Poster: Are we reasoning about cloud application
vulnerabilities in the right way?

1%t Stefano Simonetto
Department of Pervasive Systems
University of Twente
Enschede, The Netherlands
s.simonetto @utwente.nl

Abstract—Enterprises are quickly transitioning to container
orchestrators, like Kubernetes, which helps developers and en-
gineers manage a large number of container images, pods, and
nodes. However, this new approach does not solve the problem
of software vulnerabilities but arguably it makes vulnerability
management harder. Most of the time, companies have to deal
with thousands of containers in a dynamic environment since they
can fail, and be rescheduled in other nodes. All these factors have
a great impact on the vulnerability management system because
the vulnerabilities and misconfigurations in the system are too
many to be manually operated, so we seek a tool to highlight
the most dangerous (we need a clear definition of dangerous) to
prioritize them.

This paper wants to emphasize the need for a vulnerability
prioritization method and a defense technique improvement.

Index Terms—Vulnerability, Prioritization, Container orches-
tration, Attack Kill-chain.

I. INTRODUCTION

Cloud application vulnerabilities have devastating conse-
quences on our digital society, threatening our privacy, fi-
nances, and critical infrastructure. CISQ (Consortium for
Information and software quality) estimates that the cost of
poor software quality in the US has grown to at least $2.41
trillion, but not in similar proportions as seen in 2020. The
accumulated software Technical Debt (TD) has grown to
roughly $1.52 trillion [2].

In the past few years, the research community proposed
sophisticated approaches and techniques to enhance automated
security testing and promptly identify vulnerabilities before
they can be exploited by malicious attackers.

As a result, today a large variety of tools are available to
effectively detect vulnerabilities. However, most organizations
do not know how to deal with the tons of vulnerabilities also
because these tools are prone to produce false positives. The
usual behavior is to patch them based on the score produced
by each individual vulnerability.

As if the problem wasn’t complicated enough, the container
orchestration scenario makes the situation more challenging
due to the rapid and continuous deployment of new containers
and pods in such environments.

In the real world, attackers put together multiple vulnerabilities
to successfully compromise systems as shown in Fig.1 which

2™ Peter Bosch
Department of Pervasive Systems
University of Twente
Enschede, The Netherlands
h.g.p.bosch@utwente.nl

is taken from a real attack scenario and is related to the
ATT&CK framework [5].

Thus, analyzing vulnerabilities in combination with each other
represents a fundamental step to obtain a realistic “big picture”
of their implications.

Furthermore, most defensive solutions are reactive solutions,
like intrusion detection systems, system calls monitoring, etc.
Even if these techniques are very well-established, they are
affected by scalability problems and are not meant to prevent
an attack to happen. This poster’s abstract aims to create a
discussion on how vulnerabilities are managed in the container
orchestration environment and particularly in Kubernetes.
More precisely, why don’t we prioritize the software patches
according to the real attack path instead of focusing on a
single score? And if this is possible, can we automate this
discovering-fixing process? Can we be more proactive during
the defense?

Attack Matrix

Initial Access Credentials Privilege
Access Escalation

Access to K8S
API Server

Exploiting Public
Facing
Application

List All Secrets Use Admin Cluster Takeover

Secret

bash / cmd
inside
containers

IAM Role STS
Token

Access Instance
Metadata API

Fig. 1. Real attack path in Kubernetes environment

II. PROBLEM STATEMENT

Bug-finding approaches have arguably become too success-
ful thanks to:

1) fuzzers which inject automatically semi-random data
into a program/stack and detect bugs,

2) scanners that identify vulnerabilities relying on a
database of known vulnerabilities.

Industries are finding more vulnerabilities than they can fix
promptly. This leads to a known situation in the security
domain, named alert fatigue, where security operators cannot
stay on top of the large number of alerts produced by potential
security issues, as cited by Sysdig in one of their articles [7]:

”Alert fatigue Syndrome is the feeling of becoming desensi-
tized to alerts, causing you to potentially ignore or minimize
risks and harming your capability to respond adequately to
potential security threats”.

Only a relatively small share of bugs discovered by fuzzers
typically has relevant security implications, while the process
of identifying and analyzing bugs to generate and deploy
patches remains laborious, expensive, and lacks automation.
Therefore, the software industry requires a way to set the
priority of fixing the most harmful bugs (e.g. stand-alone or
concatenated bugs that lead to a dangerous exploit), reducing
costs and manual effort for organizations, and minimizing
the time window in which users are exposed to potential
devastating cyberattacks.

Existing work does not study a critical aspect: how multiple
vulnerabilities can be combined. In fact, when taken individ-
ually, certain vulnerabilities do not provide highly dangerous
capabilities. However, when combined, even low/mid-severity
vulnerabilities can result in high-severity consequences.
Thus, approaches that study vulnerabilities individually, ac-
cording to their severity, are insufficient as they rely on an
unrealistic threat model [1].

Another issue in this field is that most of the defense tech-
niques are meant to react during an attack rather than prevent
it. In other words, only a few approaches adopt proactive
defenses.

III. DISCUSSION AND PRELIMINARY RESULTS

The main challenge for an effective vulnerability analysis
and prioritization strategy is considering multiple vulnerabil-
ities and the capabilities that they enable when combined. In
real-world settings, attackers put together (“chain”) multiple
vulnerabilities to successfully compromise systems. Thus,
ranking vulnerabilities individually, according to their severity,
is insufficient and unrealistic.

Most of the work about vulnerabilities kill-chain takes as a
baseline the CVSS score which is not a good indicator of how
bad the problem is in a particular scenario. For this purpose,
the environmental score is introduced but it is implemented in
a few papers and when used, most of the time the responsibility
is delegated to a security expert. So there is no clear definition
of which score is best since we need also to take into account
the misconfigurations that are introduced by the infrastructure
that allows the programs to work properly, as highlighted in
Fig.2.

The literature is also missing a clear definition of what is best
to prioritize:

1) single highest CVSS? (We disagree);

2) highest score of a kill-chain? Without taking into ac-

count its length;

3) the shortest chain with the highest score?

Finally, there is no clear definition of how to determine the
overall kill-chain score. These are critical open problems to
be addressed to provide a solid base to automate vulnerability
prioritization and patching. The second challenge is changing
the defender’s mindset: until today only two big approaches

have been proposed in the microservices field about the proac-
tive defense. Moving target defense [3] [4] and Mimic defense
[11] leverage the dynamic microservices environment to create
uncertainty for attackers, thereby reducing the probability
of successful attacks. There are no other real ideas about
proactive defenses which instead are highlighted as the leading
approaches for the future.

Cloud misconfigurations Ll AKS GKS 56 z 3
Specific use case vulns (AWS) (Google)
Use cases

K8s misconfigurations
K8s specific vulns

Orchestrator (Kubernetes)
Each layer

adds security
issues

Docker misconfigurations
Docker specific vulns

Container (Docker)

Vulnerabilities
What is taken into account by
most of the papers

Code

Fig. 2. Each abstraction level adds some vulnerabilities and misconfigurations

IV. OUR APPROACH

Our approach to cope with these conceptual problems

consist of looking at the scenario from both sides:

1) We want to shed some light on this problem by propos-
ing a method that assigns the proper score to each
vulnerability and misconfiguration in a selected envi-
ronment. We also want to give a clear definition of how
to determine the overall kill-chain score and identify the
most dangerous ones.

As soon as it’s done, we aim to automatically suggest
patches to fix the problem and automate the process of
vulnerability/misconfiguration discovery-fix.
To give a feeling of the proposed approach:

a) Discovery: we want to leverage open-source
tools like kube-bench [8], kube-hunter [9],
and kubeaudit [10] to scan for vulnerabili-
ties/misconfigurations and, based on these findings,
start reasoning about the scores and how can they
be concatenated.

b) Fix: this task is very dependent on the problem. For
instance, we can try to fix it by applying the new
update or release, other times, if the role assigned
to a certain user/pod is too permissive, we can try
to downgrade it.

After the patch is applied, start again with this procedure
because this last step can lead to a new leak in the
system.

We believe that having a tool that is able to highlight
and automatically fix the riskiest path according to the
company’s crown jewels, will help to stay on top of the
large number of alerts and potential security issues that
otherwise could lead to alert fatigue.

2) At the same time, we think taking the right countermea-
sures against the attackers is very useful since most of
the techniques available nowadays reason in a reactive
way, e.g. IDS, NIDS, and system call monitoring are all
used when the victim is under attack. We are wondering
if it is reasonable to create a new proactive defense by
probing the scenario before the attacker’s action, rather
than just responding to it after it has happened. Our
long shot is to automate the penetration testing process
as much as possible. Even if some tools, like Metasploit
[12], already exist and are well-established, we noticed
two main gaps:

a) none of them target specifically the Kubernetes
architecture or any other container orchestrator
structure;

b) they provide a framework or general reason-
ing, leveraging the pen-testers/red-teams knowl-
edge and skills.

We are not introducing a new concept because penetra-
tion testing was done before microservices, but not so
often because the business architecture changed a little
over time. Today we are faced with a very dynamic and
versatile architecture and this change must be managed
accordingly introducing, perhaps, a service that answers
the question: ’Can I find paths to break the cloud appli-
cation?”. This is a challenging task because the leading
idea is to write a program that is able to automatically
attack every single scenario as a pen-tester would do.
Since we need to:

a) gather the pen-testers/hacker behavior and skills;
b) gather the faulty/vulnerable scenarios;
c) generalize the techniques for all the possible cases.

It is easy to realize that the task is very ambitious but, at
the same time, it can be a game changer for the security
industry.

V. CONCLUSION

More attention should be granted to this field to reduce the
gap between academia and industry in container orchestration
security [6]. With this article, we want to emphasize the
false feeling of security generated by fixing the individual’s
most dangerous vulnerability, without taking into account the
bigger picture. We need an effective tool that is able to obtain
an accurate and comprehensive view of the vulnerabilities,
evaluate risks and generate cost-effective patches.

By approaching the problem from the other side, we are
thinking about taking the right countermeasures against the
attackers by reasoning in a proactive way, trying to make
the attack less likely to happen and more challenging for the
attackers to execute it.

Finally, to provide a better understanding of our work and
to propose our solution in a clear way, we aim to map this
flow to the ATT&CK framework [13], which is the most
used framework to describe adversary tactics, techniques, and
procedures (TTPs).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]
[11]
[12]

[13]

REFERENCES
Shemesh D.H. ”Schindel A. KubeCon + CloudNative
North America 2022”. (2023, April). [Online]. Available:

https://kcenena2022.sched.com/event/182J1

Herb Krasner. ’NEW RESEARCH: THE COST OF POOR SOFTWARE
QUALITY IN THE US: A 2022 REPORT. (2023, April). [Online].
Available: https://www.it-cisq.org/the-cost-of-poor-quality-software-in-
the-us-a-2022-report/

Alavizadeh, H., Jang-Jaccard, J., & Kim, D. S. (2018, August). Eval-
uation for combination of shuffle and diversity on moving target de-
fense strategy for cloud computing. In 2018 17th IEEE international
conference on trust, security and privacy in computing and commu-
nications/12th IEEE international conference on big data science and
engineering (TrustCom/BigDataSE) (pp. 573-578). IEEE.

Jin, H., Li, Z., Zou, D., & Yuan, B. (2019). Dseom: A framework for
dynamic security evaluation and optimization of mtd in container-based
cloud. IEEE Transactions on Dependable and Secure Computing, 18(3),
1125-1136.

Azarzar O. “Kubernetes Security Webishop” (2023, April).
[Online]. Available: https://resources.lightspin.io/kubernetes-security-
webishop?submissionGuid=a82ffed0-0e28-43b2-b23b-635¢518995ad

N. Alshugayran, N. Ali and R. Evans, A Systematic Mapping Study in
Microservice Architecture,” 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA), Macau, China,
2016, pp. 44-51, doi: 10.1109/SOCA.2016.15.

Sysdig. Prioritize Alerts and Findings with Sysdig Secure” (2023,
April). [Online]. Available: https://sysdig.com/blog/prioritize-alerts-and-
findings-with-sysdig-secure/

Aquasecurity. "Kube-bench”. (May 2023). [Online]. Available: GitHub
https://github.com/aquasecurity/kube-bench
Aquasecurity. “Kube-hunter”. (2022). [Online].
https://github.com/aquasecurity/kube-hunter
Shopify. “Kubeaudit”. (March 2023). [Online]. Available: GitHub
https://github.com/Shopify/kubeaudit

YING, Fei; ZHAO, Shengjie; DENG, Hao. Microservice security frame-
work for IoT by mimic defense mechanism. Sensors, 2022, 22.6: 2418.
Metasploit. “The world’s most used penetration testing framework”.
(2023, April). [Online]. Available: https://www.metasploit.com/
MITRE. ”Containers Matrix”. (2023, April). [Online]. Available:
https://attack.mitre.org/matrices/enterprise/containers/

Available: GitHub

