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Physics-based scintillations for outdoor sound auralization

Andrea P. C. Bresciani,1,a) Julien Maillard,2 and Leandro D. de Santana1

1University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands
2Centre Scientifique et Technique du Bâtiment (CSTB), Saint-Martin-d’Hères, 38400, France

ABSTRACT:
The sound propagating in a turbulent atmosphere fluctuates in amplitude and phase. This phenomenon, known as

acoustic scintillation, is caused by random fluctuations in the acoustic refractive index of the air induced by

atmospheric turbulence. Auralization techniques should consider this phenomenon to increase the realism of the

synthetic sound. This paper proposes a physics-based formulation to model sequences of log-amplitude and phase

fluctuations of a sound propagating in a turbulent atmosphere. This method applies to slanted and vertical propaga-

tion of the sound, which is useful for simulating elevated noise sources such as aircraft, drones, and wind turbines.

The theoretical framework is based on the spatial correlation functions for the log-amplitude and phase fluctuations

for spherical waves, the von K�arm�an spectrum, and similarity theories to model atmospheric turbulence. Two appli-

cations with audio files are presented to demonstrate the applicability of this method to tonal and broadband noise.
VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0020666
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I. INTRODUCTION

A sound wave propagating in a turbulent medium

encounters variations in the acoustic refractive index caused

by random fluctuations in temperature and velocity. As a

result, the wave is randomly distorted, causing changes in

its amplitude and phase. For example, for a pure tone emit-

ted by a static source, a listener sufficiently far away will

perceive a fluctuation (around the nominal, undisturbed val-

ues) in amplitude and frequency. An example is provided in

Mm. 4 as an audio file, and it will be presented in detail in

Sec. VI. While the variation in the perceived amplitude is

directly related to the variation in amplitude of the acoustic

wave, the perceived fluctuation of the sound frequency is

due to the time-varying phase of the wave reaching the lis-

tener. The fluctuation of the phase and amplitude of an

acoustic wave in a turbulent medium is known as acoustic

scintillation. This phenomenon is also observed in electro-

magnetic waves being applied to optics and influencing

astronomical observations. In the field of acoustics, the

research on scintillation focuses mainly on sound propagat-

ing in the ocean and atmosphere. This paper deals with

atmospheric sound propagation.

Auralization techniques for sound propagating in the

atmosphere should include acoustic scintillation to improve

realism. A few models have been proposed in previous liter-

ature to describe the amplitude and phase fluctuations.

Pieren et al. (2014) used an empirical model based on low-

pass filtered white noise to predict the stochastic amplitude

fluctuation of wind turbine noise. The authors chose the

cutoff frequency of the low-pass filter by fitting 20 measure-

ments. In this work, the fluctuation in phase was neglected.

An attempt to use a model based on a Gaussian turbulence

spectrum to describe the log-amplitude and phase fluctua-

tions of wind turbine noise was reported by Heutschi et al.
(2014). The model is described by Daigle et al. (1983) and

recalled in Sec. II. However, Daigle et al. (1983) noticed

that the predicted log-amplitude fluctuations are higher than

the measured values. Furthermore, the model relies on a tur-

bulence length scale for the fluctuation of the refractive

index, which makes it difficult to estimate for slanted propa-

gation paths as it varies with height. The same model was

used by Rietdijk et al. (2017), who focused on developing a

methodology to generate sequences of acoustic scintillations

based on the correlation functions of the phase and log-

amplitude fluctuations. Rietdijk et al. (2017) applied this

methodology to aircraft noise synthesis. More recently, Pieren

and Lincke (2022) proposed to apply the same theoretical

framework used in the present work to model the loss of

coherence between the direct and the ground-reflected path.

Similarly, Lincke et al. (2023) applied the same methodology

to model the loss of coherence between microphones. This

approach indirectly accounts for phase fluctuations.

In the present work, we further develop the methodol-

ogy of Rietdijk et al. (2017) to generate acoustic scintilla-

tions by calculating the correlation functions for the

log-amplitude and phase fluctuations with a more rigorous

physical model. We exploit the analytical solution of the

narrow-angle parabolic equation for a sound propagating in

a turbulent media as calculated by Ostashev and Wilson

(2016). The analytical solution is obtained using the Markov

approximation and Rytov method. The von K�arm�an spec-

trum, mixed-layer, and Monin–Obukhov similarity theories
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are used to model the height-dependent temperature and

velocity fluctuations, extending the applicability of previous

methodologies to vertical and slanted propagation paths.

Compared to the methods used in previous literature

(Heutschi et al., 2014; Rietdijk et al., 2017), the proposed

approach overcomes the difficulty of choosing the proper

turbulence length scale, as it is now modeled by the similar-

ity theories.

The theory presented in this paper has been developed

for line-of-sight propagation, i.e., the effect of atmospheric

refraction on the propagation path is supposed negligible.

Furthermore, a single, straight propagation path between the

source and receiver is assumed. In practice, this happens for

ground-based receivers and elevated noise sources, such as

airplanes, helicopters, and wind turbines, or vice versa for

ground-based sources and elevated receivers.

The paper is organized as follows. Section II recalls the

Gaussian model of Daigle et al. (1983), highlighting its limi-

tations. Section III describes the proposed approach based

on the correlation functions for spherical wave propagation,

the Monin–Obukhov and mixed-layer similarity theories,

and the von K�arm�an spectrum and compares the correlation

functions with the previous model. Section IV presents a

simple method used to account for the saturation of the log-

amplitude fluctuations. Section V recalls the methodology to

obtain the time series of the log-amplitude and phase fluctu-

ations and presents results for several atmospheric condi-

tions and source-receiver configurations. Section VI

presents two possible applications with the support of audio

files, highlighting critical points and suggesting possible

future works. Finally, Sec. VII summarizes the results.

II. GAUSSIAN MODEL FOR THE REFRACTIVE INDEX
FLUCTUATIONS

Daigle et al. (1983) experimentally analyzed the hori-

zontal propagation near the ground and compared the var-

iances of the log-amplitude and phase fluctuations with the

prediction obtained with a simple theory. The theory is

based on the Gaussian model of the two-point correlation

function, Bl, of the acoustic refractive index fluctuations, l,

BlðfÞ ¼ r2
l exp ð�f2=L2Þ; (1)

where f represents the separation distance, r2
l denotes the

variance of the refractive index fluctuations, and L is a mea-

sure of the scale of turbulence. The acoustic refractive index

is defined as l0 ¼ c0=ðcþ n � ~vÞ (Ostashev and Wilson,

2016), where c and c0 represent the speed of sound and its

mean value, respectively, n is the unit vector normal to the

wavefront, and ~v denotes the velocity fluctuations of the

medium. Neglecting the second-order terms and supposing

n ¼ ð1; 0; 0Þ, the fluctuation of the refractive index is

l ¼ �ð~c þ ~vxÞ=c0, where ~c ¼ c� c0 is the fluctuating part

of the speed of sound, and ~vx is the x component of the

medium velocity fluctuations. For L �
ffiffiffiffiffiffi
kL
p

, i.e., assuming

the Markov approximation (Daigle et al., 1983), where k is

the acoustic wavelength, L is the propagation distance, the

variance of the log-amplitude and phase fluctuations, r2
v and

r2
/, respectively, can be written for spherical waves with the

Rytov method as (Daigle et al., 1983)

r2
v ¼ r2

/ ¼
ffiffiffi
p
p

2
r2

lk2LL; (2)

where k ¼ x=c0 is the acoustic wavenumber. The correla-

tion functions for the log-amplitude and phase fluctuations,

BvðfÞ and B/ðfÞ, are expressed as

BvðfÞ
r2

v
¼ B/ðfÞ

r2
/

¼ Uðf=LÞ
f=L ; (3)

where

Uðf=LÞ ¼
ðf=L

0

exp ð�u2Þdu ¼
ffiffiffi
p
p

2
erfðf=LÞ; (4)

and erfðxÞ is the error function. The prefix log in log-ampli-
tude is commonly used in the literature to remind the reader

that the amplitude of the distorted wave, A, is related to the

log-amplitude, v, through the relation v ¼ ln ðA=A0Þ, where

A0 is the amplitude of the undistorted wave. This relation is

a direct consequence of the Rytov method.

Daigle et al. (1978) inferred the turbulence length scale,

L, by fitting Eq. (1) with the measured autocorrelation func-

tion. They found values ranging between 1 and 1.5 m for

horizontal propagation between 0.15 and 5 m above the

ground. In Daigle et al. (1983), L ¼ 1:1 m was used to com-

pare the numerical predictions with the measurements. A

good agreement was found for the phase variance. The

log-amplitude variance, however, was overestimated by the

theory. Although a choice for L is possible for horizontal

propagation, it is difficult to define a univocal value for

slanted or vertical propagation as the value of L is strongly

affected by height.

Another point to be addressed is the choice of the value

for the refractive index variance, r2
l. It is calculated from

the variances of the velocity and temperature fluctuations,

r2
v and r2

T , using the approximation (e.g., Daigle et al.,
1983)

r2
l �

r2
v

c2
0

þ r2
T

4T2
0

; (5)

where T0 is the mean temperature. Experiments of Daigle

et al. (1983) suggested values for r2
l ranging from 10�6 to

10�5 depending on the atmospheric conditions. For horizon-

tal propagation, the choice of r2
l is possible and can even be

modeled using similarity theories. However, its value is

expected to change with the height above ground. Thus, the

limitation highlighted for the turbulence scale, L, holds also

for r2
l. That is, it is difficult to choose a single value for r2

l
in the case of slanted or vertical propagation.

The Gaussian model described by Daigle et al. (1983)

and recalled in this section differs from the revised and

more accurate model described by Ostashev and Wilson
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(2016) in Sec. 7.3.1.3. First, Ostashev and Wilson (2016)

consider the velocity fluctuations of a random vector field,

which implies that Eqs. (1) and (5) are replaced by the cor-

rect Gaussian turbulence spectrum [Eq. (7.36) of Ostashev

and Wilson, 2016]. As a result, the term corresponding to

the velocity fluctuations depends on the turbulence wave-

number squared, j2. This dependency is not obtained with

the simplified model described in this section. Second, the

variances and correlation functions of the phase and log-

amplitude fluctuations are calculated more accurately, thus,

replacing Eqs. (2) and (3) with Eqs. (7.113) and (7.114), for

plane wave propagation. Finally, Secs. 6.2.3 and 6.2.4 in

Ostashev and Wilson (2016) enable calculating the varian-

ces and length scales of temperature and velocity fluctua-

tions for the Gaussian model in terms of the meteorological

parameters.

Section III explains a theoretical framework that allows

calculating the correlation functions for a height-dependent

turbulence spectrum. Therefore, in this framework, the

mixed-layer and Monin–Obukhov similarity theories can be

used to model the variance and length scale of the tempera-

ture and velocity fluctuations.

III. CORRELATION FUNCTIONS FOR PHASE
AND LOG-AMPLITUDE FLUCTUATIONS

A. Theory

The correlation function of the phase and log-amplitude

fluctuations for a ground-based source and elevated receiver,

as shown in Fig. 1(a), is given by Ostashev and Wilson

(2018), Eq. (77), as

B/;vðL;fÞ¼
p2k2

2

ðL

0

dl

ð1
0

Ueffðl cos h;jÞJ0ðljf=LÞ

� 16cos
l

L
1� l

L

� �
j2L

k

� �� �
jdj: (6)

In Eq. (6), the “þ” and “–” signs apply to B/ and Bv, respec-

tively; l represents the coordinate from source to receiver;

Ueffðz; jÞ is the effective turbulence spectrum of the acoustic

refractive index as a function of height above ground, z, and

turbulence wavenumber, j; h denotes the angle between the

vertical direction and the propagation direction; and J0 is the

Bessel function of the first kind and zero order. Equation (6)

is a two-dimensional integral along the propagation path and

turbulence wavenumber. It requires specifying the effective

turbulence spectrum, which varies along the path in the case

of non-horizontal propagation.

Equation (6) is derived for spherical waves using the

Markov approximation and Rytov method. For brevity, the

Rytov method is not discussed here as details can be found

in Sec. 7 of Ostashev and Wilson (2016). The Markov

approximation is expected to be valid if the propagation

length is much larger than the length scale of the inhomoge-

neities affecting the corresponding statistical moment

(Ostashev et al., 2022; Ostashev and Wilson, 2019), which

significantly simplifies their calculation. Recently, Ostashev

et al. (2022) derived the expression for the phase variance,

r2
/ðLÞ ¼ B/ðL; f ¼ 0Þ, without using the Markov approxi-

mation. Although it can probably be generalized for any

value of f, this new formulation also agrees better with

experimental data, whereas the variance computed with the

Markov approximation overpredicts the measurements. For

long propagation distances, the difference between the two

formulations tends toward a constant value. The main focus

of this work is the auralization of broadband noise, for

which we expect the phase fluctuations to be difficult to per-

ceive. For this reason, the new formulation proposed by

Ostashev et al. (2022) is not used in the present work.

However, it should be considered when auralizing tonal

noises for which the phase changes are clearly audible.

We rewrite Eq. (6), introducing the source and receiver

heights, hs and hr, respectively. A schematic representation

of the problem is depicted in Fig. 1(b). We repeat that Eq.

(6) was derived supposing a single, straight propagation

path between source and receiver. This hypothesis is implic-

itly satisfied if either source or receiver is at ground level.

The configuration depicted in Fig. 1(b), where hr > 0 and

hs > 0 violates this assumption, and the formulation is then

strictly valid for the direct path only. However, as a first

approximation, we assume that for situations where the

height of the source is significantly larger than the height of

the receiver (orvice versa), the phase and log-amplitude

modulation of the ground-reflected path is equivalent to that

of the direct path. As shown in previous publications

(Arntzen and Simons, 2014; Lincke et al., 2023; Pieren and

Lincke, 2022; Rizzi and Sahai, 2019), this approximation in

the case of the phase fluctuations is only true at low

frequencies.

Following Ostashev and Wilson (2018), the integration

has to be performed from the source (l¼ 0), which is now

at z¼ hs, to the receiver (l¼ L) at z¼ hr (in Ostashev

and Wilson, 2018, hr¼ 0). If we define g ¼ l=L, Eq. (6)

becomes

B/;vðL; fÞ ¼
p2k2L

2

ð1

0

dg
ð1

0

Ueffðð1� gÞhs þ ghr; jÞ

� J0ðgjfÞ 16cos
gð1� gÞj2L

k

� �� �
j dj;

(7)
FIG. 1. Reference frames for slanted propagation, showing (a) ground-

based source and (b) elevated source.
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where Ueff is now correctly evaluated at hs when g ¼ 0

(i.e., the source position) and hr when g ¼ 1 (i.e., the

receiver position).

We now introduce the von K�arm�an effective turbulence

spectrum for the refractive index fluctuations (see, e.g.,

Kamrath et al., 2021) as

Ueffðz; jÞ ¼
Cð11=6Þ

p3=2Cð1=3Þ
r2

TðzÞL3
TðzÞ

T2
0 1þ j2L2

TðzÞ
� �11=6

2
64

þ 22

3

r2
v;sL

5
v;sðzÞj2

c2
0 1þ j2L2

v;sðzÞ
� �17=6

þ 22

3

r2
v;bL5

v;bj
2

c2
0 1þ j2L2

v;b

	 
17=6

3
75: (8)

The first term in the square brackets models the temperature

fluctuations, where r2
T denotes the variance and LT repre-

sents the length scale. The second and third terms are associ-

ated with velocity fluctuations due to shear, subscript (v,s),

and buoyancy, subscript (v,b), respectively. The associated

variances and length scales are denoted r2
v;s and r2

v;b and Lv;b

and Lv;s, respectively. Substituting Eq. (8) into Eq. (7)

results in integrals that cannot be evaluated analytically

(Ostashev and Wilson, 2016).

Recently, Kamrath et al. (2021) applied the same

model, i.e., Eq. (6) with the spectrum given in Eq. (8), to

predict the variance for the log-amplitude and phase fluctua-

tions. The authors compared the predictions with measure-

ments. Although the log-amplitude variance agreed well

with the model, the phase variance was overestimated.

However, if the buoyancy effects were neglected, the pre-

dictions of the phase variance agreed well with the data.

This has been explained by the limitation of the turbulence

model, which is unable to capture the large-scale structures

due to buoyancy-induced turbulence near the ground. This

effect is called the blocking effect. As a turbulence model

able to capture this effect has not been yet developed, we

neglect the contribution of the buoyancy to the spectrum

when we calculate the correlation function for the phase

fluctuations, i.e., rv;b ¼ 0 in Eq. (8).

It should be noted that the Gaussian effective turbulence

spectrum given in Eq. (7.36) of Ostashev and Wilson (2016)

could be used in place of Eq. (8). This assumes that the

acoustic propagation in the atmosphere is mainly affected

by large structures that are well modeled by the Gaussian

spectrum. In this case, the computational cost is lower

because the calculation of the correlation functions requires

the computation of a one-dimensional integral in g, i.e., Eqs.

(7.120) and (7.121) from Ostashev and Wilson (2016),

instead of a two-dimensional integral as for the von K�arm�an

spectrum. We choose to use the von K�arm�an spectrum as

the reduction in computational cost is not substantial when

considering the entire auralization process described in Sec.

V. Furthermore, the von K�arm�an spectrum has been shown

to yield more accurate results in wind tunnel-scaled experi-

ments compared to the Gaussian spectrum (Biesheuvel

et al., 2019). This is expected as, unlike the Gaussian model,

the von K�arm�an spectrum is a physics-based spectrum

because it coincides with the Kolmogorov spectrum in the

inertial subrange of turbulence. Moreover, small-scale tur-

bulence affects the log-amplitude fluctuations, hence, it can

be argued that the Gaussian spectrum and Eq. (7.121) cannot

be used to model the log-amplitude fluctuations. Finally, the

application of Eq. (7.120) to the phase fluctuations is doubt-

ful and should be verified.

Ostashev and Wilson (2016), in Secs. 2.2.3 and 6.2.4,

presented the Monin–Obukhov similarity theory, which is use-

ful to model the variance and length scale of temperature and

shear-produced velocity fluctuations in the atmospheric surface

layer. This theory applies to atmospheric conditions ranging

from strongly unstable to slightly stable, and it cannot be used

to model from moderately to strongly stable conditions. The

buoyancy-produced velocity fluctuations are modeled with the

mixed-layer similarity theory. The variances and length scales

can be calculated from the surface heat flux, QH, friction veloc-

ity, u�, and boundary layer height, zi, as

r2
TðzÞ ¼

4:0T2
�

ð1� 10z=LoÞ2=3
; r2

v;s ¼ 3:0u2
�; r2

v;b ¼ 0:35w2
�;

(9)

LTðzÞ ¼ 2:0z
1� 7z=Lo

1� 10z=Lo
; Lv;sðzÞ ¼ 1:8z; Lv;b ¼ 0:23zi;

(10)

where T� ¼ �QH=ðq0cPu�Þ represents the surface layer tem-

perature scale, Lo ¼ �u3
�Tsq0cP=ðgjvQHÞ denotes the

Obukhov length, and w� ¼ ½zigQH=ðq0cPTsÞ�1=3
is the veloc-

ity scale for the buoyancy-induced turbulence. In the defini-

tions of T�, Lo, and w�, q0 represents the reference density,

cP is the specific heat at constant pressure, Ts is the surface

temperature, g represents the gravitational force per unit

mass, and jv ¼ 0:4 is the von K�arm�an constant. Values for

the surface heat flux, QH, range from 200 W=m2 for a sunny

day, i.e., strongly unstable conditions, to �20 W=m2 for

clear skies at night and strong wind, i.e., strongly stable con-

ditions (Ostashev and Wilson, 2016). For mostly cloudy

conditions, values around 0 W=m2, i.e., neutral atmosphere,

can be chosen (Ostashev and Wilson, 2016). The friction

velocity, u�, depends on the wind speed and ranges from

0:05 m=s for zero or very light wind to 0:7 m=s for strong

wind (Ostashev and Wilson, 2018). Finally, the boundary

layer height, zi, depends on the site and atmospheric condi-

tions. A typical value during daytime and with a relatively

flat terrain is 1000 m (Kamrath et al., 2021; Ostashev and

Wilson, 2016).

Figure 2 shows the block diagram that summarizes the

calculation process for the correlation functions. First, the

similarity theories are used to model the variance and length

scale values [Eqs. (9) and (10)], which appear in the von

K�arm�an spectrum [Eq. (8)]. Then, the von K�arm�an spectrum

1182 J. Acoust. Soc. Am. 154 (2), August 2023 Bresciani et al.

https://doi.org/10.1121/10.0020666

 09 O
ctober 2023 08:02:10

https://doi.org/10.1121/10.0020666


is used in Eq. (7) to calculate the correlation functions for

the log-amplitude and phase fluctuations.

B. Comparison between von K�arm�an and Gaussian
models

Figure 3 shows the correlation functions for the

Gaussian model of Daigle et al. (1983), i.e., Eqs. (2)–(5),

compared with the von K�arm�an model explained in this sec-

tion. The variances of temperature and velocity are calcu-

lated for both models using the similarity theories described

in this section. The comparison is shown for horizontal

propagation near the ground (2 m height) as the correlation

length L ¼ 1:1 m used for the Gaussian model is known

from measurements (Daigle et al., 1983) and can be sup-

posed to be constant along the propagation path. We high-

light that the horizontal propagation close to the ground

violates the single path assumption introduced above due to

the presence of the ground-reflected path. Hence, Eq. (7)

and the model described in Sec. II are not strictly applicable.

However, the comparison remains meaningful as both mod-

els rely on that same assumption. Furthermore, as already

mentioned, the comparison for elevated sources (or

receivers) would be difficult as the correlation length

changes along the propagation path.

The variance of the Gaussian model for the phase dif-

fers from the variance for the log-amplitude, despite Eq. (2),

because r2
l for the phase variance is calculated by neglecting

the buoyancy effect. This is consistent with the approach

followed for the von K�arm�an model. Therefore, for the

phase variance, Eq. (5) is used with r2
v ¼ r2

v;s, whereas for

the log-amplitude variance, r2
v ¼ r2

v;s þ r2
v;b. As a result, the

Gaussian model overestimates the log-amplitude variance

while it underestimates the phase variance compared to the

von K�arm�an model. Furthermore, the shape of the correla-

tion functions is not correctly reproduced by the Gaussian

model, i.e., for the log-amplitude fluctuations, the decay of

the Gaussian model is longer than that for the von K�arm�an

model, whereas it is shorter for the phase fluctuations. As

shown in Sec. V, this will affect the spectrum of the scintil-

lation sequences. It is recalled that the log-amplitude vari-

ance predicted with the von K�arm�an model is closer to the

measurements (Kamrath et al., 2021) than that calculated

with the Gaussian model (Daigle et al., 1983).

In Fig. 3, we scaled the correlation function with the

variance and the separation distance, f, with the radius of

the first Fresnel zone,
ffiffiffiffiffiffi
kL
p

, where k is the wavelength. With

this scaling, Bv reaches negligible values with increasing f
independently on the source height, frequency, atmospheric

conditions (QH and u�), and distance. With the same scaling,

the shape of the correlation function for the phase is inde-

pendent of the atmospheric conditions (QH and u�), but it

still depends on the source height, frequency, and distance.

From a practical point of view, the scaling properties are

useful to automatically calculate a maximum value of f
above which the correlation functions are approximately

zero. These properties will be applied in Sec. V.

Furthermore, the scaling observed for the log-amplitude cor-

relation can be exploited to reduce the computational cost

by, e.g., calculating the function for a single frequency and

applying the scaling factor to obtain the function at the

remaining frequencies.

The log-amplitude correlation function reaches negligi-

ble values for f � 2
ffiffiffiffiffiffi
kL
p

, whereas the decay of the phase

correlation function is approximately ten times longer. As

large values of f correspond to large turbulence structures,

the phase fluctuations are induced by larger turbulent eddies

compared to those that induce the log-amplitude fluctuations

(Kamrath et al., 2021).

IV. SATURATION OF THE LOG-AMPLITUDE
FLUCTUATIONS

The models for the correlation functions of the log-

amplitude fluctuations given in Eqs. (3) and (7) are expected

FIG. 2. Block diagram shows the calculation process for the phase and log-

amplitude correlation functions. The gray box, including “temperature” and

“shear-induced velocity,” indicate that both contributions are considered.

FIG. 3. (Color online) Correlation functions for the (left) log-amplitude, Bv, and (right) phase fluctuations, B/, normalized by the respective variances. The

sensor separation, f, is normalized by the radius of the first Fresnel zone,
ffiffiffiffiffiffi
kL
p

. The correlation functions are calculated for a source-receiver distance,

L¼ 100 m, and horizontal propagation with hs ¼ hr ¼ 2 m. The frequency is 1 kHz. The atmospheric surface layer is modeled using similarity theories with

QH ¼ 50 W=m2; u� ¼ 0:3 m=s, and zi ¼ 1000 m. For the Gaussian model, L ¼ 1:1 m is assumed.
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to be valid only for small integrated values of refractive

index fluctuations, i.e., short propagation distances, L, or

weak turbulence intensity (Clifford et al., 1974).

Measurements (e.g., Daigle et al., 1983) showed a saturation

of the variance of the log-amplitude fluctuation with increas-

ing distance. The theory of wave propagation in turbulent

media assumes that the wavefront is unperturbed when

reaching the eddy responsible for the fluctuation of the

refractive index (Daigle et al., 1983). However, for longer

paths, the wavefront has been already randomly distorted

and, thus, the variation of the refractive index is less effective

in producing the log-amplitude fluctuations. Wenzel (1975)

formulated a model for the prediction of the saturation dis-

tance which showed a rough agreement with measurements

(Bertagnolio et al., 2020; Daigle et al., 1983). We found dis-

crepancies in existing literature regarding the saturated value

for the variance, r2
v;sat. For example, Daigle et al. (1983)

reports a maximum value of the saturated standard deviation

of no more than 6 dB, corresponding to r2
v;sat � 0:48. This

value agrees quite well with the theoretical result p2=24,

obtained for optics (Hill and Clifford, 1981), but it is rather

far from the value (approximately 0.8) found by the recent

measurements made by Bertagnolio et al. (2020).

A theoretical model for the saturation of the optical

scintillations has been developed by Clifford et al. (1974)

and subsequently improved by Hill and Clifford (1981), but

to the best of the authors’ knowledge, it has never been

applied in acoustics. The analysis of Hill and Clifford

(1981) suggests that the saturation phenomenon can be

included in the calculation of the correlation function for the

log-amplitude fluctuations, i.e., Eq. (7) with the “–” sign,

multiplying the integrand by the additional function,

MST ¼ exp �48k2L
n
jW ð1� gÞhs þ ghr; j½ �

�

� 1� J0ðj2UÞ
� �

þ
ð1

j
dj0Wðz; j0Þ

� 1� J0ðj0jUÞ
� �o�

; (11)

where U ¼ Lgð1� gÞ=k and Wðz; jÞ ¼
Ð1
j Ueffðz; j0Þdj0.

Even if an analytical formula can be obtained for Wðz; jÞ
with the von K�arm�an spectrum, the integral in Eq. (11) does

not have a closed-form solution. The computational cost for

a numerical evaluation of MST coupled with the solution of

the integral of Eq. (7) is too high for the current implemen-

tation. For these reasons, the model of Hill and Clifford

(1981) for the saturation of the log-amplitude fluctuations is

not applied in this work.

However, it is necessary to limit the value of the corre-

lation function to avoid nonphysical log-amplitude fluctua-

tions. We suggest limiting the value of the variance to

r2
v;sat ¼ 0:8, following the experimental results of

Bertagnolio et al. (2020). It should be noted that more mea-

surements are necessary to confirm this value and obtain a

more precise estimate. In practice, if a value higher than

r2
v;sat is computed using Eq. (7) for f¼ 0, the correlation

function is rescaled, i.e., Bv;satðL; fÞ ¼ BvðL; fÞr2
v;sat=

BvðL; 0Þ, to obtain Bv;satðL; 0Þ ¼ r2
v;sat. The proposed

approach neglects the effects that saturation has on the shape

of the correlation function.

Figure 4 shows the log-amplitude variance calculated

using Eq. (7) with f¼ 0 and limiting its value to r2
v;sat ¼ 0:8.

The height of the source is set to 109 m to replicate the mea-

surements of Bertagnolio et al. (2020). Considering the

uncertainties related to the atmospheric conditions, a good

agreement can be observed between Fig. 11 of Bertagnolio

et al. (2020) and Fig. 4 for u� ¼ 0:3 m=s. The values for QH

and zi have a small influence on the considered case; hence,

reasonable values (QH ¼ 50 W=m2 and zi ¼ 1000 m) are

used to generate Fig. 4. As expected, high frequencies satu-

rate at shorter distances, and this behavior is correctly cap-

tured by the model proposed.

V. GENERATION OF THE SCINTILLATION SEQUENCE
FROM THE CORRELATION FUNCTIONS

A. Theory

A methodology to generate scintillation sequences has

been first described by Jurado-Navas et al. (2011) and

applied to optical scintillations. The same method can also

be used in acoustics as described by Rietdijk et al. (2017).

In the present work, we follow the method described in

these references with the difference that two distinct time

domain sequences are generated for the phase and log-

amplitude fluctuations. The reason is that the correlation

functions for the phase and log-amplitude introduced in Sec.

III are distinct, whereas for the model explained in Sec. II

and used by Rietdijk et al. (2017), the correlation functions

were identical[Eq. (3)]. Furthermore, a consistent methodol-

ogy is suggested for the calculation of the velocity used to

convert the correlation functions from the space to the time

domain.

First, both correlation functions for the phase and log-

amplitude fluctuations are evaluated using the methodology

described in Sec. III. To reduce the computational cost, the

functions are evaluated for 40 points with a cubic distribu-

tion1 between 0 and fmax and interpolated with cubic splines

on N ¼ 215 equally spaced points. fmax must be large

enough to capture the largest turbulence scales. From the

FIG. 4. (Color online) Log-amplitude variance calculated for hs ¼ 109 m

and hr ¼ 1:5 m. The atmospheric surface layer is modeled using similarity

theories with QH ¼ 50 W=m2; u� ¼ 0:3 m=s, and zi ¼ 1000 m.
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considerations made in Sec. III, fmax;v ¼ 2
ffiffiffiffiffiffi
kL
p

is used for

the log-amplitude correlation function because Bvðfmax;vÞ
� 0. However, as depicted in Fig. 3, the phase fluctuations

are induced by turbulent structures larger than those for the

log-amplitude fluctuations. For this reason, a different maxi-

mum value is chosen for the evaluation of the phase

correlation,

fmax;/ ¼ 20
ffiffiffiffiffiffi
kL
p

hmaxfmax=ðh0f0Þ; (12)

where hmax¼maxðhs;hr=3Þ; h0¼ 1m, and fmax¼maxðf0; f Þ;
f0¼ 1000Hz, has been verified to give B/ðfmax;/Þ� 0 for

different propagation distances, frequencies, and source and

receiver heights. The correlation functions are finally mir-

rored around f¼0.

Second, Taylor’s hypothesis of frozen turbulence is

exploited to convert the correlation functions from the space

domain, f, to the time domain, s, using the wind velocity

perpendicular to the propagation path, v? (Brown and Hall,

1978; Lawrence and Strohbehn, 1970). The horizontal wind

velocity is modeled with the Monin–Obukhov similarity

theory as (Ostashev and Wilson, 2016)

vðzÞ ¼ u�
jv

ln
z

z0

� �
� wm

z

Lo

� �
þ wm

z0

Lo

� �� �
; (13)

where z0 is the surface roughness length, and

wmðnÞ ¼
2 ln 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ amjnj2=3

q� �
=2

� �
; n < 0

1þ bmn; n 	 0;

8><
>:

(14)

where am ¼ 3:6 and bm ¼ 5:3. The perpendicular velocity is

calculated from the total (horizontal) velocity, Eqs. (13) and

(14), and the source-receiver direction and, finally, averaged

along the propagation path. However, Taylor’s hypothesis

becomes questionable if the fluctuations in the perpendicular

velocity are of the same order of magnitude as the mean,

i.e., r? 
 v? (Lawrence and Strohbehn, 1970) or, in other

terms, if the mean perpendicular velocity becomes equal or

lower than its corresponding fluctuations, i.e., v?�r?.

Tatarski (1961) (see also Lawrence and Strohbehn, 1970)

suggests that in the limit v? ! 0; v? can be replaced by its

standard deviation, r?. In this work, the maximum value

between v? and r? is used (in the following, the symbol v?
will be used regardless to indicate the maximum). The stan-

dard deviation of the velocity fluctuations is computed as

r? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

v;s þ r2
v;bÞ=2

q
, where r2

v;s and r2
v;b are calculated

using Eq. (9). Formally, Taylor’s frozen turbulence hypothe-

sis is applied as B/;vðfÞ ¼ B/;vðv?sÞ ¼ R/;vðsÞ. The sam-

pling frequency of the fluctuations is fs ¼ v?=ðDxÞ
¼ v?=ðfmax=NÞ.

Then, the double-sided power spectral densities,

S/;vðf Þ, are calculated as the Fourier transform of the corre-

lation functions according to Wiener–Khinchin theorem,

S/;vðf Þ ¼
ðþ1
�1

R/;vðsÞ exp ð�i2pf sÞds: (15)

Next, a time domain filter is constructed with frequency

response, H/;vðf Þ, defined as

H/;vðf Þ ¼ jH/;vðf Þj exp ð�i2pf sNÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jS/;vðf Þj

q
exp ð�i2pf sNÞ; (16)

where a linear phase factor with constant delay,

sN ¼ fmax=v?, is applied to obtain a causal filter.

The filter impulse response, h/;vðtÞ, is finally obtained

by taking the inverse Fourier transform of the double-sided

response,

h/;vðtÞ ¼
ðþ1
�1

H/;vðf Þ exp ði2pftÞdf : (17)

Finally, the time sequences are calculated with a convolu-

tion of the filter impulse response with a Gaussian signal,

w(t), with unit variance, i.e., vðtÞ ¼ ðhv � wÞðtÞ and

/ðtÞ ¼ ðh/ � wÞðtÞ.

B. Results

Figure 5 shows the resulting sequences. The log-

amplitude fluctuations are expressed in decibels and calcu-

lated as 20 log10 exp ðvðtÞÞ ¼ vðtÞ20 log10ðeÞ. In this case,

the application of the decibel scale corresponds to a simple

multiplication factor, and it helps to interpret the results per-

ceptually. The parameters of the simulations are the same as

those for Fig. 3: horizontal propagation at 2 m height for

100 m in a slightly unstable atmospheric boundary layer.

The propagation direction is crosswind: in this case, the

transverse wind speed is the total horizontal wind speed cal-

culated with Eq. (13) and z¼ 2 m, resulting in v? � 2:13

m/s. For the propagation distance considered, the variances

calculated with the von K�arm�an model do not exceed the

saturation value chosen (rv;sat ¼ 0:8). Instead, the Gaussian

model predicts a variance for f¼ 2000 Hz, which is slightly

higher than the value of saturation and, hence, rv;sat ¼ 0:8 is

used for that frequency only. Five frequencies between 125

and 2000 Hz are shown.

In Fig. 5, several differences can be observed between

the sequences obtained with the Gaussian and von K�arm�an

models. First, the Gaussian model predicts larger log-

amplitude fluctuations: for a tone at 2000 Hz, fluctuations up

to 20 dB are predicted by the Gaussian model, whereas the

log-amplitude fluctuations of the von K�arm�an model are

limited to 6 dB. Even if these values depend on the atmo-

spheric conditions, source and receiver heights, and dis-

tance, the log-amplitude fluctuations predicted by the

Gaussian model are larger than those predicted by the von

K�arm�an spectrum in every condition. Furthermore, the mod-

ulation spectrums for the log-amplitude and phase fluctua-

tions are different: high-frequency fluctuations are observed

only in the sequences obtained with the von K�arm�an model.
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This can be explained by the fact that the von K�arm�an spec-

trum also models the small turbulent structures responsible

for the high-frequency fluctuations, whereas the Gaussian

spectrum neglects these structures.

Figures 6–8 show the log-amplitude and phase fluctua-

tions calculated with the von K�arm�an model for variations

of the most relevant parameters and keep the frequency con-

stant at 1000 Hz. Once more, we recall that the assumption

of a single, straight propagation path is not strictly verified

for all the cases considered. However, the parametric study

presented in the last part of this section will help to confirm

the expected trends, validate the implementation, and give

an estimate of the log-amplitude and phase fluctuations

expected for sound propagating in the atmospheric surface

layer.

In Fig. 6, the effect of the propagation direction is

exhibited to highlight the effect that the transverse velocity

has on the sequences. In particular, it is shown that the fluc-

tuations are slower as the propagation direction goes from

crosswind (90�) to downwind (0�). This is a result of the

decreasing transverse velocity. For the case of downwind

propagation, the transverse velocity is zero and, therefore,

the standard deviation of the velocity fluctuations is used

instead. As a result, the fluctuations are relatively slower as

the transverse velocity decreases. This is valid for log-

amplitude and phase fluctuations. To help visualize the

FIG. 5. Log-amplitude (dB) and phase (�) fluctuations calculated with (left) the Gaussian model and (right) the von K�arm�an spectrum. The source-receiver

distance is L¼ 100 m, and the heights of the source and receiver are hs ¼ hr ¼ 2 m. The atmospheric surface layer is modeled using similarity theories with

QH¼ 50 W/m2, u� ¼ 0:3 m/s, and zi¼ 1000 m. For the Gaussian model, it is assumed L ¼ 1:1 m.

FIG. 6. (Color online) Log-amplitude (dB) (left) and phase (�) fluctuations (right) calculated with the von K�arm�an spectrum for different propagation direc-

tions: 90� is the crosswind direction, and 0� is downwind. The transverse velocities used are 2.1 and 1.5 m/s for 90� and 45�, respectively. The standard devi-

ation (0.59 m/s) is used instead of the transverse velocity for 0�. The source-receiver distance is L¼ 200 m, the frequency is f¼ 1000 Hz, and the heights of

the source and receiver are hs ¼ hr ¼ 2 m. The atmospheric surface layer is modeled using similarity theories with QH¼ 50 W/m2, u� ¼ 0:3 m/s, and

zi¼ 1000 m. The red marker traces the same point in the original Gaussian signal, wðt0Þ.
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effect of the transverse velocity, a red marker is used in the

plots, tracing the same point of the original Gaussian signal,

wðt0Þ, in the resulting sequences, vðt0Þ and /ðt0Þ.
Figure 7 shows the log-amplitude and phase fluctuations

for different propagation distances. As expected, the ampli-

tude of the fluctuations increases with increasing distance as

the wave is exposed to variations in the refractive index for

a longer distance. For the frequency analyzed (1000 Hz),

saturation occurs only at approximately 530 m. For this rea-

son, the amplitude of the fluctuations is almost unchanged

between the curves at 500 and 1000 m. However, the shape

of the correlation function changes with the distance even

within the saturated regime: in general, with increasing dis-

tance, the contribution from larger eddies is relatively more

important and, as a result, fluctuations are slower, i.e., with

a lower frequency content. These considerations are valid

for log-amplitude and phase fluctuations.

Figure 8 shows the log-amplitude and phase fluctuations

for different heights of propagation above the ground. In

this case, while fluctuations of the phase increase with the

height, the log-amplitude fluctuations decrease. This result

is consistent with the theory. As mentioned in Sec. III, the

log-amplitude fluctuations are mainly influenced by the

small turbulent structures which characterize the lower part

of the atmospheric surface layer. The maximum size of the

turbulent eddies increases with the height above ground,

thus, the log-amplitude fluctuations are less pronounced for

higher sources and receivers. The opposite can be said for

the phase fluctuations that are, instead, mostly influenced by

the large turbulent structures typical of the upper part of the

atmospheric surface layer. The same trends highlighted for

Fig. 8 also have been observed with changing source height

(not shown), keeping the receiver height and source-receiver

distance fixed. Small differences are observed inverting the

source and receiver positions (not shown), and they are

caused by the Bessel function in Eq. (7), which is not sym-

metrical. The Bessel function is giving a relatively higher

weight to turbulence characteristics close to the source

(g¼ 0) than close to the receiver (g¼ 1). This physical phe-

nomenon is related to the spherical nature of the sound

waves and, indeed, the source-receiver reciprocity is

retrieved for the plane wave approximation [see Eqs. (7.81)

and (7.82) from Ostashev and Wilson, 2016]. We can con-

clude that the characteristics of the turbulence along the

entire propagation path affect the log-amplitude and phase

fluctuations.

FIG. 7. Log-amplitude (dB) (left) and phase (�) fluctuations (right) calculated with the von K�arm�an spectrum for different propagation distances, L, in the

crosswind direction. The heights of the source and receiver are hs ¼ hr ¼ 2 m, and the frequency is f¼ 1000 Hz. The atmospheric surface layer is modeled

using similarity theories with QH¼ 50 W/m2, u� ¼ 0:3 m/s, and zi¼ 1000 m.

FIG. 8. Log-amplitude (dB) (left) and phase (�) fluctuations (right) calculated with the von K�arm�an spectrum for different propagation heights, h ¼ hs ¼ hr .

The source-receiver distance is L¼ 200 m in the crosswind direction, and the frequency is f¼ 1000 Hz. The atmospheric surface layer is modeled using simi-

larity theories with QH¼ 50 W/m2, u� ¼ 0:3 m/s, and zi¼ 1000 m.

J. Acoust. Soc. Am. 154 (2), August 2023 Bresciani et al. 1187

https://doi.org/10.1121/10.0020666

 09 O
ctober 2023 08:02:10

https://doi.org/10.1121/10.0020666


Finally, observing graphs (not shown) similar to Figs.

6–8, it has been noted that QH has a limited influence on the

log-amplitude and phase fluctuations. However, only posi-

tive values of QH between 1 and 300 W/m2 were analyzed to

satisfy the assumption of the Monin–Obukhov theory, which

is limited to unstable conditions. In the range of QH ana-

lyzed, the amplitude of the fluctuation sequences increased

by approximately 50%. Instead, the friction velocity, which

is proportional to the wind speed, considerably affects the

log-amplitude and phase fluctuations. First, the fluctuations

are of larger amplitude, suggesting that they are mainly

driven by shear-induced velocity fluctuations. Second, as

the transverse velocity is also affected by the friction veloc-

ity, the fluctuations are faster with increasing u�. Even small

but fast phase fluctuations can have a considerable effect on

the auralized signal because of the periodic nature of the

phase.

VI. APPLICATION TO TONAL NOISE AND
BAND-FILTERED WHITE NOISE

We propose the auralization of a tonal source in a turbu-

lent atmosphere as the first application of the methodology

presented in this paper. We consider the acoustic signal at

the receiver position in the absence of turbulence,

yðtÞ ¼ sin ð2pfttÞ, where ft denotes the frequency of the tone.

In a turbulent atmosphere, this signal will be received at the

observer position as yðtÞ ¼ vðtÞ sin ð2pfttþ /ðtÞÞ, i.e., the

amplitude and phase of the acoustic signal will vary in time

for a turbulent atmosphere. The phase fluctuation, /ðtÞ, is

low-pass filtered with an eighth-order Butterworth filter with

cutoff frequency 100 Hz to smooth the fluctuations and

remove audible artifacts. The choice of the 100 Hz cutoff

frequency was made through informal listening tests.

The original and low-pass filtered phase fluctuations for ft

¼ 800 Hz are depicted in Fig. 9. The source and receiver

positions and atmospheric conditions in this simulation are

the same as those used to produce the results of Fig. 5. The

filtering does not modify the considerations made analyzing

Figs. 5 and 6 in Sec. V because, as shown in Fig. 9, the fil-

tered and original sequences are almost overlapped when

the time scale used in the horizontal axis is on the order of

tens of seconds. A zoom for t < 50 ms shows the effect of

the filtering.

Mm. 1–Mm. 4 are audio files obtained for a source

height of 80 m, receiver height of 2 m, and distance of

100 m. The atmospheric conditions are representative of a

sunny day (QH ¼ 200 W=m2) and moderate wind speed

(u� ¼ 0:2 m/s). The calculated sampling frequency is

fs � 5:1 kHz. The signals, encoded on 16-bit audio files,

have been rescaled with a constant normalization factor

such that the overall peak amplitude is half (–6 dBFS) of the

full-scale range. A 500 ms fade-in and fade-out windows

have also been applied to avoid audible artifacts.

Mm. 1. 800 Hz pure tone.

Mm. 2. Phase modulated tone.

Mm. 3. Amplitude modulated tone.

Mm. 4. Amplitude and phase modulated tone.

The authors performed informal listening tests to verify

the absence of audible artifacts in the audio signals, varying

the atmospheric conditions and the source and receiver posi-

tions. No artifacts have been detected in the signals with

amplitude fluctuations for all conditions tested, suggesting

that the proposed methodology is promising for the cases in

which amplitude modulation due to turbulence is expected.

Signals with low-frequency phase fluctuations, such as those

in Mm. 2, are also considered acceptable. However, for ver-

tical and nearly vertical paths, the high-frequency content in

the phase fluctuations given by the model produces audio

signals with an additional broadband component that is not

considered to be physical. This could suggest that the physi-

cal model overestimates the high-frequency content of the

phase fluctuations. A possible explanation has already been

mentioned in Sec. III and it is related to the non-Markov

behavior of the phase fluctuation in the atmospheric surface

layer. This overestimation is particularly audible for tonal

noise. The authors speculate that a more accurate model for

the correlation function of the phase fluctuations, e.g., with-

out relying on the Markov approximation (Ostashev et al.,
2022; Ostashev and Wilson, 2019), could improve the qual-

ity of tonal sounds for the high-frequency phase fluctuations.

With such a model, the low-pass filtering of the phase fluc-

tuations might not be necessary. Nevertheless, the model

presented here can be implemented as is in several scenarios

to improve the realism of auralized broadband noises such

as the aerodynamic noise of aircraft flyovers and wind tur-

bines. Indeed, if the single path assumption is verified, the

phase fluctuations are not audible due to the random nature

of the phase of the aerodynamic sound, whereas amplitude

fluctuations are more important and clearly audible.

To demonstrate the applicability of the method

described in this work to broadband noise auralization, we

present audio files for the same atmospheric conditions and

source-receiver configuration previously used for tonal noise

(see Mm. 5–Mm. 8). In this case, the sound signal in the

absence of turbulence is a band-limited white noise between

FIG. 9. (Color online) Non-filtered (black line) and low-pass filtered (red

line) phase fluctuations for a source signal at 800 Hz. The smaller graph

shows a zoom section for the first 50 ms.
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561 and 1782 Hz corresponding, respectively, to the lower

limit of the 630 Hz 1/3-octave band and upper limit of the

1600 Hz band. The sampling frequency is 44.1 kHz.

The amplitude and phase modulation are frequency

dependent and, in principle, the fluctuations should be com-

puted for every frequency. To reduce the computational cost

without affecting accuracy, we apply the fluctuations to

each 1/3-octave band separately. First, the white noise is fil-

tered into 1/3-octave bands using zero-phase bandpass fil-

ters. The filters are 12th-order Butterworth filters. Second,

the log-amplitude and phase fluctuations are calculated for

the 1/3-octave center frequencies, fc, and interpolated to

obtain the same sampling frequency of the white noise sig-

nal (44.1 kHz). The log-amplitude is linearly interpolated,

whereas the phase fluctuations are interpolated with third-

order polynomials to ensure that the second derivative of the

phase fluctuations is continuous, as suggested by Maillard

(2009). Then, the fluctuations are applied to each 1/3-octave

band separately as

yiðtÞ ¼ viðtÞWi t� /iðtÞ
2pfc;i

 !
; (18)

where the subscript “” represents the index of the 1/3-octave

band, and WiðtÞ is the white noise in the 1/3-octave band, i,
in the absence of turbulence. To calculate Wiðt� /iðtÞ=
2pfc;iÞ, a third-order Lagrange interpolator has been used to

obtain high accuracy at high frequency (Laakso et al.,
1996). Finally, the signals are recovered by summing the

contribution from all the frequency bands. The same

Gaussian signal, w, is used for all the frequency bands

because the fluctuations are highly correlated between 1/3-

octave bands (Pieren et al., 2014). The resulting audio files

are given below.

Mm. 5. Band-limited white noise.

Mm. 6. Phase modulated white noise.

Mm. 7. Amplitude modulated white noise.

Mm. 8. Amplitude and phase modulated white noise.

As expected, the phase modulation does not have any

influence on the auralized sound. It is recalled, however,

that ground reflection is not considered as a separate contri-

bution. By doing so, the phase fluctuations applied to the

interfering direct and ground-reflected waves would proba-

bly affect the perceived sound. The maximum modulation in

amplitude is between 2 and 4 dB, depending on the fre-

quency, and it can be perceived in Mm. 7 and Mm. 8.

VII. CONCLUSIONS

This paper presents an approach to calculating physics-

based acoustic scintillations based on existing theoretical

formulations (Kamrath et al., 2021; Ostashev and Wilson,

2018). The correlation functions for the phase and log-

amplitude fluctuations are numerically calculated using the

von K�arm�an effective turbulence spectrum for the refractive

index fluctuations. The height-dependent variances and

length scales for the velocity and temperature fluctuations

are computed using the mixed-layer and Monin–Obukhov

similarity theories. This approach is compared to the meth-

odology used in previous literature (Heutschi et al., 2014;

Rietdijk et al., 2017) based on the Gaussian turbulence spec-

trum. The model proposed can synthesize more realistic

acoustic log-amplitude and phase fluctuations as it is based

on theories and results that more accurately capture the real

phenomena. The advantage of the approach used in this

paper is that it is not necessary to select the turbulence prop-

erties at an arbitrary height for slanted propagation: the

dependency on the height is inherently considered by

the calculation of the correlation functions. Furthermore, the

log-amplitude variance calculated with the spherical wave

approximation and von K�arm�an spectrum is closer to the

measurements (Kamrath et al., 2021) than the theory based

on the Gaussian spectrum (Daigle et al., 1983). A simple

empirical model is suggested to take into account the effect

of the saturation of the log-amplitude fluctuations for large

propagation distances. Finally, the methodology for the cal-

culation of the time sequences from the correlation functions

is outlined.

The sequences obtained with the Gaussian spectrum

and von K�arm�an spectrum differ significantly in the fre-

quency content and amplitude of the fluctuations: it is found

that the Gaussian spectrum overpredicts the maximum

amplitude of the log-amplitude fluctuations by several deci-

bels while it underpredicts the maximum amplitude of the

phase fluctuations. As expected, a higher frequency content

is observed in the sequences calculated with the von

K�arm�an spectrum.

A sensitivity analysis of the time sequences varying the

atmospheric conditions and source-receiver position is pre-

sented to confirm the expected trends and quantify the influ-

ence of each input parameter. For example, the amplitude of

the fluctuations not only increases with increasing propaga-

tion distance, but the fluctuations are also slower because

the contribution from the larger eddies becomes relatively

more important. The propagation distance and friction

velocity are the parameters that have the largest influence on

the log-amplitude fluctuations. In addition to distance and

friction velocity, the phase fluctuations are also strongly

affected by the propagation height.

Finally, the audio files for two applications are pre-

sented: a simple tone and band-limited white noise propa-

gating in a turbulent atmosphere. In the case of tonal noise,

the amplitude and phase fluctuations were audible, and no

artifacts were detected by informal listening tests performed

by the authors. However, for atmospheric conditions that

would produce high-frequency phase fluctuations, the result-

ing sounds are not considered satisfactory. For this reason,

possible solutions that could be developed in future works

are suggested. The case of band-limited white noise is
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interesting as it is representative of the broadband aerody-

namic noise generated, e.g., by aircraft and wind turbines. In

this case, the phase fluctuations are not audible due to the

randomness of the phase of the white noise and because the

ground-reflected wave is not considered as a separate contri-

bution. Instead, the turbulence-induced amplitude modula-

tion is perceivable, and the resulting audio signals do not

present audible artifacts.

Future works will analyze the effect of turbulence-

induced amplitude modulation on the auralized broadband

aerodynamic noise emitted by a wind turbine.
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