigenvalue of 

E[Mk(u)] and if Ck > 0 then we have, by change of variables,

‖ f
∼

j‖Δ, 2
2 = ∫0

Δ
( f
∼

j(x))2dx = Δ∫0
1

( f
∼

j(Δu))2du

= ΔE

a j, 0
a j, 1Δ

⋮

a j, k − 1Δk − 1

T

Mk(u)

a j, 0
a j, 1Δ

⋮

a j, k − 1Δk − 1

≥ CkΔ ∑
l = 0

k − 1
a j, l

2 Δ2l .

With this we can see that
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‖ f
∼

j‖Δ, ∞ ≤ Ck
−1/2Δ−1/2‖ f

∼
j‖Δ, 2,

and ‖ f
∼

j‖∞ ≤ Ck
−1/2Δ−1/2( max

j
‖ f

∼
j‖Δ, 2)1/2

≤ Ck
−1/2Δ−1/2‖ f

∼‖2
≤ Ck

−1/2Δ−1/2(‖ f ‖2 + Γ(3/2)
Γ(k + 1/2)Δk − 1/2Jk( f )) .

This implies that,

‖ f ‖∞ ≤ Ck
−1/2Δ−1/2‖ f ‖2 + Γ(3/2)

Γ(k + 1/2)Ck
−1/2Δk − 1Jk( f ) + Γ(3/2)

Γ(k + 1/2)Δk − 1/2Jk( f ) .

If we let a = Ck
−1/2‖ f ‖2 and b = Γ(3/2)

Γ(k + 1/2)Ck
−1/2Jk( f ) and we choose 

Δ = ( a
(2k − 1)b)2/(2k − 1) ∧ 1, then we have for some 0 < C* < ∞ that only depends on k that

‖ f ‖∞ ≤ C∗(‖ f ‖2 ∨ (‖ f ‖2

2k − 2
2k − 1Jk

2
2k − 1( f )) + Jk( f ) ∧ (‖ f ‖2

2k − 2
2k − 1Jk

1
2k − 1( f )) + Jk( f ) ∧ ‖ f ‖2) .

Hence, for a sequence of functions{fn} as defined in the assumptions of the Lemma we get

‖ f n‖∞ = O(‖ f n‖2

2k − 2
2k − 1) .

Lemma 7—Under the same assumptions as Lemma 4 and using the notation from Theorem 

2 we have that

ε1
∗ − η1

∗ →p 0 and ε1 − ε1 →p 0.

Proof: Since, f̂* is an estimator of f̂, and f̂ has the same properties as f0, with probability 

going to 1 as n increases, we can apply Lemma 5 and conclude that ‖ f − f ∗‖∞ →p 0. Thus we 

have

sup
x ∈ [0, 1]q

∣ f ∗(x) − f (x) ∣ ≥ max
Xi

∗ ∈ Xn
∗

∣ f ∗(Xi
∗) − f (Xi

∗) ∣ = max
Xi

∗ ∈ Xn
∗

∣ Yi
∗ + f ∗(Xi

∗) − Yi
∗ − f (Xi

∗) ∣

= max
i ∈ ℕn

∣ εi
∗ − ηi

∗ ∣ ,
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where max
Xi

∗ ∈ Xn
∗
 denotes that we are taking the maximum over a finite bootstrap sample Xn

∗. 

Hence, sup
i ∈ ℕn

∣ εi
∗ − ηi

∗ ∣ →p 0 and we can also say that ε1
∗ − η1

∗ →p 0. The same argument 

follows for ε1 − ε1 →p 0 by replacing f̂* with f̂ and f̂ with f0.

Proof of Theorem 2: We write 

Tn(Zn, εn) = 1
n2 ∑i, j

n Ki jLi j + 1
n4 ∑i, j, q, r

n Ki jLqr − 2 1
n3 ∑i, j, q

n Ki jLiq, where L̂
ij = exp(−(ε̂i − ε̂j)2), 

Li,j = exp(−(εi − εj)2) and Kij = exp(−||zi − zj ||2). Let

HSIC(X, η) = A1 + A2 − A3
and

Tn(Zn, εn) = A1 + A2 − A3 + O(n−1),

where

A1 = 1
n2 ∑

i ≠ j
Ki jLi j,

A2 = 1
n4 ∑

i ≠ j, q ≠ r
Ki jLqr

A3 = 2
n4 ∑

i ≠ j ≠ q
Ki jLiq,

A1 = Ez1, ε1, z2, ε2
[K1, 2L1, 2],

A2 = Ez1, z2
[K1, 2]Eε1, ε2

[L1, 2],

A3 = 2Ez1, ε1
[Ez2

[K1, 2]Eε2
[L1, 2]] .

First, it will be shown that

A1 − A1 = 1
n2 ∑

i ≠ j
Ki, jLi, j − E[K1, 2L1, 2] →p 0.

By Markov’s inequality we have that
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Pr( ∣ 1
n2 ∑

i ≠ j
Ki, jLi, j − E[K1, 2L1, 2] ∣ > ε)

≤ 1
n2ε2Var(K1, 2L1, 2 − E[K1, 2L1, 2]) +

1
n4ε2 ∑

i ≠ j
∑

p ≠ q
Cov(Ki, jLi, j − E[Ki, jLi, j], K p, qL p, q − E[K p, qL p, q])

= 1
n2ε2O(1) + O(1)E[(K1, 2L1, 2 − E[K1, 2L1, 2])(K3, 4L3, 4 − E[K3, 4L3, 4])] .

The first O(1) term comes from the fact that the variance is bounded because |Ki,j L̂
i,j | is 

bounded by 1. The second O(1) term comes from the fact that the number of elements in the 

double summation compared to n4 is of magnitude O(1). Under H0, it holds that 

∑
j = p + 1

p + q
f 0, j(zi( j)) = 0 for all i. Then, it holds that εi = ηi for all i. Now, by applying Lemma 7 

we know that

(ε1, ε2, ε3, ε4) − (η1, η2, η3, η4) →p 0,

and by the continuous mapping theorem we have that

K1, 2L1, 2 − K1, 2L1, 2 →p 0.

Since K1,2 L̂
1,2 is bounded it is also uniformly integrable, thus

E[K1, 2L1, 2] E[K1, 2L1, 2] .

Moreover,

E[K1, 2L1, 2K3, 4L3, 4] E[K1, 2L1, 2K3, 4L3, 4] = E[K1, 2L1, 2]E[K3, 4L3, 4] .

Hence, the covariance will go to 0 as n→∞. Then, we can conclude that

1
n2 ∑

i ≠ j
Ki, jLi, j − E[K1, 2L1, 2] →p 0.

Above we have already shown that E[K1,2 L̂ 1,2] → E[K1,2L1,2] so we can conclude that
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1
n2 ∑

i ≠ j
Ki, jLi, j − E[K1, 2L1, 2] →p 0.

Similar arguments follow for A2 − Â2 and A3 − Â3. Hence, we have that

Tn(Zn, εn) →p HSIC(Z, η) = 0.

Under HA the same result holds by Lemma 4 and Lemma 7 except that η is replaced by ε 
and HSIC(Z, ε) > 0, since ε depends on Z. Hence, we have that

Tn(Z, εn) →p HSIC(Z, ε) > 0.

Under H0 and HA, HSIC(Zn
∗, ηn

∗) = 0 since Xn
∗ and ηn

∗ were sampled independently. From 

Lemma 7 we have that ε1
∗ − η1

∗ →p 0 and hence from the same arguments as above we have 

that

Tn(Zn
∗, εn

∗) − HSIC(Zn
∗, ηn

∗) →p 0.
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Figure 1. Variance Adjustment of the Distribution of the Estimated Residuals
Variance of the estimated residuals over 500 simulations. The variance is shown as the 

number of variables p in the model increases. The left panel shows the variance without 

adjustment, the right panel shows the variance with adjustment. The true variance is 1, 

which corresponds to the horizontal line.
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Table 1

Missing Interactions Beyond the Main Effects

Type I Error

Var. Sig. n=100 n=300 n=500

2 0.01 0.008 0.009 0.009

2 0.05 0.045 0.049 0.046

4 0.01 0.008 0.008 0.009

4 0.05 0.049 0.046 0.048

6 0.01 0.006 0.007 0.009

6 0.05 0.047 0.047 0.049

Power

Var. Sig. n=100 n=300 n=500

2 0.01 0.019 0.152 0.512

2 0.05 0.106 0.493 0.886

4 0.01 0.008 0.0724 0.21

4 0.05 0.051 0.264 0.568

6 0.01 0.066 0.015 0.034

6 0.05 0.054 0.085 0.17

Var. corresponds to the number of variables used in the null model and Sig. corresponds to the significance level used in the test.
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Table 3

Missing Interactions Beyond the Within Group Interactions

Type I Error

Var. Sig. n=100 n=300 n=500

4 0.01 0.010 0.0120 0.0120

4 0.05 0.050 0.048 0.052

4* 0.01 0.011 0.011 0.010

4* 0.05 0.052 0.0531 0.051

Power

Var. Sig. n=100 n=300 n=500

4 0.01 0.033 0.138 0.366

4 0.05 0.088 0.302 0.601

4* 0.01 0.035 0.144 0.375

4* 0.05 0.098 0.305 0.622

Var. corresponds to the number of variables used in the null model and Sig. corresponds to the significance level used in the test.
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Table 5

Testing of Goodness-of-fit

Null Added Interactions p-value

H0 0.044

H1,2 f1,2 0.158

H1,3 f1,3 0.077

H2,3 f2,3 0.029

H1,2+1,3 f1,2 + f1,2 0.114

P-values less than 0.05 are thought as evidence of lack-of-fit.
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, but simulations show that it makes an important difference for small and moderate sample sizes in estimating the null-hypothesis appropriately even when Tr(A) is only moderately big. This is an improvement over the bootstrap procedure in Sen and Sen [11], which was used in the goodness-of-fit setting too, but for linear models. This finite sample variance adjustment is a key contribution of our approach.
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	2.7. Large Sample Approximation of the Test Statistic and the Bootstrap Procedure
	Theorem 2: Under H0,Under HA,Under both H0 and HA,The notation ε(X) emphasizes the fact that under the alternative ε is dependent on X. The proof of this result can be found in section A.1. Under the null ε = η, in its turn η is independent of X, and hence HSIC(X, η) = 0. Thus under the null, Tn(Xn, ε̂n) approximates 0. Under the alternative, ε depends on X, and HSIC(X, ε) > 0. Thus under the alternative, Tn(Xn, ε̂n) will be greater than 0. This is the behavior needed for the test statistic in (12) to work. Moreover, the bootstrapped version of the test statistic 
 converges to 0 in probability under both the null and the alternative. This is what the behavior of the bootstrap needs to be, since it must reflect the situation where the correct model is being specified and there is no leftover information in the residuals.Remark: The theorem also holds when (
, Xn, X) is replaced by (
, Zn, Z), where (
, Zn, Z) is defined in the section on the bootstrap.
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	2.8. Illustrative Cases
	Case I: Missing Interactions Beyond the Main Effects: After fitting a main effects only model with p covariates, a goodness-of-fit test is run. The SS-ANOVA model specified iswhich, under the null, equals the true model, but under the alternative hypothesis in (11) the true model is:where f1,…,p(X1, …, Xp) is an unspecified function that could be in any functional space except for the main effects only space from the SS-ANOVA decomposition. Under the alternative assumption, the test will pick up any possible interactions that exist beyond the main effects. This case is relevant because in most situations it is hard to know which interactions to include among the combinations of main effects, but it is very possible that interactions exist even when they are hard to conceptualize.Case II: Missing Interactions Beyond the Within Group Interactions: Two groups of variables indexed by the sets A and B exist. The sets A and B are disjoint and their union is equal to {1, …, p}. An SS-ANOVA model is fit which includes all p main effects and all possible interactions between variables with indexes in set A and B, separately. The SS-ANOVA model specified iswhich, under the null, equals the true model, but under the alternative hypothesis in (11) the true model is:Here, fA(X(A)) includes main effects and all possible interactions among the variables indexed by the set A. The same holds for fB(X(B)) but over the set B. The form fA,B(X(A ∪ B)) remains unspecified and includes any possible interactions between variables in group A and B. Under the alternative assumption, the test should detect any possible interactions between covariates in group A and covariates in group B not included in the model described in H0. This case is relevant because it is possible to know two groups of covariates that are known to be interacting and hence all the interactions are included. However, some cross interactions could also happen.Case III: Testing for Significance: We can test whether a model that includes covariates X needs also to include covariates Z. The SS-ANOVA model specified is
 which, under the null, equals the true model, but under the alternative hypotheses in (13) is: 
Here, f(X) includes main effects and could also include interactions, among the elements of X, if they are believed to exist. The same definition holds for f(X, Z), but over the set both X and Z. However, the form of f(X, Z) remains unspecified, but covariates Z are specified. Under the alternative assumption, the test will detect any covariate Z that is present in f(X, Z). This case is relevant because many situations arise where the interest comes in detecting a set of covariates which affect the outcome beyond a previously defined set of variables.In all three cases shown above, in order to perform the test, the model under H0 is fitted and a vector of estimated residuals ε̂ is obtained. For the first two cases, nTn(Xn, ε̂) is calculated as the test statistic. For the third case the test statistic is nTn(Xn(B), ε̂). These three cases represent possible departures of fitness, but they do not exhaust all possibilities. However, no matter what the departure is, the goodness-of-fit can always be assessed with respect to an Xn (either the matrix used to fit the model or a completely new set of covariates), by checking its independence from the estimated residuals.
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Here, f(X) includes main effects and could also include interactions, among the elements of X, if they are believed to exist. The same definition holds for f(X, Z), but over the set both X and Z. However, the form of f(X, Z) remains unspecified, but covariates Z are specified. Under the alternative assumption, the test will detect any covariate Z that is present in f(X, Z). This case is relevant because many situations arise where the interest comes in detecting a set of covariates which affect the outcome beyond a previously defined set of variables.In all three cases shown above, in order to perform the test, the model under H0 is fitted and a vector of estimated residuals ε̂ is obtained. For the first two cases, nTn(Xn, ε̂) is calculated as the test statistic. For the third case the test statistic is nTn(Xn(B), ε̂). These three cases represent possible departures of fitness, but they do not exhaust all possibilities. However, no matter what the departure is, the goodness-of-fit can always be assessed with respect to an Xn (either the matrix used to fit the model or a completely new set of covariates), by checking its independence from the estimated residuals.
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	3. Simulation Studies
	Variance Adjustment to the Bootstrap by the Degrees of Freedom of the Model: The left panel of figure 1 shows the box plots of σ̂′2 for 500 simulations of the null hypothesis for varying p and with a fixed sample size of 100. The right panel shows the same simulation scenarios but for σ̂2. The true variance for all the simulations is σ2 = 1 denoted by the horizontal line. It can be seen that for moderate increments in dimension σ̂′2 underestimates the actual variance, whereas σ̂2 on average estimates σ2 correctly. Thus, if the degrees of freedom of the model, as defined in (3), are not accounted for, the bootstrap procedure will not work properly for finite samples and will underestimate the actual variance of the residuals. Hence, our proposed adjustment is essential for the correct performance of the method.In all cases shown below we simulated ε as N(0, 1) and all X(j) as Uniform(0,1) independent of ε. Specific details of all simulations can be found in Appendix A of the supplementary materials.Case I: Missing Interactions Beyond the Main Effects: Simulations were created where the null hypothesis only includes main effects. Therefore, we have , and under the alternative f1,…,p(X(1), …, X(p)) is an interaction between covariates. The SS-ANOVA model specified iswhereas the models simulated under the null and alternative hypotheses of (11) areWhen p = 2, the null model is f(X) = 5sin(πX(1))+2X(2)2 and the interaction added under the alternative is f1,2(X(1), X(2)) = 0.75cos(π(X(1) − X(2))). When p = 4, 6 similar models were used.A model of this nature would be hard to fit with a linear model given that the response depends sinusoidally on X1 and depends quadratically on X2, hence the handiness of SS-ANOVA. This simulation setting demonstrate how the ANOVA decomposition can be useful in picking up signals from interactions. After fitting a main effects only model, if the goodness-of-fit test is significant, then this would mean that main effects are insufficient and possibly some interactions exist. When the alternative is f1,2(X(1), X(2)) = 0.75cos(π(X(1) − X(2))), the user of the test does not know between which covariates the interaction is happening. However, when the test is rejected, it is known that the main effects only model is not sufficient and extra interactions might be needed. Thus, the test can be useful in finding interactions. From the simulation results in table (1) it can be seen that the method preserves the correct type I error both at the 0.01 and 0.05 significance levels. The size of the test gets sharper with increasing sample size. This happens because the bootstrap is a large sample method and will work best for larger sample size. For a given number of covariates, it can be seen that the power increases with larger sample size. Moreover, when more covariates are present in the main effects only model, the power decreases. This is due to the fact that the more main effects are included, the greater the number of possible interactions, and hence the alternative space becomes larger.Case I: Departures from linearity through interactions: We created another set of simulations of Case I in order to compare our method to competitors. Under the null, the model is linear in the covariates, but under the alternative the covariates also have quadratic interactions. Our method tests the goodness-of-fit of a SS-ANOVA model with main effects only. Under the alternative the test statistic nTn will detect the quadratic interactions. The test statistics 
 and Sn, described in [9] and [10] respectively, fit a linear model and detect departures from linearity. Although they are not testing the same null and alternative hypothesis, all three tests should have power to detect the alternative and should, in theory, approach the specified type I error under the null. In table 2 we show the results of the three tests, but below we only provide details of the hypotheses formulation for our method.Simulations were created where the null hypothesis only includes linear main effects. Therefore, we have 
, and under the alternative 
 contains quadratic interactions between covariates. The SS-ANOVA model specified is
 whereas the models simulated under the null and alternative hypotheses of (11) areWhen p = 2, the null model is f(X) = 2X(1)+2X(2) and the interaction added under the alternative is f1,2(X(1),X(2)) = 4X2(1)X2(2). When p = 3 similar models were used.Our method fits a main effects only SS-ANOVA model and tests its goodness-of-fit. The two competing tests fit a linear model and then test if the form is non-linear. The simulation results in table (2) show that our methodology has correct type I error and good power performance. The type I error is sharp and power increases significantly with increased sample size. Across different n and p, our method has sharper type I error than the other two methods. For p = 2, our method outperforms the competitors in terms of power. However, for p = 4 it underperforms with respect to 
. This makes sense since this latter test is specific to detecting deviations from linearity whereas our method is trying to detect any departures from the main effects only model, which is succeptible to the curse of dimensionality. Nevertheless, we have shown that our method performs similarly in this scenario when compared to other methods in the literature.Case II: Missing Interactions Beyond the Within Group Interactions: Simulations were created where the null hypothesis includes two distinct groups of variables which contain all the main effects and all the interactions within each group, and the alternative adds interactions across the groups. Therefore, we have f(X) = fA(X(A))+fB(X(B)) and fA,B(X(A∪B)), where fA,B(X(A∪B)) contains interactions between variables in group A and B. The SS-ANOVA model specified is
 whereas the models simulated under the null and alternative hypotheses of (11) are: 
The first simulation has as null model fA(X(A)) = 5sin(πX(1)) + 2X(2)2 and fB(X(B)) = 2sin(πX(3)) + X(4)2, and the interaction between group A and B added under the alternative is fA,B(X(A ∪ B)) = 0.75cos(π(X(1) − X(3))). Under the alternative, there exists an interaction across group A and B between variables X(1) and X(3). In the second simulation setting, similar models were used. This setting is similar to Case I, but here under the null model, inter actions have been included as well as main effects. The simulation results in table (3) show that the methodology has correct type I error and good power performance. In the first scenario, a model with 4 covariates with two sets of variables of size 2 each was fitted to the data. The two-way interaction between the 2 covariates in each group was included. The second scenario, denoted by a 4* on the table (3), corresponds to the same set-up defined previously of a model with 4 covariates and two groups of variables, but now in the first group there is only one covariate and in the second one there are 3 covariates. The model includes all the 3 two-way interactions and the 1 three-way interaction which corresponds to all the possible interactions between the 3 covariates in the second group. We see that power performance is comparable in either scenario. Moreover, comparing this to Case I we see that including extra interactions under the null-hypothesis increases power of the test. This is because it reduces the number of possible interactions under the alternative.Case III: Testing for Significance: We compare our method with the test in [17] used to select variables for nonparametric regression. We denote this test statistic as Dn, which requires fitting a nonparametric kernel regression under the null. The null and alternative hypotheses are the same for both Dn and our test. In the simulations the null hypothesis includes only main effects and the alternative adds covariates to the model. Therefore, we have 
 and fp+1,…,p+q(Z(1), …, Z(q)), where fp+1,…,p+q(Z(1), …, Z(q)) are variables leftover not included in f(X). The SS-ANOVA model specified is
 whereas the models simulated under the null and alternative hypotheses of (13) are: 
When p = 2, the null model is f(X) = 5sin(πX(1))+2X(2)2 and the covariate added under the alternative is f3(Z(1)) = sin(π(Z(1))). When p = 4 similar models were used.Under the alternative, the model fitted under the null is insufficient because f3(X(3)) = sin(π(X(3))) also belongs in the model. However, this might not be known to the researcher or he/she might want to investigate this question precisely, i.e., through testing. This simulation setting shows that this can de done and that the goodness-of-fit test can be used as an omnibus test of the likes of [1], [28] and [17] where a set of covariates is tested to see if it is related to the outcome after a set of covariates have already being included in the model. From the simulation results in table 4, it can be seen that the proposed test has the appropriate size and power increases with sample size. In this simulation scenario, the setting with 4 covariates included in the model had more power compared to the setting with only 2 variables included in the model. This happened because under the former, 2 covariates were missing under the alternative whereas under the latter only 1 is missing. However, unlike Case I, in this scenario the number of variables included in the model under the null does not affect the power of the test, only the covariates added under the alternative affect the power. On the other hand, table 4 shows that the test statistic Dn has some problems. For the case p = 2, the type I error is moderatly larger than the specified level. However, as the sample size increases the actual type I error gets closer to its specified level, but never as close as our method. In terms of power, Dn outperforms our method, but this is expected given that it has larger type I error than our test. When p = 4, the test Dn performs quite badly. The type I error rate is wrong and the power does not increase with sample size as rapidly as our method does. It seems Dn does not perform properly when the dimension of p increases even moderatly. Thus, it seems our methodology is a better suited for larger p situations. We note that although Dn performed badly, there exist improved versions of this test adapted to high-dimensional situations [29]. We do not use those modifications as comparisons in our simulations since our focus is not in high-dimensional scenarios.
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