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Abstract—In this paper, we propose VarOLLA, a novel ap-
proach aimed at maximizing the throughput of 5G-RedCap
devices in Industrial Internet of Things (IIoT) environments.
VarOLLA addresses the sub-optimal spectral efficiency of Outer
Loop Link Adaptation (OLLA) by introducing a ‘Throughput
Factor’ that incentivizes adaptive decision-making based on
throughput considerations. Through extensive simulations, we
demonstrate significant improvements in throughput, with gains
of up to 35% compared to traditional OLLA techniques, par-
ticularly in scenarios with high channel outdatedness. Moreover,
VarOLLA effectively reduces consecutive transmission failures
(rBLER) and achieves substantial reductions in control message
overhead, up to 87.5%. Our findings highlight the strong poten-
tial of VarOLLA in IIoT networks and its significant contribution
to the realization of high-performance applications during the
Fourth Industrial Revolution (4IR) in the manufacturing sector.

Index Terms—Industrial IoT, Outer Loop Link Adaptation,
5G-RedCap

I. INTRODUCTION

The Industrial Internet of Things (IIoT) has emerged as
a transformative technology that drives the Fourth Industrial
Revolution (4IR) by facilitating seamless sensing and real-time
data exchange among machines and systems. This integration
has significantly impacted the manufacturing sector, revolu-
tionizing traditional manufacturing environments into highly
interconnected and intelligent systems. In line with this, our
research aims to tackle the challenges associated with opti-
mizing spectral efficiency for high-performance applications
in industrial settings.

A fully operational IIoT system in a factory comprises
numerous static and mobile nodes that generate a vast amount
of data to support various 4IR applications [1]. With these
devices wirelessly connected on the factory floor, the commu-
nication infrastructure must be capable of accommodating a
significant number of devices while ensuring high throughput.
Notably, applications like Integrated Worker Health & Safety
and Automated Guided Vehicles exemplify the need for high
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throughput in mobile nodes with limited capacity for real-time
control. Additionally, in indoor factory floors, manufacturing
industries prioritize devices that require minimal maintenance,
such as infrequent battery replacements [1]. Therefore, IIoT
networks in such environments must exhibit high throughput,
support mobility, scale efficiently, while not increasing the
complexity of the nodes.

These requirements fall into a unique category that dif-
fers from the traditional 5G use cases of enhanced Mobile
BroadBand (eMBB), massive Machine Type Communica-
tion (mMTC), and ultra-reliable low latency communication
(URLLC). Recognizing this need, the 3rd Generation Part-
nership Project (3GPP) has introduced 5G-RedCap (Reduced
Capability) as a solution in its Release 17 to address these
distinct requirements and challenges [2].

One of the characteristic challenges of RedCap-like devices
are their inaccurate channel quality sensing [3]. In 5G systems,
the Base Station (BS) sends a reference signal measured by
the User Equipment (UE). The measured channel quality is
discretized into Channel Quality Index (CQI) and sent back to
the BS for it to tune its transmission parameters, namely Mod-
ulation and Coding Schemes (MCS). Due to the inaccuracies
in the channel quality measurements, Link Adaptation (LA)
techniques such as Outer Loop Link Adaptation (OLLA) have
been utilized at the BS. OLLA intelligently varies the MCS
chosen by the BS based on the feedback received from the UE.
However, OLLA is known to exhibit sub-optimal throughput,
particularly in industrial scenarios [4].

In standard 5G implementations, the limitations of OLLA
in terms of spectral efficiency are addressed through the use of
‘Type II HARQ’ (Hybrid Automatic Repeat Request). HARQ
is an error control mechanism that combines error correction
and retransmission techniques to optimize the reliability and
throughput of wireless communication systems. HARQ can be
classified into two types: Type I and Type II. In Type I HARQ
systems, if the decoding of a transmission is unsuccessful,
the received erroneous block is discarded, and a Negative
Acknowledgment (NACK) is sent to request retransmission.
On the other hand, Type II HARQ systems retain the erroneous
block and utilize it during the decoding of the retransmitted
block, thereby increasing the chances of successful decoding.
Type II HARQ systems are recognized for their higher spectral
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efficiency when compared to Type I HARQ systems that
employ OLLA [5]. Consequently, concerns have been raised
regarding the relevance of OLLA in 5G systems employing
Type II HARQ systems [5].

Estimates from [2] suggest that removing the HARQ buffer
from UEs can directly reduce their cost and complexity by
10%. Moreover, further reduction up to 8% can be achieved
by eliminating its associated entities. Therefore despite the
spectral efficiency gains of Type II HARQ, aimed at reducing
power consumption and complexity, RedCap UEs are recom-
mended to adopt Type I HARQ [6] and thereby, use OLLA
for LA. This necessitates research into improving spectral
efficiency of OLLA for 5G-RedCap usecases.

To address these challenges, this paper proposes an en-
hanced OLLA technique called VarOLLA (Variable Step size
OLLA - described in Section III) specifically designed for
5G-RedCap systems in industrial environments. The results
demonstrate its superiority over conventional OLLA tech-
niques in terms of throughput performance.

The remainder of the paper is organized as follows: Section
II provides a brief overview of OLLA along with techniques
that have been proposed in the available literature to enhance
OLLA. Section III describes the proposed solution along
with the simulation environment and variables analyzed. The
simulation results are presented and their implications are
discussed in Section IV. Finally, we conclude in Section V,
summarizing the contributions of our work and mentioning
future works.

II. BACKGROUND & RELATED WORKS

A. Outer Loop Link Adaptation

In the standard operation, each UE periodically reports the
observed channel quality to the BS using the CQI. The CQI
is a discretized value that represents channel quality based
on the Signal-to-Noise Ratio (SNR) measured by the UE.
The BS processes the CQI reports from the UE and selects
the corresponding MCS to keep the downlink transmission
within a known Block Error Rate (BLER) bound. However,
the accuracy of the reported CQIs can be compromised due
to inherent delays between the SNR measurement by the UE
and the selection of the corresponding MCS by the BS [7],
[8]. Various other factors also contribute to CQI inaccuracies,
including inaccurate UE SNR measurements and unsuccessful
transmission of CQI reports. These delays and inaccuracies
can lead to inefficient or unsuccessful transmissions.

In scenarios where the chosen MCS exceeds the channel
condition, subsequent transmissions are more likely to be
unsuccessful. Conversely, choosing a lower MCS can result
in successful but inefficient transmissions. To address this
issue, the BS relies on additional feedback from the UEs,
namely the ACK/NACK messages, to adjust the MCS based
on the channel conditions. OLLA combines these two forms
of feedback to effectively achieve the desired target BLER
(BLERtarget) determined by the specific use case (10−1 for
eMBB and 10−5 for URLLC).

OLLA incorporates an offset (∆) that is adjusted based
on the outcome of each transmission. Following a successful
transmission, the offset is increased by a value denoted as
∆up, while an unsuccessful transmission leads to a decrease
by ∆down. The resulting offset is then added to the CQI, and
the updated value is used for MCS selection. Consequently,
in the event of a successful transmission, OLLA increases the
offset, prompting the BS to choose a higher MCS and enhance
the throughput. Conversely, in the case of an unsuccessful
transmission, OLLA decreases the offset, causing the BS to opt
for a lower MCS and improve the reliability of retransmission
while reducing the throughput.

In this study, the specific values for ∆up and ∆down are
determined as (1 − BLERtarget) × θ and BLERtarget × θ,
respectively, where θ represents the OLLA step size. Conse-
quently, the updated OLLA offset for the (t+ 1)-th transmis-
sion is computed as follows:

∆t+1 =

{
∆t + (BLERtarget × θ), if ACK
∆t − ((1−BLERtarget)× θ), if NACK.

B. Related Works

Several studies have addressed different OLLA challenges
and proposed solutions to enhance its performance. One of the
primary issues is the fluctuation of OLLA even in near-steady-
state conditions. To address this, researchers have proposed
using multiple modes of operation with different step sizes
based on the BLER value [9], varying the step size depending
on the convergence status [7], controlling the step size based
on the elapsed time between channel measurements [10], and
adjusting the step size based on the mean and standard de-
viation of the Signal-to-Interference-plus-Noise Ratio (SINR)
[11].

Another challenge is the slow convergence of traditional
OLLA algorithms. To tackle this, researchers have suggested
tuning the initial value of OLLA based on converged OLLA
offset from previous connection traces [12]. Furthermore,
researchers have identified that the use of a predefined offline
model to map CQI values to MCS level has been sub-
optimal for different use cases (such as URLLC [13], eXtended
Reality [14], IoT) and device types (such as Massive Input
Massive Output - MIMO [15] and have proposed specific
improvements.

In general, there has been an interest in exploring alternative
techniques such as employing a neural network to dynami-
cally select the MCS based on link conditions modeled with
mobility speed and average signal strength [16], utilizing Q-
Learning to map CQI to MCS instead of relying on a fixed
look-up table [17], and applying reinforcement learning and/or
Multi-Armed Bandit (MAB) algorithms for transmission pa-
rameter tuning [18].

In summary, various studies have addressed the challenges
of OLLA and proposed innovative solutions to improve its per-
formance. These solutions encompass a range of approaches,
including heuristics-based methods and learning techniques,
aimed at fine-tuning the transmission parameters. However,
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there is still a need to address the poor spectral efficiency
of OLLA. In light of these considerations, our proposed
VarOLLA technique introduces a ‘Throughput Factor’ to en-
hance the MCS adaptation process to improve throughput in
5G-RedCap devices for IIoT applications. The following sec-
tions will present the detailed methodology and experimental
evaluation of VarOLLA in comparison to the conventional
OLLA mechanism

III. METHODOLOGY

A. VarOLLA

In Section II-A, we described the OLLA mechanism, which
adjusts the MCS level based on changes in channel quality.
OLLA aims to optimize the network to meet a specified BLER
target by reacting slowly to channel improvements (increasing
∆ by 0.1 per ACK) and quickly to channel degradation
(decreasing ∆ by 0.9 per NACK). However, the mechanism
is indifferent to the spectral efficiency of the chosen MCS,
as its main objective is to achieve successful transmissions
rather than closely track channel variations. It is important to
note that the choice of MCS directly impacts both reliability
and spectral efficiency. Lower MCS values generally increase
reliability but may result in lower spectral efficiency, while
higher MCS values offer the opposite trade-off.

To analyze the differences in spectral efficiency among
MCS levels, we plotted the ratio of throughput differences for
consecutive pairs of MCS in Figure 1. As the figure illustrates,
the spectral efficiency of MCS-2 is 2.5 times that of MCS-1,
while the spectral efficiency of MCS-12 is only 1.09 times
that of MCS-11. Despite these disparities, OLLA consistently
requires the same number of successive ACKs to transition
to a higher MCS level. If the OLLA step size (θ) is set
to 1, OLLA will wait for 10 successive ACKs to move to
the next higher MCS level, irrespective of the current MCS
in operation. However, it would be more reasonable to wait
for a smaller number of successive ACKs when the potential
throughput gain is greater, and vice versa. In other words, a

Fig. 1: Ratio of difference in Throughput between the consec-
utive MCS pairs

throughput-incentivized OLLA approach could take quicker
adaptive actions when operating in an MCS with significantly
lower spectral efficiency compared to the next successive MCS
level. This approach enables a more dynamic and efficient
adaptation to channel conditions, thereby maximizing potential
throughput gains.

To address this limitation, we propose VarOLLA, an en-
hanced OLLA technique that introduces a ‘Throughput Fac-
tor’ (γ) into the calculation of the OLLA offset (∆). The
Throughput Factor accounts for the potential throughput gain
associated between the current and one level greater MCS
used in the BS-UE connection. To determine the number of
successive ACKs required to move to a higher MCS level,
we consider that each NACK reduces the MCS level by 1. We
define Nm,m+1 as the number of successive ACKs required to
move from MCS m to MCS m+1. We have to find the value
of Nm,m+1 for which the following inequality holds true:

N × Thr(m+ 1) ≥ (N + 1)× Thr(m)

Here, Thr(m) represents the throughput when MCS m is
chosen. If D(m,m+1) denotes the difference in throughput
between transmitting with MCS m+ 1 and MCS m, we can
then express N(m,m+1) as:

N × ( Thr(m) + D(m,m+1) ) ≥ (N + 1)× Thr(m)

N ≥ Thr(m)

D(m,m+1)

To ensure that OLLA waits for N(m,m+1) ACKs before
transitioning from MCS m to m + 1, the throughput factor
γ is defined as:

γ =
1

N(m,m+1)

Thus, in VarOLLA, the offset, ∆, is updated as follows:

∆t+1 =

{
∆t + (γ × θ), if ACK
∆t − 1, if NACK.

(1)

By incorporating the Throughput Factor, γ, VarOLLA aims
to improve the adaptation of the MCS level in response to the
channel conditions, considering the varying throughput gains
associated with different MCS levels.

B. Simulation Setup

To assess the comparative impact of VarOLLA and OLLA,
a simulated factory hall with dimensions 50m x 50m x 6m
(length x width x height) is utilized. The BS is fixed at the
center of the hall’s ceiling. The simulations involve varying
positions of the UE to cover every pixel in a 50x50-meter
grid, where each pixel represents a 1x1-meter area located 1.5
meters above the floor. The channel model employed in the
simulations is generated using the quasi-deterministic radio
channel generator (QuaDRiGa) [19], utilizing the propagation
parameters specifically designed for industrial indoor scenarios
[20]. This setup has been used in our previous research on
industrial networks as well [4]. The simulation parameters are
summarized in Table I.
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TABLE I: Simulation Parameters

Parameter Value (range)
Carrier frequency 3.5 GHz
Bandwidth 5 MHz
5G numerology 0 (sub-carrier spacing = 15 kHz)
Transmit power 21 dBm
UE speeds [0.1, 0.3, 1, 3, 10] m/s
CQI periodicity [2, 5, 10, 20, 40, 80] ms
BLERtarget 10−1

KPI 10th user throughput percentile
CQI levels Table 5.2.2.1-3 (up to 256QAM) [21]

For the considered network scenario, a full transmit buffer
is assumed for the network carrier across all UE positions.
Since a single-UE scenario is being investigated, the entire
carrier bandwidth is available for the single UE. The Key
Performance Indicator (KPI) used in this analysis is the 10th
user throughput percentile. Additionally, two BLER metrics
are evaluated: the instantaneous BLER (iBLER) and the
residual BLER (rBLER). The iBLER represents the count of
unsuccessful transmissions, indicating the number of times the
initial transmission fails. A higher iBLER value corresponds
to a higher number of first transmission failures. On the
other hand, the rBLER is determined by assessing the number
of instances where retransmitted blocks remain undecodable
even after reaching the maximum number of retransmission
attempts allowed by the HARQ protocol. A higher rBLER
value signifies a poorer ability to adapt to channel variations
in a timely manner. The impact of a higher iBLER is an
increase in the number of retransmissions, while a higher
rBLER indicates a decrease in the reliability of the system.

The step size parameter, denoted as θ, has been widely
recognized as a crucial factor impacting the performance of
OLLA [7]. The optimal value of θ is the one that maximizes
the throughput for a specific UE speed and CQI periodicity,
commonly referred to as the ‘Optimal θ’. In our study,
we conducted simulations using various step sizes, and the
behavior of OLLA with the optimal θ for each scenario
was chosen as the benchmark (referred to as ‘OptOLLA’ in
the figures). Additionally, we included a genie-based MCS
selection method for comparison. This genie-based approach
assumes perfect knowledge of the UE’s experienced CQI,
enabling the BS to accurately select the optimal MCS for
transmission. As such, the genie-based mechanism represents
the maximum achievable throughput under the given channel
conditions experienced by the UE.

IV. RESULTS & DISCUSSION

This section presents the simulation results of VarOLLA
and OptOLLA. Figure 2 illustrates the 10th user throughput
percentile for different CQI periodicity, with each sub-figure
corresponding to a specific UE speed. Figure 3 depicts the
90th user iBLER percentile, and Figure 4 represents the 90th

user rBLER percentile for the same scenarios. We will discuss
the performance of VarOLLA based on each KPI scenario-by-
scenario in the following paragraphs.

We begin our discussion with the scenario featuring the
slowest mobility, which is particularly relevant for indoor
IIoT networks: the 0.1 m/s scenario. Figures 2a, 3a, and
4a present the 10th user throughput percentile, 90th user
iBLER percentile, and 90th user rBLER percentile, respec-
tively. VarOLLA consistently demonstrates higher throughput
than OptOLLA across all CQI periodicity, especially for
the least frequent CQI update period of 80 ms, where the
throughput gain is even more pronounced. When compared
to the genie method, VarOLLA reduces the gap between
state-of-the-art and the maximum achievable throughput by
a significant 50%. However, it should be noted that VarOLLA
exhibits slightly higher iBLER (12.5%) than the BLERtarget

(10%). Nevertheless, in terms of rBLER, which measures
long stretches of continuous transmission failures, VarOLLA
significantly outperforms OptOLLA. In essence, VarOLLA
experiences slightly more initial transmission failures but
rapidly adjusts the MCS to avoid long consecutive failures,
resulting in better overall throughput and increased reliability
compared to OptOLLA.

Next, we examine Figures 2b, 3b, and 4b, which display
the throughput, iBLER, and rBLER for a UE speed of 1
m/s. The throughput improvements range from 5 to 12%
over OptOLLA for different CQI periodicities. Generally, as
the period between CQI updates increases, both OptOLLA
and VarOLLA experience a decrease in throughput. However,
VarOLLA demonstrates a smoother decrease in throughput as
channel outdatedness increases, while OptOLLA’s throughput
is more affected. Regarding iBLER, the situation is reversed.
OptOLLA maintains iBLER at the BLERtarget, whereas
VarOLLA’s iBLER deteriorates with increasing channel out-
datedness. On the other hand, VarOLLA consistently achieves
very low rBLER for all CQI periodicity. This implies that
VarOLLA may encounter slightly more initial transmission er-
rors due to its more frequent use of higher MCS, but it quickly
adapts and ensures successful block transmission before reach-
ing the maximum HARQ retransmission limit. OptOLLA’s
rBLER initially increases as channel outdatedness increases
and then drastically decreases (relatively). This behavior can
be explained by the fact that OptOLLA maintains iBLER
by adopting a more conservative approach in situations of
greater channel outdatedness. An interesting observation from
a control message perspective is that VarOLLA’s throughput
at a CQI periodicity of 20 ms is approximately equivalent
to OptOLLA’s throughput at 10 ms. Therefore, operating
VarOLLA with a 20 ms feedback interval would reduce control
messages by 50%, creating room for other devices.

We now analyze the results for a UE speed of 10 m/s, as
depicted in Figures 2c, 3c, and 4c. OptOLLA’s throughput
experiences a sharp decline for CQI periods between 2-10 ms,
after which it remains relatively stable for periods up to 80
ms. In an attempt to maintain iBLER at the target of 10%,
OptOLLA predominantly employs the most reliable MCS
for most transmissions, resulting in consistent throughput,
iBLER, and rBLER for CQI periodicity beyond 10 ms. On
the other hand, VarOLLA outperforms OptOLLA in max-
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Fig. 2: The 10th user throughput percentile obtained by using VarOLLA against Opt.OLLA and Genie method for different
CQI Periodicity. Each subfigure shows the same for differing UE speeds.

(a) UE Speed = 0.1m/s (0.36Km/hr) (b) UE Speed = 1m/s (3.6Km/hr) (c) UE Speed = 10m/s (36Km/hr)

Fig. 3: The 90th user iBLER percentile obtained by using VarOLLA against OptOLLA and Genie method for different CQI
Periodicity. Each subfigure shows the same for differing UE speeds.

(a) UE Speed = 0.1m/s (0.36Km/hr) (b) UE Speed = 1m/s (3.6Km/hr) (c) UE Speed = 10m/s (36Km/hr)

Fig. 4: The 90th user rBLER percentile obtained by using VarOLLA against OptOLLA for different CQI Periodicity. Each
subfigure shows the same for differing UE speeds.

imizing throughput under high channel outdatedness while
maintaining nearly zero rBLER. As a consequence of this op-
timization, VarOLLA exhibits an increase in first transmission
failures (iBLER). Notably, when the CQI periodicity is 80 ms,
VarOLLA achieves a 35% increase in throughput with minimal
missed deadlines, comparable to OptOLLA’s performance at a
CQI periodicity of 10 ms. Consequently, adopting VarOLLA
could lead to a reduction of control messages by up to 87.5%.

V. CONCLUSIONS & FUTURE WORKS

In this study, we have addressed the challenges of OLLA
in 5G-RedCap systems and proposed VarOLLA, a novel
approach to optimize spectral efficiency for high-throughput
applications in IIoT systems. Through extensive simulations,
we have demonstrated the effectiveness and superiority of
VarOLLA over traditional OLLA techniques.

Our findings indicate that VarOLLA achieves significant
improvements in throughput (up to 35%) compared to Op-
tOLLA, particularly under conditions of high channel out-
datedness. VarOLLA exhibits quick adaptation to channel
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variations, reducing long consecutive transmission failures
(rBLER) and maximizing throughput, while maintaining ac-
ceptable initial transmission error rates (iBLER). The near-
zero rBLER achieved by VarOLLA showcases its ability to
ensure reliability in IIoT networks.

An additional advantage of VarOLLA is its implementation
on the BS, enhancing downlink throughput for UEs without
increasing the terminal’s complexity. Furthermore, VarOLLA
demonstrates its potential to significantly reduce control mes-
sage overhead (up to 87.5%), thereby freeing up network
resources for other devices.

While our evaluation focuses on industrial networks, we
believe that VarOLLA could also be beneficial in other IoT use
cases. Future work includes evaluating VarOLLA in various
IoT scenarios and comparing it against machine learning-
based LA techniques. Nonetheless, by maximizing throughput
and ensuring reliable communication, VarOLLA paves the
way for advanced applications in the manufacturing sector,
contributing to the realization of the 4IR.
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