
  

  

Abstract— Latest advances in wearable exoskeletons for the 

human lower extremity predominantly focus on minimising 

metabolic cost of walking. However, there currently is no robotic 

exoskeleton that gains control on the mechanics of biological 

tissues such as biological muscles or series-elastic tendons. 

Achieving robotic control of biological tissue mechanics would 

enable prevention of musculoskeletal injuries or the 

personalization of rehabilitation treatments following injury 

with levels of precisions not attained before. In this paper, we 

introduce a new framework that uses nonlinear model predictive 

control (NMPC) for the closed-loop control of peak tendon force 

in a simulated system of the human ankle joint with parallel 

exoskeletal actuation. We propose a computationally efficient 

NMPC’s inner model consisting of explicit, closed-form 

equations of muscle-tendon dynamics along with those of the 

ankle joint with parallel actuation. The proposed formulation is 

tested and verified on movement data collected during dynamic 

ankle dorsiflexion/plantarflexion rotations executed on a 

dynamometer as well as during walking and running on a 

treadmill. The framework designed using the NMPC controller 

showed a promising performance in keeping the Achilles tendon 

force under a predefined threshold. Results indicated that our 

proposed model was generalizable to different muscles and gaits 

and suitable for real-time applications due to its low 

computational time. 

I. INTRODUCTION 

Developing wearable robotic exoskeletons or exosuits that 
can provide mechanical assistance to biological joints, which 
adapts to the external mechanical demand, is an open 
challenge. In this context, human-in-the-loop (HIL) 
optimization techniques were proposed that identified lower 
extremity joint torque profiles for active exoskeletons to 
minimize a person’s metabolic energy consumption during 
gait [1]. HIL’s working principle relies on controllers altering 
assistive torque parameters until metabolic energy 
consumption is minimized [2]. This process is time-
consuming and requires several minutes for the state-of-the art 
approaches to converge to optimal torque profile [3].  

Developments on lower limb wearable exoskeletons 
virtually focus on minimising metabolic cost of walking. 
However, there currently is no robot that can control the 
mechanics of biological tissues such as biological tendons. 
Developing robotic technologies that can control tissue 
mechanics would enable prevention of musculoskeletal 
injuries by providing assistance to the targeted tissue in an 
assist-as-needed strategy. In addition, this approach can be 
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useful for  optimization of rehabilitation treatments by 
performing exercises on the injured tissue. Therefore, in this 
study we aim to study the problem of controlling peak Achilles 
tendon force during cyclic motions in a predictive way. Doing 
this, requires a completely new class of controllers than can 
operate within milliseconds. That is, these controllers need to 
be able to determine optimal torque profiles within 
milliseconds and deliver these torques to biological joints to 
prevent tendon torque to surpass pre-defined thresholds.  

We hypothesize that controlling an ankle exoskeleton 
based on the future prediction of the augmented human-
exoskeleton system is an alternative and time-efficient 
approach in controlling the tendon force within milliseconds 
time-scale. In this regard, we focus on using nonlinear model 
predictive control (NMPC) for gaining control over peak 
tendon force. This approach has been used in the past to 
generate optimum joint trajectories [4] and assistive device’s 
joint torques [5], given the desired joint trajectories, but has 
never been used to control muscle-tendon mechanics with 
parallel artificial actuation. 

NMPC requires an inner model to predict the future states 
of the system by minimizing a cost function over a given 
prediction horizon. Numerical models of skeletal muscle-
tendon units (MTUs) can simulate muscle contraction and 
series elastic  tendon strain mechanics, leading to time profile 
estimation of biomechanical variables that would be difficult, 
or impossible, to measure in intact moving humans in vivo [6]. 
These variables may include muscle force, fascicle length, 
velocity, and tendon strain. Hill-type models are largely 
employed for modelling and simulating MTU dynamics [7]. 
These phenomenological models have fewer parameters than 
alternative formulations such as Huxley's models of muscle 
contraction [8, 9]. Moreover, they are computationally more 
efficient [10]. Hill-type MTU models are often embedded in 
biomechanical simulation platforms such as Opensim [11], 
Anybody [12], MyoSuite [13] or CEINMS [14]. These 
properties make Hill-type models suitable for wide range of 
applications including: (1) investigation of MTU interplay and 
mechanics, (2) optimizing rehabilitation or controller design 
for prosthetics, or myoelectric control for exoskeletons.  

There exist various mathematical formulations in the 
literature that model Hill-type muscle contraction and tendon 
strain mechanics that use non-linear splines to interpolate 
experimentally derived data reflecting muscle force-length-
velocity relationships and tendon force-strain relationship. In 
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this context, existing mathematical formulations rely on 
equations that are based on conditional statements [7, 15]. 
Therefore, existing mathematical formulations do not rely on 
closed-form equations and generally pose complications when 
embedded in control theory frameworks and in model 
predictive control schemes. The inner model of NMPC should 
be a closed-form differential equation and efficient in the sense 
of computational cost to make online implementation possible.  

There are few studies conducted on obtaining closed-form 
equation for muscle contraction dynamics. Previous work 
presented closed-form equations for a number of different 
Hill-type muscle models [16]. Van den Bogert et al [17] 
introduced an implicit formulation, which despite displaying 
execution time greater than 1ms/frame, could mitigate some 
singularities in differential equations. Using the implicit 
formulation approach, de Groote et al proposed a 
computationally efficient formulation for estimating muscle 
forces during motion using direct collocation optimal control 
methods [18]. 

When embedded within NMPC, implicit formulations can 
lead to large execution time and can limit the prediction 
horizon of the controller. Explicit formulations of MTU 
dynamics could be efficiently integrated in the NMPC 
framework but the existing formulations are affected by 
singularities, which prevent their usage in predictive 
controllers [18].  

In this paper, we propose an explicit, closed-form and 
differentiable set of equations for: 1) muscle contraction 
dynamics, 2) motions of a simplified multi-body dynamic 
system of the human leg actuated by lumped model of the 
triceps surae MTUs with a parallel artificial actuator, 
emulating the assistance of an ankle exoskeleton. These two 
components are incorporated for the first time into an NMPC 
framework for the predictive and adaptive control of peak 
tendon force during cyclic motions. In order to solve issues of 
the implicit methods’ computational time and the explicit 
formulation’s divergence, we propose two approaches for 
finding a closed-form equation for the muscle contraction 
dynamics. In the first approach, a regression technique is used 
to further improve the equations presented by [16] and solve 
instability issues regarding the closed-form model. The second 
approach uses the linearization of damping-incorporated Hill-
type muscle model, used in our previously developed 
CEINMS toolbox, to improve the stability, accuracy, and 
generalizability of the closed-form contraction dynamics. The 
obtained model is then augmented with human leg model 
actuated by lumped MTU and transformed into state-space 
form, ideal for designing various linear and nonlinear 
controllers. The combined model is then used as the inner 
model of an NMPC algorithm to control the Achilles tendon 
force during cyclic simulation with a constant frequency [19]. 

II. METHODS 

A. Modeling the MTU dynamics  

We rely on a Hill-type model with a pennation angle to 
describe musculotendon contraction dynamics [7, 18, 20]. In 
this model, muscle contractile element is arranged in series and 
parallel with elastic elements, Fig. 1. In these models, the 
tendon force is obtained as follows: 

𝐹𝑇 = (𝐹𝐶𝐸 + 𝐹𝑃𝐸)𝑐𝑜𝑠(𝛼) (1) 

where α is the pennation angle and FT, FCE, and FPE represent 
tendon, contractile element, and parallel element’s force, 
respectively. By taking a derivative of (1) and rewriting the 
equation, the governing ordinary differential equation for 
tendon force estimation is obtained [16] and shown as follows: 

( )cos sin .T T MT M MF k L L L  = − +  (2) 

In this equation, kT is the tendon stiffness; LM and LMT are 
the muscle fiber and the musculotendon lengths, respectively. 
The MTU length and the pennation angle are directly derived 
by the limb kinematics [15] but muscle fiber length is derived 
by integrating the inverse of muscle’s force-velocity (F-V) 
relation: 
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(3) 

Where, a(t) is the muscle activation, 𝑉𝑚𝑎𝑥 is the muscle’s 

maximum shortening velocity, and 𝐹𝑜
𝑀, �̃�𝐿

𝑀, and �̃�𝑉
𝑀are the 

maximum isometric force, active force-length (F-L) and F-V 

relations of the muscle. Also, ci are the constants of the �̃�𝑉
𝑀 

equation. Reference [16] fitted a curve to find a closed-form 

equation for �̇�𝑀 but in section III will show that this approach 
leads to instability when activation is close to zero. In order to 
solve this issue, some models add a parallel damping to the the 
muscle fiber [14, 21], Fig. 1.  

 

The active F-L, F-V, and tendon stiffness are defined as 
cubic B-splines in CEINMS [15]. In order to derive equations 
that reproduce identical results to CEINMS, the MTU 
parameters were extracted from CEINMS. Also, active F-L 
and F-V functions of [16] were optimized to have similar 
profiles to the ones of CEINMS. The parallel passive elastic 
component of the muscle fiber ,PE, is modeled as stiffness, as 
it provide resistance to stretching. This element determines the 
passive force-length relation of the muscle. In [16], it is 
presumed that this stiffness, kT, is constant. The stiffness in 
CEINMS, however, is a mean of various data that have been 
collected, and there is a nonlinear relationship between the 
stiffness and strain. Therefore, we approximated the nonlinear 
stiffness, represented by splines in CEINMS, using a 20th order 
polynomial function. 

Figure 1. A Hill-type muscle model with pennation angle, α. The MTU model 
in consists of a muscle in series with a tendon. The muscle consists of a 

contractile element, CE, in parallel to a passive elastic element, PE, and a 

damping element [14, 21], D. The pennation angle is the approximate average 
angle between the muscle fibers and the tendon direction. 



  

1) Regression 
Adding damping to the Hill-type MTU model does 

stabilize the contraction dynamics when 𝑎(𝑡) ≅ 0 but makes 

finding an analytical solution for �̇�𝑀 more complicated. In 
order to overcome this problem, one solution is to use 

regression to find a curve function for the �̇�𝑀to replace in (2). 
Inspired by the fitted curve obtained by [16] and the way the 
damping is incorporated into CEINMS functions, the 
following function was chosen for muscle fiber velocity: 

�̇�𝑀 =  𝑉𝑚𝑎𝑥𝐿𝑜
𝑀 (𝑝1 + 𝑝2. 𝑎(𝑡)�̃�𝐿

𝑀 +

𝑝3. 𝑒𝑥𝑝(𝑝4�̃�𝐶𝐸 + 𝑝5) + 𝑝6. 𝑒𝑥𝑝(𝑝7�̃�𝐶𝐸 + 𝑝8))  
(4) 

where, 𝐿𝑜
𝑀 represents the optimal fiber length and pi are the 

constants that are derived by the optimization. The cost 
function used in this optimization problem is  

𝐽 = ∑(𝐹𝑇 − 𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑇 )2

𝑛

𝑖=1

 (5) 

where, in our study, 𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑇  was determined in two ways: 

1) using CEINMS toolbox model when collecting data during 
plantar/dorsiflexion on a dynamometer with an amplitude of 
0.15 rad at 0.6 Hz [22], 2) using the implicit model introduced 
in [18] for estimating tendon force during walking and running 
with different speeds [23]. During this optimization, the same 
muscle activations used in the reference model were fed into 
the model under optimization for obtaining FT. 

2) Linearization 
There have been some attempts to linearize the 

musculotendon contraction dynamics [24]. In this study, based 
on the operating point of the muscle on the F-L curve and 
making some other assumptions for the F-V curve, Zajac 
linearized the muscle force by dividing the muscle F-L curve 
into flat and ascending region. Although this approach was 
never used in controlling the muscle tendon force, it might be 
a useful solution for hybrid or gain-scheduling controllers.  

We propose linearizing F-V curve instead of linearizing the 
F-L curve. This approach not only simplifies calculation of the 

closed-form equation for the �̇�𝑀, it improves the stability by 
adding a parallel damper to the Hill-type model, Fig. 1. By 

replacing the obtained �̇�𝑀 in (2) the closed-form contraction 
dynamics is ready to be used for predicting the tendon force. 

B. NMPC design for tendon force control 

Reference [25] presented a simplified model of human leg 
to capture salient features of human hopping (Fig. 2). By 
adding a parallel actuator to this model, an augmented 
exoskeleton-MTU model can be obtained as follows: 

( )cos sin .T T MT M MF k L L L  = − +  

�̈�𝑀𝑇 = −
𝑔

𝑊
(𝐹𝑇 + 𝐹𝑎𝑐 − 𝑊)  

(6) 

where in this equation, �̈�𝑀𝑇is the linear acceleration of the 
lumped MTU unit. W and g are the portion of the body weight 
carried by each leg’s lumped MTU unit while the leg is on the 
ground and the gravitational acceleration, respectively. The 
assistive actuator force, Fac, is provided by the exoskeleton. 

The coupled equations of (6) can be expressed in the state-
space form: 

�̇� = 𝑓(𝑥, 𝑢, 𝑎(𝑡)), 𝑥 = [𝐹𝑇 𝐿𝑀𝑇 �̇�𝑀𝑇], 𝑢 = 𝐹𝑎𝑐 (7) 

This combined model is suitable for designing different 
linear and nonlinear model-based controllers. It should be 
noted that the activation is not known a priori and is updated 
in every instant of simulation. Therefore, when designing 
controllers, it can be considered as a disturbance to the system. 

 

Figure 2. The simplified model of assisted human leg to  capture salient 
features of hopping motion [19], [25] 

Here, we aim to design an NMPC controller to keep the 
lumped MTU’s tendon force under a predefined threshold 
during simulated hopping. The combined model (6) is used as 
the inner model of the NMPC and the following cost function 
is minimized in every step of the control: 

( ) ( )
222

1 2 3Cost Tw u w u w F= +  +  (8) 

in this equation, wi are constants and specify the impact of 
tendon force, the actuator force (u), and its increment(∆u) on 
the value of the cost function. 

III. RESULTS AND DISCUSSION 

A. Tendon force modeling 

Simulating the muscle contraction dynamics using the data 
collected during plantar/dorsiflexion on the dynamometer 
[22], shows that although the model presented in [16] is

accurate enough in most of the motion, it becomes unstable 

Figure 3. Unstable behavior of the tendon force compared with the 

output of CEINMS toolbox when the muscle activation is near zero. 



  

whenever the activation is close to zero. In Fig. 3, the 
performance of the closed-form model in estimating the 
tibialis anterior tendon force is compared to the estimation 
done using our previously developed CEINMS toolbox [14]. 
As mentioned previously, in order to reproduce identical 
results to CEINMS, the F-L and F-V functions of [16] were 
optimized (Fig. 4.a and Fig. 4.b) and kT was approximated 
using a 20th order polynomial function to  (Fig. 4.c). 

For analyzing both regression and linearization modeling 
techniques, the tendon force estimated by these methods are 
compared with the estimation of two well-established models 
in the literature. To this end, CEINMS is used to estimate the 
reference tendon force during plantar/dorsiflexion on a 
dynamometer [22] and an implicit model [18] is used for 
estimating the reference during walking/running with different 
speeds [23]. It is worth mentioning that the muscles studied 
here consisted of Soleus, Medial gastrocnemius, Lateral 
gastrocnemius, Tibialis Anterior, Peroneus Brevis, Peroneus 
Longus, and Peroneus Tertius but only the results of soleus, 
Medial gastrocnemius, and Lateral gastrocnemius are shown. 

 

For the regression technique, Fig. 5, the coefficients of (4) 
were optimized using a regression over the data and reference 

tendon force of the corresponding muscle. The optimized �̇�𝑀 
equation is then used for comparing the estimated tendon force 
of every muscle with their corresponding reference. It was 
witnessed that the regression model worked well for the 
specific muscle and task that was optimized for, but did not 
generalize well for other muscles and tasks. Nevertheless, the 
RMSE for the tendon force estimation of Soleus, Tibialis 
Anterior, Medial Gastrocnemius, and Lateral Gastrocnemius 
when using the dynamometer is 0.081, 0.06, 0.15, 0.14, 
normalized by their corresponding maximum desired tendon 
force value respectively. Not to mention that the Lateral 
Gastrocnemius behaves unstable in some regions. In the same 
way, when the model was trained with the data of walking with 
0.9 km/h speed, the performance of the model diminished as 
the speed increased. As a result of this analysis, we can 
conclude that the regression model doesn’t generalize well 
across different muscles when trained on each of the muscles. 
In addition, it seems that the model should be trained for 
different ranges of speeds in order to keep a good performance 

 

b a 

c d 

Figure 5. Comparison between a) Soleus and b) MedGas tendon force 
estimated by CEINMS and regression technique for the data collected on a 
dynamometer. The same for Soleus during c) walking with 0.9 km/h and d) 
running with 8.1 km/h speed using an implicit model as reference.  

Figure 6. Comparison between a) Soleus and b) MedGas tendon force 
estimated by CEINMS and linearization technique for the data collected on 
a dynamometer. The same for Soleus during c) walking with 0.9 km/h and 
d) running with 8.1 km/h speed using an implicit model as reference.  

b a 

c d 

(a) (b) (c) 

Figure 4. The optimized (a) active F-L and (b) F-V functions compared with CEINMS. (c) Approximating CEINMS tendon stiffness with a polynomial  



  

 over the gaits with different speeds.  

Alternatively, the same analysis was performed for the 
linearization technique, Fig 6. The significance of this method 
with respect to the regression is that no optimization was done 
for the muscles individually and the model was valid for types 
of motions and gait speeds, though the accuracy of the 
regression model was higher for some the muscles and task 
that it was trained for. In other words, the RMSE for the tendon 
force estimation of Soleus, Tibialis Anterior, Medial 
Gastrocnemius, and Lateral Gastrocnemius when using the 
dynamometer is 0.086, 0.07, 0.07, 0.09, normalized by their 
corresponding maximum desired tendon force value 
respectively. Fig. 6 shows that not only the model generalizes 
well over different muscles, it also tracks the desired behavior 
of the muscles in different speeds during walking and running.  

B. NMPC controller 

As concluded in the previous subsection, the linearized 
technique is more accurate and generalizable in different types 
of gaits and muscles when compared to the regression type. 
Also, because of the incorporated damping in the Hill-type 
muscle model of this technique, the muscle is more stable, and 
does not diverge when the muscle activation approaches zero, 
which is not the case always for the regression technique. The 
unstable behavior of an undamped Hill-type muscle can be 
seen in Fig. 3 were in low activations (1-1.7 seconds), the 
average activation value is 0.01 and the minimum value is 
0.007. On the other hand, in figure 7, the activation value in 
the first 50 milliseconds is equal to zero. As a result, the 
linearized model is used for the model-based controller 
simulated in this subsection.  

Another feature of the linearization technique is its low 
computational time. In essence, the computational time of the  
combined set of equations of the muscle-tendon dynamics and 
the equation of motion of the human leg with parallel 
exoskeletal actuation (6μs per frame) makes the model suitable 
for being used as the inner model of the NMPC for predicting 
the future. In order to simulate the NMPC controller, the 
lumped muscle specifications and activation/deactivation time 
constants were extracted from [19], frequency of hopping is 
selected as 2.5 Hz, duty cycle of the excitation (i.e., the firing 
of motor units) is 10%. The goal of the NMPC is to keep the 
tendon force under 1500 N while the actuator is limited to 

apply forces under 1000 N. The controller's control and 
prediction horizon are set to 15 steps, with each step being 
1ms. The Interior-point solver was used for solving the NMPC 
optimization problem. 

The results of our simulations show (Fig. 7) that the 
designed controller was able to keep peak tendon force under 
the predefined threshold while optimizing the defined cost 
function (8). Due to NMPC's inherent properties, the controller 
could make predictions about the future and determine the 
need to activate the assistive device depending on whether the 
tendon force exceeds the threshold. However, due to the 
chosen inner model, the application of the controller is limited 
to types of gaits that the muscle’s F-V relation behaves 
linearly. We are just in the beginning of the predictive control 
of biological tissues’ characteristics. In future works, 
extending the application of the controller across other regions 
of muscle velocity can be investigated. Also, the controller 
should be modified to enable tendon force control over 
different muscle activation levels. Another approach is to 
extend this work for different joints of lower and upper limb 
and implement the controller on an assistive device. 

IV. CONCLUSION 

In this paper, a framework for controlling biological 

variables, e.g., tendon force, using nonlinear model predictive 

control (NMPC) was presented. For the first time, a combined 

set of explicit, closed-form differentiable equations for 

muscle-tendon contraction dynamics and the equation of 

motion of the human leg with parallel exoskeletal actuation 

were integrated within an NMPC framework. Two 

approaches, regression and linearization, for modeling the 

muscle contraction dynamics in closed-form were proposed 

and discussed. The low computational cost of these models 

(6μs per frame) makes them ideal for being used in predicting 

muscle forces in real-time. Among these two models, the 

linearization method showed a better performance in 

predicting the muscle forces in different gaits and for different 

muscles. Results showed that the NMPC framework was able 

to control the lumped plantarflexor muscles’ tendon force and 

keep it under a predefined threshold during simulated hopping 

motion. 

Figure 7. Simulating NMPC for cyclic motion with 2.5 Hz frequency, (a) comparing the lumped MTU’s tendon force when assisted (solid blue) with 

actuator force (solid green) with non-assisted (red dashed-dotted line) case. (b) activation dynamics of the during hopping 
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