
The worst-case complexity of symmetric strategy
improvement
Tom van Dijk #Ñ

Formal Methods and Tools, University of Twente, The Netherlands

Georg Loho #Ñ

Discrete Mathematics and Mathematical Programming, University of Twente, The Netherlands

Matthew T. Maat # Ñ

Discrete Mathematics and Mathematical Programming, University of Twente, The Netherlands

Abstract
Symmetric strategy improvement is an algorithm introduced by Schewe et al. (ICALP 2015) that can
be used to solve two-player games on directed graphs such as parity games and mean payoff games.
In contrast to the usual well-known strategy improvement algorithm, it iterates over strategies
of both players simultaneously. The symmetric version solves the known worst-case examples for
strategy improvement quickly, however its worst-case complexity remained open.

We present a class of worst-case examples for symmetric strategy improvement on which this
symmetric version also takes exponentially many steps. Remarkably, our examples exhibit this
behaviour for any choice of improvement rule, which is in contrast to classical strategy improvement
where hard instances are usually hand-crafted for a specific improvement rule. We present a
generalized version of symmetric strategy iteration depending less rigidly on the interplay of the
strategies of both players. However, it turns out it has the same shortcomings.

2012 ACM Subject Classification Theory of computation → Logic and verification; Mathematics of
computing → Discrete mathematics

Keywords and phrases Parity game, Mean payoff game, Symmetric strategy improvement, Strategy
improvement, Worst-case complexity

1 Introduction

We study certain classes of infinite turn-based games on directed graphs between two players,
also called infinitary payoff games, which includes parity games and discounted/mean payoff
games. These games are interesting from an algorithmic perspective and from the viewpoint
of complexity theory.

First, there are various problems that relate to solving these games. Solving parity
games is important for formal verification and synthesis of programs, as many properties
of programs are naturally specified by means of fixed points; parity games capture the
expressive power of nested least and greatest fixed point operators. In particular, there
are linear reductions between parity games and the model checking problem of the modal
µ-calculus [11, 34]. Solving mean payoff games is equivalent to problems like solving energy
games [4], deciding feasibility in tropical linear programming [1], scheduling with AND/OR
precedence constraints [25], and the max-atoms problem [3].

Another notable aspect of these games is their complexity status. It is known that there
is a polynomial-time reduction from parity games to mean payoff games, and from mean
to discounted payoff games. Many classes of these games are known to be contained in the
intersection of NP and coNP [6, 36], and parity games and mean payoff games have been
shown to even lie in the intersection of UP and coUP [23]. However, the question whether
there exists a polynomial-time algorithm for any of these games has been open for decades.

ar
X

iv
:2

30
9.

02
22

3v
1

 [
cs

.G
T

]
 5

 S
ep

 2
02

3

mailto: t.vandijk@utwente.nl
https://www.tvandijk.nl/
mailto:g.loho@utwente.nl
https://lohomath.github.io/
mailto:m.t.maat@utwente.nl
https://people.utwente.nl/m.t.maat

2 The worst-case complexity of symmetric strategy improvement

Related work Many algorithms have been proposed for solving parity games and mean
payoff games with the main algorithm classes being value iteration [19, 10, 14], strategy
improvement [22, 2] and attractor-based algorithms [31, 35], where we list only a small
part of the many papers. For most of these algorithms there are instances which take
exponentially many steps; these are usually simple for value iteration, while work by Van
Dijk [33] demonstrates an exponential lower bound to many attractor-based algorithms.
Recently, it has been shown that parity games can actually be solved in quasi-polynomial
time: after the breakthrough in [5], several other quasi-polynomial algorithms have been
found, including [8, 13, 20, 27]. However, most of these approaches are likely to be inherently
superpolynomial as demonstrated in [7].

Strategy improvement [2, 12, 22, 26, 28, 29] (also called strategy iteration or policy
iteration) is considered to be a viable candidate for a polynomial-time algorithm for many
classes of infinitary payoff games due to its inherent combinatorial nature. This method
evaluates strategies by means of a function on the nodes in the graph called the valuation. It
then iteratively makes changes to a strategy, improving the valuation, until an optimal strategy
is found. When there are multiple options for improvements, the choice is made by a so-called
improvement rule. There are a few valuations mainly used in the literature [2, 12, 22, 28].
Based on these, many well-known improvement rules have exponential worst-case running
time as demonstrated by sophisticated worst-case constructions, in particular by Friedmann
et al. (see e.g. [9, 15, 16]). The main idea behind the worst-case constructions is that
one player can ‘trap’ the other player repeatedly in different configurations so that the
encountered strategies simulate a binary counter.

While infinitary payoff games are symmetric in the two players by their nature, only some
algorithms explicitly exploit this symmetry. Most attractor-based algorithms for parity games
are inherently symmetric by simultaneously considering the game from the perspective of
both players, while value iteration and strategy improvement algorithms are mostly inherently
asymmetric. Recently, a quasipolynomial symmetric algorithm for parity games was proposed
by Jurdzinski et al. [21].

Our work is mainly motivated by a symmetric version of strategy iteration for infinitary
payoff games established in [30]. This variant maintains two strategies, one for each player.
The players then iteratively improve their strategy, using information from the best response
to their opponent’s strategy. This reduces the number of iterations needed in practice,
and also does not have superpolynomial running time on the type of examples that were
constructed for classic strategy improvement. The worst-case running time of this variant
was unknown so far.

Our contribution We develop a construction exhibiting exponential running time for
symmetric strategy improvement (SSI). Our main result is the following:

▶ Theorem 1. In the worst case, the number of iterations of symmetric strategy improvement
in parity games, mean payoff games and discounted payoff games is exponential in the number
of nodes and edges in the graph independently of the improvement rule. This holds for any
of the currently used valuations in the literature.

It is remarkable that the result holds for any improvement rule. This is different from
regular strategy improvement, where the existence of a (theoretical) improvement rule for
which the algorithm terminates in a linear number of iterations is guaranteed, see [15,
Lemma 4.2]. By our Theorem 1, this does not exist for symmetric strategy iteration.

Moreover, we present a generalization of SSI which uses the valuation directly and not
only the strategy of the opponent, allowing for more freedom to potentially overcome the

T. van Dijk, G. Loho and M. T. Maat 3

exponential instances. However, we strengthen Theorem 1 with a subtle adapation of the
worst-case instances to hold also for the generalization. This suggests that one needs a
different approach involving more than only local information to benefit from insights in the
interplay of strategies for both players.

Technical overview To arrive at our main result, we derive a class of games for which SSI
needs exponential running time. It is a careful adaptation (depicted in Figure 3) of the basic
example from [2, 17] in such a way that the two players are both distracted by the other
player’s strategy. The key insight here is that the optimal counterstrategy to a bad strategy
can also be a bad strategy itself. Hence restricting to moves from the optimal counterstrategy
prevents them from making the crucial switches for achieving actual progress.

Our family of games has a self-similar structure. It requires the algorithm to solve a
subgame first, and then after the important switches are made, solve the same subgame
again, leading eventually to the exponential blowup of the number of iterations.

Recall that symmetric strategy iteration picks only edges of the optimal counter strategy.
While this implicitly also uses the valuation, as it is defined via the subgraph arising from
the optimal counterstrategy, the generalization directly compares the valuations of the nodes.
Only those edges are considered, which provide a local improvement over the valuations of
both players.

To derive the lower bound construction for the generalization, we introduce a new gadget
(Figure 5). This replaces each of the iteratively arranged pairs of nodes in the former family.
The gadget then forces the generalization to exhibit a similar behaviour as the original SSI.

Paper organization We provide the necessary background on parity games and (symmetric)
strategy improvement in Section 2. We introduce generalized symmetric strategy improvement
in Section 3. Then, Section 4 presents the structure and iterations of the basic exponential
instance for SSI. This is refined in Sections 5 and 6 to the generalized version of SSI and
arbitrary improvement rules. We conclude with a discussion of potential extensions and
limitations of our construction.

2 Preliminaries

Parity games A parity game is a game played between two players, called player 0 and
player 1. It is played on the nodes of a directed graph G = (V, E), where the nodes are
partitioned into V = V0 ∪ V1, and Vi is controlled by player i. We assume every node has
at least one outgoing edge. Associated with the nodes of the graph is a priority function
p : V → Q, where Q ⊂ Z. At the start of the game, a pebble is placed on one of the nodes.
A move is made by the player controlling the node that the pebble is currently on, and it
consists of this player choosing an outgoing edge from this node. The pebble moves along
the edge to the next node. The players keep making moves indefinitely. The winner of the
game is decided by the largest node priority that the pebble encounters infinitely often. If it
is even, player 0 wins, and if it is odd, player 1 wins.

It is well known that parity games are positionally determined, meaning that there always
is a player that has a positional winning strategy. Positional means here that one only takes
into account on which node the pebble currently is. Therefore, we define a strategy for player
0 as a function σ : V0 → V (with the condition that (v, σ(v)) ∈ E for all nodes v ∈ V0).
Similarly, a player 1 strategy is a function τ : V1 → V (with (v, τ(v)) ∈ E for all nodes
v ∈ V1).

4 The worst-case complexity of symmetric strategy improvement

W0 W1

v1: 1

v5: 5

v4: 4

v2: 2

v1: 1

v5: 5

v4: 4

v2: 2

T

v6: 6

Figure 1 Left: A parity game. Priorities are shown in the nodes. Nodes controlled by player
0 are shown as circles, and nodes controlled by player 1 are squares. The sets of winning starting
nodes for player 0 and 1 are W0 and W1, and the winning strategies are marked by dashed lines.
Right: A sink parity game with a strategy σ (dashed) and its optimal counterstrategy σ̄ (dotted).

Sink parity games In this paper, we restrict ourselves to a class of parity games called sink
parity games as it allows to simplify the arguments for valuations. This class has often been
used to show lower bounds for parity game algorithms (see e.g. [15, 18]). Solving sink parity
games is as hard as solving any parity game, see Lemma 4.

▶ Definition 2. A sink parity game is a parity game that fulfills the following conditions:
1. There exists a so-called sink node ⊤ for which p(⊤) < p(v) for all nodes in V \{⊤}, and

whose only outgoing edge is (⊤,⊤).
2. There exists a player 0 strategy σ such that, when it is played, the highest priority

(except ⊤) in any possible cycle is even.
3. There exists a player 1 strategy τ such that, when it is played, the highest priority

(except ⊤) in any possible cycle is odd.

We call player 0 and player 1 strategies that satisfy the above conditions admissible. If
player 0 plays an admissible strategy σ and player 1 plays an admissible strategy τ , then the
pebble must end up at ⊤. Otherwise, it would enter the same node outside ⊤ twice, which
would create a cycle, and the highest priority of the cycle would have to be odd and even
at the same time. This also implies that ⊤ is reachable for the other player when σ or τ is
played. One may say that the result of best play in a sink parity game is a ‘tie’.

Valuations of strategies In the remainder of this section, we describe (symmetric) strategy
improvement in parity games. We use the valuation of [12] and [24], adapted to sink parity
games. The advantages of using this framework are that it is simpler to explain, and it focuses
on the crucial second component of the most commonly used valuation by Jurdzinksi and
Vöge [22]. In sink parity games and their related mean/discounted payoff games, the valuation
that we describe here is equivalent to the other used versions of strategy improvement for
parity games and mean payoff games [2, 22, 28].

Now, suppose player 0 and player 1 both fix a strategy σ and τ , respectively. Then, given
a starting node v, the course of the game is fixed. We want to evaluate how ‘good’ this
outcome is for player 0. This is expressed in the play value Θσ,τ (v). If the pebble does not
reach ⊤, then it must eventually follow some cycle. If the highest priority in the cycle is
even, then this is very good for player 0, so we assign ∞ to this play. If the priority is odd,
we assign it value −∞. Otherwise, the pebble follows a path to ⊤. In this case we establish
the play value by counting how often each priority on this path is encountered. The even

T. van Dijk, G. Loho and M. T. Maat 5

player aims to encounter many high even priorities and little high odd priorities on this path.
The following definition formalizes this.

▶ Definition 3. Let σ and τ be a player 0 and player 1 strategy, respectively. Their play
value is a function Θσ,τ : V → ZQ

≥0 ∪ {−∞,∞}, with ZQ
≥0 the set of nonnegative integer

vectors indexed by the priority set Q. It is defined as follows:
Suppose the nodes encountered are v = v1, v2, . . . , vk,⊤,⊤, . . . (with vk ̸= ⊤). Then for
any q ∈ Q, the q-element of Θσ,τ (the component of the vector in ZQ

≥0 indexed by q) is
given by (Θσ,τ (v))q = |{j ≤ k : p(vj) = q}|.
If ⊤ is not reached and player 0 wins, then Θσ,τ =∞.
If ⊤ is not reached and player 1 wins, then Θσ,τ = −∞.

We can compare play values by how ‘good’ they are for player 0. This is done by a total
order ⊴ on ZQ

≥0 ∪ {−∞,∞}. The smallest element for ⊴ is −∞ and the largest is ∞. The
order ⊴ compares the play values in ZQ

≥0 lexicographically, but different for even and odd
indices. To be precise, suppose we have B and C in ZQ

≥0, and that B ̸= C. Let q′ be the
highest priority q for which Bq′ ≠ Cq′ . We then say that B ◁ C if either Bq′ < Cq′ and q′

is even, or Bq′ > Cq′ and q′ is odd. So if B ◁ C, then B has either less of some high even
priority or more of some high odd priority, so B is ‘worse’ for player 0. Then we use the
concept of play value to evaluate strategies. We evaluate a player 0 admissible strategy σ by
an optimal player 1 response σ̄. To be precise, the valuation of an admissible strategy σ is a
function Ξσ : V → ZQ

≥0 given by: Ξσ(v) = min⊴{Θσ,τ (v) | τ player 1 strategy} = Θσ,σ̄(v)
A strategy τ attaining the minimum in the above equation is an (optimal) counterstrategy.

Note that there exists a player 1 strategy σ̄ that simultaneously attains the minimum for all
nodes in V (equation (11) in [22]). In general, this strategy might not be unique, but we
pick one arbitrarily to be σ̄ if there are multiple options. Moreover, an optimal response σ̄

can be computed efficiently. Because we have a sink parity game and an admissible σ, the
minimum is never ∞ or −∞, so we can regard the range of Ξσ as ZQ

≥0.
The valuation of an admissible player 1 strategy τ is defined similarly using an optimal

response τ̄ from player 0: Ξτ (v) = max⊴{Θσ,τ (v) | σ player 0 strategy} = Θτ̄ ,τ .

Figure 1 shows an example of a sink parity game with a strategy and its counter-
strategy. For example, we have Ξσ(v2) = (0, 1, 0, 0, 0, 1), as the play resulting from σ and
its optimal counterstrategy σ̄ goes through the nodes with priorities 2 and 6. Likewise,
Ξσ(v4) = (0, 0, 0, 1, 0, 0), hence Ξσ(v2) ▷ Ξσ(v4).

Strategy improvement The core idea behind strategy improvement is to make so-called
improving moves. Improving moves for player 0 are given by the edges (v, v′) with v ∈ V0 for
which Ξσ(v′) ▷ Ξσ(σ(v)). That means that, with a new strategy picking v′ after v, player 0
can send the pebble to a node with higher valuation than it currently does in σ. We denote
the set of improving moves for σ by Iσ. Player 0 creates a new strategy σ′ from σ by making
improving moves, which means σ′(v) = v′ for a number of improving moves (v, v′) ∈ Iσ and
σ′(v) = σ(v) everywhere else. Of course, there may be multiple improving edges per node.
The choice which edges to use to improve is decided by an improvement rule, which is a
function f : P(E)→ P(E) that takes as input a set of improving edges, and outputs a set of
improving edges subject to the following conditions:

If |S| > 0, then |f(S)| > 0.
f(S) ⊆ S for all S ∈ P(E).
Every node has at most one outgoing edge in f(S).

6 The worst-case complexity of symmetric strategy improvement

Algorithm 1 Strategy improvement

1: Start with some admissible strategy σ

2: Find an optimal counterstrategy σ̄ to σ, compute Ξσ and Iσ

3: if Iσ = ∅ then return σ

4: else
5: Let σ′ be the strategy obtained from σ by applying all improving moves from f(Iσ)
6: σ ← σ′, go to 2
7: end if

By [22], for any choice of improving edges, we have Ξσ′(v) ⊵ Ξσ(v) for every v ∈ V , and
Ξσ′(v) ▷ Ξσ(v) for at least one node v. Hence we increase the valuation of the strategy.
Clearly, the new strategy is also admissible as its valuation is not −∞. Additionally, if σ has
no improving moves, then we know that Ξσ is pointwise maximal in the space of valuations
([22, Lemma 5.8]). This leads to the strategy improvement algorithm (Algorithm 1).

We can also define improving moves for player 1, by saying (v, v′) with v ∈ V1 is an
improving move if Ξτ (v′) ◁ Ξτ (τ(v)). We denote the set of improving moves for player 1
by Iτ . Similar to before, if τ ′ is obtained from τ by making improving moves, Ξτ ′(v) ⊴ Ξτ (v)
for every v ∈ V , and Ξτ ′(v) ◁ Ξτ (v) for at least one node v. It is well-known that, if σ is an
optimal player 0 strategy (maximizing Ξσ pointwise) and τ and an optimal player 1 strategy
(minimizing Ξτ pointwise), then Ξσ = Ξτ .

Now why are we interested in finding the strategy σ that yields the highest valuation Ξσ

in a sink parity game? The winner of a sink parity game is already known, since the best
both players can do is go to the sink node ⊤. However, even in a sink parity game, finding
the optimal strategy (yielding the ⊴-best Ξσ) is as difficult as solving parity games, as noted
before in [16]. It is similar to the reduction to the longest shortest path problem in [2] and
escape games in [29].

▶ Lemma 4. Deciding the winning starting sets and the winning strategies in a parity game
can be polynomial-time reduced to finding a player 0 strategy σ in a sink parity game that
maximizes Ξσ.

Proof. Suppose we have a parity game G = (V = V0∪V1, E) with priority function p : V → Z.
We may assume that there are no cycles within V0 or within V1. This is because we can
always add nodes with small priorities controlled by player 0 in the middle of cycles in V1
and vice versa without affecting the outcome of the game. Now we construct a parity game
G′ = (V ′, E′) from G, by adding two extra nodes, ⊤ and w. We extend p by choosing p(⊤)
smaller than all other priorities, and taking for p(w) an even number higher than all other
priorities. We add an edge from every node in V0 to ⊤, from every node in V1 to w, from w

to ⊤ and from ⊤ to ⊤.
This is clearly a sink parity game, since player 0 has an admissible strategy by always

going to ⊤, and player 1 has an admissible strategy by going to w. Now let σ be an optimal
player 0 strategy that maximizes Ξσ pointwise, and let σ̄ be player 1’s optimal response.
Since p(w) is even and very large, if player 1 can avoid entering ⊤ through w, they will do
so. Define the subgraph G′

σ by the graph with the same node set as G′ and with edge set
{(v, σ(v)) : v ∈ V ′

0} ∪ {(v, v′) ∈ E′ : v ∈ V ′
1}. Suppose for a node v that (Ξσ(v))p(w) = 1.

This implies that in G′
σ, the node ⊤ is only reachable from v through w. In particular, this

means that player 1 would always have to end in a cycle in V if they would not have the
option of going to w. Because σ is admissible, this cycle has an even highest priority. This
implies that, in the original game G, player 0 wins the game that starts at v by playing σ.

T. van Dijk, G. Loho and M. T. Maat 7

V0 V1

T w

Figure 2 Reduction to a sink parity game

Algorithm 2 Symmetric strategy improvement

1: Start with some pair of admissible strategies σ,τ
2: Find counterstrategies σ̄ and τ̄ and compute Iσ and Iτ

3: I ← f ((Iσ ∩ {(v, τ̄(v))|v ∈ V0}) ∪ (Iτ ∩ {(v, σ̄(v))|v ∈ V1})))
4: Let σ′, τ ′ be result of applying all improving moves from I to σ, τ

5: if σ = σ′ and τ = τ ′ then return σ, τ

6: else
7: σ ← σ′, τ ← τ ′, go to 2
8: end if

If, on the other hand, (Ξσ(v))p(w) = 0, this implies that (Ξτ (v))p(w) = 0, and we can argue
in the same way that player 0 can only reach cycles of odd priority in V if player 1 plays τ .
Hence τ wins for player 1 in the parity game G that starts from v. So we found the winning
starting sets and winning strategies for both players in G. (note that we could also have
made the above construction with p(w) odd and connecting player 0 nodes to w and player 1
nodes with ⊤). See also Example 14. ◁

Symmetric strategy improvement The symmetric strategy improvement (SSI) algorithm
was introduced by Schewe et al. in [30] as a symmetric version of strategy improvement.
The algorithm maintains and improves two strategies simultaneously: a player 0 strategy
σ and a player 1 strategy τ . It uses an optimal counterstrategy τ̄ to τ to select improving
moves for σ, and an optimal counterstrategy σ̄ to σ to select improvements for τ . Note that
this could be applied to a broader class of games than just (sink) parity games, in particular
mean and discounted payoff games. It is described in Algorithm 2 where we expicitly include
the choice of an improvement rule f : P(E)→ P(E).

It is clear that the algorithm terminates, since any improving move improves the valuation
for the respective player, and there is only a finite number of strategies (having a fixed
valuation) for both players. The following lemma implies that the algorithm only terminates
when the resulting pair of strategies (σ, τ) is optimal for the players. It is implicitly proven
in [30, Lemma 3].

8 The worst-case complexity of symmetric strategy improvement

Algorithm 3 Generalized symmetric strategy improvement

1: Start with some admissible strategies σ and τ

2: Find Iσ, Iτ , Jσ(τ) and Jτ (σ)
3: I ← f ((Iσ ∩ Jσ(τ)) ∪ (Iτ ∩ Jτ (σ)))
4: Let σ′, τ ′ be result of applying all improving moves from I to σ, τ

5: if σ = σ′ and τ = τ ′ then return σ, τ

6: else
7: σ ← σ′, τ ← τ ′, go to 2
8: end if

▶ Lemma 5. Suppose σ is a non-optimal player 0 strategy or τ is a non-optimal player 1
strategy. Let σ̄ and τ̄ be optimal counterstrategies to σ and τ , respectively. Then at least one
of the sets Iσ ∩ {(v, τ̄(v))|v ∈ V0} and Iτ ∩ {(v, σ̄(v))|v ∈ V1} is nonempty.

3 Generalized symmetric strategy improvement

It was an intriguing insight by Schewe et al. how the interplay between strategies of both
players can be used to overcome the known hard instances of strategy improvement. Since
the evaluation of the goodness of a strategy relies on the valuation, we go one step further
and directly use the interplay between the valuations arising from the strategies of the two
players to make the improvements. While this can overcome the first basic family of hard
instances presented in Section 4, we show in Section 5 that actually both versions can still
be forced to take exponentially many steps. In this way, we extend the result of Theorem 1.

Our selection of improving edges contains the original set but is bigger in general. Instead
of basing the choices just on optimal counterstrategies, we construct sets Jσ(τ) and Jτ (σ) by
directly comparing locally the valuations of adjacent nodes:

Jσ(τ) = {(v, w) : v ∈ V0 ∧ Ξτ (w) ⊵ Ξτ (σ(v))},
Jτ (σ) = {(v, w) : v ∈ V1 ∧ Ξσ(w) ⊴ Ξσ(τ(v))}.

These notions allow us to state our generalized version in Algorithm 3. They are in some
sense the counterparts of Iσ and Iτ , recall that Iσ = {(v, w) : v ∈ V0 ∧ Ξσ(w) ▷ Ξσ(σ(v))}.
One obtains the original SSI back in this context by choosing only those improvement rules
that select only edges used by σ̄ and τ̄ .

Correctness of generalized symmetric strategy improvement Like for normal SSI, it is
clear that the algorithm terminates. We are left to show that there is always an improving
move possible if the pair of strategies is not optimal. We do so by showing that all the
improving moves that were possible in SSI are also possible in the generalization. Correctness
of Algorithm 3 then follows from Lemma 5.

▶ Lemma 6. For any pair of strategies σ, τ , we have that any edge (v, σ̄(v)) is in Jτ (σ), and
any edge (v, τ̄(v)) is in Jσ(τ).

Proof. We do so by contradiction. Suppose there is an edge (v, σ̄(v)) that is not in Jτ (σ).
This means by definition of Jτ (σ) that Ξσ(σ̄(v)) ▷ Ξσ(τ(v)). Note that the valuation of
σ, which is Ξσ, is equal to Θσσ̄. Now consider the strategy subgraph Gσ := (V, Eσ) with
Eσ := {(v, w) : v ∈ V1} ∪ {(v, σ(v)) : v ∈ V0}). In Gσ, the valuation of σ̄ is equal to
Θσσ̄ = Ξσ, as there is only one player 0 strategy possible. But then Ξσ(σ̄(v)) ▷ Ξσ(τ(v))

T. van Dijk, G. Loho and M. T. Maat 9

an:2n+1

dn:2n+2

an+1:1

dn+1:2n+4

an-1:2n-1

dn-1:2n

a2:5

d2:6

a1:3

d1:4

a3:7

d3:8

...

...

...

Figure 3 The graph Gn, with the priorities written in the nodes. The initial strategies σ0 and τ0

are dashed.

implies that (v, τ(v)) is an improving move for player 1 strategy σ̄ in the game Gσ. However,
this is not possible, since σ̄ is defined to be an optimal counterstrategy to σ. We conclude
that (v, σ̄(v)) ∈ Jτ (σ). The proof of (v, τ̄(v)) ∈ Jσ(τ) is analogous. ◁

4 Counterexample for worst-case complexity

We present a family of parity games for which the original SSI needs exponentially many
iterations, where we restrict to the SWITCH-ALL improvement rule at first. This rule selects
one improving edge for every node that has an outgoing improving edge in S. We generalize
this to arbitrary improvement rules in Section 6. Some animations of the iterations of the
examples presented in Sections 4 and 5 can be found at https://github.com/MatthewMaat/
SI-animations/tree/master/Example%20animations

We use a sequence of sink parity games (Gn)n∈N whose nodes and edges of Gn are listed
in Table 1 and Figure 3. The main structure is similar to the mean payoff game from [2] and
[17], with the main difference being that we have backward edges to the ‘start’ of the game.

Initial strategies We define σ0 and τ0 by σ0(ai) = ai+1 and τ0(di) = di+1 for i = 1, 2, . . . , n,
σ0(an+1) = an+1 and τ0(dn+1) = an+1.

Gn is a sink parity game. The node an+1 is the sink node with low priority. Also, σ0 is
an admissible player 0 strategy. If the pebble enters any node ai if σ0 is played, it will end
at the sink. The only way player 1 could try to avoid this is by trying to keep the pebble
within d1, d2, . . . , dn, but then this will create a cycle with even highest priority. Hence σ0 is
admissible. Likewise, τ0 is admissible, so we have a sink parity game.

Optimal strategies of the players. Recall that a strategy having a high valuation (for

Node Player Priority Successors
a1 Player 0 3 a2, d2

ai, i = 2, . . . , n Player 0 2i + 1 a1, ai+1, di+1

d1 Player 1 4 a2, d2

di, i = 2, . . . , n Player 1 2i + 2 d1, ai+1, di+1

an+1 Player 0 1 an+1

dn+1 Player 1 2n + 4 an+1

Table 1 Nodes and edges of Gn

https://github.com/MatthewMaat/SI-animations/tree/master/Example%20animations
https://github.com/MatthewMaat/SI-animations/tree/master/Example%20animations

10 The worst-case complexity of symmetric strategy improvement

player 0) corresponds to being able to pass through node with high even priorities and
avoiding nodes with high odd priorities. Therefore, to maximize their valuation, player 0
lets the pebble pass dn+1, which has the largest (and even) priority in the game. Playing
a strategy σ that achieves this when starting from a node v yields (Ξσ(v))2n+4 = 1. This
means the valuation is larger than any strategy that does not achieve this. There is only
one strategy where player 0 can do this from every starting node ai, namely the strategy
with σ(ai) = ai+1 for i < n and σan

= dn+1. Ironically, this differs from σ0 in only one edge.
However, as we will see, we avoid making this switch for a long time. Likewise, player 1’s goal
is to avoid dn+1. Their only strategy to avoid it from every node di is to pick τ(di) = di+1
for i < n, and τ(dn) = an+1. Again, player 1 is only one switch from optimal when starting
with τ0.

The remainder of this section is dedicated to the proof of the following proposition, where
we consider iterations in 5 phases. In Section 6, we discuss how our main result follows from
this.

▶ Proposition 7. Suppose SSI with the SWITCH-ALL rule on the game graph Gn starts
with the strategy pair σ0, τ0. Then after 2n+1 − 3 iterations, the optimal strategies σ and τ

are found. The optimal strategies for both players do not appear in any earlier iteration.

Proof. The reader can verify that one needs only one iteration to reach the optimum in G1.
We assume the claim to be true for Gj−1 and show that it holds for Gj to conclude the proof
by induction. We do this by showing that the iterations of SSI are as follows:
1. 2j − 3 iterations with switches from a1, a2, . . . , aj−1 and d1, d2, . . . , dj−1
2. One iteration where the only switch made is (aj , a1)
3. One iteration where the only switch made is (dj , aj+1)
4. One iteration where the only switch made is (aj , dj+1)
5. 2j − 3 iterations with switches from a1, a2, . . . , aj−1 and d1, d2, . . . , dj−1
Then clearly the total number of iterations is 2 · (2j − 3) + 3 = 2j+1 − 3. Now, we elaborate
on these 5 steps, where the first 2j − 3 iterations need extra insights captured in the following
three observations.

▶ Observation 8. As long as σ(aj) = aj+1, we have σ̄(dj) = d1. Likewise, as long as
τ(dj) = dj+1, we have τ̄(aj) = a1

Proof. Suppose σ(aj) = aj+1, and we look at what σ̄ could be. Recall that player 1’s goal is
to reach aj+1 without passing dj+1. Starting from dj , player 1 can do so in two ways: by
picking σ̄(dj) = aj+1, or by picking σ̄(dj) = d1 and then choosing σ̄ for d1, d2, . . . , dj−1 such
that the pebble ends up at aj . The first option gives (Ξσ(dj))2j+1 = 0 while the second one
gives (Ξσ(dj))2j+1 = 1. Hence, the latter gives a lower valuation, and σ̄(dj) = d1. We can
prove similarly that while τ(dj) = dj+1, we have τ̄(aj) = a1. ◁

▶ Observation 9. Suppose σ(aj) = aj+1 and τ(dj) = dj+1. Then Ξσ(aj) ◁ Ξσ(dj) and
Ξτ (aj) ◁ Ξτ (dj). In both cases, the valuation vectors compared differ in their q-position where
q ≥ 2j + 1.

Proof. From the proof of Observation 8 we know that when the pebble starts at dj and
players play σ, σ̄, the pebble goes to d1, then to aj and directly to aj+1. Hence Ξσ(aj) and
Ξσ(dj) differ in their p(dj) = 2j + 2-component, where the latter valuation has a 1. Then it
follows that Ξσ(aj)◁Ξσ(dj), as the values in the vector corresponding to smaller priorities are
insignificant when comparing these two valuations. We can likewise see that Ξτ (aj) ◁ Ξτ (dj)
because they differ in their p(aj) = 2j + 1-component. ◁

T. van Dijk, G. Loho and M. T. Maat 11

aj:2j+1

dj:2j+2

aj+1:1

dj+1:2j+4

aj-1:2j-1

dj-1:2j

a2:5

d2:6

a1:3

d1:4

a3:7

d3:8

...

...

...

2

3

1

Figure 4 The strategies σ, τ (dashed) after 2j − 3 iterations of SSI. Edges that are switched in
the next 3 iterations are marked with 1,2,3.

▶ Observation 10. Suppose σ(aj) = aj+1 and τ(dj) = dj+1. Then edge (aj , a1) is improving
only if σ(ai) = ai+1 for i < j − 1 and σ(aj−1) = dj. Edge (dj , d1) is never improving.

Proof. Suppose player 0 switches the improving edge (aj , a1) while σ is different than
specified above. The resulting strategy should also be admissible. However, player 1 can
play strategy σ̄(di) = di+1 for i < j − 1 and σ̄(dj−1) = aj , creating a cycle with highest
priority p(aj) = 2j + 1. So the new strategy is not admissible, so (aj , a1) could not have been
improving. Likewise, suppose (dj , d1) is improving for some strategy τ and we switch it. Then
player 0 can play τ̄(ai) = ai+1 for i < j − 1 and τ̄(aj−1) = dj . This either creates a cycle
with highest priority p(dj) = 2n + 2 or player 1 creates another cycle within d1, d2, . . . , dj−1.
In both cases, the resulting player 1 strategy cannot be admissible, so the edge could not
have been improving. ◁

From Observations 8 and 10, we can conclude that the strategies at aj and dj will
not change until σ fulfills the conditon of Observation 10 (σ(ai) = ai+1 for i < j − 1 and
σ(aj−1) = dj). Moreover, from Observation 9, we notice that at this first part of the
algorithm we may as well remove aj+1 and dj+1, and set p(aj) = 1 and add edges (dj , aj),
(aj , aj) without changing any choices of SSI. But now we are left with an exact copy of Gj−1,
so by induction hypothesis, we know that SSI needs 2j − 3 iterations to reach the optimal
pair of strategies there. The optimal player 0 strategy in Gj−1 is σ(ai) = ai+1 for i < j − 1
and σ(aj−1) = dj , which we only reach after 2j − 3 iterations. So only then do we need to
consider the original graph Gj again and are we able to switch edge (aj , a1) by Observation
10.

The (2j − 2)-th iteration There are no improving moves in a1, . . . , aj−1 or in d1, . . . , dj−1,
as the strategies are ’optimal’ strategies in Gj−1. However, we do not have optimal strategies
in Gj yet, so by Lemma 5, there must be at least one edge switched by SSI. The only choice
left is edge (aj , a1), so this edge is now switched.

The (2j − 1)-th iteration We have σ = τ̄ (recall τ̄ from Observation 8). Since τ is the
same as in the last iteration, the nodes d1, . . . , dj−1 do not have improving moves. Only the
edge (dj , aj+1) can be switched. Since the strategies are not optimal yet, again Lemma 5
implies that we switch exactly this edge in the (2j − 1)-th iteration.

The 2j-th iteration At the start of the 2j-th iteration, we observe that player 1’s strategy
τ is equal to the counterstrategy σ̄. This is since player 1 can only reach the sink (avoiding

12 The worst-case complexity of symmetric strategy improvement

dj+1) by playing σ̄(dj) = aj+1, and only with this current strategy can player 1 additionally
pass node aj on the way there if player 0 plays σ. Hence, SSI does not make any improving
moves for player 1. If player 0 makes any switch in the nodes a1, a2, . . . , aj−1, then this
always allows player 1 to create a cycle with odd highest priority, so this cannot be an
improving move. Therefore, SSI can only make a switch in aj . The only improving move in
aj is (aj , dj+1), so exactly this edge is switched in iteration 2j .

The final 2j − 3 iterations Notice that we will never again make switches in nodes aj and
dj . Moreover, Ξσ(aj) ▷ Ξσ(dj) and Ξτ (aj) ▷ Ξτ (dj). We might as well replace dj by a sink
node of priority 1, and aj by a node with priority 2j +2 with an edge to the sink (and remove
aj+1, dj+1). This is without changing any future iterations of SSI. But then we have again a
copy of Gj−1 with its respective starting strategies. Using the induction hypothesis again,
SSI takes another 2j − 3 iterations. It reaches the optimal strategies only in the last iteration.
These strategies are also optimal in Gj , and this completes the proof of Proposition 7. ◀

5 Adapted counterexample for generalization of symmetric strategy
improvement

We consider the worst-case performance of the generalized version of SSI, when the SWITCH-
ALL rule is used. The generalized version can solve the games from the previous section
quickly, as it considers more improving moves. However, in this section we show that the
generalized version still has exponential running time on a suitably modified version of the
counterexample.

The overall structure is the same as for the original counterexample, but the nodes ai and
bi are replaced by gadgets as shown in Figure 5. The full construction is described in Table
2. The nodes ai and di (except the sink) have priorities larger than N and the other nodes
have priority smaller than N , so the priorities of ai and di are still the most important ones.

The function of these gadgets is to make it harder for the players to switch. Now for
example, instead of just making a switch at ai, player 0 has to switch their choice at both ci

and mi to significantly change the course of the game. Additionally, the nodes ei, fi, ki, li
make improving moves seem very insignificant with respect to differences in valuation. Similar
to Proposition 7, the following proposition holds:

▶ Proposition 11. Suppose generalized SSI on the game graph Gn starts with σ0, τ0. Then
after 7 · 2n−1 − 5 iterations, the optimal strategies σ and τ are found. The optimal strategies
for both players do not appear in any earlier iteration.

Proof. We show this by induction similar to before. For n = 1, the reader can verify that
in the first iteration we switch (m1, f1) and (g1, k1), and in the second iteration we switch
(h1, g1) and (c1, m1) to reach the optimum. For the induction step, we assume the lemma
holds for Gj−1, and show that the iterations of generalized SSI on Gj are as follows:
1. 7 · 2j−1 − 5 iterations with switches in nodes xi with index i < j

2. One iteration where only (cj , a1) and (mj , a1) are switched
3. One iteration where only (gj , kj) is switched
4. One iteration where only (hj , gj) is switched
5. One iteration where only (mj , fj) is switched
6. One iteration where only (cj , mj) is switched
7. 7 · 2j−1 − 5 iterations with switches in nodes xi with index i < j

Similar to the proof of Proposition 7, we can argue about the phase of the algorithm where
no switches are yet made in the nodes cj , mj , gj and lj . We can observe that edges (cj , a1)

T. van Dijk, G. Loho and M. T. Maat 13

ai:N+2i-1

mi:14i+3

ci:14i+1 ei:14i+4

fi:14i+6

di:N+2i

gi:14i+8

hi:14i+10

ki:14i+11

li:14i+13

ai+1a1

d1

ei-1

fi-1

ki-1

li-1

di+1

Figure 5 Subgraph for generalized SSI that replaces ai and bi when i > 1. Initial strategies σ0

and τ0 are dashed. Nodes that do not have all their incident edges shown are small and grey.

and (mj , a1) are part of τ̄ but not yet improving until player 0 plays a specific strategy,
and (gj , d1) and (hj , d1) are part of σ̄ and never improving. So in the first phase, the only
improving moves with index j are (mj , fj) and (gj , kj). But we do not make these moves for
a reason that is similar to Observation 8. If we consider the path of the pebble when τ and
τ̄ are played, then starting from fj , we go immediately to dj+1, while from cj we go back to
a1 and through dj to dj+1. So Ξτ (cj) is much bigger (because of the p(dj) = N + 2i) than
Ξτ (fj). Hence generalized SSI never makes the switch (mj , fj) in the beginning. Likewise,
the move (gj , kj) is postponed by the algorithm. Therefore, we can again pretend that aj is
the sink and dj only has an edge towards the sink and use the induction hypothesis to show
that this first phase takes 7 · 2j−1 − 5 iterations.

Node Player Priority Successors Node Player Priority Successors
ai Player 0 N + 2i − 1 ci an+1 Player 0 1 an+1

di Player 1 N + 2i hi dn+1 Player 1 N + 2n + 2 an+1

ci Player 0 14i + 1 ei, mi, (a1) ei Player 1 14i + 4 mi, ai+1

mi Player 0 14i + 3 fi, ci, (a1) fi Player 1 14i + 6 ci, di+1

gi Player 1 14i + 8 ki, hi, (d1) ki Player 0 14i + 11 hi, ai+1

hi Player 1 14i + 10 li, gi, (d1) li Player 0 14i + 13 gi, di+1

σ0(ai) = ci τ0(di) = hi σ0(an+1) = an+1 τ0(dn+1) = an+1

σ0(ci) = ei σ0(mi) = ci τ0(gi) = hi τ0(hi) = li

τ0(ei) = ai+1 τ0(fi) = di+1 σ0(ki) = ai+1 σ0(li) = di+1

Table 2 Nodes, edges and initial strategies of the adapted counterexample. We have N = 16n+16,
and i ranges from 1 to n. Nodes between brackets mean that they are only a successor if i > 1.

14 The worst-case complexity of symmetric strategy improvement

Now going back to the induction proof, the next five iterations of the algorithm are
similar to the three iterations in the middle of the counterexample for SSI, except that we
need two switches per module instead of one.

For the last part, we can again pretend that dj is the sink and aj a node with even
priority with an edge to the sink. This yields a copy of Gj−1, but with nodes like cj−1 and
ej−1 and (fj−1) switched. This, however, does not affect any choices of the algorithm (as the
valuations of ci and ei are always very close). Then using the induction hypothesis, it follows
that this last phase takes 7 · 2j−1 − 5 iterations. This completes the induction proof. ◀

6 Concluding the proof

We look at the last details to prove Theorem 1. So far, we assumed that the improvement
rule SWITCH-ALL is used. It turns out that in many iterations of (generalized) SSI, there
is only one improving move. This implies the following result.

▶ Lemma 12. The results of Propositions 7 and 11 hold for any improvement rule f .

Proof. We prove this by arguing that if we use SWITCH-ALL on the graphs Gn for both
constructions, then either there is only one switch possible, or every switch but one switch is
irrelevant. Here irrelevant means that whether or not we make the switch, the further course
of the algorithm does not change, hence the number of iterations can only increase if we
decide not to make some improving switches.

First, we consider the class of games Gn that proved Proposition 7 (Figure 3). If we
use the SWITCH-ALL rule, then by following the induction proof we find that we make
two switches per iteration whenever we make switches at a1 and d1 (following from the
induction basis), and we make one switch in every other case (from the induction step).
Note however, that not making a switch in d1 never has any effect on the course of the
algorithm. Observations 8, 9, 10 still hold if no switch is made in d1, and so does the rest of
the induction step. It also follows that if only d1 is switched and a1 not, then in the next
iteration a1 has the only possible switch. In all cases, symmetric strategy improvement takes
at least as many iterations as for SWITCH-ALL.

Next we consider the games Gn from the proof of Proposition 11 (Figure 5). There are
two cases where there are multiple switches when SWITCH-ALL is used. First, the modules
attached to a1 and d1 are switched at the same time. However, for the same reason as above,
we can ignore the second module. Secondly, (ci, a1) and (mi, a1) are switched at the same
time. Note that if (ci, a1) is switched, then any switch in mi becomes irrelevant as mi is not
reachable at that moment for player 0, and we make the switch (mi, fi) three iterations later.
If, on the other hand, only (mi, a1) is switched while σ(ci) = ei, then nothing significant
changes in the game and in the next iteration we will still have to switch (ci, a1). Finally,
if (mi, a1) is switched while σ(ci) = mi and σ(mi) = fi, then the switch (ci, a1) becomes
irrelevant after the switch as it only removes one 14i + 3-priority from the valuation. So in
all cases, there is only one relevant switch. We conclude that using an improvement rule for
this Gn takes at least as many iterations as for SWITCH-ALL. ◁

Note that the number of nodes and edges of Gn for regular SSI is 2n+2 and 6n, respectively.
Also, the running time of SSI cannot be more than the total number of strategies for both
players, which is exponential in the number of nodes and edges. Hence the worst-case running
time of symmetric strategy improvement for parity games is exponential in the number of
nodes and edges. Moreover, we already noted that in sink parity games, the valuations from

T. van Dijk, G. Loho and M. T. Maat 15

the literature are equivalent. Furthermore, the result for mean and discounted payoff games
can be shown analogously to [15, Theorem 4.19]. This concludes the proof of Theorem 1.

Finally, the number of nodes and edges of our game Gn for generalized SSI is also linear
in n. This yields the following result.

▶ Theorem 13. The results from Theorem 1 also hold for generalized SSI.

7 Discussion

We showed that both symmetric strategy improvement (SSI) and a generalization have
exponential worst-case time complexity. The reason is that they can make too few crucial
switches, as they are distracted by their opponent’s (bad) strategy. In our example, the
opponent’s valuation always steers the players to make ‘bad’ improving moves. Hence,
even using the local information of the other player’s valuation is not always useful (an
implementation of SSI and its worst-case example can be found in Oink [32]). Remarkably,
no improvement rule can fix this issue. Furthermore, we presented a generalization of SSI
and its worst-case example which allows for more flexibility.

The parity game example presented in Figure 3 occurs to be trivial to solve for various
natural implementations. One could think of preprocessing techniques like SCC decompos-
ition, removing self-loops or choosing an initial strategy with some heuristic (in fact, the
construction in the proof of Lemma 4 gives such a heuristic that would solve the parity game
quickly). There are further tweaks like propagating information about which nodes are won
through the graph by attracting towards them. However, we argue that the main principles
of our counterexamples are robust against such tricks. Imagine the parity game of Figure 3
to be part of a larger parity game, where an+1 looks much higher valued than dn+1 at the
beginning. Suppose that in reality dn+1 is winning for player 0 (or player 0 has a strategy
such that it has a large valuation in the version of SSI used here), and an+1 is winning for
player 1 (or player 1 can let it have a low valuation). Then, until SSI discovers the true value
of an+1 and dn+1, the best possible strategies to play from a1, a2, . . . and d1, d2, . . . are in
fact the strategies we use as initial strategies in Section 4. So most likely, the preprocessing
would pick these strategies or we quickly end up with them after some iterations. Secondly,
SCC decomposition can be tricked by adding edges back from the rest of the game to a1, d1
that are bad choices for the player that can choose them, and the propagation trick is stopped
by the modules from Figure 5. It is likely that other optimizations, assuming that they have
a weakness, will be stopped by adding modules that exploit this weakness in a similar way.
Note, however, that structures like those in our hard instances are unlikely to show up in
practice. As observed by the authors of SSI [30], the number of iterations of SSI is low on
randomly generated instances.

Our work leaves open if there is actually any way to use the interplay of strategies
of the two players which does not end up with exponential worst-case running time. Our
constructions suggest that the restriction imposed by using local information of the opponent’s
strategy might always be exploited to lure the iterations into an exponential trap.

References

1 Marianne Akian, Stéphane Gaubert, and Alexander E. Guterman. Tropical polyhedra are
equivalent to mean payoff games. Int. J. Algebra Comput., 22(1), 2012. doi:10.1142/
S0218196711006674.

https://doi.org/10.1142/S0218196711006674
https://doi.org/10.1142/S0218196711006674

16 The worst-case complexity of symmetric strategy improvement

2 Henrik Björklund and Sergei G. Vorobyov. A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discret. Appl. Math., 155(2):210–229, 2007.
doi:10.1016/j.dam.2006.04.029.

3 Manuel Bodirsky and Marcello Mamino. Tropically convex constraint satisfaction. Theory
Comput. Syst., 62(3):481–509, 2018. doi:10.1007/s00224-017-9762-0.

4 L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J. F. Raskin. Faster algorithms for
mean-payoff games. Form. Methods Syst. Des., 38(2):97–118, apr 2011. doi:10.1007/
s10703-010-0105-x.

5 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 252–263. ACM, 2017. doi:10.1145/3055399.3055409.

6 Anne Condon. The complexity of stochastic games. Information and Computa-
tion, 96(2):203–224, 1992. URL: https://www.sciencedirect.com/science/article/pii/
089054019290048K, doi:10.1016/0890-5401(92)90048-K.

7 Wojciech Czerwinski, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdzinski, Ranko Lazic,
and Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2333–2349. SIAM, 2019. doi:10.1137/1.9781611975482.142.

8 Daniele Dell’Erba and Sven Schewe. Smaller progress measures and separating automata for
parity games. Frontiers Comput. Sci., 4, 2022. doi:10.3389/fcomp.2022.936903.

9 Yann Disser, Oliver Friedmann, and Alexander V. Hopp. An exponential lower bound for
zadeh’s pivot rule. Math. Program., 199(1):865–936, 2023. doi:10.1007/s10107-022-01848-x.

10 Dani Dorfman, Haim Kaplan, and Uri Zwick. A Faster Deterministic Exponential Time
Algorithm for Energy Games and Mean Payoff Games. In 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 114:1–114:14, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/
volltexte/2019/10690, doi:10.4230/LIPIcs.ICALP.2019.114.

11 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for the
µ-calculus and its fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001. doi:10.1016/
S0304-3975(00)00034-7.

12 John Fearnley. Efficient parallel strategy improvement for parity games. In Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages 137–154.
Springer, 2017. doi:10.1007/978-3-319-63390-9_8.

13 John Fearnley, Sanjay Jain, Bart de Keijzer, Sven Schewe, Frank Stephan, and Dominik
Wojtczak. An ordered approach to solving parity games in quasi-polynomial time and quasi-
linear space. Int. J. Softw. Tools Technol. Transf., 21(3):325–349, 2019. doi:10.1007/
s10009-019-00509-3.

14 Nathanaël Fijalkow, Paweł Gawrychowski, and Pierre Ohlmann. Value Iteration Using
Universal Graphs and the Complexity of Mean Payoff Games. In 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 34:1–34:15, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/
volltexte/2020/12701, doi:10.4230/LIPIcs.MFCS.2020.34.

15 Oliver Friedmann. Exponential Lower Bounds for Solving Infinitary Payoff Games and
Linear Programs. PhD thesis, Ludwig Maximilians University Munich, 2011. URL: http:
//edoc.ub.uni-muenchen.de/13294/.

https://doi.org/10.1016/j.dam.2006.04.029
https://doi.org/10.1007/s00224-017-9762-0
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1145/3055399.3055409
https://www.sciencedirect.com/science/article/pii/089054019290048K
https://www.sciencedirect.com/science/article/pii/089054019290048K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.3389/fcomp.2022.936903
https://doi.org/10.1007/s10107-022-01848-x
http://drops.dagstuhl.de/opus/volltexte/2019/10690
http://drops.dagstuhl.de/opus/volltexte/2019/10690
https://doi.org/10.4230/LIPIcs.ICALP.2019.114
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1007/978-3-319-63390-9_8
https://doi.org/10.1007/s10009-019-00509-3
https://doi.org/10.1007/s10009-019-00509-3
https://drops.dagstuhl.de/opus/volltexte/2020/12701
https://drops.dagstuhl.de/opus/volltexte/2020/12701
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
http://edoc.ub.uni-muenchen.de/13294/
http://edoc.ub.uni-muenchen.de/13294/

T. van Dijk, G. Loho and M. T. Maat 17

16 Oliver Friedmann. A superpolynomial lower bound for strategy iteration based on snare
memorization. Discret. Appl. Math., 161(10-11):1317–1337, 2013. doi:10.1016/j.dam.2013.
02.007.

17 V. A. Gurvich, A. V. Karzanov, and L. G. Kachivan. Cyclic games and an algorithm to find
minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical
Physics, 28(5):85–91, 1988. URL: http://www.maths.lse.ac.uk/Personal/stengel/ussrGKK.
pdf.

18 Thomas Dueholm Hansen. Worst-case analysis of strategy iteration and the simplex method.
PhD thesis, Aarhus University, Denmark, 2012. URL: https://pure.au.dk/portal/files/
52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf.

19 Marcin Jurdzinski. Small progress measures for solving parity games. In STACS 2000, 17th
Annual Symposium on Theoretical Aspects of Computer Science, Lille, France, February 2000,
Proceedings, volume 1770 of Lecture Notes in Computer Science, pages 290–301. Springer,
2000. doi:10.1007/3-540-46541-3_24.

20 Marcin Jurdzinski and Ranko Lazic. Succinct progress measures for solving parity games. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–9. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005092.

21 Marcin Jurdziński, Rémi Morvan, Pierre Ohlmann, and K. S. Thejaswini. A sym-
metric attractor-decomposition lifting algorithm for parity games. arXiv e-prints, page
arXiv:2010.08288, October 2020. arXiv:2010.08288, doi:10.48550/arXiv.2010.08288.

22 Marcin Jurdzinski and Jens Vöge. A discrete stratety improvement algorithm for solving
parity games. BRICS Report Series, 7(48), Jun. 2000. URL: https://tidsskrift.dk/brics/
article/view/20215, doi:10.7146/brics.v7i48.20215.

23 Marcin Jurdziński. Deciding the winner in parity games is in up ∩ co-up. Information
Processing Letters, 68(3):119–124, 1998. URL: https://www.sciencedirect.com/science/
article/pii/S0020019098001501, doi:10.1016/S0020-0190(98)00150-1.

24 Michael Luttenberger. Strategy iteration using non-deterministic strategies for solving parity
games. CoRR, abs/0806.2923, 2008. URL: http://arxiv.org/abs/0806.2923, arXiv:0806.
2923.

25 Rolf H. Möhring, Martin Skutella, and Frederik Stork. Scheduling with AND/OR precedence
constraints. SIAM J. Comput., 33(2):393–415, 2004. URL: http://dx.doi.org/10.1137/
S009753970037727X, doi:10.1137/S009753970037727X.

26 Pierre Ohlmann. Monotonic Graphs for Parity and Mean-Payoff Games. PhD thesis, University
of Paris, 2021. URL: https://www.irif.fr/~ohlmann/contents/these.pdf.

27 Pawel Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In 44th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August
26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 10:1–10:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.10.

28 Anuj Puri. Theory of hybrid systems and discrete event systems., 1995. URL: https:
//www.elibrary.ru/item.asp?id=5408583.

29 Sven Schewe. An optimal strategy improvement algorithm for solving parity and payoff
games. In Computer Science Logic, 22nd International Workshop, CSL 2008, 17th Annual
Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, volume
5213 of Lecture Notes in Computer Science, pages 369–384. Springer, 2008. doi:10.1007/
978-3-540-87531-4_27.

30 Sven Schewe, Ashutosh Trivedi, and Thomas Varghese. Symmetric strategy improvement.
In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 388–400. Springer, 2015. doi:10.1007/978-3-662-47666-6_31.

31 Tom van Dijk. Attracting tangles to solve parity games. In Computer Aided Verification -
30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference,

https://doi.org/10.1016/j.dam.2013.02.007
https://doi.org/10.1016/j.dam.2013.02.007
http://www.maths.lse.ac.uk/Personal/stengel/ussrGKK.pdf
http://www.maths.lse.ac.uk/Personal/stengel/ussrGKK.pdf
https://pure.au.dk/portal/files/52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf
https://pure.au.dk/portal/files/52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf
https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1109/LICS.2017.8005092
https://arxiv.org/abs/2010.08288
https://doi.org/10.48550/arXiv.2010.08288
https://tidsskrift.dk/brics/article/view/20215
https://tidsskrift.dk/brics/article/view/20215
https://doi.org/10.7146/brics.v7i48.20215
https://www.sciencedirect.com/science/article/pii/S0020019098001501
https://www.sciencedirect.com/science/article/pii/S0020019098001501
https://doi.org/10.1016/S0020-0190(98)00150-1
http://arxiv.org/abs/0806.2923
https://arxiv.org/abs/0806.2923
https://arxiv.org/abs/0806.2923
http://dx.doi.org/10.1137/S009753970037727X
http://dx.doi.org/10.1137/S009753970037727X
https://doi.org/10.1137/S009753970037727X
https://www.irif.fr/~ohlmann/contents/these.pdf
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://www.elibrary.ru/item.asp?id=5408583
https://www.elibrary.ru/item.asp?id=5408583
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-662-47666-6_31

18 The worst-case complexity of symmetric strategy improvement

FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes
in Computer Science, pages 198–215. Springer, 2018. doi:10.1007/978-3-319-96142-2_14.

32 Tom van Dijk. Oink: An implementation and evaluation of modern parity game solvers.
In Tools and Algorithms for the Construction and Analysis of Systems - 24th International
Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part I, volume 10805 of Lecture Notes in Computer Science, pages 291–308. Springer, 2018.
doi:10.1007/978-3-319-89960-2_16.

33 Tom van Dijk. A parity game tale of two counters. In Proceedings Tenth International
Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2019, Bordeaux,
France, 2-3rd September 2019, volume 305 of EPTCS, pages 107–122, 2019. doi:10.4204/
EPTCS.305.8.

34 Igor Walukiewicz. Monadic second order logic on tree-like structures. In STACS 96, 13th
Annual Symposium on Theoretical Aspects of Computer Science, Grenoble, France, February
22-24, 1996, Proceedings, volume 1046 of Lecture Notes in Computer Science, pages 401–413.
Springer, 1996. doi:10.1007/3-540-60922-9_33.

35 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

36 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996. doi:10.1016/0304-3975(95)00188-3.

https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.4204/EPTCS.305.8
https://doi.org/10.4204/EPTCS.305.8
https://doi.org/10.1007/3-540-60922-9_33
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/0304-3975(95)00188-3

T. van Dijk, G. Loho and M. T. Maat 19

v1: 1

v5: 5

v4: 4

v2: 2

v1: 1

v5: 5

v4: 4

v2: 2

T

v6: 6

v1: 1

v5: 5

v4: 4

v2: 2

T

v6: 6

Figure 6 Left: a parity game. Middle: strategy σ (dashed) and counterstrategy σ̄ (dotted) in the
resulting sink parity game. Right: Strategy τ (dashed) and counterstrategy τ̄ (dotted).

W0 W1

v1: 1

v5: 5

v4: 4

v2: 2

v1: 1

v5: 5

v4: 4

v2: 2

T

v6: 6

Figure 7 Left: optimal strategies σ (dashed) and τ (dotted), found after performing symmetric
strategy improvement. Right: the resulting winning sets and winning strategies (dashed) in the
original game.

A Example

▶ Example 14. Now we illustrate the reduction to a sink parity game and the symmetric
strategy improvement algorithm with an example. Suppose we have a parity game as on
the left in Figure 6. This can be transformed into a sink parity game as in Lemma 4. Two
copies of the resulting sink parity game are shown on the right in Figure 6. One copy shows
a trivial admissible player 0 strategy σ, with its optimal response σ̄. The other one shows an
admissible τ with its optimal response τ̄ .

Now we look at what symmetric strategy improvement does if we start with the pair
of strategies shown in Figure 6. We denote the valuations Ξσ and Ξτ in this game by
(a1, a2, a4, a5, a6), where ai stands for (Ξσ)i or (Ξτ)i. Now we find the improving moves.
Player 0 has two improving moves, the first is (v1, v2), as Ξσ(v2) = (1, 1, 0, 0, 0) ▷ Ξσ(σ(v1)) =
Ξσ(⊤) = (0, 0, 0, 0, 0), and the other improving move is (v1, v4). Since τ̄(v1) = v2, the
symmetric strategy improvement algorithm will switch player 0’s choice in v1 to v2. Player 1
has one improving move, namely (v5, v4), as Ξτ (v4) = (0, 0, 1, 1, 1) ◁ (0, 0, 0, 0, 1) = Ξτ (v6).
However, σ̄(v5) = v2, so Iτ ∩ {(v, σ̄(v))|v ∈ V0} is empty, and we do not change τ in this
iteration. So in the first iteration, the only switch that is made is changing σ(v1) to v2.
The reader can verify that in the second iteration of the symmetric strategy improvement
algorithm, only the switch (v5, v4) is made for player 1, and that after that, the algorithm
terminates. Then, we have a pair of optimal strategies σ and τ as shown on the left in
Figure 7. We can now infer the winning sets W0 and W1 of the original game from the
6-element of the valuations of the nodes. Also, the optimal strategies in the sink game form
winning strategies in the original game.

20 The worst-case complexity of symmetric strategy improvement

B Note on further increasing the number of switches

On the number of switches, note that with the adapted counterexample, generalized symmetric
strategy improvement still makes ‘too few’ switches, because it puts off making some good
switches. It considers the large difference in Ξτ for player 0 switches and the large difference
in Ξσ for player 1 switches. That opens the question if one could further increase the number
of switches that generalized symmetric strategy improvement makes. A next logical increase
would be to always make an improving move in a node if one can, and then possibly be
guided by the opponent’s strategy for deciding which improving move to make. However, in
a run of regular strategy improvement on the switch-best counterexample from [15], there is
always exactly one improving move per node, and therefore this generalization would behave
the same on this game for player 0 as strategy improvement where every possible switch is
made. 1 Hence there is still an exponential-time worst-case example. This time, one could
say that it is because the algorithm is switching too many edges, as the main idea behind
this example is that the parts representing significant bits are distracted by unnecessary
switches so that the insignificant bits are being switched very often like a binary counter.

1 There is one exception in the iteration after their so-called deceleration lane resets, here we can choose
to which node in the deceleration lane we go. However, for this generalization, it is both from the
perspective of Ξσ and Ξτ always better to switch to the highest even node in the lane like in regular
strategy improvement. Hence it would make sense to assume that this always happens.

	1 Introduction
	2 Preliminaries
	3 Generalized symmetric strategy improvement
	4 Counterexample for worst-case complexity
	5 Adapted counterexample for generalization of symmetric strategy improvement
	6 Concluding the proof
	7 Discussion
	A Example
	B Note on further increasing the number of switches

