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Abstract. Double extortion ransomware attacks consist of an attack
where victims files are both encrypted and exfiltrated for extortion pur-
poses. There is empirical evidence this leads to an increased willingness
to pay a ransom, and higher ransoms, compared to encryption-only at-
tacks, depending on the value of the exfiltrated files. However, there seem
to be two complications: First, victims are uncertain whether data is ex-
filtrated, due to for example misconfigured monitoring systems. Second,
it is hard for attackers to estimate the value of compromised files. Thus,
victims have an incentive to hide what they know and attackers an in-
centive to find out information. The goal of this study is to use game
theory to explore the payoff consequences for attackers of victims hav-
ing private information. We analyse a signaling game with double-sided
information asymmetry: (1) attackers know whether data is exfiltrated
and victims do not, and (2) victims know the value of data if it is exfil-
trated, but the attackers do not. Our analysis of the game indicates that
private information substantially lowers the return to attackers. These
results imply that victims should be careful to not reveal the value of
files during negotiations.
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1 Introduction

The last decade has seen a rapid rise in crypto-ransomware attacks [7,8,19,10,20,23].
Crypto-ransomware, or ransomware for short, is broadly defined as the use of
crypto-techniques to encrypt the files of a victim, after which the attackers ask
for a ransom to decrypt the files [29]. Ransomware has proved highly profitable
for criminal gangs, primarily because many victims pay the ransom in order to
receive the decryption keys [21]. Since roughly 2019, ransomware groups have
been experimenting with double extortion [13,6]. In this case the attackers not
only encrypt files, but also exfiltrate data with the purpose to sell or publish the
data if the victim does not pay [16,17,20]. Double extortion has increased the
ransom requested and probability of victims paying [19].
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One important issue for victims of a ransomware attack is determining whether
data was exfiltrated. Due to the deletion of log files by attackers, or misconfig-
ured monitoring systems, victims often do not know whether data was exfil-
trated [25,26]. This means that an attacker who has not exfiltrated data can
still threaten the publication of data, to get a larger ransom paid. On the flip
side, the claims of an attacker that has exfiltrated data may be viewed as less-
credible, empty threats, by the victim. Attackers are, thus, increasingly trying
to send credible signals that data was exfiltrated. For instance, to back up their
claim, some attackers send evidence of exfiltration by means of a file tree of the
exfiltrated data or a couple of files. Such signals could, however, still be sent,
even if at a higher cost, by attackers who have not exfiltrated data.

Another limitation of sending ‘evidence’ of data exfiltration is that it might
give the victim the opportunity to determine the value of the exfiltrated data.
In practice, it is hard for attackers to determine the value of the files to the
victim. The filenames and files which contain text are often in a foreign language,
and the sensitivity of data is difficult to judge without insider understanding.
Furthermore, it takes effort to estimate the importance of, potentially, millions
of files. Attackers are, therefore, likely to be imperfectly informed of the value of
files, even if data is exfiltrated. Combined, therefore, we have two information
asymmetries in double extortion ransomware attacks. First, the victim does not
know whether data was exfiltrated or not, but the attacker does. Second, the
victim can assess whether potentially exfiltrated data is valuable or not, but
the attacker cannot. Here, we define valuable data for the victim, as data with
large reputation costs if it gets accessible for the general public, competitors or
similar.

To our knowledge, no previous studies have modelled this two-sided infor-
mation asymmetry of data exfiltration, and analysed how it effects the prof-
itability of attacks. Most empirical [19] and game-theoretical modeling [16,17]
of double extortion ransomware has focused on the extra profits for attackers
by conducting data exfiltration and encryption, compared to only data encryp-
tion. We address the relationship between the uncertainty of data exfiltration
and profitability by analysing a signaling game. Signaling games provide a way
to model a strategic game with incomplete information and sequential choice
[11,14,1,18,22]. The basic premise is that a player holding extra information
could try to influence the other players by sending a credible signal of their in-
formation. Signalling games provide a natural framework with which to explore
double extortion and the payoff consequences of assymetric information. For a
more detailed explanation of signaling games we refer to [22].

Our work provides the following key contributions: First, we provide a game-
theoretical framework to analyse the double-sided information asymmetry in
double extortion ransomware attacks. The framework consists of a signaling
game, wherein the attacker can send a costly signal of data exfiltration that can
inform the victim’s beliefs and payment decision. Second, we identify four sepa-
rating and four pooling equilibria of the game and their underlying conditions.
The type of equilibria that exists in the game will depend on the parameters of
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the game, particularly the cost of signaling data exfiltration, the cost to recover
files without decryption, the reputation loss from data leakage, and the probabil-
ity the victim’s files contain valuable data. We identify the factors determining
how much surplus the attacker can extract from the victim. Third, we analyse
the impact that private information of the victim has on the profitability of the
attacked. Through examples, we show that the payoff loss to the criminal from
now knowing the value of files can range from zero to over 20%. Private informa-
tion can, therefore, potentially disrupt the business model of ransomware games
by reducing the profits they can make.

We remark that our paper adds to a growing literature using game theory to
analyse the ransomware decision process [5,12,4]. Prior game-theoretical studies
have focused on the interaction of ransomware and victim’s decision to invest in
security measures like backups or insurance [29,2,24,28]. For instance, Laszka,
Farhang and Grossklags [15] focused on modeling the ransomware ecosystem as
a whole and how backup decisions affect the ransomware ecosystem. Vakilinia
et al. [27] take a different approach in exploring how a double sided auction can
facilitate the negotiation between attacker and victim to achieve a ‘fair’ ran-
som. Galinkin [12] analyses measures that an attacker can disrupt the business
model of the attackers by lowering the profitability of ransomware attacks. The
main intervention suggested is that of back-ups. We note, however, that in a set-
ting with double extortion, back-ups are not enough to combat the ransomware
threat. We must also consider the reputational costs from the publication of
exfiltrated data.

We proceed as follows. In Section 2 we introduce the signalling game. In
Section 3 we provide our main results. In Section 4 we conclude.

2 Signaling Game

We consider a game between a criminal, henceforth called the attacker, and a
victim. We take as given that the victim has been subject to a ransomware attack
and their data has been encrypted. The attacker is demanding a ransom for the
decryption key. If the victim does not pay the ransom then it will cost VP to
recover normal operations. If the victim does pay the ransom then we assume the
attackers will provide the decryption key and it will cost VNP to recover normal
operations. From a game theoretic point of view, the predictions of our model
depend solely on the difference in recovery cost from paying versus not paying
VP − VNP . Thus, to simplify the model, and without loss of generality, we set
VNP = 0 and VP = V . We assume that V > 0 and so access to the decryption
key reduces recovery costs.

We take it as given that, as well as encrypting files, the attacker attempted
to exfiltrate data from the victim. This attempt may or may not have been
‘successful’. In either case, the attacker can threaten to publish exfiltrated data
unless the ransom is paid. We model two forms of incomplete information:

1. The attacker knows if data is exfiltrated but the victim does not know.
Let α denote the probability that data was exfiltrated. The value of α is
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common knowledge to attacker and victim. We use the term NDE and DE to
distinguish the type of attacker as no data exfiltration and data exfiltration,
respectively.

2. The victim knows the reputational damage that would result from data exfil-
tration but the attacker does not know. We assume that there are two types
of victim: those with sensitive data, called high type, and those without,
called low type. If exfiltrated data were to be leaked then the victim would
incur reputation costs T1 or T0 < T1 depending on whether they are high or
low type, respectively. If the data is not leaked then we assume there is no
reputation cost. The probability the victim is high type is β. The value of β
is common knowledge to attacker and victim.

The game has three stages. Following the approach of Harnsanyi [9], Nature
determines the the type of the victim (high or low type) and the type of the
criminal (data exfiltrated or no data exfiltrated) in Stage 1 of the game. The
victim learns their type (with probability β they are high type), and the attacker
learns whether data was exfiltrated (with probability α it is exfiltrated).

In stage 2 the attacker chooses (a) whether or not to send a signal that data
has been exfiltrated, and (b) a ransom demand. The signal can, for instance,
consist of a picture of the file tree of the exfiltrated data, or a sample of exfiltrated
data. The cost to the attacker of sending a signal when data is exfiltrated is kD,
whereas if data is not exfiltrated it is kN . We assume that it is harder to send
a credible signal if no data is exfiltrated, so kD < kN . The attacker can choose
any ransom demand. To simplify notation we denote by RS the ransom demand
of the attacker if they send a signal and RNS the demand if no signal is sent.4

In stage 3 the victim observes whether or not a signal was sent, and learns
the ransom demand. The victim then chooses whether to pay the ransom or not.
To simplify the analysis we assume an ultimatum bargaining game in which their
is no opportunity for negotiation, and the choice to pay or not ends the game.

The variables of the game are summarized in Table 1. One additional vari-
able we introduce is L ≥ 0 which captures the legal fees and costs (including
psychologically and moral) of paying a ransom. We also introduce variable µ to
represent the beliefs of the victim on the likelihood that data has been exfil-
trated. Finally, we use variable ϵ to represent the smallest unit of currency. This
will allow us to characterise the optimal ransom in a more succinct way. We ex-
clude from the analysis any fixed costs incurred by the attacker and victim that
are not dependent on the strategic elements of the game. For instance we do not
include the cost to the attacker of implementing the attack. We can exclude such

4 The attacker could choose any ransom above 0 for any combination of both own type
and signal. So, suppose, more generally, we denote by RS

DE , R
S
NDE , R

NS
DE and RNS

NDE

the ransom of a type DE or NDE if they signal or do not signal. There cannot be
an equilibrium in which an attacker of type DE and NDE signal and RS

NDE ̸= RS
DE ;

this would reveal the attacker if type NDE and, thus, make their signal ineffective.
Similarly, there cannot be an equilibrium in which an attacker of type DE and NDE
would not signal and RNS

NDE ̸= RNS
DE ; this would again reveal the attacker if type

NDE and lower the ransom the victim would rationally pay.
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Table 1: Variables used in the data exfiltration signaling game
Variable Description

Attacker RS Ransom when signaling
RNS Ransom when not signaling
kD Cost of signal with data exfiltration
kN Cost of signal without data exfiltration
β Probability of data being valuable

Victim T1 Reputation cost for valuable data
T0 Reputation cost for non-valuable data
V Recovery cost without decryption key
L Legal fees of paying ransom
α Probability of data exfiltration
µ Belief on probability of data exfiltration
ϵ The smallest unit of currency

costs, without loss of generality, because they will not influence the equilibrium
outcomes of the game. We depict the game in Figure 1.

3 Results

In the following we solve for Bayesian equilibria of the game that satisfy the
D1 Criterion [11]. Informally, a Bayesian equilibrium has the property that both
attacker and victim: (1) maximise their expected payoffs given the strategy of
the other and their beliefs, (2) update their beliefs using Bayes rule. Thus, in
equilibrium, players appropriately interpret information, and have no incentive
to change their actions given their beliefs and the actions of the other player.
The D1 Criterion is used to place ‘common sense’ restrictions on beliefs. Specif-
ically, a Bayesian equilibrium may not tie down beliefs off the equilibrium path,
because play could reach nodes that have zero probability and so Bayes rule is
indeterminate. The D1 Criterion imposes extra conditions on beliefs by saying
that any deviation from the equilibrium path is assumed to be done by the type
with the most incentive to deviate [3].

The D1 Criterion is useful to rule out equilibria sustained by ‘non-intuitive
beliefs’ [14]. For instance, consider a candidate equilibria in which the attacker
chooses to not signal if they are type DE or NDE. On the equilibrium path the
attacker should not signal. Thus, Bayes rule does not impose any restrictions
on beliefs were the attacker to signal. Yet, informally, a type DE has the most
incentive to deviate and signal. The D1 Criterion would, thus, require the victim
to believe the deviation was by a type DE. This rules out ‘non-intuitive’ equilibria
that are only sustained by the victim believing a signal would be from the type
NDE.

To focus the analysis on what we believe are the most realistic cases, we
distinguish and characterize two broad types of equilibrium: (a) separating equi-
libria in which the type DE signals data is exfiltrated and the type NDE does
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Nature

α

1-α

DE

RS , Signal

NDE

RS , Signal

RS − kD,−RS − L
Pa

y

−kD,−T1 − V
No Pay

RS − kN ,−RS − L
Pa

y

−kN ,−V
No Pay

Victim

RNS , No Signal

RNS , No Signal

RNS ,−RNS − L Pay

0,−T1 − V No
Pa

y

RNS ,−RNS − L Pay

0,−V No
Pa

y

Victim

Case T1 (Prob. β): Important files exfiltrated.

Nature

α

1-α

DE

RS , Signal

NDE

RS , Signal

RS − kD,−RS − L
Pa

y

−kD,−T0 − V
No Pay

RS − kN ,−RS − L
Pa

y

−kN ,−V
No Pay

Victim

RNS , No Signal

RNS , No Signal

RNS ,−RNS − L Pay

0,−T0 − V No
Pa

y

RNS ,−RNS − L Pay

0,−V No
Pa

y

Victim

Case T0 (Prob. 1-β): No important files exfiltrated.

Fig. 1: Description of the game.
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not, and a (b) pooling equilibria in which both the type DE and NDE signal
that data is exfiltrated. We exclude from analysis pooling equilibria in which
both the type DE and NDE do not signal that data is exfiltrated, as well as
hybrid equilibria in which the attacker randomises their actions. In the following
we discuss separating and pooling equilibria in turn before analysing the impact
of private information. Throughout, we assume that if the victim is indifferent
between paying and not paying then they will not pay.

3.1 Separating Equilibrium

A separating equilibrium has the basic characteristic that the attacker signals
data exfiltration if they are of type DE (i.e. data was exfiltrated) and does not
signal if they are of type NDE (i.e. data was not exfiltrated). The existence of
a separating equilibrium and the exact form of any equilibrium will depend on
the parameters of the game. Specifically, we identified four types of separating
equilibria, which we will label A1-A4. These are summarised in Table 2. As you
can see the equilibria differ by whether or not the victim pays the ransom. For
example, in equilibrium A3 the victim pays the ransom if the attacker signals
but does not pay the ransom if the attacker does not signal. In equilibrium A4
the victim only pays if they are a high type and the attacker signals.

In all four equilibria A1-A4 the high type victim pays if they receive a signal
of data exfiltration. The equilibria differ in whether a low type victim pays if
they receive a signal of data exfiltration and/or whether the victim pays if they
receive no signal. To provide some intuition for the four equilibria we introduce
three ransom demands that prove particularly relevant: (1) R∗

S0 = T0+V −L−ϵ,
(2) R∗

S1 = T1+V −L− ϵ, and (3) R∗
NS = max{V −L− ϵ, 0}. Informally, see the

proof of Theorem 1 for the full details, R∗
S0 and R∗

S1 are the maximum ransom
the low type and high type, respectively, are willing to pay if they believe data
has been exfiltrated. While, R∗

NS is the maximum ransom the attacker can ask
if the victim believes data is not exfiltrated. We readily see that if V < L the
victim would not pay any positive ransom demand if they know data has not
been exfiltrated.

Equilibrium Attacker Victim
DE NDE T1 T0

Signal No signal Signal No signal

A1 Signal No signal Pay Pay Pay Pay
A2 Signal No signal Pay Pay No pay Pay
A3 Signal No signal Pay No Pay Pay No Pay
A4 Signal No Signal Pay No Pay No pay No pay

B1 Signal Signal Pay Pay Pay Pay
B2 Signal Signal Pay Pay No pay Pay
B3 Signal Signal Pay No pay Pay No pay
B4 Signal Signal Pay No pay No pay No pay

Table 2: Equilibria satisfying the D1 criterion in the signaling game.
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If data exfiltration is believed to have taken place then the high type is willing
to pay a larger ransom than the low type, R∗

S1 > R∗
S0. This provides a strategic

trade-off for the attacker: (a) if they ask for a high ransom, R∗
S1, then they

extract maximum surplus from the high type victim, but the low type will not
pay the ransom. (b) If they ask for a low ransom, R∗

S0, then both the low and
high type victim will pay the ransom but they do not fully extract surplus from
the high type. This trade-off is captured by the following term:

ΦS = β(R∗
S1 −R∗

S0)− (1− β)R∗
S0 = β(T1 − T0)− (1− β)(T0 + V − L− ϵ). (1)

The first term in ΦS is the expected gain for the attacker from extracting max-
imum surplus from the high type, while the second term is the expected loss
from charging a ransom the low type is not willing to pay.

We are now in a position to state our first main result. As the preceding
discussion preempts we need to consider combinations of V ≷ L and Φ ≷ 0
giving rise to the four different cases and equilibria.

Theorem 1. There exists a separating equilibrium satisfying the D1 criterion
if and only if the following conditions hold:

(A1) If L < V and ΦS < 0 then kD < T0 < kN .
(A2) If L < V and ΦS > 0 then kD < βT1 − (1− β)(V − L) < kN .
(A3) If L > V and ΦS < 0 then kD < T0 + V − L < kN .
(A4) If L > V and ΦS > 0 then kD < β(T1 + V − L) < kN .

Proof. We first consider the strategy of the victim. Suppose the attacker sends
a signal and ransom demand RS . Suppose the victim infers the attacker is type
DE. In other words, µ = 1. If the victim is low type and pays the ransom
their expected payoff is −RS − L. Their expected payoff if they do not pay is
−T0−V . It follows the low type victim will optimally pay the ransom if and only
if −RS −L > −T0 −V or equivalently RS < T0 +V −L. They would, therefore,
pay ransom R∗

S0. If the victim is high type and pays the ransom their expected
payoff is −RS−L. Their expected payoff if they do not pay is −T1−V . It follows
the high type victim will optimally pay the ransom if and only if RS < T1+V −L.
They would, therefore, pay ransom R∗

S1. Given that T1 > T0 we also have that
the high type would pay ransom R∗

S0.
Now suppose the attacker does not send a signal and sets ransom demand

RNS . Suppose the victim infers the attacker is type NDE. In other words, µ = 0.
If the victim is low type and pays the ransom their expected payoff is −RNS−L.
Their expected payoff if they do not pay is −V . It follows the low type victim
will optimally pay the ransom if and only if −RS − L > −V or equivalently
RS < V − L. They would, therefore, pay ransom R∗

NS if V > L and not pay if
V < L. The same logic holds if the victim is high type.

We now consider the incentives of the attacker. Suppose the attacker is type
DE. Also suppose that on the equilibrium path they signal and set ransom R∗

S0.
Their expected payoff in equilibrium is π(S,R∗

S0) = T0 + V − L − ϵ − kD. In
exploring incentives to deviate from the equilibrium path, we first consider the
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possibility the attacker signals but sets a different ransom demand RS ̸= R∗
S . If

RS < R∗
S0 then the expected payoff of the attacker is π(S,RS) = RS − kD <

π(S,R∗
S0) and so the attacker receives a lower payoff than on the equilibrium

path. If R∗
S1 > RS > R∗

S0 (and µ = 1) then the high type victim would pay the
ransom but the low type victim would not. The expected payoff of the attacker
is, therefore, π(S,RS) = βRS − kD ≤ βR∗

S1 − kD. It follows the attacker prefers
the equilibrium path if and only if β(T1+V −L−ϵ) ≤ T0+V −L−ϵ. Rearranging
gives the condition on ΦS < 0. Reversing this argument we can say it is on the
equilibrium path for the attacker of type DE to signal and set ransom R∗

S1 if
and only if ΦS > 0.

We next consider the possibility that an attacker of type DE chooses to not
signal. Suppose they set ransom demand RNS (and are inferred to be type NDE).
Their expected payoff is at most π(NS,RNS) = R∗

NS . We then have four different
cases to consider. (a) Suppose V > L and R∗

S = R∗
S0. It follows the attacker

prefers the equilibrium path if and only if V − L− ϵ < T0 + V − L− ϵ− kD or,
equivalently, kD < T0. (b) Suppose V > L and R∗

S = R∗
S1. It follows the attacker

prefers the equilibrium path if and only if V − L− ϵ < β(T1 + V − L− ϵ)− kD
or, equivalently, kD + (1 − β)(V − L − ϵ) < βT1. (c) Suppose V < L and
R∗

S = R∗
S0. It follows the attacker prefers the equilibrium path if and only if

0 < T0 + V −L− ϵ− kD or, equivalently, kD < T0 + V −L. (d) Suppose V < L
and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium path if and only

if 0 < β(T1 + V − L− ϵ)− kD or, equivalently, kD < β(T1 + V − L− ϵ).
Next suppose the attacker is type NDE. Extending the logic of the preceding

discussion there is no incentive for the attacker to choose a ransom other than
R∗

NS . We focus, therefore, on the incentive to signal and choose ransom demand
R∗

S . We again have four different cases to consider. (a) Suppose V > L and R∗
S =

R∗
S0. On the equilibrium path the attacker has expected payoff π(NS,R∗

NS) =
V − L − ϵ. It follows the attacker prefers the equilibrium path if and only if
V −L− ϵ > T0 + V −L− ϵ− kN or, equivalently, kN > T0. (b) Suppose V > L
and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium path if and only if

V −L−ϵ > β(T1+V −L−ϵ)−kN or, equivalently, kN+(1−β)(V −L−ϵ) > βT1.
(c) Suppose V < L and R∗

S = R∗
S0. It follows the attacker prefers the equilibrium

path if and only if 0 > T0+V −L− ϵ−kN or, equivalently, kN > T0+V −L. (d)
Suppose V < L and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium

path if and only if 0 > β(T1 + V − L − ϵ) − kN or, equivalently, kN > β(T1 +
V − L− ϵ).

It remains to check the D1 criterion is satisfied. The only game path we need
to consider in any detail is that where the attacker does not signal and sets
ransom RNS ̸= R∗

NS . We have assumed the victim will infer the attacker is type
NDE. Given that KN > kD, the attacker has most incentive to not signal when
of type NDE. This assumption, therefore, naturally satisfies the D1 criterion.□

In interpretation of Theorem 1 we can see that there exists a separating
equilibrium if and only if kD is sufficiently small and kN is sufficiently large.
In other words, a separating equilibrium exists if it is ‘cheap’ for the attacker
to signal when they have exfiltrated data and ‘expensive’ for the attacker to
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signal if they have not exfiltrated data. This would imply, for instance, that if
victims have invested in good monitoring systems to identify data exfiltration,
they could make it harder for the attacker of type NDE to send a credible signal;
then, kN would increase and we would expect the improved monitoring to result
in a separating equilibrium.

3.2 Pooling Equilibrium

We turn our attention now to pooling equilibria. We focus on pooling equilibrium
in which the attacker signals. That is, the attacker signals that data is exfiltrated
whether they are type NDE or DE. Consequently a signal does not convey any
useful information to the victim on whether or not data has been exfiltrated. We
identify four types of pooling equilibria, which we will label B1-B4. These are
summarised in Table 2. Two ransom demands that prove particularly relevant in
this case are: (4) R∗

P0 = αT0+V −L−ϵ, and (5) R∗
P1 = αT1+V −L−ϵ. Informally,

R∗
P0 and R∗

P1 are the maximum ransom the low and high type, respectively, are
willing to pay if they believe the attacker has exfiltrated data with probability
α.

As with the separating equilibrium, the optimal ransom demand of the at-
tacker involves a trade-off between setting a high ransom R∗

P1 that only the high
type will pay and a low ransom R∗

P0 that both the high and low type will pay.
This trade-off is captured by the term:

ΦP = βα(T1 − T0)− (1− β)(αT0 + V − L− ϵ). (2)

We can now state our second result.

Theorem 2. There exists a pooling equilibrium in which the attacker signals,
satisfying the D1 criterion, if and only if the following conditions hold:

(B1) If L < V and ΦP < 0 then kN < αT0.
(B2) If L < V and ΦP > 0 then kN < βαT1 − (1− β)(V − L).
(B3) If L > V and ΦP < 0 then kN < αT0 + V − L.
(B4) If L > V and ΦP > 0 then kN < β(αT1 + V − L).

Proof. Consider the strategy of the victim. Suppose the attacker sends a signal
and ransom demand RS . Suppose the victim infers the attacker is type DE with
probability µ = α. If the victim is low type and pays the ransom their expected
payoff is −RS−L. Their expected payoff if they do not pay is −αT0−V . It follows
the low type victim will optimally pay the ransom if and only if −RS − L >
−αT0−V or equivalently RS < αT0+V −L. They would, therefore, pay ransom
R∗

P0. If the victim is high type and pays the ransom their expected payoff is
−RS − L. Their expected payoff if they do not pay is −αT1 − V . It follows the
high type victim will optimally pay the ransom if and only if RS < αT1+V −L.
They would, therefore, pay ransom R∗

P1. Given that T1 > T0 we also have that
the high type would pay ransom R∗

P0.
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Now suppose the attacker does not send a signal and sets ransom demand
RNS . Suppose the victim infers the attacker is type NDE. In other words, µ = 0.
If the victim is low type and pays the ransom their expected payoff is −RNS−L.
Their expected payoff if they do not pay is −V . It follows the low type victim
will optimally pay the ransom if and only if −RS − L > −V or equivalently
RS < V − L. They would, therefore, pay ransom R∗

NS if V > L and not pay if
V < L. The same logic holds if the victim is high type.

Next consider the incentives of the attacker. Suppose the attacker is type
DE. Also suppose that on the equilibrium path they signal and set ransom R∗

P0.
Their expected payoff in equilibrium is π(S,R∗

P0) = αT0 + V − L − ϵ − kD.
Suppose the attacker signals but sets a different ransom demand RS ̸= R∗

S . If
RS < R∗

S0 then the expected payoff of the attacker is π(S,RS) = RS − kD <
π(S,R∗

P0) and so the attacker receives a lower payoff than on the equilibrium
path. If R∗

P1 > RS > R∗
P0 (and µ = β) then the high type victim would pay the

ransom but the low type victim would not. The expected payoff of the attacker
is, therefore, π(S,RS) = βRS − kD ≤ βR∗

P1 − kD. It follows the attacker prefers
the equilibrium path if and only if β(αT1 + V − L − ϵ) ≤ αT0 + V − L − ϵ.
Rearranging gives ΦP < 0. Reversing this argument we can say it is on the
equilibrium path for the attacker of type DE to signal and set ransom R∗

P1 if
and only if ΦP > 0.

Now consider the possibility that an attacker of type NDE chooses to not
signal. Suppose they set ransom demand RNS (and are inferred to be type NDE).
Their expected payoff is at most π(NS,RNS) = R∗

NS . We then have four different
cases to consider. (a) Suppose V > L and R∗

S = R∗
P0. It follows the attacker

prefers the equilibrium path if and only if V − L − ϵ < αT0 + V − L − ϵ − kN
or, equivalently, kN < αT0. (b) Suppose V > L and R∗

S = R∗
P1. It follows the

attacker prefers the equilibrium path if and only if V −L− ϵ < β(αT1+V −L−
ϵ) − kN or, equivalently, kN + (1 − β)(V − L − ϵ) < βαT1. (c) Suppose V < L
and R∗

S = R∗
P0. It follows the attacker prefers the equilibrium path if and only

if 0 < αT0 + V − L − ϵ − kN or, equivalently, kN < αT0 + V − L. (d) Suppose
V < L and R∗

S = R∗
P1. It follows the attacker prefers the equilibrium path if and

only if 0 < β(αT1 + V −L− ϵ)− kN or, equivalently, kN < β(αT1 + V −L− ϵ).
One can show, using kD < kN , that the analogous conditions for a type DE to
prefer signalling to not signalling are less binding.

It remains to check the D1 criterion is satisfied. The only game path we need
to consider in any detail is that where the attacker does not signal and sets
ransom RNS ̸= R∗

NS . We have assumed the victim will infer the attacker is type
NDE. Given that KN > kD, the attacker has most incentive to not signal when
of type NDE. This assumption, therefore, naturally satisfies the D1 criterion. □

In interpretation of Theorem 2 there exists a pooling equilibrium if and only
if kN is sufficiently small. In other words, there exists a pooling equilibrium
if and only if it is cheap for the attacker to signal even if data has not been
exfiltrated. In practical terms this would suggest the victim does not have any
monitoring technology to identify or evaluate a data breach. It would also suggest
the criminals could easily extract some information, e.g. file tree or sample file,
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that would allow them to signal data exfiltration even though data was not
exfiltrated.

Depending on the parameters of the game there may exist a separating equi-
librium, a pooling equilibrium, or neither. To illustrate, consider the parameters
L = 0, V = 5, α = 0.9, β = 0.5, T0 = 1 and T1 = 5. Then ΦS < 0 and so there
exists a separating equilibrium if and only if kD < 1 < kN . Also ΦP < 0 and
so there exists a pooling equilibrium if kN < 0.9. Thus, for kN < 0.9 there is
a pooling equilibrium, for 0.9 < kN < 1 there is neither a separating nor pool-
ing equilibrium, and for 1 < kN there is a separating equilibrium. The relative
size of the cost for the attacker to signal data exifltration when they have not
exfiltrated data is, thus, crucial to determining the equilibrium outcome.

3.3 The Value of Private Information

A key objective of our work is to analyse the payoff consequences, for both victim
and attacker, of private information on the side of the victim. In Table 3 we detail
the expected payoff of the attacker and victim in equilibria A1-A4 and B1-B4.
These are ex-ante expected payoffs before own type is known. For instance, in
equilibrium A1 there is probability α the attacker is type DE and obtains payoff
R∗

S0 − kD and probability 1 − α the attacker is type NDE and obtains payoff
R∗

NS . The expected payoff is, therefore, α(R∗
S0−kD)+ (1−α)R∗

NS Given that ϵ
can be arbitrarily small we have omitted it from calculations of expected payoff.

Table 3: Expected payoff of attacker and victim in equilibrium.
Equilibrium attacker Victim

A1 αT0 + V − L− αkD −αT0 − V
A2 α(β(T1 + V − L)− kD) + (1− α)(V − L) −α(βT1 + (1− β)T0)− V
A3 α(T0 + V − L− kD) −αT0 − V
A4 α(β(T1 + V − L)− kD) −α(βT1 + (1− β)T0)− V

B1 & B3 αT0 + V − L− αkD − (1− α)kN −αT0 − V
B2 & B4 β(αT1 + V − L)− αkD − (1− α)kN −βαT1 − (1− β)αT0 − V

To analyse the consequences of private information we need to consider an
alternative game in which the attacker knows the type of the victim and so
knows if the reputational damage that would result from data publication is T0

or T1. We can apply Theorems 1 and 2 to distinguish the conditions under which
there exist separating and pooling equilibirum in this revised game. Specifically,
by setting β = 0 or 1 we derive the following corollaries.

Corollary 1. If the victim is known to be type i = {0, 1} there exists a separating
equilibrium satisfying the D1 criterion if and only if the following conditions hold:

A1A2. If L < V , then kD < Ti < kN .
A3A4. If L > V , then kD < Ti + V − L < kN .
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Proof. Suppose β = 0. Then ΦS < 0. Applying Theorem 1 we obtain conditions:
(A1) L < V and kD < T0 < kN , and (A3) L > V and kD < T0 + V − L < kN .
Suppose β = 1. Then ΦS > 0. Applying Theorem 1 we obtain conditions: (A2)
L < V and kD < T1 < kN , and (A4) L > V and kD < T1 + V − L < kN . □

Corollary 2. If the victim is known to be type i = {0, 1} there exists a pooling
equilibrium with a signal satisfying the D1 criterion if and only if the following
conditions hold:

B1B2. If L < V then kN < αTi.
B3B4. If L > V then kN < αTi + V − L.

Proof. Suppose β = 0. Then ΦP < 0. Applying Theorem 2 we obtain conditions:
(B1) L < V and kN < αT0, and (B3) L > V and kN < αT0 + V − L. Suppose
β = 1. Then ΦP > 0. Applying Theorem 2 we obtain conditions: (B2) L < V
and kN < αT1, and (B4) L > V and kN < αT1 + V − L. □

With these two corollaries we can derive the expected payoff of the attacker
and victim in a game where the victim’s type is known. The lower half of Table 4
details the payoffs from equilibria of the game in which the victims type is known.
For instance, the expected payoff of the attacker under equilibrium A3A4 if the
victim is type 0 is α(T0+V−L−kD) and the expected payoff of the attacker under
equilibrium A3A4 if the victim is type 1 is α(T1+V −L−kD). Some care is needed
in deriving ex-ante expected payoffs because the existence of equilibrium A3A4
for the low type does not guarantee existence of equilibrium A3A4 for the high
type, and vice-versa. Even so, by calculating which equilibrium emerges for each
type we can determine an ex-ante expected payoff. For instance, if equilibrium
A3A4 does exist for both the low type and high type then the attackers ex-ante
expected payoff (before victim type is known) is α(βT1+(1−β)T0+V −L−kD).

Table 4: Expected payoff of attacker and victim in equilibrium when type is
known.

Equilibrium attacker Victim

A1A2 (i = {0, 1}) αTi + V − L− αkD −αTi − V
A3A4 (i = {0, 1}) α(Ti + V − L− kD) −αTi − V

B1-B4 (i = {0, 1}) αTi + V − L− αkD − (1− α)kN −αTi − V

We are now in a position to quantify the payoff consequences of private
information for the victim. For any set of parameters L, V, T0, T1, kD, kN , α and
β we can determine which, if any equilibrium will hold in a game with incomplete
information on victim’s type, and the games where victim’s type is known to
be high or low. We can then calculate expected payoffs of the attacker and
victim with and without incomplete information on victim’s type. We provide
two examples.
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In Figure 2 we plot expected payoffs as a function of β when L = 1, V =
3, α = 0.5, T0 = 2, T1 = 4, kD = 0.1 and kN = 6. This is a case with a separating
equilibrium. You can see that the payoff of the attacker is substantially lower
when the type of the victim is not known. The loss reaches a maximum at the
point of transition between equilibria A1 and A2 given by T0 = βT1−(1−β)(V −
L) or equivalently

β =
T0 + V − L

T1 + V − L
. (3)

For the parameters in our example this gives β = 2/3. If the type of the victim
is unknown the expected payoff of the attacker is 2.95. If the type of the victim
is known the ex-ante expected payoff of the attacker is 3.62. So, the attacker’s
payoff is 18.43% lower if it does not know the type of the victim.

We can see the victim’s payoff is higher if the attacker does not know their
type and β < 2/3. The intuition being that the attacker sets the ransom as if
the victim is low type (equilibrium A1) and, thus, the high type is not exploited
as much as they would have been if type was known. If β > 2/3 we see that the
payoff of the victim is the same whether or not the attacker knows their type. In
this case the attacker sets the ransom as if the victim is high type (equilibrium
A2). This means the high type is maximally exploited by the attacker, while the
low type does not pay the ransom and, therefore, suffers recovery and reputa-
tional losses. The net effect for the victim is the same as if the attacker knew
their type and they were maximally exploited. We remind that the attacker’s
payoff is lower if the victim’s type is not known. This is because they also lose
when the ransom is set at a level the low type will not pay.

Fig. 2: Expected payoff of the attacker and victim when L = 1, V = 3, α =
0.5, T0 = 2, T1 = 4, kN = 6, kD = 0.1. An example of a separating equilibrium.

In Figure 3 we plot the corresponding payoffs when, everything else the same,
kN = 0.9. This is a case with a pooling equilibrium. Again, we see that the at-
tacker loses payoff from not knowing the type of the victim. This loss is maximal
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at the transition from equilibrium B1 to B2, given by αT0 = βαT1−(1−β)(V −L)
or equivalently

β =
αT0 + V − L

αT1 + V − L
. (4)

For the parameters in our example this gives β = 3/4. If the type of the victim
is unknown the expected payoff of the attacker is 2.5. If the type of the victim
is known the ex-ante expected payoff of the attacker is 3.25. So, the attacker’s
payoff is 23.08% lower because it does not know the type of the victim.

Fig. 3: Expected payoff of the attacker and victim when L = 1, V = 3, α =
0.5, T0 = 2, T1 = 4, kN = 0.9, kD = 0.1. An example of a separating equilibrium.

The relative trade-offs for the victim are similar in the pooling example as
the separating example. In particular, if the attacker sets the ransom for a victim
of low type (equilibrium B1) then the victim gains from their type being private
if they are high type. If, however, the attacker sets the ransom for a victim of
high type (equilibrium B2) then the victim does not gain from their type being
unknown. In summary, the attacker loses payoff from not knowing the victim’s
type. The victim gains from their type being unknown in the case of equilibrium
A1, B1 and also A3 and B3. The victim does not gain from the type being
unknown in the case of equilibrium A2, A4, B2 and B4.

It is interesting to compare payoffs when kN = 0.9 with those when kN = 6
(for, say, β = 2/3). You can see that the attackers expected payoff is higher
when kN = 6. This may seem counter-intuitive given that a high kN means a
higher cost from signalling. Note, however, that a high kN results in a separating
equilibrium that allows the type DE attacker to extract a high ransom because
their signal of data exfiltration is credible. Specifically, when kN = 6 the type DE
sets ransom R∗

S0 = T0+V −L = 4, while a type NDE sets ransom R∗
NS = V −L =

2. The expected payoff of the attacker is, therefore, α(R∗
S0−kD)+(1−α)R∗

NS =
3.9α+ 2(1− α) = 2.95.
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By contrast, when kN = 0.9 we obtain a pooling equilibrium in which the
attacker’s signal of data exfiltration is not sufficiently credible. This lowers the
ransom the attacker can demand to R∗

P0 = αT0 + V − L = 3. Consequently the
type DE gets a lower payoff with the lower kN (2.9 compared to 3.9). The type
NDE, by contrast, has a higher payoff (2.1 compared to 2) because they are also
able to demand ransom R∗

P0, although they incur cost kN . The expected payoff
of the attacker is R∗

P0 − 0.1α− 0.9(1−α) = 2.5. Overall, therefore, the attacker
has a lower expected payoff when kN = 0.9 compared to kN = 6 (2.5 compared
to 2.95). This trade-off is apparent from the payoffs in Table 3, comparing A1
and B1.

You can also see in Table 3 that the payoff of the victim is not impacted
by kN . This is because the criminal is able to extract the same surplus from
the victim in equilibria A1, A3, B1 and B3. Generally, speaking, as would be
expected, the loss to the victim is reduced by lowering T0, T1, V and β. The
victim’s payoff is also reduced by lowering α. Thus, reduced the losses from data
exfiltration as well as reducing the probability of data exfiltration reduce the
losses to the victim.

4 Conclusion

This paper provides a game-theoretic analysis of the double-sided information
asymmetry in double extortion ransomware attacks. We recognised that victims
are typically unable to verify if data was exfiltrated or not, while attackers typi-
cally do not know the value of any data exfiltrated. We modeled the ransomware
attack as a signaling game, where attackers could signal if data is exfiltrated
and victims pay based on the ransom, signal and the value of information. Our
key contribution is that, depending on the parameters of the game, private in-
formation of the victim (about the value of exfiltrated data) significantly lowers
the profitability of the attack for the criminal. It is, therefore, in the interests
of potential victims, businesses, organisations, and/or individuals, to retain and
amplify the extent of their private information.

According to our model, the most effective way to disrupt the attackers prof-
itability is to: lower the probability of ‘successful’ data exfiltration, lower the
probability the victim has files of high reputational cost, and lower the recov-
ery cost from an attack. This would involve a mix of prevention (to lower the
probability of data exfiltration and loss of sensitive data) as well as improved
recovery options, such as back-ups. Crucially there is an externality effect: the
more victims safeguard their sensitive data the more that benefits other busi-
nesses, including those with vulnerable sensitive data. This is because it would
revise downwards the beliefs of attackers about the ransoms they can reason-
ably expect victims to pay. This externality effect should be acknowledged by
policy makers. In particular, it means businesses will under-invest in cyber secu-
rity prevention and recovery compared to the social optimum. This can justify
government support for cyber security investment.
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