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To my grandfather Bernabe

“If have seen further, it is by standing on the shoulders of giants.”
- Isaac Newton





SUMMARY

This thesis aims to investigate the sintering process of visco-elastic particles through a
multi-scale framework and multi-physics approach. The research examines the
sintering process at various scales, ranging from particle-particle interactions at the
microscopic scale to continuum deformations at the macroscopic scale. By combining
computer simulations and laboratory tests, the investigations gain valuable insights
into the micro-macro responses of the sintering process.

The thesis is organized into four distinct yet interconnected chapters that span the entire
spectrum of the sintering process. These chapters focus on the following aspects:

• In Chapter 2, we characterise contact rheology. The focus is on understanding the
mechanical interactions between particles during the sintering process.

• In Chapter 3, we explore the multi-physics of sintering. It delves into the physical
phenomena that occur during sintering considering heat transfer and material
flow.

• In Chapter 4, we analyse the influence of material and process parameters on
sintering. The study investigates how different material properties and process
conditions affect the overall sintering process and its outcomes.

• In Chapter 5, we couple the discrete model to the continuum model for a
multi-scale framework. It bridges the gap between the micro- and macro-scales
by developing a comprehensive multi-scale model that incorporates both
particle-level interactions and macroscopic deformations.

The findings of this research offer an understanding of the sintering process in Additive
Manufacturing by integrating microscopic and macroscopic perspectives. Furthermore,
this study highlights the potential to continue developing and optimizing the sintering
processes using advanced multi-scale modelling techniques via virtual prototyping.
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SAMENVATTING

Deze dissertatie heeft tot doel het sinterproces van visco-elastische deeltjes te
onderzoeken via een multi-fysische benadering op meerdere schaalniveaus. Het
onderzoek analyseert het sinterproces op verschillende schaalniveaus, variërend van
deeltjes-deeltjesinteracties op de microscopische schaal tot continuüm vervormingen
op macroscopische schaal. Door computersimulaties en laboratoriumtests te
combineren, levert het onderzoek waardevolle inzichten op in de micro-macro reacties
van het sinterproces.

Deze dissertatie is onderverdeeld in vier afzonderlijke, maar onderling verbonden
hoofdstukken die het gehele spectrum van het sinterproces bevatten. In deze
hoofdstukken staan de volgende aspecten centraal:

• In Hoofdstuk 2 karakteriseren we contactreologie. De focus ligt op het begrijpen
van de mechanische interacties tussen deeltjes tijdens het sinterproces.

• In hoofdstuk 3 onderzoeken we de multifysica van het sinterproces. Hierbij gaan
we dieper in op de fysische verschijnselen die optreden tijdens het sinteren,
waarbij rekening wordt gehouden met warmteoverdracht en materiaalstroming.

• In Hoofdstuk 4 analyseren we de invloed van materiaal- en procesparameters
tijdens het sinteren. De studie onderzoekt en discussieerd hoe verschillende
materiaaleigenschappen en procesomstandigheden het algehele sinterproces
beïnvloeden.

• In hoofdstuk 5 koppelen we het discrete model aan het continuüm model voor een
raamwerk op meerdere schaalniveaus. Het overbrugt de kloof tussen de micro- en
macro schaal door een alomvattend multi-schaalmodel te ontwikkelen dat zowel
interacties op deeltjesniveau als macroscopische vervormingen omvat.

De bevindingen van dit onderzoek bieden inzicht in het sinterproces in additieve
productie door microscopische en macroscopische perspectieven te integreren.
Bovendien benadrukt deze studie het potentieel om sinterprocessen verder te
ontwikkelen en te optimaliseren met behulp van geavanceerde multi-schaal
modelleringstechnieken via virtuele prototypen.
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1
INTRODUCTION

1.1. ENGINEERING AND THE MULTI-SCALE ANALYSIS

Throughout the history of engineering, humans have been captivated by the interplay
between the mesmerizing intricacies of microscopic phenomena and the fascinating
emergent effects they have on macroscopic objects. By studying and predicting the
behaviour of matter at multiple scales, engineers strive to unlock the secrets of the
physical world. As a mechanical engineer, I am particularly fascinated by the laws that
govern the behaviour of granular materials, which can be represented as granulates
(discrete objects) at the micro-scale and as a continuum at the macro-scale, as
discussed throughout this document. By comprehending the behaviour of materials at
both the micro and macro levels, engineers can develop new manufacturing processes
and optimize the performance of existing materials and structures. It is therefore
crucial to advancing the field of engineering and finding solutions to complex
challenges.

To comprehend the microscopic and macroscopic behaviour of matter, granulates and
continuum, we rely on the laws of physics. On the micro-scale, the movement of each
granulate can be governed by Newtonian classical theory [1]. On the macro-scale, the
continuum laws enable us to predict the movements of matter that satisfy the
conservation of mass, momentum and energy. The accuracy of these laws is remarkable
for predicting the behaviour of various materials such as metal, ceramics and polymers,
even when simplifying assumptions are made to analyse mechanical problems. For
instance, sand behaves like a fluid, solid, and liquid simultaneously, posing a
multi-physics problem (see Fig. 1.1, left). Still, the movement of the particles can be
predicted using a simple physical balance of total external force and linear momentum
in the local form (Newton’s second law) [2]. In other cases, like the sintering of
synthetic particles using a laser source, depicted in Fig. 1.1, right, two physical balances
come into play, accounting for both the equilibrium of momentum and the balance of
thermal energy [3].

1
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However, the accurate prediction of granular material behaviour under various
conditions requires the inclusion of specific rheology and contact laws in the models.
Rheology, which explores how materials flow, deform, and react to applied forces or
stresses, plays a critical role in understanding their mechanical properties. Meanwhile,
the contact law governs the interactions between material surfaces when they come
into contact. Researchers can enhance the accuracy of predictions by customizing
these laws to suit the material being analysed, referred to as contact rheology within
this document, thereby gaining deeper insights into its response to external factors.
This tailored approach allows for a more comprehensive understanding of granular
materials and opens up possibilities for improved modelling and analysis techniques.

As an application example of granular behaviour and my passion within the field, this
thesis focuses on the application in the field of 3D printing, specifically, the sintering of
visco-elastic particles. This intricate process involves the interplay of multiple physical
phenomena, including heat transfer and mechanics. There are two main methods to
study this process:

First, the selective laser sintering (SLS). It starts by preparing a layer of particulate
material on a platform. Then, a laser is used to heat and fuse specific areas, layer by
layer. The platform moves down, and more particles are added for each new layer. This
continues until the entire object is formed. SLS is known for its precision and
adaptability.

Second, the homogeneous sintering. It begins with the pellet preparation. The
particles are compacted into a solid shape and heated in a controlled environment.
During heating, the particles in the compact merge together and remove any gaps,
resulting in a denser structure. After heating, the pellet cools and solidifies, and an
additional axial pressure can assist the process.

To tackle the complexity of this process, and study the sintering process, this thesis
integrates micro-scale and macro-scale models with contact rheology models. This
synergistic approach enables the analysis of multi-physics and multi-scale problems,
paving the way for advancements in additive manufacturing as a cutting-edge
technology.

Figure 1.1: Left: an hourglass contains sand that exhibits characteristics of both solid, liquid, and gas as it
moves through the orifice (Copyright [4]). Right: sintering of synthetic particles using a laser source to create a
3D object (Copyright [5]).
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1.2. CONTACT RHEOLOGY OF VISCO-ELASTIC MATERIALS

Rheology is a multidisciplinary scientific field that studies the flow and deformation of
materials when exposed to external stresses or strains. The field encompasses a diverse
range of materials, including those that exhibit elastic, plastic, or visco-elastoplastic
behaviour under dissipative effects [6, 7]. Studies that investigate the
thermo-visco-elastoplastic properties of materials seek to explore how their rheological
behaviour changes as a function of temperature and other variables.

At the microscopic and particle scale, materials are influenced by various factors, such
as particle size, shape, packing density, and inter-particle forces, and can exhibit a
diverse range of rheological behaviours. For instance, particulate materials or powders
can behave as solids, retaining their shape and resisting deformation, or as liquids,
flowing and spreading like fluids [8, 9]. Most granular materials display complex
phenomena, such as jamming or intermittent flow phenomena, where the material can
suddenly become rigid or fluid-like based on changes in stress or other factors [10, 11].
Understanding these rheological contact properties is crucial for practical applications,
such as the sintering process, where visco-elastoplastic particles are bonded by
applying temperature to their surfaces [12, 13]. The behaviour of powders during
sintering is determined by properties, such as their viscosity and contact stiffness,
which can influence their densification and final mechanical properties.

At the macroscopic and continuum level, the rheology of a material can be described by
constitutive equations such as Hooke’s law [14]. Note that Hooke’s law is a linear
relation and rheology can be more complex. These equations establish a linear
relationship between stress and strain and enable scientists and engineers to calculate
the mechanical properties of both isotropic and anisotropic visco-elastoplastic
materials, such as their stiffness, elasticity, and strength. In addition to mechanical
properties, these constitutive equations can be modified to incorporate thermal effects,
enabling scientists to predict how a material will deform and respond to changes in
temperature, external fields and boundary conditions.

Therefore, understanding the rheological contact properties and modelling the
behaviour of visco-elastic materials through different scales may help to optimize their
design and usability.

1.3. MODELLING MATERIAL BEHAVIOUR

Modelling the behaviour of materials at both micro- and macro-scales requires the use
of computational models that describe the mechanical interaction by using constitutive
rheological relationships and ensuring physical balance. At the micro-scale, the
interaction of particles or discrete elements can be computed using the discrete
element method (DEM) through contact laws [15]. On the other hand, at the
macro-scale, the behaviour of materials is modelled using a discretization process such
as the finite element method (FEM) to determine a material’s mechanical properties,
such as strength and elasticity of a material [16]. These computational models provide
insights into the complex rheological properties of materials and can be used to



1

4 1. INTRODUCTION

develop new materials with specific properties for various applications. Furthermore,
to couple the two scales, a volume coupling approach can be developed, which
provides a comprehensive understanding of the material behaviour at both micro- and
macro-scales.

1.3.1. DEM TO MODEL THE MICRO-SCALE

By modelling each particle and simulating their interactions, DEM can provide insights
into the behaviour of granular materials at a microscopic level. This method allows for
the constitutive relation of deformation to be introduced at the contact level, where the
behaviour of particles in contact can be characterized by visco-elastic or plastic
models [17, 18]. One widely used software for particle contact interaction is
MercuryDPM [19], an open-source package that has been extensively utilized in the
field of granular materials research and used in the present investigation. The package
allows for the simulation of complex scenarios, such as particle-particle interactions
with multiple contact points and particle-wall interactions with frictional or adhesive
properties.

1.3.2. FEM TO MODEL THE MACRO-SCALE

FEM is a widely used computational technique for modelling the behaviour of complex
systems. It involves dividing a continuous system into smaller finite elements and
solving for the behaviour of each element individually. The process involves
discretizing a continuum model represented by partial differential equations (PDEs).
These individual solutions are then combined to create a solution for the entire system.
This approach can be used to study a variety of phenomena, including fluid dynamics,
heat transfer, and structural mechanics [20, 21]. oomph-lib is an open-source software
package that is widely used for implementing finite element models [22]. The present
investigation also utilizes oomph-lib to model and simulate the behaviour of materials
at the macroscopic level.

1.3.3. MULTI-SCALE COUPLING

Volume coupling techniques are essential in multi-scale modelling as they enable the
application of micro- and macro-models in the same simulation, in different regions.
These methods introduce a coupling region where information between both scales is
exchanged. The size and shape of the coupling region are determined based on the
length scale at which the micro and macro scales interact. These methods have been
developed to effectively ensure the conservation of momentum and energy in the
coupling region [23, 24]. The method is also preferred over other coupling methods
such as surface coupling in simulations of laser sintering because it captures the
internal interactions and complex physical phenomena that characterize the sintering
process. For example. laser sintering primarily affects a material’s interior, involving
heat transfer, mass transport, phase changes, and mechanical deformation throughout
the entire volume. Therefore, volume coupling methods enable a more precise
representation of these interactions, including the gradual filling of pores, conserving
mass, and simulating thermal and mechanical behaviour within the material. In this
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investigation, a volume coupling approach is applied to a thermo-mechanical system,
which allows for the simulation of larger length and time scales while retaining the
essential features of the micro-scale behaviour.

1.3.4. MACHINE LEARNING FOR CALIBRATION

To ensure that simulations accurately reflect the physical behaviour of matter, they
must be validated against experimental data. However, the quantification of material
properties, especially at the micro-scale, is extremely challenging to evaluate, and
therefore, parameters are calibrated according to the time evolution and best
confidence. In the present investigation, we treat the quantification of parameters as an
inverse problem, that is to infer particle-scale parameters from experimental
observations. To this end, the iterative Bayesian filtering framework proposed by Cheng
et al. [25], an open and machine learning-based package, is coupled with MercuryDPM
to define the best probabilistic set-up for the models. It uses the recursive Bayes’ rule to
quantify the evolution of the probability distribution of parameters over iterations,
which are guided to be asymptomatically close to optima.

To achieve a comprehensive investigation of the sintering process, this study focuses on
the following research questions:

• How can we model the vico-elastic material deformation at the particle-particle
interactions using the discrete element method (DEM)?

• What is the impact of process and material parameters on the sintering process?

• How can the finite element method (FEM) be employed to bridge the sintering
process’s response to a macroscopic scale?

• In what ways can virtual prototyping be facilitated through the integration of DEM
and FEM?

1.4. THESIS OUTLINE

The primary goal of this thesis is to provide an investigation of the sintering process of
particles using a multi-scale framework and multi-physics approach. This framework
allows for a detailed characterization of the contact rheology of visco-elastic materials
and the evaluation of the impact of process and material parameters. To achieve this
goal, we use a combination of computer simulations and laboratory tests as tools to
gain insights into the micro-macro responses of the system. The thesis comprises four
distinct yet interrelated chapters that cover the entire spectrum of the sintering process,
from the particle-particle interaction at the micro-scale to the continuum deformations
at the macro-scale. Fig. 1.2 shows the designed framework to understand the
multi-physics and multi-scale of the sintering process.

In Chapter 2, we present a DEM model for predicting the sintering kinetics of
visco-elastic particles based on a sintering regime map that accounts for the material
contact rheology during particle-particle interpenetration. The model incorporates
three different sintering mechanisms, each describing a distinct driving force that
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Figure 1.2: A diagram of the multi-scale investigation of the sintering process of visco-elastic powders, covering
four distinct investigations. Investigation I: Characterizing the rheology of visco-elastic particles during
sintering. Investigation II: Implementing energy absorption and multiphysics modelling to describe laser
sintering. Analyzing the effect of pressure and temperature to characterize bulk measurements of powder
systems. Investigation III: Developing the coupling between the discrete and continuum media.

allows for a precise description of the kinetics and therefore the sintering rate. The
simulations are calibrated using Bayesian inference, and we analyse the sintering
behaviour of Polyamide 12 in both virgin and aged states, polystyrene (PS), and
polyetheretherketone (PEEK). The simulations show good agreement with
experimental data and accurately describe the neck-growth kinetics, indicating that
sintering takes two to three times longer for aged polymers.

Chapter 3 builds upon Chapter 2 by incorporating the thermal balance into the model
to better describe the multi-physics of sintering, including the interaction between the
laser and the visco-elastic particles. The sintering regime map is further refined by
taking into account the temperature dependence of the DEM model. Additionally, a
new ray tracing model approach is implemented to accurately evaluate energy
absorption during laser-particle interaction. The calibration procedure is performed
using Bayesian interference with experimental data on PA12 and PS, ensuring accuracy
and reliability. Using the calibrated model, a case study of polymer thin-layer sintering
is analysed, demonstrating that doubling the energy intensity results in an irradiated
zone that shrinks by up to 2%. These findings highlight the importance of carefully
optimizing energy parameters to achieve the desired sintering results.

Chapter 4 focuses on understanding the influence of material parameters on the
sintering process by exploring the densification process. The DEM model, which is now
temperature and pressure dependent, is utilized to conduct simulations of both free
and pressure-assisted sintering. Experimental dilatometric data of PA12 is used to
validate the model’s ability to predict the effects of temperature, holding time, process
time, and pressure on viscoelastic pellets. The findings of the study demonstrate that
the application of pressure during sintering is particularly beneficial when the
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temperature is close to the material’s melting point. This insight emphasizes the
importance of considering the material properties and process parameters to achieve
optimal sintering outcomes.

In Chapter 5, we present a continuum model to describe the thermo-mechanical
behaviour of granular materials on the macroscopic scale and introduce a
volume-coupled multi-scale model of the sintering process. Firstly, the
thermo-mechanical continuum analysis is validated using the strength of materials and
mechanical vibration tests. Thereafter, the coupling to the granular scale is performed,
which is ensured to be highly accurate using coarse-graining techniques. A multi-scale
simulation of the sintering process, calibrated from the particle interaction and contact
rheology, is then performed to demonstrate the advantages and usability of the coupled
research. This approach provides a more comprehensive understanding of the sintering
process by integrating the microscopic and macroscopic perspectives. The results of
this study highlight the potential for continued development and optimization of
sintering processes using multi-scale modelling techniques.

Finally, we give our conclusions and an outlook in Chapter 6.
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This work provides a novel discrete element method (DEM) framework for modelling the
visco-elastic sintering kinetics in virgin and aged polymer powders. The coalescence of
particle pairs, over long times, is described by a combined three-stage model of the
sintering process, where each stage is dominated by a different driving force: adhesive
contact force, adhesive inter-surface force and surface tension. The proposed framework
is implemented in MercuryDPM, an open-source package for discrete particle
simulations. To quantitatively calibrate the particle-scale parameters, Bayesian filtering
is used. Experimental data on Polystyrene (PS), Polyamide 12 (PA12), and PEEK powders,
both virgin and aged, are analysed and confirm over a wide range of times the existence
of the three distinct sintering mechanisms. In good agreement with the experimental
observations, the estimation of sintering time is achieved with a significant accuracy
compared to Frenkel’s model. This study provides an efficient and reliable approach for
future studies of strength evolution in powder-bed fusion processes.

2.1. INTRODUCTION

Selective laser sintering is a modern technique to build 3D objects from visco-elastic
powders. In the process, a laser beam heats selected particles resulting in solid
sinter-necks at the contact points. It leads to a solidified surface layer, which is
augmented with new powder deposition and their respective sintering. If the cohesion
between particles is weak, texture defects arise on the sintered object such as
delamination, distortion and dimensional inaccuracies [2, 3]. Furthermore, external
effects from powder spattering and laser socking may induce additional forces along
the cohesion. Therefore, an appropriate sintering time needs to be set to ensure
sufficient cohesion among the particles. This sintering time depends on the powder
properties and the specifications of the laser beam.

To predict sintering, Frenkel’s model is commonly employed [4]. This model describes
the rate of sintering between adjacent particles by equating the rate of work done by
surface tension to the rate of energy dissipation due to viscous flow. It results in a power
law, which reproduces the neck-growth kinetics at constant time. However, predictions
based on Frenkel’s model disagree with experimental observations in the early stage of
visco-elastic sintering [5–8]. The reason is that a single power law does not account for
the non-linear behaviour in visco-elastic powders. To overcome this fact, Lin et al. [9]
introduced a time-dependent neck growth model that depends on three sintering
mechanisms. First, the neck radius is determined using a global energy balance,
equating the work of adhesion to the change of potential energy [10]. Second, the neck
growth is driven by adhesive inter-surface forces, accommodated by visco-elastic
deformations. Third, the sintering mechanism proposed by Frenkel drives the sintering
forward.

Different approaches to predict contact interaction are found in the literature, either
using Frenkel’s model or visco-elastic adhesive contact models [11–17]. Nonetheless,
the micro-mechanical calibration remains a tremendous challenge [15, 18], mainly due
to the diversity of particle surfaces, shapes, disorder and anisotropy. Furthermore,
rheological flow properties are difficult to obtain when visco-elastic powders are
recycled from a previous sintering process, for instance.
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This work introduces a novel time-dependent sintering DEM approach to estimate the
visco-elastic coalescence of polymer particles at short and long times. The approach
relies on the three-stage sintering scheme proposed by Lin et al. [9]. First, the sintering
model is integrated into the visco-elastoplastic and dissipative contact model proposed
by Luding [19], using the rate of plastic overlap. Then, particle pair interactions are
computed utilizing MercuryDPM [20]. The calibration of the micro-mechanical
parameters is performed by the Bayesian calibration tool developed by Cheng et al. [21].
The current approach uses experimental data from PA12 in both virgin and aged states,
PS as studied by Hejmady et al. [22], and PEEK as presented by Beretta et al. [7].

2.2. SINTERING MODEL FOR POLYMER POWDERS

When a thermal field is defined on two contacting visco-elastic particles, adhesive and
surface-tension forces act to sinter the two into a single particle. According to Lin et
al. [9], the visco-elastic kinetics during the sintering process may be described within
three different stages, each dominated by a different sintering mechanism: contacts
formation due to elastic and adhesive forces; contact growth driven by adhesive
inter-surface forces, accommodated by visco-elastic deformation; and contact growth
driven by surface tension, accommodated by viscous flow. These three mechanisms are
bound by the interplay between time and length scales set by intrinsic polymer
properties, including compliance properties and visco-elastic interactions during the
growth phase. A regime map for the three different stages is illustrated in Fig. 2.1,
similar to that developed by Lin et al. [9].

Figure 2.1: Log-log plot of the three-stage model for the growth of the dimensionless contact radius a/R with
time. If t < t0, a0/R is a constant derived from JKR theory. For intermediate times t0 < t < tvi s , a power-law
behaviour emerges, a1/R ∼ t 1/7, exhibiting only weakly time-dependent growth. For t > tvi s , a2/R ∼ t 1/2,
indicative of viscous sintering, which results in faster growth.
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In the first stage, the sintering kinetics is described by balancing the work exerted by
adhesive forces within the contact area between the particles and the work of the
visco-elastic deformation. Johnson, Kendall, and Roberts (JKR [10]) expressed that
under zero applied load, the contact between two particles exhibits an initial flattened
contact radius a0. Thereby, with zero applied load, the two contacting particles
approach an equilibrium state in which the elastic repulsion is balanced by the
adhesive attraction of the particles. JKR analysis assumes that the particles are linearly
elastic, and the strain theory is used since the contact area is smaller than the radius of
the particles. The schematic illustration of this first stage is presented in Fig. 2.2.

Figure 2.2: Schematic of contact area following the JKR model. An instantaneous flattened contact of radius
a0, corresponding to sphere-interpenetration δ0, is formed to ensure an equilibrium state of two contacting
particles without external forces.

The non-dimensional neck radius a0/R was derived by JKR at very short times (t ¿ t0)
for the equilibrium deformation of two elastic bodies under the influence of surface
tension. Thus, the elastic repulsion using the Hertz equation is balanced by the
adhesive traction of the particles, giving

a0

R
=

(9π(1−ν2)γ

ER

)1/3
, (2.1)

where γ is the surface tension ([Nm−1]), ν is Poisson’s ratio, E is Young’s modulus ([Pa]).
Within this adhesive stage, the contact radius is not time-dependent due to the time-
invariant modulus, which is that of a glassy solid, and a very rapid swing-in period, which
is neglected.

After the initial contact (t > t0, see Fig. 2.1), the second stage of neck growth is due to
visco-elastic deformation of the particles balanced by inter-surface adhesive forces
acting in the region around the contact area, as illustrated in Fig. 2.3.

In this stage, polymers can exhibit all intermediate-range of properties between an
elastic solid and a viscous liquid. For this, two main phenomena required being
involved while the visco-elastic particles are bonding: creep compliance and stress
relaxation. First, creep C (t ) ([Pa−1]) quantifies the capacity of a material to flow in
response to a sudden applied stress. Second, stress relaxation indicates the moment at
which a visco-elastic material relieves stress under strain. Therefore, the strain rate is a
function of time under instantaneous application of constant stress σ, expressed in a
non-Hookean fashion as

ε(t ) =C (t )σ. (2.2)
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Figure 2.3: a) Schematic of visco-elastic contact growth for t0 < t < tvi sc driven by adhesive traction. Forces
act normal to the contact plane. b) Inner problem of local adhesive bonding.

The contact creep compliance is a useful metric that quantifies a unique mechanical
response, defined by

C (t ) =C0 +C1t m , (2.3)

where C0 = (1−ν2)/E represents the instantaneous compliance ([Pa−1]), C1 ([Pa−1s−1])
is a material property, called “fluidity" in our work, and 0 < m < 1. To treat the problem
of sintering due to adhesive forces, the region around the contact area is modelled as a
crack, computing the adhesive traction between the two-particle surfaces using a
cohesive traction theory. Theoretically, virtual elements are attached to the particle
surfaces in order to mimic the adhesive traction. These elements describe inter-surface
adhesive forces in the regime of visco-elastic deformation. By assuming that the virtual
element is smaller than the contact radius a, the visco-elastic contact problem can be
decomposed into an outer problem of contact mechanics, and an inner problem of
local adhesive bonding [9]. The contact radius a approaches to the radius R by the

reference contact stress field σ(r, t ) ≈ K Rp
2π(a−r )

, which indicates a singularity at the

contact edge. The strength of the singularity K R is related to the contact radius and the
external loading history, which depends on the rate at which strain increases for
constant applied stress (creep compliance). The Dugdale-Barenblatt cohesive zone
model is used to represent the intersurface adhesive forces, assuming that adhesive
force σ is constant inside the cohesive zone as long as the separation distance is less
than the critical separation distance δc ([m]). The separation distance is specified to
ensure the work of adhesion, defined as the range of the adhesive force. Then, the work
of adhesion is computed as W =σδc . The prediction of the rate of bonding ȧ is coupled
with the strength of the singularity at the tip by Lin et al. [9], which results

ȧ = πγ

2c2
mC0σ2

(
C1γm

C0cm

)
, (2.4)

where cm = (2m +1)/(m +1), and γm = (4/π)1/2Γ(m +1)Γ(m +1.5), with Γ as the gamma
function of adhesion. By solving the evolution of the contact radius in Eq. (2.4), the
estimation of a is obtained as function of the creep response of the material
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a = a
3(m+1)
4m+3

0

(
4m +3

m

πγ

2c2
mC0σ2

(
C1γm

C0cm

)) m
4m+3

t
m

4m+3 , (2.5)

where the term a
3(m+1)
4m+3

0 of the Eq. (2.5) indicates the formation of an initial elastic JKR
contact (Eq.(2.1)), and a visco-elastic transition followed by creeping contact growth for
times t À (C0/Cm)1/m . It leads to the exact long time solution for visco-elastic contact
growth driven by adhesive traction with a power-law of t m/(4m+3), derived by Hui et
al. [9]. Thus, the growth of the contact radius can be computed by

a

R
=

(
9π

2

) m+1
4m+3

[
4m +3

m

π

4c2
m

(
δc

R

)2] m
4m+3

(
γm

cm

2C1γ

R

) 1
4m+3

t
m

4m+3 . (2.6)

For intermediate times in the interval t0 < t < tvi s , the growth of contact radius a1 is
predicted to be t 1/7 for a Maxwell material, where m = 1. This results in

a1

R
=

(63π3

16

)1/7(δc

R

)2/7(2C1γt

R

)1/7
. (2.7)

Subsequently, the sintering problem is treated in the third stage for long times (t À t0).
It assumes that the visco-elastic particles achieve stress relaxation due to molecular
rearrangement, and the extent of recovery is directly proportional to the formerly
applied stress. The neck growth kinetics is related to the action of surface tension in the
viscous flow regime (see Fig. 2.1). The schematic representation is shown in Fig. 2.4.

Figure 2.4: Schematic of contact growth driven by surface tension and accommodated by viscous flow. Forces
act perpendicular to the contact plane.

The growth of the contact radius a2 was initially derived by Frenkel [4], showing that
for a Newtonian fluid, the evolution of a2 may fulfil a scaling law, which is expected to
be well-approximated by the last part of Eq. (2.5), where is equated the rate of surface
tension work to the viscous flow energy dissipation rate, giving

a2

R
=

(8C1γt

R

)1/2
. (2.8)

By defining a as the maximum of the three different models, a = max(a0, a1, a2), it is
possible to include each stage of the sintering process into a DEM approach. In the
following chapter, we discuss how to incorporate the neck growth models (Eq. (2.1),
Eq. (2.7), Eq. (2.8)) into the visco-elastoplastic contact model proposed by Luding [19].
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2.3. DEM FOR VISCO-ELASTIC SINTERING

To describe the sintering of discrete particles, DEM is highly suitable. A brief
description of the method is included in Appendix 2.8.1. Particles are assumed to be
rigid and interact via contact forces. The computation of the forces, acting between
particle pairs, are determined using contact models. In this work, we apply the
visco-elastoplastic and dissipative model proposed by Luding [19], using
MercuryDPM [20] to compute particle pair interactions. Fig. 2.5 illustrates the contact
model.

δ

f n

δ0

k
1
δ

k
2
δ

k
c
δ

δmax

k
2
δ

f n

f n

δ

Figure 2.5: (Left) Visco-elastoplastic contact law. The contact displacement is related to δ (overlap) and the
normal contact force f n . Right/left-pointing arrows are used to distinguish the forces obtained during the
loading and unloading stages, respectively. (Right) Two particle contact with overlap δ.

The elastoplastic and dissipative model computes the repulsive elastoplastic forces
during compression (loading) between the particles using a loading stiffness k1. The
unloading process follows the slope of k̂2, which varies between k1 and k2, depending
on the plastic deformation at zero force δ0

i j . To track the plastic deformation, the

maximum plastic overlap δmax
i j is stored, and used to compute the zero-force overlap as

δ0
i j =

k̂2 −k1

k̂2
δmax

i j . (2.9)

The minimum force overlap δmin
i j is computed as

δmin
i j = k̂2

k̂2 +kc
δ0

i j . (2.10)

Thereby, the overlap δi j defines the deformation measurement as

δi j = (Ri +R j )− (ri − r j ) ·n, (2.11)

where ri and r j are the particle positions with unit vector n = (ri − r j )/|ri − r j |, and Ri

and R j are the particle radii. If the unloading stiffness k̂2 becomes equal to k2, the force
remains on the corresponding limit elastoplastic branch with the same slope1. For

1It avoids unrealistic large overlaps, also approximating the melt incompressibility with rather low stiffness, in
order to have the computation time-step not too small.
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overlaps smaller than δmax
i j , the unloading stiffness is interpolated linearly between k2

and k1 as

k̂2 =
 k1 + (k2 −k1)

δmax
i j

φ f Ri j
if δi j < δmax

i j

k2 if δi j ≥ δmax
i j

 , (2.12)

where φ f is the dimensionless plasticity depth, set such that fully merged particles have

a contact radius a/R = 3p2. R represents the harmonic mean of the particle radii,
R = 2R1R2/(R1 +R2). After the contact force becomes negative, for δi j < δ0

i j , the model

introduces cohesive forces using the cohesion stiffness kc . Thus, the normal force f n
i j

between two particles in contact (δi j > 0) describes the interaction as

f n
i j =− f a

i j +


k1δi j if δi j > δmax

i j

k̂2(δi j −δ0
i j ) if δmin

i j < δi j ≤ δmax
i j

−kcδi j if 0 < δi j ≤ δmi n
i j

−γn vn
i j . (2.13)

The adhesive force f a
i j = k1δa is assumed constant, large enough to reach the

equilibrium of the first sintering mechanism, see Eq. (2.1). For small displacements
around some equilibrium state, this hysteretic elastoplastic model does not contain
strong dissipation. Therefore, to allow for stronger dissipation and thus faster
relaxation, a viscous dissipative force is included in the normal direction. The viscous
dissipation coefficient is set to γn =

√
2mk1/(

p
π+√

loge) loge, such that we obtain a
constant restitution coefficient e. Note, this assumes that e is measured in the elastic
regime, i.e. δi j ¿ R. After the model parameters k2 and γ are specified, the time-step of
the simulation tDEM has to be chosen such that

tDEM ≈ tc /50, (2.14)

where tc represents the collision time on the contact level. For a detailed analytical
model treatment, see [19].

2.3.1. RATE OF PLASTIC OVERLAP

To include the sintering behaviour proposed by Lin et al. [9] in the contact description
(Eq. (2.13)), we compute the rate of the plastic overlap δ̇0

i j using a novel approach.

Knowing that the overlap between the particles nearly equals the plastic overlap,
δi j ≈ δ0

i j for stiff particles (k1 À ( f n
i j + f a

i j )/R), the contact radius may be approximated

as a/R ≈
√
δi j /R (small overlaps δ0

i j ¿ R). It can be controlled by setting the growth

rate δ̇0
i j according to Eq. (2.1), Eq. (2.7), Eq. (2.8). First, δ0

i j is derived below the JKR

equilibrium a0/R, by satisfying f n
i j = f a

i j . Second, the computation of δ̇0
i j is derived

within the visco-elastic deformation regime a1/R, until the neck growth reaches the
intersection point at avi s /R,

δ̇0
i j =

9

2

π3δ2
c R1/2C1γ

25/7δ7/2
i j

f n
i j

f a
i j

, (2.15)
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where δc is the cohesive separation distance, and C1 is the material fluidity. The
calculation of avi s /R is based on the contribution of both JKR and visco-elastic contact
during t0 < t < tvi s . The explicit expressions for t0 and tvi s can be obtained by plotting
Eq. (2.1), Eq. (2.7), Eq. (2.8) and finding the intersection of the curves, see Fig. 2.1, then

tvi s = 1

16

(
63π3

2

)2/5
R

C1W

(
δc

R

)4/5

. (2.16)

Substituting Eq. (2.16) into the expression of the second neck growth (Eq. (2.7)), gives

avi s /R = (63π3)1/5
( δc

8R

)2/5
. (2.17)

Finally, δ̇0
i j is derived from Eq. (2.8) to define sintering at long times, modelled as

δ̇0
i j =C1γ

f n
i j

f a
i j

. (2.18)

All parameters of the contact model might vary with temperature, but this is neglected
for simplicity assuming constant values. The only adjustable parameters in the
simulations are δc and C1. These parameters are calibrated using experimental data as
discussed in section 2.4. Since friction forces act in the tangential direction, they do not
affect the normal forces calculated via this approach, and therefore they are not
discussed in this paper. For a detailed explanation, see [23].

2.4. METHODOLOGY

In Sect. 2.4.1, the sintering experiments of PA12 powder is described. Then in Sect. 2.4.2,
we present the coupled implementation MercuryDPM and GrainLearning to calibrate
the contact model based on the experimental data.

2.4.1. SINTERING EXPERIMENTS ON PA12 POWDER

Sintering experiments on PA12 were conducted with PA2200 performance powder for
laser sintering supplied by EOS E-Manufacturing solutions. This powder material is a
semi-crystalline thermoplastic with a melting point of about 180◦C. The sintering
measurements were recorded by a Keyence VHX 5000 digital microscope equipped with
a Linkam THMS600 heating stage. It included a glass plate located on the top of the
stage with a diameter of 22mm and thickness of 1.7mm.

Before starting the experiment, a fine silicon oil was placed on the plate and heated at a
temperature of 300◦C to distribute homogeneously. The oil reduces the adhesion
between the particles and the glass plate. Then, the heating stage was cooled to room
temperature, and a sample of individual virgin particles was selected manually and
deposited onto the oil. Subsequently, the stage is re-heated to 195◦C at a rate of
150◦C/min. The coalescence of the particles was recorded using a digital microscope,
using 20 frames per second and magnification between 200 and 500 times. A lower
magnification was used to capture multiple particle pairs in one frame. After the
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complete merging of the particles, the stage was cooled back down to room
temperature. The procedure was repeated twice to reproduce deteriorated states under
the same conditions of sintering using virgin particles. The microscopy images of the
sintering process in virgin and two-recycled states are depicted in Fig. 2.6.
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Figure 2.6: a) Sintering of virgin particles at t0 = 0.0s, t1 = 2.0s, t2 = 3.5s, t3 = 8.5s. b) Sintering of particles in a
first heating at t0 = 0.0s, t1 = 2.0s, t2 = 6.0s, t3 = 14.0s. c) Sintering of particles in a second heating at t0 = 0.0s,
t1 = 2.0s, t2 = 6.0s, t3 = 18.0s.

The average particle radius is determined by fitting a circle adjacent to the contact
point to the measured pixel area constituting each particle and measuring its radius at
beginning time t0. Virgin particles are not always spherical, so the measured radius is
only approximated, whereas particles of first or second ageing cycles are resintered and
thus nearly spherical. The software ImageJ, an open-source image processing
program [24], was utilized to measure the pixel length. Furthermore, the software gives
information about particle area, aspect ratio, circularity, Feret diameter, perimeter and
roundness. It enables the approximation of the particle radius to be set into DEM
simulations.

2.4.2. DEM CALIBRATION USING GrainLearning
Microscopic material parameters relevant to sintering are extremely challenging to
evaluate experimentally. Therefore, we treat the quantification of separation distance
δc and fluidity C1 as an inverse problem, that is to infer particle-scale parameters from
experimental observations of the sintering kinetics. To this end, the iterative Bayesian
filtering framework proposed by Cheng et al. [21] is coupled with MercuryDPM to
calibrate the required sintering parameters. Fig. 2.7 presents the flowchart of this
coupled implementation.
GrainLearning is a machine learning-based Bayesian calibration tool for estimating
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Figure 2.7: Flowchart of the coupled implementation to find the parameters: δc , C1, using MercuryDPM
and GrainLearning. A MercuryDPM executable is called by GrainLearning at each iteration where the
probabilities over δc and C1 are updated with the neck growth data. The calibration is finished if the statistics
converge in three consecutive iterations.

parameter uncertainties in discrete particle simulations. It uses the recursive Bayes’
rule to quantify the evolution of the probability distribution of parameters over
iterations. Samples are drawn either uniformly, assuming no prior knowledge,
developing an improving proposal distribution that is learned over several iterations.
After having enough statistics per iteration (effective sample size), we train and utilize
nonparametric Gaussian mixture models as proposal distributions to resample the
parameter space. The mixture model trained at the end of each iteration guides the
resampling to be asymptotically close to optima, and thus greatly reduces the
computational cost compared with conventional approaches.

For Bayesian calibration, the probability distribution of model states and parameters,
conditioned on given reference data (termed “posterior distribution”) can be
approximated by sequential Monte Carlo methods. To efficiently sample parameter
space, a multi-level (re)sampling algorithm is utilized. For the first iteration of Bayesian
filtering, the parameter values are uniformly sampled from quasi-random numbers,
which leads to conventional sequential quasi-Monte Carlo filtering. For the subsequent
iterations, new parameter values are drawn from the posterior distribution from the
previous iteration. Iterative Bayesian filtering allows us to sample near potential
posterior modes in parameter space, with an increasing sample density over the
iterations, until the ensemble predictions (e.g., expectations) of the model parameters
converge.
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2.5. RESULTS AND DISCUSSION

In the following section, the proposed approach is applied to analyse the visco-elastic
sintering kinetics of polymer powders. Thus, the results using virgin and aged particles
are described and compared to experimental data. Finally, the influence of particle
shape and sintering stress during the neck growth are discussed.

2.5.1. EFFECT OF VISCOELASTICITY ON POLYMER SINTERING

To simulate the visco-elastic sintering kinetics of polymer powders, a pair of 3D spheres
of equal diameter is placed next to each other with negligible non-zero overlap between
them. The particles are set just in contact at time t0; the gravitational force is neglected.
Fig. 2.8 illustrates the interpenetration between the two particles at four different time
steps.
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Figure 2.8: Simulation of two spherical particles using MercuryDPM. The snapshots are taken from four
different time steps where a/R = 0.0, a/R = 0.2, a/R = 0.5, a/R = 3p2.

A small adhesive force f a = k1δa is applied to the particles to start the motion, where
δa = 1.0× 10−3 m. Thereafter, the computation of the normal interaction updates the
overlap δ. The geometrical relationship a/R ≈ p

δ/R can be obtained from the
interaction, tracked at every time step in order to distinguish the sintering regime. All
simulations use the material parameters listed in Table 2.1.

Table 2.1: System properties

ρ [kg/m3] k1 [N/m] k2 [N/m] kc [N/m] e φ

1000 βER 2.0 k1 1.0 k1 0.1 3p4

The magnitude of stiffness k1 cannot be compared directly with the Young’s modulus E
of a material, since it is a contact property. However, an approximation micro to macro
parameter exist to relate k1 ∼ βER [25], where β = 1.0 is chosen in our work. It leads
to a contact duration (half-period) tc ∼ 2.9× 10−7 µs, which is much smaller than the
sintering time scale. Thus, the parameters in Table 2.1 only have a negligible effect on
the sintering behaviour, which is determined by the evolution of δ0

i j ; they only affect how

quickly oscillations due to the particle’s inertia are damped. Young’s modulus E , surface
tension γ, Poisson’s ratio η, and instantaneous compliance C0 are set according to the
type of materials analyzed in the present work. The magnitudes are listed in Table 2.2.
Two parameters remain to be calibrated in the contact model: δc and C1. The parameters
are calibrated via GrainLearning according to the sort of polymer and aged state. For
this, the posterior probability distribution is estimated for all samples and materials with
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Table 2.2: Material properties

Material E [Pa] γ [N/m] η C0[Pa−1]
PA12 1.94×109 40.0×10−3 0.35 2.58×10−10

PS 1.23×109 35.6×10−3 0.34 4.08×10−10

PEEK 450PF 3.60×109 35.0×10−3 0.40 1.39×10−10

50 model evaluations per iteration. The normalized covariance parameter at the first
iteration is set to 0.7, resulting in an effective sample size larger than 20%. The goal is
to have a sufficient number of effective statistical samples for estimating the proposal
distribution to continue the iterations. Table 2.3 lists the upper and lower limits of δc

and C1, for which a Halton sequence is generated.

Table 2.3: Upper and lower limits of the parameters to generate homogeneous quasi-random numbers for the
first iteration.

Property δc [µm] C1 [Pa−1 s−1]
Θmin 0.01 1.0×10−3

Θmax 9.0 1.0×101

The agreement of the posterior expectations before and after one iteration of Bayesian
filtering is adopted as the convergence criterion. The posterior expectation of each
micro-parameter converges after the third iteration. The illustration of the re-sampling
process is presented in Fig. 2.9, which depicts the posterior modes localized
progressively after each iteration for PA12, as an example. Note that if the initial guess
for the model parameters is not able to capture at least one posterior distribution, the
re-sampling scheme could explore outside the parameter ranges specified in Table 2.3,
at the cost of more iterations and model evaluations.

VIRGIN POWDER

The first analysis corresponds to the sintering of polymers in a virgin state. The
calibration of δc and C1 is performed by GrainLearning using experimental data on
PA12, PS [22], and PEEK [7]. Table 2.4 lists the results of the Bayesian calibration.

Table 2.4: Calibrated micro-mechanical properties (virgin particles)

Material R [µm] δc [µm] C1 [Pa−1 s−1]
PA12 32.1 0.28±3.0% 2.42±1.0%
PS 30.0 0.15±1.0% 65.20±1.0%
PS 60.0 0.41±1.0% 27.20±1.0%
PEEK 450PF 25.0 0.45±2.0% 0.30±1.0%
PEK HP3 25.0 0.31±2.0% 0.35±1.0%

High precision is obtained, with only 1.0 ∼ 3.0% range of error. Furthermore, the
correlation of δc (R) is obtained as δc /R ∼ 0.01, as suggested by Lin et al. [9]. The
visco-elastic sintering kinetic of PA12 particles is presented in Fig. 2.10.
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Figure 2.9: Calibration of δc and C1 for sintering simulations of PA12 with R = 33.63 µm. Bars denote the
sampling distribution of the current iteration (which is based on the posterior distribution of the previous
iteration, except for the first iteration). Coloured dots indicate the distributions, that are progressively placed
near the posterior modes over the iterations as the localized bars show.

The experimental results show the non-linear sintering path first, corresponding to the
visco-elastic behaviour of the material. The transition between the second and third
sintering mechanisms is at tvi s = 0.5s, when a/R ∼ 0.22. The maximum overlap
(a/R = 1.0) is crossed at t = 3.7s. This overlap means that particles have still a
distinctive radius. After this point, particles merge to complete the sintering at
a/R = 3p2. It is reached at t f i nal = 5.6s. To compare the precision of the simulation
result, the original and modified Frenkel models are calibrated using the best
approximation at the maximum overlap, using η= 3355.0Pas. However, Frenkel models
anticipate neck growth during the early stage of the process. It leads to the
over-prediction of the sintering time for short sintering since the driving force for
coalescence is equivalent during the process.

The neck-growth estimation for PS is plotted in comparison with the experimental data
in Fig. 2.11.

An important consequence in the sintering of polymer powders is that the process is
faster for materials with low molecular weight [12]. This is the case for PS, in which the
stress relaxation occurs within tvi s = 0.01s. Thereafter, the visco-elastic mechanism
dominates the process to complete the full consolidation at t f i nal = 0.11s for
R = 30.0 µm and t f i nal = 0.27s for R = 60.0 µm. Thereby, the influence of particle radius
is highly relevant in the process, as evidenced by the retardation for sintering. The
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Figure 2.10: Neck growth kinetics of virgin PA12. The solid line represents the calibrated DEM simulation
with R = 32.1µm. The dotted and dashed lines are obtained by fitting the original and modified Frenkel’s
models [26] to the experimental data with η = 3355.0Pas, respectively. Experimental observations are
represented by the error bars.
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Figure 2.11: Neck growth kinetics of virgin PS. The solid line represents the calibrated DEM simulation.
The dotted and dashed lines are obtained by fitting the original and modified Frenkel’s models [26] to the
experimental data with η = 93.0Pas, respectively. Experimental observations are represented by dots for
R = 30.0 µm, and squares for R = 60.0 µm, from [22].

maximum penetration depth was set to match the experimental merging radius at
a/R = 1.1. This limitation was due to particles were not able to fully relax as spherical
droplets experimentally [22]. It is demonstrated that PS powder can be well-described
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by the proposed three-stage sintering model. Furthermore, Frenkel’s equations are
calibrated based on the best approximation at the merged particle radius, using
η = 93.0Pas. As the viscosity is increased, Frenkel’s model may decrease the neck
growth rate. However, this would retard the coalescence by leading to an inaccurate
approximation.

The third analysis is conducted on PEEK 450PF and PEEK HP3, as reported by Berretta et
al. [7]. Fig. 2.12 depicts the results.
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Figure 2.12: Neck growth kinetics of virgin PEEK 450PF and PEK HP3. The solid line represents the calibrated
DEM simulation with R = 25.0µm. The dotted and dashed lines are obtained by fitting the original and
modified Frenkel’s models [26] to the experimental data with η = 23000.0Pas. Experimental observations are
represented by dots for PEEK 450PF and squares for PEK HP3, from [7].

The sintering of PEEK 450PF and PEK HP3 illustrates the implication of polymers with
high viscosity. The relaxation for flowability is reached at tvi s = 12.0s, at about 36% of
the interpenetration on PEEK 450PF, and tvi s = 9.0s, at about 34% of the
interpenetration on PEK HP3. The highest slope was achieved by PEK HP3, followed by
PEEK 450PF over the same time interval. It indicates that the second polymer is higher
in molecular weight leading to less shrinkage. From the experimental results, it is
observed the non-linear and visco-elastic kinetics of the material. This is remarkably
predicted using the proposed contact model through the action of forces that involve
two principal rheological characteristics, namely fluidity and elastic behaviours. These
attributes determine the transport mechanism under the action of diffusive forces and
stress, imposed either by thermal conditions or by mechanical action or by the
combination of the two. It is relevant to mention that the particle radius used for the
computations was set as the one measured at the beginning of the experiments, as
reported by Berretta et al [7]. It may influence the prediction in the initial stage since
the particles were in amorphous shapes. Frenkel’s equations are calibrated based on
the best approximation at the merged particle radius, using η = 23000.0Pas. It also
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indicates that the flowability is not good at high temperatures for this type of polymers.

AGED POWDER

To characterize polymer sintering under different aged conditions, we performed
experiments based on a recycled scheme. The experimental data were collected in two
different scenarios. First, the sintering process is repeated twice immediately after
forming the consolidation from the virgin state; it was directly developed at the hot
stage as presented in Fig. 2.6. Second, virgin PA12 powder was annealed inside an oven
for 7 and 14 hours at a temperature of 160◦C (below the melting point of 180◦C). Then,
the hot stage microscopy technique was employed to measure neck growth.
Subsequently, GrainLearning is utilized to estimate δc and C1 based on the
observations. Table 2.5 lists the calibrated parameters to set within the contact model.

Table 2.5: Calibrated micro-mechanical properties

Material δc [µ m] C1 [Pa−1s−1]
Virgin PA12 0.28±3.0% 2.42±1.0%
1st Aged PA12 0.29±2.0% 1.01±0.1%
2nd Aged PA12 0.31±2.0% 0.49±0.1%

After every usage (sintering), a trend of around 50% reduction in C1 is observed relative
to the previous situation. This is reasonable since viscosity increases in aged states,
which means a lower fluidity. Conversely, the separation distance δc remains roughly
steady, increasing by 1%. Fig. 2.13 displays the results of the sintering process for the
first aged state.
In aged states, polymer sintering is slower as evidenced in Fig. 2.13. The 100% of neck
growth is achieved at t = 7.7s. This is twice the time required using virgin powder (see
Fig. 2.10). The transition time, at which the second and third sintering mechanisms
change, is at tvi s = 1.1s; δc /R continues roughly steady. The two procedures to recycle
PA12 led to similar experimental results. It suggests that particle properties are in a
similar deteriorated state if they suffer heating conditions or if they are reused
immediately after the first sintering process. Fig. 2.14 presents the neck-growth kinetics
of the second aged state.
After sintering virgin powder twice, the maximum overlap a/R = 100% is obtained at
about t = 13s, which takes almost three times longer than the time required using virgin
powder. Frenkel’s models start to agree well with the experimental data at longer times
due to the increased viscosity of the material in this state. The transition time between
the second and third sintering mechanisms is at tvi s = 1.9 s, which is almost three times
longer than the relaxation time sintering virgin particles.

Finally, Fig. 2.15 presents the three case studies for visco-elastic sintering using PA12.
The degradation level has a great influence on the growth rate as evidenced in Fig. 2.15.
This suggests that a lack of the supplied energy while sintering recycled powder can
lead to slower neck formation, and therefore, poor cohesion. The DEM prediction
indicates that the balance between the relaxation time and the material compliance has
a significant contribution to the sintering of visco-elastic polymers. In fact, compliance
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Figure 2.13: Neck growth kinetics of aged PA12 with R = 33.7µm. Squares represent the observations
immediately after the first sintering. Triangles correspond to PA12 particles annealed inside an oven for 7
hours. The dotted and dashed lines are obtained by fitting original and modified Frenkel’s models [26] to the
experimental data with η= 7550.0Pas.
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Figure 2.14: Neck growth kinetics of second aged PA12 with R = 33.63µm. Squares represent the observations
immediately after the previous sintering. Triangles correspond to PA12 particles annealed in an oven for 14
hours. The dotted and dashed lines are obtained by fitting original and modified Frenkel’s models [26] to the
experimental data, with η= 12500.0Pas.

is well known to be a sensitive function of molecular weight, and the visco-elastic
kinetics must be analysed when modelling the sintering of polymers [12].
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Figure 2.15: Neck growth kinetics of PA12 in virgin and aged states. Experimental observations are represented
by squares, triangles and pentagons for virgin, first aged and second aged, respectively. Solid lines describe the
DEM prediction.

2.5.2. INFLUENCE OF PARTICLE SHAPE DURING SINTERING

Particles are modelled as perfect spheres in the sintering simulations. It leads to a
homogeneous interaction at the particle-particle contact. However, polymers are not
always available as spheres in a virgin state, see Fig. 2.6. To overcome this fact, the Feret
diameter was measured on the experimental data, which is an option available in
ImageJ software. This diameter was set to perform the simulations in MercuryDPM.
The results showed good agreement independent of the low circularity at short times,
which increases when polymer particles were subjected to temperatures close to the
melting point. Furthermore, particles characteristics such as morphology, surface
texture and porosity are not as significant for the sintering rate at long times, and the
shape evolution of the particle radius is independent of the flow history as suggested by
Benedetii et al [11].

2.5.3. SINTERING STRESS

When particles are sintering, outward-directed traction arises at the neck tip as a result
of the balance of the compressive force acting on the contact (Fig. 2.16). The traction
can be expressed by

σt = ksγ, (2.19)

where γ is surface tension, ks = 2R/a2 represents the relationship between curvature at
the neck tip and contact radius a [27].
As the particles approach the common radius during sintering, the curvature at the
neck increases significantly, which becomes very large just before reaching the merging
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Figure 2.16: Evolution of the contact radius a during the sintering process. f n represents the normal force and
σt the tangential sintering stress.

radius. During this period, a debonding process may occur by external forces, leading
to the formation of defects. To analyse the stress evolution during the growth of the
contact radius, the tangential response during sintering of virgin and aged PA12
particles is plotted in Fig. 2.17.
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Figure 2.17: Stress evolution at the neck tip vs. the rate of contact radius for PA12 in virgin and aged states.

The sintering stress increases with time in the evolution of the contact radius. In the
initial stage, a sharp peak is evidenced as the result of stress relaxation. Thereafter, this
point marks the transition to mass transport due to surface tension. The contact radius
grows continuously until the maximum radius, which implies the maximum stress
during the process. As far as the virgin particles are aged as the higher stress reached
during the consolidation. It means more energy is required to consolidate aged
particles as evidenced in the neck growth kinetics (Fig. 2.15). The evolution of the
tangential stress during the sintering process may be influenced by temperature
gradients. As a consequence, local stresses may appear. Nonetheless, our experiments
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and simulations were conducted under a controlled temperature regime, which allowed
us to predict the sintering rate for all experiments.

2.6. CONCLUSIONS AND OUTLOOK

Our main result is that the sintering of visco-elastic powders is accurately and
quantitatively predictable, at both short and long time scales. This is successfully
achieved in our DEM framework by modelling the non-linear behaviour and including
three different sintering mechanisms. The presented model requires only two sintering
parameters to be calibrated in the simulations. This calibration was performed using
GrainLearning package, where the probabilistic distributions of the parameters and
their correlations were inferred precisely. Even though the model does not account for
the anisotropy of visco-elastic materials, it allows analysing cases where particles are
recycled in two scenarios: reused powder from a previous sintering process and powder
annealed inside an oven for several hours. All predictions show a remarkable agreement
with the experimental observations on PA12, PS, and PEEK particles. It demonstrates
the impact of this approach on the prediction of sintering times.

The proposed approach will be utilized in future DEM studies to analyse the strength
evolution by particle cohesion, including different powder usage histories and
temperature gradients. Thus, a better understanding of the grade of virgin and re-used
particles can be assessed to avoid surface defects from the poor cohesion of sintered
layers. In general, re-used powder requires a slower processing speed.

The present calculations refer to mono-disperse particles with spherical shapes. Future
calculations will consider other possible particle distributions, and a multi-particle
scheme to describe amorphous conditions. Furthermore, future studies on the
sintering of aggregates will include the time-dependence of the radius based on the
conservation of mass.
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2.8. APPENDICES

2.8.1. APPENDIX: THE DICRETE ELEMENT METHOD

The discrete element method (DEM) is a computational technique to describe the
motion of particles, and for which MercuryDPM [20] is utilized. It assumes:

• Particles are unbreakable.

• Particle are undeformable, such that the particle masses mi and inertia Ii are
constant in the body-based frame.
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• All interactions between the particles are binary, i.e. all internal forces/torques are
due to particle pair interactions.

• Each particle pair i , j has at most a single contact point ci j at which the interaction
forces fi j and torques τi j act.

• All external forces/torques acting on a particle i are either body forces fb
i or

interaction forces fw
i j with a wall k. The same is true for torques.

The force and torque acting on each particle i can then be computed as

fi

N∑
j=1

fi j +
Nw∑
k=1

fw
i k + fb

i , (2.20)

τi

N∑
j=1

ri j × fi j +τi j+
Nw∑
k=1

ri k × fw
i k +τw

i k +τb
i , (2.21)

with the branch vector ri j = ci j − ri connecting the particle position ri with the contact
point ci j . For given initial conditions, Newton’s second law can then be used to evolve
the particle’s velocities vi , positions ri , angular velocities ωi and orientations qi :

dvi

dt
= 1

mi
fi , (2.22)

dri

dt
= vi , (2.23)

dωi

dt
= I−1

i τi , (2.24)

dqi

dt
= C(qi )ωi , (2.25)

For computational stability, the orientation is stored as a quaternion qi ∈ R, which
requires the use of a transformation matrix C(qi ); see [20] for details.

Contact models are use to determine the forces acting between particle pairs, which can
roughly be classified into three categories: elastic, plastic, and dissipative forces f n

i j that

act in the normal direction to the contact area, ni j ; tangential forces ft
i j and torques

τi j due to sliding, rolling and torsion friction; and adhesive normal forces f a
i j that may

act between nearby particles even if they are not in contact. Which contact model best
describes the real contact behaviour depends on the material type and particle size, and
on ambient effects such as temperature and moisture. In most cases, a combination of
these forces needs to be taken into account, i.e. the toral contact force is given as

fi j = ( f n
i j + f a

i j )ni j + ft
i j . (2.26)
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Laser sintering is a widely used process for producing complex shapes from particulate
materials. However, understanding the complex interaction between the laser and
particles is a challenge. This investigation provides new insights into the sintering process
by simulating the laser source and the neck growth of particle pairs. First, a multi-physics
discrete element method (DEM) framework is developed to incorporate
temperature-dependent contact rheological and thermal properties, incorporating heat
transfer and neck formation between the particles. Next, energy transport by ray tracing
is added to allow for computing the amount of laser energy absorbed during sintering.
The DEM model is calibrated and validated using experimental data on neck growth and
temperature evolution of particle pairs made of polystyrene (PS) and Polyamide 12
(PA12). The findings show that the proposed DEM model is capable of accurately
simulating the neck growth during the laser sintering paving the way for better
controlling and optimizing the process. As a study case, it is shown that the calibrated
model can be used to predict the shrinkage of laser-irradiated zones of thin polymer
layers.

3.1. INTRODUCTION

Laser sintering (LS) is an additive manufacturing technique that offers cost-efficient
production of complex geometries and a variety of material options, including metals,
ceramics, and polymers. The use of LS for polymer printing is rapidly expanding, with
the potential for large-scale manufacturing in the near future [1]. Although
multi-physics frameworks have been used to simulate the laser sintering process in
polymers, accurately predicting the interaction between the laser heat source and the
particulate polymer during sintering remains a challenge. Therefore, there is a critical
need to develop more advanced rheological contact models and gain new insights into
the underlying mechanisms of the process.

To accurately describe the LS process of a particulate polymer and the laser interaction,
the flow behaviour of the material during contact (contact rheology) is a relevant
characteristic to be explored as a function of the energy absorbed from the incident
beam. An increasing number of studies have investigated sintering and heat transfer of
polymer powders [2–5], either using the discrete element method (DEM) [6–9] or the
finite element method (FEM) [10], and by including the laser beam as a Gaussian heat
source function [11–13]. Nonetheless, these descriptions of polymer sintering present a
discrepancy compared to experimental data due to the transient contact rheology,
thermal properties and material degradation state that polymers suffer while flowing
and for which the aforementioned descriptions are unable to predict. For instance,
Hejmady et al. [14] showed that the sintering kinetics is determined by a complex
interplay between the sintering mechanisms caused by the relaxation times of
polymers, such as polystyrene, and the time-dependent temperature profile which also
affects the polymer flow resistance. Even further, the model implemented to describe
the neck growth disagreed with the experimental observations due to the
aforementioned events. Polychronopoulos et al. [15] proposed a model for neck growth
by assuming planar extensional flow for a Newtonian fluid, which results were
compared with experimental data on polymer particles. Even though the predictions
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showed relatively good agreement on the densification rates, it was less accurate for the
neck growth rate itself.

In this study, we numerically investigate the neck growth of polymer powders during
laser sintering. To achieve this, we analyse the contact rheology of PA12 and PS particle
pairs, sintered by different energy inputs reported by Hejmady et al. [14, 16]. The
discrete element method (DEM) for heat transfer problems [17–19] is used and
implemented in the open-source software package MercuryDPM [20] along with an
improved definition of a sintering regime map for temperature-dependent visco-elastic
deformations [21]. Additionally, a new ray-tracing approach is proposed to analyse the
laser beam interaction on 3D spheres, which allows to compute the energy absorbed by
the materials during particle-particle inter-penetrations accurately. The DEM model
parameters are calibrated using GrainLearning [22, 23], which is an efficient
data-driven calibration software package. The findings indicate that the proposed
framework accurately simulates the neck growth and temperature evolution when
particle pairs are sintered using a laser source. As an application case of laser sintering,
it is studied the laser irradiated zone on thin polymer layers based on the calibrated
model.

3.2. EXPERIMENTAL DATA

Experimental data on laser sintering of PA12 and PS particle pairs were reported by
Hejmady et al. [14, 16]. The authors measured the neck growth rate of particle pairs
under different conditions and laser set-ups. Thus, several case studies were discussed
in detail such as the effect of particle size, heating chamber temperature, laser pulse
duration and laser energy. In this work, we have collected the reported information on
the effect of laser energy on the neck growth of particle pairs and the temperature
evolution of the system during the laser interaction. Fig. 3.1 depicts a schematic
illustration of the experimental procedure.

Figure 3.1: Schematic representation of the experimental procedure.

Two particles of similar size are positioned on a substrate within a heating chamber. The
interface between the particles is aligned with the laser beam, as well as with the optical
focus. A laser pulse is then directed locally at the contact point between the particles,
and the neck sintering is captured through optical imaging. Table 3.1 summarizes the
properties of the polymers and laser set-up used in the experimental configuration [14,
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16].

Table 3.1: Material properties and laser configuration.

Property, symbol - units PA12 PS
Radius, Ri - [µm] 125 60
Density, ρ - [kg/m3] 1020 1040
Thermal conductivity, kcond - [W/(mK)] 0.240 0.167
Thermal expansion, δaT - [1/◦C] 1.0×10−4 1.7×10−5

Heat capacity, cp - [J/(kg K)] 1200 1320
Surface tension, γ - [mN/m] 34.3 35.6
Young’s Modulus, E - [MPa] 1650 1226
Poisson’s ratio, ν - [-] 0.34 0.35
Chamber Temperature, Tc - [◦C] 155 53
Pulse duration, tL - [ms] 1 800
Laser radius RL - [µm] 15 20
Laser irradiated energy, Ei n - [µJ] 192 19 - 27

The pulse duration and laser irradiated energy in both experiments are different, as
indicated in Table 3.1. In the case of PA12 particles, sintering occurred around the
melting point (Tmelt ∼ 180 ◦C), predominantly during the cooling stage. This
configuration closely approximates the thermal evolution of a real 3D printing process.
Conversely, PS particles were sintered slightly above the glass temperature (Tg ∼ 62 ◦C,
Tmelt ∼ 100 ◦C) and during the pulse duration, while the laser was still active. This
configuration facilitated a slower sintering process, while still imparting sufficient
energy for particle pairs to undergo sintering under the influence of surface tension.

3.3. METHODS

This section describes the discrete element model (DEM) used to simulate the sintering
of particles by a laser beam, which is based on momentum and heat balance [17, 19],
implemented in MercuryDPM [20].

3.3.1. DEM AND HEAT TRANSFER

To model heat transfer using a DEM framework, the descriptions of conduction,
convection and radiation proposed by Peng et al. [19] are utilized. The particles
physically need to come into contact, see Fig. 3.2 (left). Conversion of heat and balance
are employed to estimate the change of temperature of a particle i of radius Ri , with the
assumption of no temperature gradient within a particle.

In the following, we will assume that the laser heat is applied instantaneously, and thus
only affects the initial conditions. Therefore, we assume that there is no heat source and
the evolution of particle temperature is described by
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Figure 3.2: (Right) Two particle contact with overlap δ. (Left) Thermo visco-elastoplastic contact law. The
contact displacement is related to δ (overlap) and the normal contact force f n . Right/left-pointing arrows are
used to distinguish the forces obtained during the loading and unloading stages, respectively. The dotted line
represents the loading stiffness k1 variation according to the increment of temperature T , k2 is the unloading
stiffness, kc is the cohesive stiffness.

mi cp,i
dTi

∂t
+

n∑
j=1

ki ,cond (T j −Ti )
ai j

li j
=Qi ,conv +Qi ,r ad , (3.1)

where mi is the particle mass, cp,i is the heat of material, and Ti , T j are the
temperatures of particles i , j , respectively. kcond is the conductivity of material, li j the
distance between the centers of particles, Qi represent the external heat fluxes
associated to particle i by convection (Qi ,conv ) and radiation (Qi ,r ad ) with units [W],
and n is the number of interacting neighbors of particle i . The area of heat
transmission, ai j , can be correlated to the overlap δi j = (Ri +R j )− (ri − r j ) ·n, where ri

is the position of particle i with unit vector n = (ri − r j )/|ri − r j |, and the effective
particle radius Ri j = Ri R j /(Ri +R j ), so that:

ai j ' 2πRi jδi j , (3.2)

for δi j ¿ Ri j .

The convective heat transfer can be expressed as:

Qi ,conv = ki ,conv Ai (T f −Ti ), (3.3)

where Ai is the surface area available on particle i , with Ti , ki ,conv is the convective heat
transfer coefficient, T f is the surrounding temperature, and Qi ,conv represents the heat
flux of particle i with the environment.

The radiative heat transfer is expressed as:

Qi ,r ad =σεAi (T 4
i ,local −T 4

i ), (3.4)

where σ = 5.67 × 10−8 W/m2K4 is the Stefan-Boltzmann constant, ε represents the
emissivity with dimensionless quantity, and Ti ,local is the temperature of the
environment.
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Subsequently, the motion of particles is solved based on Newton’s equations of motion,
where the corresponding translational and rotational degrees of freedoms are
simultaneously updated with Eq. (3.1), which are expressed as,

mi r̈i = mi g +∑
j

f n
i j (3.5)

Ii θ̈i =
∑

j
(ri j × f n

i j ), (3.6)

where r̈i is translational acceleration, mi mass of the particle i , g acceleration due to
gravity, f n

i j force at contact with particles. θ̈i is angular acceleration, ri j the branch vector

directed from the center of particle i to the contact point with particle j , and Ii is the
mass moment of inertia of particle i .

For the inter-particle collision, the temperature dependence contact model proposed by
Luding [17] is used, see Fig. 3.2, (right). The normal force f n

i j describes the interaction
as:

f n
i j =


k1(T )δi j if δi j > δmax

i j

k2(δi j −δ0
i j ) if δmin

i j < δi j ≤ δmax
i j

−kcδi j if 0 < δi j ≤ δmi n
i j

− f a
i j −ηn vn

i j . (3.7)

The computation of the repulsive visco-elastoplastic forces f n
i j during sintering is

governed by the loading stiffness k1(T ). It decreases as T approaches the melting point
of a material, and therefore, the material can deform significantly so that the contact
area becomes larger at the contact. The dependency of k1 on T may be described as:

k1(T ) = k1

2

[
1+ tanh

(
Tmelt −T

Tvar

)]
, (3.8)

where Tvar defines the range of temperatures in which the melting takes place. In the
transition regime where | Tmelt −T | /Tvar, the particles are significantly softer than in
the cold limit Tmelt −T À Tvar. Subsequently, the unloading process follows the slope of
k̂2, which varies between k1(T ) at a given temperature and a constant k2, depending on
the plastic deformation at zero force δ0

i j . Note that k2 is not changed directly when T

increases. For overlaps smaller than δmax
i j , the unloading stiffness is interpolated linearly

between k2 and k1(T ) as:

k̂2 =
 k1(T )+ (k2 −k1(T ))

δmax
i j

φ f Ri j
if δmax

i j < 2φ f Ri j

k2 if δi j ≥ δmax
i j

 , (3.9)

where φ f = 3p2 and Ri j represents the effective particle radius. After the contact force
becomes negative, for δi j < δ0

i j , the model introduces a cohesive force limited by the

cohesion stiffness kc .

The additional adhesive force f a
i j is assumed constant in Eq. (3.7). In the case of

collisions of particles and large deformations, dissipation occurs due to the hysteretic
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nature of the force-law described by a viscous, dissipative, velocity-dependent force
ηn vn

i j , with ηn as the viscous dissipation coefficient. This coefficient is related to the

restitution coefficient e as ηn =
√

2mk1/(
p
π + √

loge) loge, and therefore, this
force-displacement model depends only on particle mass, not relative velocity1.

Finally, if particles are heated, in general, their density increases. Thus, we assume that
the particle radius changes in linear approximation as

Ri (T ) = Ri (Tmelt)[1+δaT (Tmelt −T )], (3.10)

with the relative change of the radius per unit temperature δaT .

3.3.2. CONTACT RHEOLOGICAL MODEL FOR POLYMER SINTERING

The sinter bonding of polymer particles occurs between their glass transition and
melting points, resulting in the formation of necks that reduce surface area and lower
surface energy. The necks grow through atomic-level transport of polymer chains along
grain boundaries and bulk grain. Various mechanisms influence sintering, with
visco-elastic deformation and viscous flow being the most dominant for polymer
particles [21, 24, 25]. Fig. 3.3 illustrates the stages of a polymer sintering process.

1) Surface contact 2) Neck formation 3) Neck growth

Figure 3.3: Schematic illustration of the polymer sintering process. 1) Surface contact. 2) Neck formation. 3)
Neck growth. R represents particle radius, ra is contact radius, with contact area ai j =πr 2

a .

The mechanisms for the polymer sintering process involve three stages: surface
contact, neck formation and neck growth. First, the surface contact represents the
adhesion stage, in which the particles first attract each other via van der Waals adhesion
forces. Second, neck formation occurs while the visco-elastic deformation is balanced
by quick inter-surface adhesive forces during the material’s unrelaxed state. The last
stage corresponds to the relaxation of molecular rearrangement, and is related to the
action of surface tension in the viscous flow regime. By defining the evolution of
contact radius ai j /Ri j during the three mentioned stages, it is possible to include each
stage into a DEM approach correlating the particle-particle overlap δi j during the
computation of the normal force f n

i j , see Eq. (3.7). Our previous investigation has

discussed mathematically ai j /Ri j for polymer sintering, and therefore, the reader is
referred to [21] for more details. Nonetheless and most important, the latest stage of the
process (3) is improved with Frenkel-Pokluda model [26], leading to a temperature
dependent fluidity C1(T )2. Fig. 3.4 illustrates the sintering regime map, remarkably

1This is a particular case by assuming k1 = k2.
2Fluidity, C1, is the term adopted to describe the non-opposition to flow
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controlled by only one parameter C1(T ) at the last stage.

10−5 10−4 10−3 10−2 10−1 100 101

t

10−2

10−1

100

101

a
ij
/R

ij

a1ij/Rij

a2ij/Rij

a3ij/Rij

Frenkel-Pokluda model
Full coalescence

Figure 3.4: Sintering regime map with three mechanisms for flow simulation: (1) adhesive contact, (2) adhesive
inter-surface forces, and (3) surface tension.

We briefly summarize the three-stage model. In stage 1, the non-dimensional neck
radius a1

i j /Ri j was derived by Johnson, Kendall, and Roberts [27] at very short times

(t ¿ t0) for the equilibrium deformation of two elastic bodies under the influence of
surface tension, as:

a1
i j

Ri j
=

(9π(1−ν2)γ

ERi j

)1/3
, (3.11)

where γ is the surface tension, ν the Poisson’s ratio, and E the Young’s modulus.

In stage 2, for intermediate times in the interval t0 < t < tvi s , the growth of contact radius
a2

i j is predicted to be

a2
i j

Ri j
=

(63π3

16

)1/7( δc

Ri j

)2/7(2C1(T )γt

Ri j

)1/7
, (3.12)

where the separation distance δc is specified to ensure the work of adhesion, defined as
the range of the adhesive force, and t is time.

The third stage is described using the Frenkel-Pokluda model [26], which describes the
sintering process balancing the work of surface tension and viscous dissipation,
expressed as:
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a3
i j

Ri j
= sin(θ)

[
4

(1+cos(θ))2(2−cos(θ))

]1/3

, (3.13)

where the re-scaled time,

θ =
(

8γC1(T )t

Ri j

)1/2

. (3.14)

To include a1
i j , a2

i j , and a3
i j in the contact description (Eq.(3.7)), we compute the rate of

the plastic overlap δ̇0
i j . Knowing that the overlap between the particles nearly equals the

plastic overlap, δi j ≈ δ0
i j for stiff particles (k1 À ( f n

i j + f a
i j )/Ri j ), the contact radius may

be approximated as ai j /Ri j ≈
√
δi j /Ri j (small overlaps δ0

i j ¿ Ri j ). It can be controlled

by setting the growth rate δ̇0
i j according to Eq. (3.11), Eq. (3.12), and Eq. (3.13).

3.3.3. RAY TRACING APPROACH FOR LASER ENERGY ABSORPTION

An absorption model is needed to describe the interaction of a laser source and the
particles. According to the Beer-Lamber law, the decrease of attenuation of the light
intensity while propagating inside a material can be described as:

I (x) = I0e−µx , (3.15)

where I0 is the initial light intensity, µ represents the attenuation coefficient of a
material, x is the path. Yaagoubi et al. [28] presented a model to describe the laser as a
set of rays, where each ray is traced along the path that it follows, with step size ∆l and
by which particles it is absorbed until it is completely absorbed or has left the material.
However, the equation only applies to 2D cases. In our study, the 3D equation to
determine the starting intensity of each ray is based on a Gaussian laser profile, scaled
such that the total intensity of all rays equals 1 and set to:

I0
(
d ,Rl aser , Nr ay

)= 2

Nr ay

(
1− 1

e2

)e
−2d2

R2
l aser , if d < Rl aser , 0 el se, (3.16)

where Nr ay represents the number of rays, d is the distance from the laser centre
perpendicular to the propagation direction, and Rl aser is laser radius. The
implemented ray tracing model, whose accuracy depends on the number of rays, step
size ∆l , and dissipation threshold νthr eshol d , is documented and can be downloaded
via Github3, and the details in Appendix 3.7.1. Fig. 3.5 illustrates the approach,
implemented in MercuryDPM.
Since each simulation in the ray tracing approach is performed for a single time step, the
simulations provide the amount of energy that particles absorb in each time step using
the momentum of particle-particle interpenetration. This allows for the computation of
the heating rate of a certain particle, which is given by,

3https://github.com/BertNijkamp/Laser-Beam-Absorption
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Ray tracing simulations

Absorbed energy

Material parameters

a) b)

Figure 3.5: a) A laser beam represented by several light rays interacts with a particle, causing the rays to be split
into reflected and refracted rays. b) The ray tracing simulation is set with material, laser parameters and model
configuration such as the number of rays Nr ay s , step size ∆l , dissipation threshold νther shold .

∆T

∆t
= Ei neabs

mcp
, (3.17)

where Ei n is the total irradiated laser energy, eabs the portion of absorbed energy out of
the total incoming energy, ∆t the time step, m and cp are mass and heat capacity of the
particle.

3.4. RESULTS AND DISCUSSION

This section presents a computational analysis of the contact rheology of visco-elastic
powders during laser sintering, using the experimental data on PA12 and PS discussed
in Sec. 3.2, and earlier reported in [21]. The analysis begins with ray tracing simulations
to determine the amount of energy absorbed by the particles when irradiated by the laser
beam. Next, the neck growth and the calibration procedure were used.

3.4.1. ABSORPTION ANALYSIS

To determine the portion of energy absorbed (eabs ) by particles while a laser beam
irradiates the surface, ray tracing simulations are conducted (see Sec. 3.3.3). First, the
refraction index and the attenuation coefficient of PA12 and PS are extracted from the
literature [16, 29], as summarized in Table 3.2.

Table 3.2: Optical interaction coefficients.

Property, symbol - units PA12 PS
Refraction index, n [-] 1.525 1.5997
Attenuation coefficient, µ [m−1] 33500.0 27400.0

It is noticed that PA12 presents a larger attenuation coefficient compared to PS, i.e. the
incident energy beam becomes more attenuated as it passes through the material, and
therefore, more energy would be absorbed by this polymer per length. Subsequently,
the laser spot radius is set to 15 µm and 20 µm for PA12 and PS, respectively, according
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to the experimental data (Table 3.1). The laser beam has an angle of incidence of 60◦
related to the particle bed surface normal. It is also assumed that the bed perfectly
reflects the light rays and the laser impacts precisely at the contact point of the two
adjacent particles. The temperature is homogeneously diffused inside the particles as
suggested by Balemans et al. [11]. Finally, the ray tracing discretization parameters are
set to Nr ay s = 10000, step size ∆l = 10%, and a dissipation threshold νthr esh = 1%. The
parameters were tested and adjusted until the simulations converged with less than 1%
of variation. The ray tracing simulation for a PA12 particle pair is illustrated in Fig. 3.6.

Figure 3.6: Ray tracing simulations for PA12 particle pairs, depicting incident beam rays onto two spherical
particles at different overlaps: (a) δi j =−1/3, (b) δi j = 1/20, (c) δi j = 1/3, (d) δi j = 1/2, (e) δi j = 1.

Fig. 3.6 shows the simulation of ray tracing while particle pairs are overlapping from
δi j = −1/3 to δi j = 1.0, being δi j the relative overlap if positive. The simulation shows
differences in light reflection when the relative overlap is varied. For instance, a relatively
big portion of the energy is reflected away from the top at δi j = 1/20, and the light rays
are more converging to each other when δi j ∼ 1. It is evidenced that the energy absorbed
by a polymer not only depends on the shape on which the laser impacts but also on the
amount of overlap caused by sintering. Subsequently, the absorbed energy portion eabs

can be defined as a function of particle overlap, as depicted in Fig. 3.7.
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Figure 3.7: The absorbed energy portion of a particle in pair, as a function of overlap δn /2R, where contacts
are positive. Squared shapes represent the results using PA12 properties while triangle shapes indicate the
computations using PS properties.
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Fig. 3.7 shows that PA12 absorbs slightly more energy (2 ∼ 3%), as it attenuates stronger
compared to PS. Furthermore, the two systems absorb the incident energy differently.
For PA12, the highest absorption is identified at the initial contact δi j = 0, and it
decreases with particle overlap up to 30%, the moment at which the absorbed energy is
constant, losing about 5% of the initial laser irradiated energy. For PS, the highest
absorption is at the initial contact with 1−3% of loss compared to the incident energy, it
fluctuates, until reaching its asymptotic limit at > 45% of the overlap, leading to a 7%
loss of total energy. The fluctuating behaviour in the case of PS material is the
consequence of the smaller particle radius (60 µm), the lower attenuation coefficient,
and also due to internal reflections of the beam inside the particle. It is relevant to
mention that the curvature effect at the particle contact does not significantly affect
light propagation. Since our ray tracing simulations are conducted for equal-sized
spheres, the rays may bend uniformly. Future studies can focus on different particle
sizes and the consequence bending of light.

The absorbed energy curves presented in Fig. 3.7 are set into MercuryDPM as
polynomial coefficients, and once the sintering simulation starts, the temperature of
the system is updated every time step according to the laser irradiated energy Ei n , pulse
duration tL (reported in Table 3.1) and the modes of heat transfer (conduction,
convection and radiation).

3.4.2. NECK GROWTH CONTACT RHEOLOGY

Laser sintering of powders is a multi-physics process that involves three different time
scales. First, the time scale from the laser energy source, in which the laser is active.
Here, we model the absorption process by the ray tracing approach, which assumed the
absorption to occur instantaneously. Secondly, the time scale of heat diffusion, which
is described throughout particle contacts using DEM for heat transfer problems. We
also assume this process acts instantaneously and attributes an uniform temperature
within each particle. Thirdly, the time scale from the neck formation, which is addressed
by the current sintering regime map (Fig. 3.4). The later stage depends on the contact
rheology of the material, and therefore it is strictly necessary to be defined as evidenced
by experimental data [14, 16, 30].

The assumption of the uniform temperature inside each particle applies to all
simulations. To determine the validity of this assumption, the thermal resistance of a
polymer powder can be analysed based on the Biot number (Bi) [31, 32], being
estimated as:

Bi = hLc

kcond
= h(R/3)

kcond
, (3.18)

where h is the heat transfer coefficient, Lc is the characteristic length scale which is
defined as volume/surface area, and R is the particle radius. kcond represents the
thermal conductivity of the particle. For the case of PA12 and PS particles, Bi ¿ 0.1,
which indicates that the intraparticle heat transfer resistance is negligible compared to
the external resistance around the particle [19]. In other words, the interior of the
particles can be considered to be at a nearly uniform temperature.
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Subsequently, to calibrate the contact rheology of PA12 and PS for sintering
simulations, the open-source package GrainLearning [22] is utilized. It finds the most
likely set of model parameters that reproduce the experimental data, based on
constrained conditional probability distributions. The calibration package
GrainLearning is a Bayesian calibration tool for estimating micro-parameter
uncertainties in mechanical models. It uses the recursive Bayes’ rule to quantify the
evolution of the probability distribution of parameters over data history. The coupled
implementation with MercuryDPM is illustrated in Fig. 3.8.

no

yesi = 0

Posterior 
distribution
 converges

Train a Gaussian mixture
 with the previous samples

MercuryDPM
executable

Initial parameter
space GrainLearning based

 on posterior expectactions 
and variances

Experimental 
data set End

t
0

R

Start

i > 0

Figure 3.8: Flowchart illustrating the iterative coupled implementation using MercuryDPM and GrainLearning.
The parameter space is initially set at iteration i = 0 and progressively updated until convergence is achieved.

Using the experimental data on the evolution of the neck growth and temperature
evolution during laser sintering, reported by Hejmady et al. [14, 16], our DEM model
requires the calibration of fluidity C1, surface tension γ, loading stiffness k1, thermal
convectivity kconv and emissivity ε. For this, an initial parameter space is defined as
reported in Table 3.3.

Table 3.3: Parameter space

C1 - [1/(Pa s)] γ - [N/m] k1 - [N/m] kconv - [W/(mK)] ε [-]
0.001−0.1 0.01−0.05 0.0001−0.003 100−1000 0.1−1.0

The remaining contact parameters are summarized in Table 3.4 [17, 33]

Table 3.4: System parameters

k2 - [N/m] kc - [N/m] δc - [1/m] e - φ [-]
5.0 k1 2.0 k1 1.0/4.0R 0.15 3p4

To simulate the visco-elastic sintering of polymer powders, a pair of 3D spheres of equal
diameter is placed next to each other with negligible non-zero overlap between them,
as visualized in Fig. 3.8. The particles are set just in contact at time t0; the gravitational
force is neglected. A small adhesive force f a = k1δa is set to the particles to start the
motion, where δa = 1.0 mm. The range of softening is Tvar = 10 ◦C with respect to the
melting temperature of the material. Six iterations have been defined for the calibration
procedure with eighty samples in each iteration for both PA12 and PS models. The
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normalized covariance parameter at the first iteration is set to 0.7, resulting in an
effective sample size of the Bayesian calibration larger than 20%. Fig. 3.9 shows the
iterative calibration procedure for the PA12 model.

Figure 3.9: Calibration of model parameters for sintering simulations of PA12 particle pairs. Layers indicate
the space of the parametric sample at every iteration, being the first layer of the initial parametric space. Blue
dots represent the sample points, which progressively converge to a narrowed area. Red dots represent the last
estimation of the parameters at the last iteration.

The illustration of the re-sampling process presented in Fig. 3.9 depicts the posterior
modes localized progressively after each iteration. The agreement of the posterior
expectations before and after one iteration of Bayesian filtering is adopted as the
convergence criterion. The posterior expectation of each micro-parameter converges
after the fifth iteration. Note that if the initial guesses for the model parameters are not
able to capture at least one posterior distribution, the re-sampling scheme could
explore outside the parameter ranges specified at the first iteration. Table 3.5
summarizes the calibrated parameters. Consequently, the DEM results are reported.

Table 3.5: Calibrated parameters

Property - units PA12 PS
Irradiated energy, Ei n - [µJ] 192.0 19.0 21.0 23.0 25.0 27.0
C1 - [1/(Pa s)] 3.41 0.03 1.92 7.36 21.51 72.8
γ - [mN/m] 48.56 50.09 42.42 42.19 25.72 24.71
k1 - [mN/m] 1.67 0.11 0.11 0.12 0.12 0.148
kconv - [W/(mK)] 635.73 304.10 334.4 301.11 309.2 304.74
ε [-] 0.164 0.21 0.275 0.76 0.805 0.814

It is noticed from Table 3.5 that surface tension corresponds to the expected ranges of
calibration, and it increases according to lower irradiated energies, indicating that the
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material opposes the flowability. Fig. 3.10 presents the calibrated simulation of PA12
particle pairs at different snapshots and temperature evolution.

t = 0.0 s t = 0.1 s t = 0.3 s t = 0.7 s

Figure 3.10: Image sequence of sintering PA12 particles of radii Ri = 125 µm. Temperature evolution is
recorded by the colour change from the first contact at t = 0.0 s to t = 0.7 s.

The simulation result of the temperature evolution on PA12 particles is presented in
Fig. 3.11.
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Figure 3.11: Temperature evolution while sintering PA12 particle pairs with Ei n = 192 µJ. Initial temperature is
set to T0 = 155 ◦C. Cross markers correspond to the experimental data extracted from [14], while the dashed
line is the DEM simulation results.

Three stages are indicated during thermal evolution. The heating stage, which
increments quickly until the end of the pulse duration at t = 0.01 s. Then, the cooling
stage starts from the maximum absorbed energy and decays exponentially to the initial
or chamber temperature at 0.6 s. It happens because once the particle absorbs the
incoming energy and the laser is switched off, the dissipation by radiation and
convection reduces the temperature of the system until it reaches the initial conditions.
The maximum temperature distributed within the particles when the laser impacts the
surface is around 5% of loss over the irradiated energy. According to the characteristic
time for heat diffusion tdi f f [31], heat diffuses completely through the particles at
t = 0.4 s, the moment at which the particles are to achieve the temperature of the
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holding period as indicated by the experimental data. It is shown that the heat transfer
model describes the experimental data relatively well, with only a slightly faster cooling
than expected during the cooling stage.

Subsequently, the neck growth of particle pairs (Fig. 3.10) is computed and the results
presented in Fig. 3.12.
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Figure 3.12: Neck growth of PA12 particle pairs. The dashed line corresponds to a calibrated DEM simulation,
the solid line describes the modified Frenkel prediction using µ = 270 Pa s, and crosses are the experimental
data [14].

According to the experimental set-up, the sintering of PA12 particle pairs occurs
principally during the holding stage (t > 0.6 s) after the temperature reaches the initial
condition, as indicated by the horizontal arrow in Fig. 3.12. This is the consequence of
letting the system remain at a temperature above the glass point, which allows the
material to permanently deform under the influence of visco-plastic forces. Frenkel’s
model has been usually employed in the literature to describe sintering of particle
pairs [34–36]. However, the model is only valid for the initial stage of the process as
evidenced in Fig. 3.12, being fitted with a viscosity of µ= 270 Pa s. Our proposed model
evidences a better approximation during the whole process.

Similarly to PA12 particles, the simulations of PS pairs using the calibrated parameters
reported in Table 3.5 are visualized in Fig. 3.13 and Fig. 3.15.
As visualized in Fig. 3.13, faster sintering and higher interpenetration are achieved when
higher laser intensities are applied. The laser hits the interface of the particles at t = 0 s,
and the neck is formed which tends to grow up to the pulse duration of the laser beam at
0.8 s. Following the absorption analysis and experimental information, irradiating 27 µJ
on PS particle surface leads to the absorption of 93.7% of the incident energy. The energy
absorbed under the different laser setups is summarized in Table 3.6.
The absorption analysis suggests that PS reflects around 6% of the incoming energy,
which is 1% more than predicted by Hejmady et al. [16]; the authors measured
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t = 0.1 s t = 0.8 st = 0.0 s

Ein= 27 μJ

Ein = 25 μJ

Ein = 23 μJ

Ein = 21 μJ

Ein = 19 μJ

Figure 3.13: Imagine sequences of sintering PS particles of radii Ri = 60 µm. The temperature evolution is
indicated by the colour change from the first contact at t = 0.0 s to t = 0.8 s, for different overlaps δi j .

Table 3.6: Comparison between laser irradiated energy and energy portion absorbed eabs by particle pairs
using the current ray tracing model.

Ei n [µJ] 27.0 25.0 23.0 21.0 19.0
eabs Ei n [µJ] 25.3 23.4 21.5 19.5 17.6
eabs [%] 93.7 93.6 93.4 92.9 92.6

absorption on a flat polymeric surface.

The simulation result of the temperature evolution on PS particle pairs is presented in
Fig. 3.14.
According to the experimental set-up, the sintering of PS particle pairs occurs slow and
principally during the heating stage (t < 0.8 s). The DEM simulation and the absorption
analysis predict the window in which the temperature evolves as a function of the
irradiated laser energy, as reported by Hejmady et al. [16].

Subsequently, the evolution of the neck radius as a function of time is determined
through particle-particle overlap. The result is presented in Fig. 3.15.
Fig. 3.15 shows the effect of laser energy on the sintering of particle pairs, which is
maximum for the case of Ei n = 27 µJ that leads to overlap of the particles of 90%; it
reduces to around 25% when decreasing the irradiated energy to Ei n = 19 µJ. The stress
relaxation for flowability is achieved almost instantaneously after the consolidation
starts letting surface tension dominate the process. This behaviour is expected since PS
powders sinter faster compared to other polymers [21]. These simulations of particle
pairs reveal the influence of the laser energy on the achieved neck radius. For the design
of sintering procedures, a lower limit for solid-state sintering would be desirable
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Figure 3.14: Temperature evolution while sintering PS particle pairs. Initial temperature is set to T0 = 53 ◦C.
Cross markers correspond to the data extracted from [16], while the dashed and marked lines are the DEM
simulation results.
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Figure 3.15: Neck growth of PS particle pairs as a function of time, for different applied laser energies. The
dashed lines correspond to calibrated DEM simulations, symbols are the experimental data from [16].

(a/R > 0.7) to avoid breakage. A deviation in the simulations and experimental data is
evidenced in the early stage t < 0.1 s. One possible reason could be the recording
process that limits measurements in short time frames.

Crystallization can occur during cooling if the rate of temperature decrease is too high,
especially for semi-crystalline materials such as PS. Whereas the material contact
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rheology determines the kinetics of the sintering of the neck region, the crystallization
kinetics will affect the solidification. We have neglected in our model any crystallization
effect for brevity, and future studies can discuss crystallization models to describe the
aforementioned phase, such as the proposed by Shen et al. [37].

Raising the laser power also enhances the flowability of the particles, a trend supported
by the model parameter fluidity denoted as C1, which exhibits a notable increase with
the rise in irradiated energy. This exponential relationship is depicted in Figure 3.16.
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Figure 3.16: Temperature-dependent fluidity values, C1, of PS fitted with an exponential regression (dotted
line).

As the temperature within a polymer increases, the thermal energy of the polymer
chains also increases, leading to an increase in the kinetic energy of the molecules. This
causes the polymer chains to vibrate more vigorously and move more freely, which in
turn reduces the entanglement and cross-linking of the chains. This decrease in
inter-molecular forces reduces the viscosity of the polymer and increases its fluidity as
illustrated in Fig. 3.16. The relationship between temperature and fluidity of polymers
near their melting point can depend on several factors, including the specific polymer
and its properties, such as molecular weight, degree of branching, and presence of
cross-linking. Additionally, the conditions under which the polymer is being heated or
cooled can affect its behaviour, including the heating rate and duration, as well as the
cooling rate. However, these details are beyond the scope of this study.

3.4.3. A CASE STUDY: LASER SINTERING OF THIN POLYMER LAYERS

This section examines the application of laser sintering on thin polymer particle layers
using the calibrated model discussed in Sec.3.4.2. To investigate the bulk behaviour, the
temperature changes and average layer height are measured after subjecting surface
particles to a localized thermal gradient due to energy input within the laser radius.
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Thus, the linear shrinkage of the heat-affected zone (HAZ) in the z-direction and the
evolution of the surface temperature is measured. The simulations take into account
the effect of gravity (g = 9.81 m/s2). Fig. 3.17 depicts the measuring zone and length
parameters, assuming that the laser spot diameter is approximately equal to the hatch
distance.

Length

Thickness

Width

measuring zone

Hatch distance

Laser

HAZ

Figure 3.17: A schematic of the measuring zone for simulations of laser sintering of thin polymer layers.

To analyse the densification of thin polymer layers, a domain of width = 5 mm Lx ,
length = 1 mm (Ly ), and thickness = 1.25 mm (Lz ) is simulated. These dimensions are
chosen to ensure that the system encompasses the relevant laser, diffusion, and
sintering time and length scales.

The energy density resulting from laser irradiation is calculated using the equation:

E A = Ei n(1−RL)

hL vL
, (3.19)

where Ei n represents the total laser irradiated power per area, RL is the reflectance, hL

is the hatch distance, and vL is the scan speed. It is assumed that particles within the
hatch distance absorb the same amount of energy as particle pairs in simulations (refer
to Fig. 3.7). We simulate particle beds made from two different materials, PA12 and PS.
Table 3.7 provides a summary of the process parameters.

Table 3.7: Process parameters

Material PA12 PS
Hatch distance, hL - µm 250.0 120.0
Pulse duration, tL - ms 1.0 1.0
Reflectance, RL - [−] 0.05 0.06

Fig. 3.18 presents the simulation results obtained using the calibrated contact properties
of PA12 under different laser intensities.
In the simulations, the surface particles within the hatch distance are exposed to
various laser intensities and pulse duration, see Table 3.7. The thickness of the HAZ is
influenced by the irradiated energy Ei n , as depicted in Fig. 3.18. It is observed that at
low values of irradiated energy, the HAZ and the layer height exhibit similar behaviour.
However, for laser intensities above 800 µJ, the difference between the initial and final
shrinkage becomes evident, indicating the sintering of the particles. Fig. 3.19 illustrates



3

54
3. CONTACT RHEOLOGY MODEL FOR

VISCO-ELASTIC POWDERS DURING LASER SINTERING

measuring zone

HAZ

Figure 3.18: Simulation results for a thin PA12 layer under the influence of energy area density Ei n . ∆L
represents the height change measured at the heat-affected zone (HAZ) at the last time step.

the numerically calculated temperature evolution over time for different irradiated
laser intensities on a PA12 layer.
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Figure 3.19: Temperature evolution (hatch distance) as a function of time for different irradiated energies on a
PA12 layer.

Once the maximum temperature is reached based on the irradiated energy, the
temperature gradually decreases and approaches the external temperature of the
system, T0 = 155 ◦C. During this cooling period, energy is released from the system
through convection (more dominant) and radiation. The convection and radiation
effects are likely overestimated because we do not account for the heating up of the gas
phase; i.e. it is assumed that the system does not exchange energy with the
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surroundings. It is observed that increasing the laser energy, such as to 1000 µJ, leads to
a faster cooling rate 1/tr of approximately e t/tr , where tr = 4Rη/3γ, γ is surface tension,
R is radius, and η is viscosity. This phenomenon can be primarily attributed to the
increased maximum temperature and the larger temperature difference with the
powder bed.

Subsequently, the final shrinkage of the thickness (∆L/L0) can be analytically estimated
with the Mackenzie-Shuttleworth sintering model based on surface tension [38, 39], it is:

ρ

ρ0
= e

−3γt
4Rη

(
ρB

ρ0
+1

)
,
ρ

ρ0
= 1(

1− ∆L
L0

)3 , (3.20)

where ρ0 is the green or solid density, ρB is the powder bulk density. The values are
extracted from [38]. Fig. 3.20 displays the results for the average shrinkage of the heat-
affected zone (HAZ) as a function of energy area density E A .
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Figure 3.20: Shrinkage of the heat-affected zone (HAZ) as a function of energy area density E A of a PA12 layer.
The crossed shapes represent the results obtained from discrete element method (DEM) simulations, while
the circles represent the analytical estimation.

The shrinkage of the heat-affected zone (HAZ) exhibits an exponential relationship with
the increase in energy density. It reaches a shrinkage of approximately 14% when the
energy density range is 0.04 J/mm2. For small energy density values and quick
interaction times, the heat diffusion occurs predominantly in (x − y) plane, normal to
the z-direction. This phenomenon can be attributed to its low conductivity and
diffusivity, which effectively confines the heat to the irradiated area, as described by
Franco et al. [40], providing a reasonable explanation for the simulation results.

The analytical estimation of the HAZ shrinkage is calculated based on the viscous flow
mechanism proposed by Frenkel [25]. However, it underestimates the shrinkage by 3.7%
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because the model does not account for the flowability of polymers as a function of time,
which is primarily governed by their temperature-dependence contact mechanics. The
viscosity ranges used in the analysis were extracted from the work of Balemans et al. [11].

Similarly, the shrinkage behaviour of a PS powder layer is investigated. Fig. 3.21
illustrates the temperature evolution of the system for different irradiated energies.
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Figure 3.21: Temperature evolution (hatch distance) over time for different irradiated energies on a PS
(polystyrene) sample.

Fig. 3.21 presents the temperature evolution during the sintering process. In
comparison to Fig. 3.19 for the PA12 sample, the PS system absorbs the maximum
energy at t = 1.0 ms, leading to the highest temperature achieved for the given
irradiated laser energy. From an experimental perspective, if the PS system absorbs the
same energy as the particle pair experiment (see Fig. 3.15), the scan speed of the laser
would have to increase significantly to reach speeds up to 1000 m/s. This scanning rate
is exceptionally high compared to the conventional speed at which the laser operates,
vt = 0.01−1.0 m/s. It can cause particles to experience significant displacement as they
may be ejected from the target surface or vaporize. The simulation further indicates
that thermal diffusion occurs within microseconds, as evidenced by the surface
temperature reaching the initial temperature at t = 0.2 s. Fig. 3.22 displays the results
for the average shrinkage of the heat-affected zone (HAZ) as a function of energy area
density E A on a PS layer.

Fig. 3.22 reveals that the shrinkage of the heat-affected zone (HAZ) increases as a
function of energy density E A . When the surface absorbs 0.41 J/mm2, the HAZ can
compact by approximately 16.5%. For the case of PS, with an increase in laser energy of
4 µJ, the HAZ experiences an additional 2% shrinkage. However, it should be noted that
the shrinkage increases exponentially for energy densities above 0.036 J/mm2.
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Figure 3.22: Shrinkage of the heat-affected zone (HAZ) as a function of energy density E A on a PS (polystyrene)
layer. The circles represent the analytical estimation, while the crossed shapes represent the results obtained
from discrete element method (DEM) simulations.

3.5. CONCLUSIONS AND OUTLOOK

In this study, we developed a numerical approach utilizing the discrete element method
(DEM) to analyse the laser sintering process with a specific emphasis on neck growth
contact rheology. This approach was integrated into the MercuryDPM software
package.

First, we collected reported experimental data related to laser sintering. The
experiments recorded the neck growth and temperature evolution of PA12 and PS
particle pairs undergoing sintering via laser beam; for PA12, this occurred above the
melting point, whereas for PS, it took place above the glass transition temperature.

Second, we developed a multi-physics DEM model. This model accounted for the
intricate thermal energy balance resulting from particle contact with thermal
disruption, including mechanisms such as conduction, convection, and radiation.
Additionally, we incorporated the external influence of a laser beam through a ray
tracing approach. To enhance the capability of our model, we introduced a novel
sintering description that encompasses three distinct mechanisms to simulate the
contact rheology of visco-elastic particles.

Then, guided by the experimental data, we conducted simulations using the
GrainLearning package. These simulations required the calibration of model
parameters, including surface tension, stiffness, thermal convection, emissivity, and
fluidity. The outcomes of these simulations presented good agreement with the
temperature evolution recorded experimentally, as well as the dependence of energy
absorption on facilitating neck growth on the particle pairs. Notably, our investigation
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revealed that fluidity, a key parameter controlling sintering rates, exhibited exponential
behaviour concerning high temperatures. It paves the way for further exploration of
laser sintering simulations via the proposed approach.

Finally, the calibrated DEM approach of pairs in contact was applied to analyse the
sintering of thin PA12 and PS layers. The axial shrinkage (HAZ shrinkage) of the layers
contracted as a function of the energy inputs, paving the way to analyse the relation
between process and material parameters during laser sintering.

Further work can focus on exploring the influence of different mechanical properties
like crystallinity, and particle properties such as particle size, poly-disperse size
distributions, and the bulk volume fraction on sintering. Additionally, the proposed
approach could be extended to sintering processes for metallic and ceramic powders
and multiple layers of heterogeneous powders.
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3.7. APPENDICES

3.7.1. APPENDIX: 3D IRRADIATED ENERGY EQUATION

The energy intensity of each ray depends on the distance to the centre of the beam,

I0(d ,σ) = 1

σ
p

2π
e

−d2

2σ2 , (3.21)

with d the distance from the laser centre perpendicular to the propagation direction and
σ the standard deviation, which is half the laser radius in this situation. However, this
equation only applies for 2D: it has a surface area of 1 when integrating from −∞ to
∞. In 3D, the equation needs to be rotated around the axis parallel to the propagation
direction and integrated from 0 to 2σ, then the volume needs to be 1:

V =
∫ 2σ

0
2πd · I (d ,σ)dd =

∫ 2σ

0

2πd

σ
p

2π
e

−d2

2σ2 dd =
∫ 2σ

0

d
p

2π

σ
e

−d2

2σ2 dd , (3.22)

u = −d 2

2σ2 , du = −d

σ2 dd , (3.23)

V = ∫ 2σ
0 −σp2πeu du =

[
−σp2πe

−d2

2σ2

]2σ

0
=

−σp2πe
−4σ2

2σ2 +σp2πe0 =σp2π
(
1−e−2

)
,

(3.24)

Which is not equal to 1. Therefore, Eq. (3.21) needs to be divided by σ
p

2π
(
1−e−2

)
:
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I (d ,σ) = 1

2πσ2
(
1−e−2

)e
−d2

2σ2 , (3.25)

In here, 2σ can be replaced by the laser radius rr adi us :

I (d ,rl aser ) = 2

πr 2
l aser

(
1−e−2

)e
−2d2

r 2
l aser . (3.26)

When considering rotation around an axis parallel to the laser beam’s propagation
direction and integrating from 0 to rlaser, this procedure does yield a result of 1 in terms
of volume. However, in our simulations, where the laser beam is discretized into many
light rays, it is essential to ensure dimensional consistency. Therefore, when assigning
energy to each light ray based on its location within the laser beam, we must multiply
the energy by an appropriate length parameter, rather than an area, to create a
volume-like quantity. This ensures that the total sum of energies across all rays equals
1. The correct length parameter to use is the diameter of the laser beam, 2rlaser, rather
than the average area. Hence, the equation employed in our simulations to determine
each ray’s individual energy is as follows:

I0
(
d ,rl aser , Nr ay

)= 2

Nr ay
(
1−e−2

)e
−2d2

r 2
l aser . (3.27)

When creating the starting coordinates of the light rays, each ray is given the following
information:

• A coordinate, which is randomly chosen in a circle with radius rl aser just above the
bed

• A direction vector, for example pointing downwards: [0 0 -1]

• A position-dependent energy according to Eq. 3.27
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This study provides a computational model to analyse densification of visco-elastic
powders during sintering. It includes the discrete method (DEM) for thermo-mechanical
problems, and a rheological model to describe the rate of sintering when visco-elastic
particles overlap. First, a novel rheological contact model is developed and calibrated
using experimental data obtained from dilatometeric experiments on PA12 pellets. The
calibration process involves measuring the linear (axial) shrinkage of compacted powder
pellets by dilatometers, instrument that measures the volume changes caused by
temperature increments. This calibration step shows that our proposed model predicts
the linear shrinkage of the PA12 pellets, particularly in proximity to the material’s
melting point. Subsequently, the study investigates the impact of process parameters on
the evolution of bulk density, referred to relative density. The tests evaluates the effect of
maximum process temperature, holding time, process time, and the dependence of
external pressure. The findings indicate that longer process times and the application of
external pressure play significant roles to promote densification. These findings
contribute to a better understanding of densification of visco-elastic powders, and
provide a tool for analysis the process through DEM models.

4.1. INTRODUCTION

Sintering is a widely used manufacturing process that involves the consolidation and
bonding of powder, resulting in the formation of a solid object. During this process, the
powder material can undergo two key phenomena: dilation or contraction. Dilation
occurs under shear, but also as necks form between contacting particles and the
material expands. Contraction arises from ongoing neck growth and the consequent
void elimination and reduction of porosity. The two phenomena lead to the change of
bulk density, which is typically named as densification. Understanding densification is
crucial for achieving high-density and low-porosity sintered materials, with significant
importance in various industries. For example, the industry relies on sintering to
produce materials with high strength and exceptional thermal properties [1–3].
Likewise, sintering plays a critical role in manufacturing low-porosity objects that
exhibit favourable dielectric and piezoelectric properties [4, 5]. Furthermore, in the
field of additive manufacturing, comprehending how heat distribution affects the
densification of powder-based samples may provide valuable insights into the
understanding of the influence of material and process parameters [6]. Fig. 4.1
illustrates the different stages of densification during sintering using a simple lattice
configuration of particles.

Densification during sintering can be categorized into three distinct stages: neck
growth, the evolution of pores, and pore closure [7]. The process initiates from the
green or apparent density, which represents the volume fraction occupied by the
powder material, considering both the particles’ volume and the occupied mass. As the
temperature increases, necks among particles begin to grow at the contact area,
accounting for approximately 3% densification relative to the apparent density.
Subsequently, the pores among particles get close to each other by the growth of the
contact area among the particles, contributing to nearly 90% of densification. Finally,
the pores reach a state of isolation, leading to a higher-density material.
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Figure 4.1: Densification during sintering.

Densification of powder materials during sintering has been extensively investigated
using the discrete element method (DEM) by various researchers [8–15]. For example,
Nosewicz et al. [9] studied pressure-assisted sintering of NiAl powder to describe
densification using a two-elastic contact model, which was validated against
experimental data. Similarly, Ivannikov et al. [11] combined DEM with solid-state
diffusion equations to simulate the early stage of densification of metallic powder.
Iacobellis et al. [12] developed a DEM model to investigate densification, elasticity, and
temperature variations of particles, incorporating a weighted transition between a
Hertz-Mindlin type contact and a sintering model during the heating stage.

Complementary to the aforementioned studies, this work presents a novel DEM
approach that specifically focuses on the contact rheology of visco-elastic powder
materials to describe densification during sintering. Our approach investigates the
process through a material parameter called fluidity, which is incorporated through the
contact overlap to control the rate of sintering [16]. The temperature and pressure
contact model is implemented in MercuryDPM [17], calibrated with
GrainLearning [18, 19], and used to analyse the experiments of dilatometric data of
PA12 pellets. The results demonstrate that an accurate numerical description of the
linear shrinkage of PA12 pellets is achieved, and the capability of the model for
describing the influence of temperature and pressure on the process.

4.2. EXPERIMENTAL INVESTIGATION

To analyse the densification of powder material experimentally, pellets of PA2200 are
analysed under dilatometric experiments. The experiment provides the measurement
of the linear (axial) shrinkage, and therefore, the change of density can be computed; as
relative density. The powder is supplied by EOS E-Manufacturing Solutions. Table 4.1
summarizes the properties.

The powder is in a pristine white state with an average particle diameter of 30 µm. First,
cylindrical pellets of 16.17 mm in diameter and 5.71 mm in height are formed under an
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Table 4.1: Material properties

Property, symbol - units PA12
Radius, R - [µm] 30
Material density, ρ - [kg/m3] 1000
Green density, ρg - [kg/m3] 450
Heat capacity, cp - [J/kg K] 1200
Melting point, Tm - [◦C] 186

uni-axial pressure of 10 kPa inside a copper die. Subsequently, the resulting pellets were
inserted into a NETZSCH 402C dilatometer that controls the temperature and pressure.
Simultaneously, it measures the linear (axial) shrinkage over time via a thermocouple.
Fig. 4.2 shows the overview of the experimental procedure.

Figure 4.2: Experimental procedure to measure the densification of a PA12 pellet. a) PA12 powder is compacted
inside a die to form the pellet. b) PA12 pellet to sinter. c) The pellet is in the furnace heating element.

In dilatometric experiments, the furnace heating element, where the pellet is held, is at
room temperature (T0) first. Then, the temperature of the system increases at a
constant rate, reaching enough temperature to let the compacted pallet slowly start
sintering. This activation temperature (Ta) is approximately 50% of the material’s
melting temperature (Tm). Subsequently, the temperature of the system reaches the
process temperature (Tp ), and it is maintained for a specific duration or holding time.
Finally, the temperature of the system decreases at a constant rate to reach the initial
room temperature. Fig. 4.3 provides a typical temperature profile for reference.

4.3. DEM CONTACT MODEL

DEM is utilized to model the densification process, including the visco-elastoplastic
contact model developed by Luding et al. [15] and implemented in MercuryDPM [17].
This model is temperature and pressure-dependent, and its hysteretic behaviour is
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Figure 4.3: A typical temperature profile that can be used in a dilatometric experiment consists of several
key temperatures: T0 denotes the initial temperature, Ta represents the activation temperature at which
the powder material begins to flow, Tp denotes the process temperature, and Tm indicates the melting
temperature of the powder material. Additionally, there are three special points to be monitored during the
experiment: P1, P2 and P3.

monitored through the particle-particle overlap δ and normal force f n
i j , illustrated in

Fig. 4.4.
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Figure 4.4: (Left) Three particles of radius R overlap due to a normal force f n . (Right) visco-elasto-
plastic contact law. The contact displacement is related to δ (overlap) and the normal contact force f n .
Right/left-pointing arrows are used to distinguish the forces obtained during the loading and unloading
stages, respectively. The dotted line represents the loading stiffness k1 reduction according to an incremented
temperature T , k2 is the unloading stiffness, kc is the cohesive stiffness, and a represents the contact area
radius.

The hysteretic behaviour of the normal contact force is described as:

f n
i j =


k̂1(T )δi j if δi j > δmax

i j

k̂2(δi j −δ0
i j ) if δmin

i j < δi j ≤ δmax
i j

−kcδi j if 0 < δi j ≤ δmin
i j

+ηn vn
i j . (4.1)
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The computation of the repulsive visco-elasto-plastic forces f n
i j during sintering follows

the loading stiffness k̂1. It decreases according to the temperature, T , approaches the
melting point of a material, and therefore, the material can deform significantly because
the contact area becomes much larger at the particle level. We assume k̂1 as:

k̂1(T ) = k1

2

[
1+ tanh

(
Tm −T

Tvar

)]
, (4.2)

where Tvar corresponds to the range in which the melting occurs. In the transition regime
Tm −T ≈ Tvar, the particles are significantly softer than in the cold limit Tm −T À Tvar.
Note that δmax = 2φ f Ri j is setting as the maximal plastic overlap, whereφ f = 3p2 and Ri j

represents the effective particle radius. On the other hand, δmax
i j is the maximum overlap

of their pairs contact, which is a memory parameter. The illustration of k̂1 as a function
of temperature is depicted in Fig. 4.5.

Figure 4.5: Schematic illustration of the stiffness k̂1 as a function of the temperature.

The un-loading and re-loading normal interactions, see Fig. 4.4 follows the slope of k̂2,
which varies between k̂1(T ) and k2 with plastic deformation at zero force δ0

i j . Note that

k2 is not changed directly when T increases. For overlaps smaller than δmax, the
unloading stiffness is interpolated linearly between k2 and k̂1(T ) as

k̂2 =
{

k̂1(T )+ (k2 − k̂1(T ))
δmax

i j

φ f Ri j
if δmax

i j < δmax

k2 if δi j ≥ δmax

}
, (4.3)

After the contact force becomes negative, for δi j < δ0
i j , the model introduces cohesive

forces using the cohesion stiffness kc .

Furthermore, if particles are heated, in general, their density decreases. Thus, we assume
that the particle radius changes in linear approximation as
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Ri (T ) = Ri (Tm)[1+δaT (Tm −T )], (4.4)

with the relative change of the radius per unit temperature (thermal expansion) δaT .
This approximation can be used if the range of temperatures is relatively narrow and the
changes per unit temperature are very small [15].

In the case of collisions of particles and large deformations, dissipation occurs due to
the hysteretic nature of the force-law and by a viscous, see Eq. (4.1), dissipative,
velocity-dependent force ηn vn

i j , with ηn as viscous dissipation coefficient. This

coefficient is related to the restitution coefficient e as ηn =
√

2mk1/(
p
π+√

loge) loge,
and therefore, this force-displacement model depends only on particle mass, not
relative velocity [17]. This is a particular case assuming k1 = k2. The contribution of the
normal forces act in the normal direction to the contact area, ni j .

Therefore, the total contact force during the collision of the particles may be given as:

fi j = ( f n
i j + f a

i j )ni j + ft
i j , (4.5)

The additional adhesive force f a
i j = k1δa is assumed constant in Eq. (4.5). For the

tangential force calculation ft
i j in the current implementation, see Eq. (4.5), the

contributions of sliding, rolling and torsional friction are assumed
temperature-independent for simplicity and defined similarly to the normal forces. For
a detailed explanation, the reader is referred to the tangential force and torque models
introduced in [20] and implemented in MercuryDPM [17]. Here, we summarize the
model.

An elastic and dissipative lateral (sliding) force can be defined as:

fsl
i j = k slδsl

i j +γsl vsl
i j , (4.6)

where k sl represents the sliding stiffness, δsl
i j is the tangential elastic displacement, γsl

is the sliding dissipation, and vsl
i j defines the lateral relative velocity. If the later force

exceeds a certain level, the particle begins to slide. This is modelled by a Coulomb yield
criterion, cutting off the elastic displacement when it exceeds a certain fraction µsl , the
sliding friction coefficient, of the normal force.

| fsl
i j |≤µsl f n

i j . (4.7)

Similarly, rolling and torsion torques are modelled to resist angular motion such as:

τr o
i j = ae f f

i j ni j (̇kr oδr o
i j +γr o vr o

i j )ni j , (4.8)

τto
i j = ae f f

i j ni j × (k toδto
i j +γto vto

i j ), (4.9)

with ae f f
i j = |ri j ||ri j |

|ri j |+|ri j | the effective length of the branch vectors. kr o and γr o represent the

rotational stiffness and dissipation, respectively. k to and γto represent the torsional
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stiffness and dissipation, respectively. If the torques exceed a certain fraction of the
normal contact force, the particle begins to roll and torque. Thus, the elastic
displacement is cut off to satisfy

| τto |≤µtoae f f
i j f n

i j , (4.10)

| τr o |≤µr oae f f
i j f n

i j , (4.11)

where µto and µr o are the torsional and rolling friction coefficients.

4.3.1. CONTACT EVOLUTION FOR TEMPERATURE-DEPENDENT SINTERING

By defining the evolution of the relative contact radius f (δ) = ai j /Ri j (or neck growth),
it is possible to include the various stages of visco-elastic sintering [21] into the DEM
approach, by relating the particle-particle overlap δi j to the computation of the normal
force f n

i j , see Eq.(4.1). Our previous investigation has discussed mathematically ai j /Ri j

for sintering, and therefore, the reader is referred to [16] for more detail. Fig. 4.6
illustrates the definition of the sintering regime map.
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Frenkel-Pokluda model
Full coalescence

Figure 4.6: Sintering regime map with three mechanisms for flow simulation: (1) Adhesive contact, (2) Adhesive
inter-surface forces, and (3) Surface tension regimes.

The non-dimensional neck radius a1
i j /Ri j was derived by Johnson, Kendall, and

Roberts [22] at very short times t0, for the equilibrium deformation of two elastic bodies
under the influence of surface tension may be described as:

a1
i j

Ri j
=

(9π(1−ν2)γ

ERi j

)1/3
, (4.12)
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where γ is surface tension, ν is Poisson’s ratio, and E is Young’s modulus.

For intermediate times in the interval t0 < t < tvi s , the growth of contact radius a2
i j is

predicted to be:

a2
i j

Ri j
=

(63π3

16

)1/7( δc

Ri j

)2/7(2C1(T )γt

Ri j

)1/7
. (4.13)

The separation distance δc is specified to add the contribution of adhesion to the
contact model, defined as the range of the adhesive force acting between two surfaces.
The time duration is represented by t . The fluidity of the material is characterized by
the rheological temperature and contact parameter C1(T ), which describes the
flowability of the matter under deformation. We assume this coefficient similarly as
k̂1(T ) (see Eq. (4.2)), as:

C1(T ) =C1

[
1− tanh

(
Tm −T

Tvar

)]
. (4.14)

The third stage computes the evolution of the contact area according to the model
proposed by Pokluda [23], which describes the sintering process balancing the work of
surface tension and viscous dissipation for the maximum particle-particle overlapping.
It is expressed as:

a3
i j

Ri j
= sin(θ)

[
4

(1+cos(θ))2(2−cos(θ))

]1/3

, (4.15)

where

θ =
(

8γC1(T )t

Ri j

)1/2

. (4.16)

To include a1
i j , a2

i j ,and, a3
i j in the contact description, Eq.(4.1), the rate of the plastic

overlap δ̇0
i j is computed . Knowing that the overlap between the particles nearly equals

the plastic overlap, δi j ≈ δ0
i j for stiff particles (k1 À ( f n

i j + f a
i j )/Ri j ), the contact relative

radius may be approximated as ai j /Ri j ≈
√
δi j /Ri j . Therefore, the interpenetration

among the particles is controlled by setting the growth rate δ̇0
i j according to Eq. (4.12),

Eq. (4.13), Eq. (4.15).

4.4. RESULTS AND DISCUSSION

This section presents the computational analysis of densification. First, the calibration
step is developed: insert particles into a cylindrical domain to generate the
representative cylindrical pellet, homogenize particles on the top surface, and increase
the system’s temperature to induce sintering, measuring the linear (axial) shrinkage of
the pellet and calibrating the model parameters via GrainLearning. Second, the
influence of process parameters on the evolution of the bulk density of the calibrated
pellet. The contact parameters are summarized in Table 4.2.
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Table 4.2: Particle pair contact properties.

Property, symbol units Value
Loading stiffness, k1 [N/m] βER
Unloading stiffness, k2 [N/m] 10k1

Cohesion stiffness, kc [N/m] k1

Gravity, g [m/s2] 9.81
Sliding stiffness, k sl [N/m] 0.2k1

Rolling stiffness, kr o [N/m] 0.1k1

Torsional stiffness, k to [N/m] 0.1k1

Sliding friction, µsl [-] 0.05
Rolling friction, µr o [-] 0.1µsl

Torsional friction, µto [-] 0.1µsl

Dissipation, ηo [mg/s] 1.0
Sliding dissipation, γsl

o [mg/s] 0.2γo

Rolling dissipation, γr o
o [mg/s] 0.05γo

Torsional dissipation, γto
o [mg/s] 0.05γo

Range of melting, Tvar [◦C] 0.1 Tm

Adhesive distance, δa , [m] 0.001
Relative change of particle radius, δaT [1/K] 0.0001

The magnitude of stiffness k1 is chosen based on the micro-macro relation k1 = βER
[10], where β= 0.1 and E = 1.0 GPa are used in our work, with R = Ri j .

4.4.1. PELLET PREPARATION

The particles are contained within a cylindrical domain (W ) that has a diameter of 1.16
mm and a height of 1.9 mm. It is assumed that sintering only occurs among the particles
and any thermal effects of the boundary are neglected. The properties of the container
are summarized in Table 4.3.

Table 4.3: Particle-wall contact properties.

Property, symbol - units Value
Loading stiffness, kW

1 - [N/m] 100k1

Unloading stiffness, kW
2 - [N/m] 200k1

Cohesion stiffness, kW
c - [N/m] 0.0

Penetration depth, φW
f - [-] 0.001

Friction, µW [-] 0.0
Dissipation, ηW

o [mg/s] 0.0

The particle size distribution is generated and the insertion process from the upper
surface of the system is started using a cuboidal insertion boundary procedure in
MercuryDPM. This procedure inserts particles into a rectangular region of the domain
by defining the insertion rate, particle size distribution, and velocity distribution.
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Fig. 4.7 illustrates some steps of the procedure using PA12 properties (Table 4.1) and a
mono-disperse size distribution.

a) b) c)

Figure 4.7: a) Particles are inserted in a cylindrical domain. b) Pressure is applied onto the top surface to
compact the pellet. c) A close view of the system.

The insertion process begins with 30 µm particles falling from the upper part of the
system due to gravity (g = 9.81 m/s2). The accumulation process continues until the
system reaches its maximum height at 1.9 mm height, resulting in a configuration with
a realistic distribution of particles and low porosity. A total of 10,572 particles are
inserted into the domain. To ensure a homogenous distribution of particles and a level
surface, a compacting pressure of 1.0 kPa is applied to the particles located on the top
surface boundary; similar to the dilatometric experiment. The objective is to generate
pellets that represent a green condition before the sintering process and accurately
capture the correct volume, as the pellets from the experiment in Fig. 4.2. To determine
the volume fraction (φV F ) of the pellets, we utilize the spatial coarse-graining approach
developed by Weinhart et al. [24]. The volume fraction is defined as follows:

φV F (r, t ) = ρ(r, t )

ρp
=

N∑
i=1

V W (r− ri (t )), (4.17)

where V = π
6 R3 is the particle volume. A Lucy function is used for coarse-graining, which

for three spatial dimensions is

W (r) = 105

16πc3

(−3(r /c)4 +8(r /c)3 −6(r /c)2 +1
)

, if r := |r| < c, 0 else, (4.18)

with c the range and w = c/2 the half-width, or standard deviation.

Thus, a plane can be defined through the axis of the cylinder (at y = 0.58 mm), See
Fig. 4.7 and the macroscopic field of volume fraction is extracted at the last time step of
the compaction stage, with a coarse-graining width w = 3.0× 10−4 m. The results are
presented in Fig. 4.8.
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Figure 4.8: Pellet at the last time step. a) Volume fraction field. b) Volume fraction profile φV F (z) defined
through the axis of the cylinder (at y = 0.58 mm).

The volume fraction is an essential parameter in DEM simulations, as it provides
insights into the macroscopic properties of the system, such as its ability to withstand
mechanical loads, flow properties, and thermal properties. As shown in Fig. 4.8 a), the
numerical pellet is a good representative of the PA12 pellet, with a homogenous
distribution of particles occupying around φV F = 0.63 of the domain. For simplicity, we
conducted all simulations using a mono-disperse size distribution in the system. Our
findings indicate that aspect ratios with a maximum-to-minimum ratio (Rmax /Rmi n)
below 4.0 exhibited negligible effects on the further sintering process. Note that
polydispersity affects the packing density of particles, and therefore, may impact the
degree of sintering and the final properties of the material. Polydispersity in a pellet can
result in larger pores, lower packing density, lower mechanical strength, and less
efficient thermal conductivity. Therefore, future studies should be conducted to
investigate the effects of polydispersity on densification.

4.4.2. CALIBRATION OF THE SINTERING MODEL

To calibrate the contact rheology of PA12, GrainLearning [18] is used, coupled with
MercuryDPM [17]. The open package determines the best probabilistic distribution of
experimental and model parameters, allowing for more accurate predictive
simulations. From the dilatometric experiments (see Sec. 4.2), the linear (axial)
shrinkage and temperature evolution are the observations to track, while the model
parameters to calibrate are fluidity C1(T ) and surface tension γ. Firstly, we define the
possible space for the variables, as listed in Table 4.4.

We define the calibration procedure with five iterations, each containing fifty samples,
equal weight of 1.0 for all samples. At the first iteration, the normalized covariance
parameter is set to 0.7, ensuring an effective sample size greater than 20%. The
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Table 4.4: Upper and lower limits of the parameters to generate homogeneous quasi-random numbers for the
first iteration.

Property C1[Pa−1 s−1] γ [N/m]
Θmin 0.001 0.020
Θmax 0.011 0.053

convergence criterion is based on the agreement of the posterior expectations after
each single iteration of Bayesian filtering. After the third iteration, the posterior
expectation of each micro-parameter converges. This means that they have stabilized,
and further iterations are not significantly changing these expectations. Therefore, the
filtering process may stop at this point because the desired level of stability or accuracy
has been achieved. Fig. 4.9 depicts the re-sampling process.

Figure 4.9: Calibration of C1 and γ for DEM simulations. Layers indicate the space of the parametric sample at
every iteration, from the first layer of the initial parametric space represented by a line, blue dots represent the
sample points, which progressively converge to a narrowed area. Red dots represent the best estimation of the
parameters at the last iteration i = 5.

The illustration of the re-sampling process presented in Fig. 4.9 depicts the posterior
modes localized progressively after each iteration. Table 4.5 summarizes the results after
the completion of the calibration procedure.

Table 4.5: Calibrated model parameters

symbol - units Value
C1 - [Pa−1s−1] 0.00240±1.0%
γ - [N/m] 0.0393±1.0%

High precision is obtained, with only 1.0 ∼ 2.0% range of error. In addition, γ is within
the expected range according to the literature [25]. Thereby, our DEM model is calibrated
based on macroscopic observations from dilatometric experiments.

Fig. 4.10 illustrates the temperature profile of the process, with a heating rate of
1 ◦C/min from an initial temperature of T0 = 20 ◦C to the target temperature
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Tp = 185 ◦C. The point at which the density of the pellet starts to change is denoted as
P1, while P2 indicates the point at which the maximum temperature of the process is
reached. The holding time (from P2 to P3) is set to 60 min, however, we considered only
the data until 15 min after reaching the process temperature Tp , due to technical issues
with the dilatometers.
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Figure 4.10: Temperature evolution during the dilatometric experiment. The shapes represent the
experimental measurements contrasted to the calibrated DEM simulation denoted by the solid line.

The densification zone of the pellet is above P1 in Fig. 4.10. This zone is marked by a
circle and corresponds to the window of analysis for simulations.

The density evolution of the pellet is visualized in Fig. 4.11, where ∆L represents the
relative reduction in length, linear (axial) shrinkage with respect to the initial length L0,
measured at the initial configuration.

Figure 4.11: Densification of a PA12 pellet with initial length L0: (left) before sintering, (right) after sintering.
∆L represents the linear (axial) shrinkage. The zoom-in window highlights the densification.

The linear shrinkage of the pellet has been monitored during the simulation, assuming
that the temperature within the particles is homogeneous. The results in comparison
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with the two experimental data sets are presented in Fig. 4.12.
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Figure 4.12: Experimental and numerical results of the relative Linear (axial) shrinkage of the PA12 pellet.

As shown in Fig. 4.12, the proposed DEM model captures the reduction in length, linear
(axial) shrinkage, of the pellet. Specifically, our simulation predicts an average
shrinkage of 13.5 %. Note that this reduction is inside the circular window of analysis.
After this window, the densification rate is expected to be constant, allowing the
particles to sinter further until reaching the end of the holding period at P3, see Fig. 4.3.
Interestingly, pellet swelling can occur during the holding stage (from P2 to P3),
especially for metallic or ceramic powders if the process temperature Tp exceeds the
melting temperature Tm . Surface porosity within the aforementioned powders can be
sites for trapped gases, which at high sintering temperatures will generate internal
pressure, leading to swelling [26]. After the holding period, the temperature of the
process starts decreasing, lowering the sintering rate until reaching the initial
temperature of the process T0. Future studies based on further experimental data can
focus on the end of the holding period (P3), and the modelling of the contraction
during the cooling stage.

4.4.3. EFFECT OF PROCESS TEMPERATURE

To study the effect of the process temperature Tp on the densification of the PA12
pellets, the calibrated DEM model, described in Sec. 4.4.2, is first tested with different
temperature profiles, as presented in Fig. 4.13.

Four temperature profiles have been defined by setting the maximum temperature
Tp,max from 185 ◦C to 176 ◦C. The end of the holding time (P3) is constant for all
profiles, th = 162 min. As the maximum temperature of the process Tp,max decreases,
the cooling rate decreases slowly in order to maintain the end of the cooling period
constant at t = 164 min. The total process time is constant for all simulations,
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Figure 4.13: Solid lines represent the temperature profiles of the process, and the dashed lines are the start of
each holding period P2, with duration th at P3.

.

t f = 170 min. By monitoring the relative and linear (axial) shrinkage ∆L/L0 of the pellet,
it is possible to calculate the relative density ρr el as,

ρr el =
ρ

ρg
= 1

1− ∆L
L0

+δa(T −T0)3
, (4.19)

where ρg represents the green or apparent density of the pellet before sintering (see
Table 4.1), δa is the thermal expansion (see Table 4.2), T0 is the initial temperature of
the process, T0 = 165 ◦C. The results are depicted in Fig. 4.14.

The relative density of the pellet increases as the process temperature approaches the
melting point, Tm = 186 ◦C. It is described in our DEM model by fluidity C1(T ). Fig. 4.14
shows that an increment of 3 ◦C in the maximum process temperature, Tp,max ,
approximately let to ρr el = 2% ahead of the previous achieved relative density during
the same process time. Furthermore, if Tmax decreases, the holding period, from P2 to
P3, increases, which leads to a lower densification rate. It suggests that a higher
densification of a PA12 pellet is reached for temperatures close to the melting point,
and as a consequence, a lower process time is required.

The influence of the process temperature on the relative density of the pellet is visualized
in Fig. 4.15.
As visualised in Fig. 4.15, higher temperatures are beneficial from the process view,
since they lead to higher densification, and therefore, stronger bonds among the
particles. However, temperatures close to the melting point and extended holding times
(from P2 to P3) can cause thermal decomposition and distortion of the pellet. This
effect is analysed in the next section.
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Figure 4.14: Relative density of the PA12 pellet according to different process target temperatures.
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Figure 4.15: Influence of temperature on the relative density (ρr el ) of a PA12 pellet.

4.4.4. EFFECT OF HOLDING TIME

The holding time, th , refers to the period when the pellet is maintained at the process
temperature Tp for a specific duration (from P2 to P3, see Fig. 4.3 for reference). Thus,
further densification is achieved and uniformity within the microstructure. Four
different holding times are set to the process temperature, Tp = 185 ◦C in order to assess
the effect on the PA12 calibrated pellet, see Fig. 4.16.

The cooling period finishes at t = 164 min for all profiles, the moment at which it reaches
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Figure 4.16: Solid lines represent the temperature profiles of the process, and dashed lines are the end of the
holding periods, P3.

the initial temperature T0 = 165 ◦C of the process, and then the temperature is constant
until the end of the process time at t = 170 min. Note that extended holding times are
out of the scope of the present investigation since more experimental data are required
to describe the DEM model. The results of relative density over time are presented in
Fig. 4.17.
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Figure 4.17: Relative density of the PA12 pellet according to different holding times th .

Increasing the holding time, th , during the densification of the pellet results in higher
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densification. In general, if the pellet is held for periods longer than 1 min (from P2 to
P3), a linear increment of 1% in relative density is achieved. It is observed that the effect
of the holding time on densification is more significant during the cooling period, after
P3. We suggest that for small increments of holding times and for temperatures close to
the melting point, higher densification may be achieved only in the cooling period of the
pellet, as a consequence of a faster cooling rate.

The influence of the holding time th on the relative density of the pellet is visualized in
Fig. 4.18.
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Figure 4.18: Influence of holding time th on the relative density (ρr el ) of a PA12 pellet.

Experimentally, extended holding times, th , allow the particles to rearrange, create
stronger bonds and assist densification. It results in higher compacted powder pellets,
which in turn may reduce the process temperature. As visualised in Fig. 4.18, small
increments of holding times do not significantly assist the densification of the pellet. In
contrast, if the holding time is excessive, the process time requires to be prolonged,
which may lead to grain growth and coarsening of the micro-structure, impacting
negatively the mechanical properties of the pellet. The next section discusses the effect
of process time on the densification of the PA12 pellet.

4.4.5. EFFECT OF PROCESS TIME

In densification, process time t f refers to the duration for which a pellet is heated, held
(from P2 to P3) and cooled. Four process times are set to the calibrated PA12 pellet for a
process temperature Tp = 185◦C, see Fig. 4.19.

The process temperature t f is varied with intervals of 6 min longer, as depicted in
Fig. 4.19. The cooling rate for the simulations is maintained constant, extending the
holding period similarly; 6 min longer, from P2 to P3. The effect of process time on the
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Figure 4.19: Solid lines represent the temperature profiles of the process, and dashed lines are the end of the
process time t f . P3 represents the end of the holding period.

relative density is visualized in Fig. 4.20.
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Figure 4.20: Relative density of the PA12 pellet according to different process times t f . Dashed lines represent
the end of the process time. P3 indicates the end of the holding period.

As shown in Fig. 4.20, if the process time t f increases by 6 min, the densification of the
pellet also increases, approximately 10%. The transition between the holding period
(P3) to the end of the cooling period leads to a parabolic behaviour in the prediction
of densification, which expands as long as t f increases due to the contraction of the
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sample.

The influence of the process time t f on the relative density of the pellet is visualized in
Fig. 4.21.
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Figure 4.21: Influence of process time t f on the relative density (ρr el ) of a PA12 pellet.

In general, the process time is the most relevant process parameter in our simulations
to achieve higher densification of the PA12 pellet, while keeping the temperature close
to the melting point, see Fig. 4.21. However, the process time during densification must
be carefully controlled to avoid excessive sintering among the particles and the thermal
degradation of pellets. To decrease the process time during densification, an external
pressure can assist the process and minimise the effect of poor sintering. The influence
of pressure during densification is discussed in the following section.

4.4.6. PRESSURE-ASSISTED SINTERING

An external pressure during densification can significantly improve the mechanical
properties of a pellet by increasing the level of particle packing, reducing the void space
between particles, and decreasing the process time t f . Three process temperature
profiles under the influence of constant pressure are designed and visualized in
Fig. 4.22.

The temperature profiles are set to the calibrated PA12 pellet, ranging from a maximum
process temperature Tmax = 185◦C to Tmax = 179◦C. The holding period (from P2 to
P3) increases as the maximum temperature of the process decreases since the end of
the cooling period is maintained constant for all simulations, at t = 182 min. The total
process time is set to t f = 188 min. Additionally, a pressure P = 1000 Pa is applied to the
particles located at the top surface while subjected to the temperature. The results of
relative density are presented in Fig. 4.23.
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Figure 4.22: Solid lines represent the temperature profiles of the process, and the dashed line is the applied
pressure. P2 and P3 mark the interval of the holding period.
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Figure 4.23: Relative density of the PA12 pellet according to different process temperatures, and applied
pressure P = 1000 Pa.

The results demonstrate that an external pressure during the process assists the
densification of the PA12 pellet, especially when the temperature of the process is close
to the melting point Tm ∼ 186◦C. Furthermore, the simulation reveals that the process
time may be reduced for applied pressures, for example, P > 1000 Pa.

The influence of the pressure on the relative density of the pellet is visualized in Fig. 4.24.
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Figure 4.24: Influence of pressure P on the relative density (ρr el ) of a PA12 pellet.

It is evidenced that either the process time t f or the external pressure P are the most
significant process parameters during the densification analysis of the PA12 pellet.
Applying external pressure may lead to a denser and stronger pellet with improved
strength and hardness. Furthermore, it can also prevent dilation (swelling) during the
heating and holding periods, as a result of entrapped air. However, excessive pressure
may lead to deformation or even fracture of the pellet.

4.5. CONCLUSIONS AND OUTLOOK

The understanding of densification of visco-elastic powders while sintering can provide
a tool to optimize materials for industrial applications. This investigation provided a
computational approach to analyse this process based on the discrete element method
(DEM). First, a temperature and pressure-dependent contact model is implemented in
MercuryDPM, along with a novel rheological contact model to describe the rate of
sintering. Then, dilatometric experimental data were collected on PA12 compacted
pellets in order to calibrate the simulations. The calibration process included Bayesian
filtering to infer the range of two model parameters, fluidity and surface tension, based
on temperature evolution and linear (axial) shrinkage of the pellet during the
experiment. The simulation results showed that the proposed model predicted the
linear shrinkage of the PA12 pellets with good agreement. Subsequently, different
process parameters were tested on the calibrated model such as the maximum process
temperature, holding time, process time, and pressure. Despite the analyses being
developed within a short time window, close to the material’s melting point, the
simulations revealed that the process time and pressure are the process parameters
more relevant to assist densification.

Future studies could include the crystallization effect in the contact model as well as
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the analysis of densification during the cooling period of visco-elastic pellets; based on
experimental data. Overall, the combination of experimental data and DEM simulations
offers a powerful approach to understanding and optimizing the densification of powder
materials.
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This study presents a thermo-mechanically coupled multi-scale approach for bridging
the physics between discrete and continuum descriptions of heated granular media. The
scale bridging between micro (discrete) and macro (continuum) models is achieved
within an overlapping volume using the discrete element method (DEM) to represent
individual particles and the finite element method (FEM) to describe the bulk behaviour
of many grains. To map between FEM and DEM, “coarse-graining” enriched
homogenization, a spatial smoothing technique is used. The investigation begins with a
comprehensive overview of the governing equations for thermo-mechanical problems,
formulated into Galerkin’s method of weighted residuals for continuum analysis. The
coupling terms for individual physics are then derived and formulated using Galerkin’s
method. To verify the proposed volume coupling approach, a series of numerical tests are
conducted. These tests showcase the approach’s capability of accurately describing
unsteady heat transfer and thermo-viscoelasticity problems. As an application example,
a multi-scale simulation of the laser sintering process is performed. The coupled
simulation accurately captures the contact rheology of powder particles at a micro-scale
during sintering, while efficiently modelling heat transfer through the particle bed using
a macro-scale approach. By combining accuracy and efficiency, this coupling framework
allows for the design of multi-physics scenarios.

5.1. INTRODUCTION

The sintering of visco-elastic powders is a complex multi-physical process that has
drawn significant attention in the field of materials science and engineering. This
process involves subjecting powdered materials to heat and pressure, which triggers a
series of physical transformations, leading to the formation of 3D objects. Two crucial
physical phenomena are the multi-physics of individual particles where they become
sintered and the transition of the material’s bulk behavior between discrete and
continuum. Addressing these challenges requires a multi-scale approach. Moreover, it
helps reduce the computational cost of a simulation where the particle dynamics are
solved explicitly, making the model applicable for large-scale industrial applications.

At the micro-scale, the discrete element method (DEM) is a well established and effective
technique for simulating the sintering process. This approach involves modelling each
particle as a discrete element and applying contact interaction laws to simulate particle-
particle interactions. This allows capturing a wide range of mechanical interactions such
as elastic, visco-elastic, plastic and dissipation [1, 2]. Furthermore, the contact model
can include the contact rheology of the material to take into account either the rate of
inter-penetration based on the rate of deformation and sintering mechanism [3–8]. The
influence of external heat sources such as the laser beam on the particle dynamics can
be well captured through the energy balance [9–12].

The finite element method (FEM) is a widely used technique for describing the
behaviour of solid bodies at the macro-scale, particularly useful in analysing the
strength and deformation of materials. In the context of sintering, FEM can be utilized
to simulate the macroscopic behaviour of powder during the sintering process by
accounting for macroscopic phenomena including heat transfer and mechanical
deformation [13–15]. FEM has been applied in various investigations, including a 3D
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micro-scale model that explored the thermal evolution of porous beds during selective
laser sintering of metal powders [16]. Similarly, Chauhan et al. [17] conducted a
comprehensive study of the thermal behaviour of SS316 using a non-linear, transient,
three-dimensional FEM-based simulation with the Simufact Additive tool. Ganci et
al. [18] proposed a numerical approach to model the selective laser sintering of
polypropylene, where a 3D thermal model was developed to predict temperature fields
and the extension of the sintered area in the powder bed, taking into account phase
change when multiple laser passes.

However, there is still a need for a better understanding of when and where micro-scale
resolution is specifically required, such as in selective regions, while also accounting for
large-scale simulations. In this investigation, we propose a thermo-mechanical model
framework that provides a comprehensive analysis of multi-physics processes. To
accomplish this, two open-source software packages are coupled, MercuryDPM [19]
and oomph-lib [20], for the analyses at the micro-scale and macro-scale. The coupling
between these software packages is achieved using a volume coupling technique
previously developed by Cheng et al. [21], which we extend in this study to address
thermo-mechanical problems. Additionally, the coupling framework is enriched with a
micro-macro transition technique, known as “coarse-graining” [22]. An illustration of
the modelling approach is provided in Fig. 5.1.

Figure 5.1: Modelling approach.

To verify the implementation of the multi-scale framework, numerical tests are
conducted at the micro-scale and the macro-scale respectively, and later put together
within the coupling framework. These tests encompass various independent yet
interconnected scenarios, including unsteady heat transfer and thermo-viscoelasticity.
Furthermore, we report a multi-scale simulation of the selective laser sintering process
using a sintering contact model for visco-elastic materials previously developed [8]. The
proposed framework enables simulations that consider different effects in distinct
media and involve diverse constitutive relations, paving the way for a comprehensive
understanding of the influence of material and process parameters at reduced
computational costs.

The investigation is organized as follows: Section 5.2 summarizes the governing
equations to describe thermo-mechanical problems, the principle of virtual
displacements for the finite element formulation, and its implementation within the
oomph-lib package [20]. We introduce the volume coupling technique, enriched with
coarse-graining in Section 5.3. The numerical examples and discussion are provided in
Section 5.4. Finally, Section 5.5 gives the concluding remarks and outlook.

The equations analysed in this document employ two distinct notations: tensor notation
and vector notation.
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5.2. GOVERNING EQUATIONS IN THERMO-ELASTICITY

The general governing equations used to describe the thermo-elastic behaviour in
continuum mechanics are momentum and thermal energy balance equations.

5.2.1. MOMENTUM BALANCE AND ELASTIC DEFORMATION

We consider a solid object occupying the volume V , with the boundary referred to as ∂V .
Based on the linear momentum balance equation and infinitesimal strain theory, under
the assumption of small deformations, the deformation of a solid body is described by

∂

∂x j
(σi j )+ fi = ρ ∂

2ui

∂t 2 . (5.1)

It shows that the second derivative of displacement ui with respect to time t is
proportional to the divergence of the stress tensor σi j at any referential position x ∈ V
and time t ≥ t0. On the surface A of the solid, we prescribe Neumann boundary
conditions by specifying the traction ti . Thus

ti =σi j n j on x ∈ A for t ≥ t0. (5.2)

We further assume that the angular momentum of the body is in equilibrium, and thus
the stress tensor is symmetric, at all positions x ∈ V , t ≥ t0, which ensures that the net
moment acting on the body is zero.

σi j =σ j i , (5.3)

5.2.2. THERMAL ENERGY FOR AN ISOTROPIC ELASTIC BODY

The transport of thermal energy is assumed to be governed by the first law of heat
conduction or Fourier’s law. It describes the heat flux q in a material as a function of the
temperature gradient ( ∂T

∂x ), and the thermal conductivity kcond of the material, which is
assumed to be isotropic. It can be expressed as

qi =−kcond
∂T

∂xi
. (5.4)

Eq. (5.4) can be applicable for steady-state conditions. However, to account for non-
steady or transient conditions, Fick’s second law of diffusion may be used. This law is
derived from the principle of thermal energy conservation. It states that the time rate of
change in the heat density, ρcp T , is equal to the heat source H applied to the solid body,
and the spatial gradient of the heat flux qi ,

ρcp
∂T

∂t
=−∂qi

∂xi
+H , (5.5)

The heat energy equation is thus calculated as

ρcp
∂T

∂t
= kcond

∂

∂xi

(
∂T

∂xi

)
+H . (5.6)
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Eq. (5.1) and Eq. (5.6) must be simultaneously solved for displacement ui and the rate of
change of temperature with time ∂T

∂t . In the theory of thermo-elasticity, the solution of
which requires the determination of temperature and deformation simultaneously, the
mechanical work done to balance the flux reads

H = ∂

∂xi

(
σi j vi

)
, (5.7)

where σi j is the Cauchy stress tensor and vi is the velocity vector. It represents the work
done by the internal force on the displacement of the material, and it is used for coupled
thermo-mechanical analyses [23]. However, in the present investigation, we consider
only the left part of Eq. (5.6) for the modelling of discrete and solid media. We assume
that the changes in temperature do not significantly affect the changes in mechanical
deformation, and vice-versa. For this approximation, we should consider [24]:

• The temperature variation is small. The temperature does not induce significant
thermal strain.

• Low thermal expansion material. The thermal strain resulting from temperature
changes may be negligible.

• High thermal conductivity material. Temperature gradients within the material
are minimised, therefore, the thermal effect on mechanical deformation may be
small.

• Scenarios where the thermal transients occur faster than the mechanical
response time. Thus, the mechanical deformation can be considered
independent of temperature changes.

The heat transfer equation (Eq. 5.4) can be generalized to include all three modes of
heat transfer: conduction, convection, and radiation. In the present thermo-mechanical
coupling implementation, it is only considered heat transfer by conduction.

5.2.3. PRINCIPLE OF VIRTUAL DISPLACEMENTS

This section presents the formulation of the equilibrium and heat flux equations using
the principle of virtual displacements, first in the residual form. The residual form of an
equation is a generic class of methods developed to obtain the approximate solution to
a differential equation, which allows for the automatic discretization of a problem
domain V into elements. Then, the non-dimensionalization of the residual equations
to remove physical dimensions is provided, allowing for a sustainable approach to
generalize mechanics problems. We assume that the deformable body behaves as a
three-dimensional elastic solid and describe its behaviour using finite strain theory. A
finite-strain framework is essential to correctly handle the impact of granular materials,
in particular for deformable structures that have large displacements and/or
geometrical nonlinearity. To be consistent with the implementation described in
oomph-lib [20], we adopt the term “element" to represent a total or partial physical
volume of the domain, which is assembled to form a common global geometrical object
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and governed by the residual constitutive equation. An illustration of a body divided
into sub-volumes or elements, is presented in Fig. 5.2.

element

Figure 5.2: The left side of the image shows a discretization of the geometry into smaller sub-volumes, referred
to as "elements". The domain is represented by Ω, while Σ denotes the boundary, with H and L representing
the height and length, respectively. On the right side, a representative element is depicted, which is governed
by a local residual constitutive model.

WORK BALANCE EQUATION

The principle of virtual work (PVW) is a fundamental principle in theoretical and
computational mechanics that states that a system is in equilibrium if and only if the
virtual work done by external forces (EVW) is equal to the virtual work done by internal
forces (IVW). Then, Eq. (5.8) is derived based on the principle of virtual displacement
δu field in the body. This field is unrelated to the real displacement field in the body
and, u = X−ξ, where X and ξ are the vectors to define the undeformed and deformed
configuration, respectively. δu is arbitrary except that it vanishes on the part of the
boundary where the actual displacement field is prescribed, i.e., δu = 0 on A. The
action of external forces on the body is defined by EVW as

EV W =
∫

V

(
f−ρ ∂u

∂t

)
·δudV , (5.8)

where p is the external force per unit volume, and V is the volume of the body.
Associated with the virtual displacement field is a virtual strain field δεi j , which
measures the deformation of the body under virtual displacements. The virtual strain is
defined as

δεi j = 1

2

(
∂δui

∂x j
+ ∂δu j

∂xi

)
, (5.9)

where ∂δui
∂x j

and
∂δu j

∂xi
are the components of the virtual displacement gradient tensor.

Since the virtual displacement gradient tensor is symmetric, the virtual strain tensor is
also symmetric. To satisfy the principle of virtual work, the internal virtual work (IVW)
must be equal to the EVW, and it can be expressed in terms of the 2nd Piola-Kirchhoff
stress tensor S and the Green-Lagrange strain tensor ε as
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IV W =
∫

V
δε : SdV , (5.10)

the symbol : denotes the double dot product between two second-order tensors. The 2nd
Piola-Kirchhoff stress tensor S is symmetric and is related to the Cauchy stress tensor σ
(because finite strain) by

S = F−1σF−T , (5.11)

where F is the deformation gradient. Therefore, the principle of virtual work states that
a body is in equilibrium if the integral of the difference between the internal forces and
the external forces over the volume of the body is zero, i.e.∫

V
(∇·σ) ·δudV +

∫
V

f ·δu,dV −
∫

V
ρ
∂2u

∂t 2 ·δudV = 0. (5.12)

To transform the volume integral to a surface integral, the divergence theorem is applied
as follows ∫

V
(∇·σ) ·δudV =

∫
∂V

(σ ·δu) ·ndA−
∫

V
(σ ·∇) ·δudV. (5.13)

where n is the outward unit normal vector to the surface ∂V . Substituting this into
Eq. 5.12, we get∫

∂V
(σ ·n) ·δudA−

∫
V

(σ ·∇) ·δudV +
∫

V
f ·δudV −

∫
V
ρ
∂2u

∂t 2 ·δudV = 0. (5.14)

Recalling the Cauchy stress formulation (Eq. (5.2)) and substituting∫
∂V

t ·δudA−
∫

V
σ : δεdV +

∫
V

f ·δudV −
∫

V
ρ
∂2u

∂t 2 ·δudV = 0. (5.15)

Re-arranging Eq. (5.15) gives∫
V

{
σ : δε−

(
f−ρ ∂

2u

∂t 2

)
·δu

}
dV −

∫
∂V

t ·δudA = 0. (5.16)

Eq. (5.16) represents the equilibrium equation using virtual displacements. It must be
augmented by a constitutive equation that determines the stress as a function of the
body’s deformation, (and possibly the history of its deformation).

HEAT BALANCE EQUATION

To derive the heat balance equation with the virtual temperature, the thermal energy
equation is recalled (Eq.(5.6)), in differential form

ρcp
∂T

∂t
=∇· (kcond∇T )+H . (5.17)

Multiplying both sides by the virtual temperature variation δT and integrating over the
volume V gives
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∫
V

(
ρcp

∂T

∂t

)
δT dV =

∫
V

[∇· (kcond∇T )]δT dV +
∫

V
HδT dV. (5.18)

Eq.(5.18) is the heat balance equation with the virtual temperature, which relates the
time rate of change of the energy in a control volume to the fluxes of energy due to
conduction and generation of heat. The first right term in Eq. (5.18) has second-order
derivatives. We will convert these into first-order derivatives using the divergence
theorem. First,

∫
V

[∇·kcond∇T ]δT dV =
∫

V
∇· [δT (kcond∇T )]dV −

∫
V

(∇δT ) · (kcond∇T )dV. (5.19)

Applying the divergence theorem to the first term on the right-hand side,

∫
V
∇· [δT (kcond∇T )]dV =

∫
∂V

[δT (kcond∇T )] ·ndA. (5.20)

Substituting in Eq. (5.18),

∫
V

(
ρcp

∂T

∂t

)
δT dV =

∫
∂V

[δT (kcond∇T )] ·ndA

−
∫

V
(∇δT ) · (kcond∇T )dV +

∫
V

HδT dV.
(5.21)

After rearrangement, we get the weak form of the heat equation

∫
V

(
ρcp

∂T

∂t

)
δT dV +

∫
V

(∇δT ) · (kcond∇T )dV =

+
∫
∂V

[δT (kcond∇T )] ·ndA+
∫

V
HδT dV.

(5.22)

Expressing the flux in normal direction as qn =−(kcond∇T ) ·n, we get

∫
V

(
ρcp

∂T

∂t

)
δT dV +

∫
V

(∇δT ) · (kcond∇T )dV =
∫
∂V
δT qndA

+
∫

V
HδT dV.

(5.23)

Finally, assuming the residual is zero,

∫
V

(
ρcp

∂T

∂t

)
δT dV +

∫
V

(∇δT ) · (kcond∇T )dV −
∫
∂V
δT qndA

−
∫

V
HδT dV = 0.

(5.24)
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NON-DIMENSIONALISATION

For convenience, Eq.(5.16) and Eq.(5.24) are expressed in terms of dimensionless
quantities, and the scaling is now introduced based on the procedure presented in
oomph-lib [20]. Henceforth, dimensional quantities are denoted with a “∗" superscript.
First, the equation of motion (Eq. 5.16) is considered,

∫
V

{
σ∗ : δε−

(
f∗−ρ ∂

2u∗

∂t∗2

)
·δu∗

}
dV ∗−

∫
∂V

t∗ ·δu∗dA∗ = 0. (5.25)

Some quantities such as strain are already dimensionless, while others, such as density,
do not have any non-dimensional counterparts. To non-dimensionalize the remaining
quantities in all our examples, the length is scaled with a problem-specific length-scale
L , which is chosen to be the length of the solid body as shown in Fig. 5.2, and the
timescale is scaled by T , which is the timescale of interest, so that

X∗ =L X, t∗ =T t . (5.26)

To define the remaining variables, the nodal position x, the deformed position X∗, the
differential of boundary area dA∗, and the differential of domain volume dV ∗ are made
dimensionless with the following expressions

x∗ =L x, dA∗ =L 2dA, dV ∗ =L 3dV. (5.27)

Subsequently, the characteristic stiffness S (in the following sections we use the
material’s Young’s modulus) is used to non-dimensionalise the stress and the loads as

σ∗ =S σ, t∗ =S t, b∗ =S /L b. (5.28)

It transforms Eq. (5.25) into

∫
V

{
σ : δε−

(
p−Λ2 ∂

2u

∂t 2

)
·δu

}
dV −

∫
∂V

t ·δudA = 0, (5.29)

where Λ2 is the ratio of the material-specific “intrinsic" and the problem-specific
(extrinsic) time scales, defined by

Λ2 = L

T

√
ρ

S
. (5.30)

and,

Ti ntr i nsi c =L

√
ρ

S
. (5.31)

The temperature is non-dimensionalised by introducing a temperature scale TT , and
the distance is non-dimensionalised using the same characteristic length scale L , as
described earlier. This gives
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∫
V

(
ρcp

∂T ∗

∂t∗

)
δT ∗dV ∗−

∫
V

(∇δT ∗) · (k∗
cond ·∇T ∗)dV ∗

+
∫
∂V
δT ∗q∗dA∗ = 0.

(5.32)

Scaling,

T ∗ = Tr e f +∆T T, k∗
cond = kr e f β, q∗ = kr e f

∆T
L q, (5.33)

where δT ∗ is the virtual temperature variation that satisfies the boundary and initial
conditions. Tr e f is a reference temperature and ∆T is a characteristic temperature
difference. β is the non-dimensionalised thermal conductivity. Subsequently,
introducing α as the non-dimensional thermal inertia

α= ρcp

kcond

ρ2

T
. (5.34)

Therefore, ∫
V

{
α
∂T

∂t

}
δT dV+

∫
V

(∇δT ) · (β∇T )dV −
∫
∂V
δT qndA

−
∫

V
HδT dV = 0.

(5.35)

5.2.4. THERMO-ELASTICITY FOR SMALL DEFORMATIONS

To solve a thermo-elastic problem described by Eq.(5.29) and Eq.(5.35), a set of
boundary conditions needs to be provided. These boundary conditions may include
specified displacements, tractions, and temperatures on the boundaries of the domain.
Additionally, an initial position, initial velocity, and initial temperature must be
specified. The full solution of the nonlinear equations of thermo-elasticity is
challenging and is typically treated numerically. However, the system can be simplified
by linearizing it to a known strain-free state. In general, non-linearity in continuum
mechanics problems arises from two sources: 1) geometric non-linearity, which occurs
when the displacements are large and 2) material non-linearity, which results from the
constitutive law1. By assuming that the deformations are infinitesimal and the
constitutive law is linear, it is possible to construct a theory in which the deformations
are small, but the material behaviour has a non-linearity. It may be assumed that

R = r+u = r+Φũ, (5.36)

where R represents the displacement vector, r the vector of the reference position, and u
the displacement vector. ũ is a perturbation vector that represents the small deviations
from the reference displacement u in O(1). Φ¿ 1 is a small parameter, which is used to
scale the perturbation u to ensure it remains small. Similarly,

T = T0 +ΦT̃ , (5.37)

1Andrew Hazel. MATH 45061: Continuum mechanics - Chapter 6: Elasticity. The University of Manchester.
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where T represents the temperature at a point in the material. T0 is the initial
temperature, T̃ represents the perturbation. For problems where the temperature
distribution changes smoothly over time without sharp variations or discontinuities,
the time rate of change of the dilation is expected to be roughly equivalent to that of the
temperature, implying that no significant lag or vibrations in the motion of the body
should arise. Early in the development of thermo-elastic theory, it was considered
whether the inertia terms in the equations could be neglected [23]. It was concluded
that the time rate of change of temperature is slow enough that these terms should not
be significant. When an external mechanical agency produces strain variations within a
body, it generally also causes temperature variations, resulting in a flow of heat and an
increase in entropy and energy stored in an irrecoverable manner. However,
deformations due to external loads typically only result in small temperature changes,
so it is reasonable to calculate these deformations without taking into account thermal
expansion. If strains are produced in a body due to a non-uniform temperature
distribution, the influence of these strains on the temperature itself should not be too
significant. The coupling mechanical term that appears in the heat Eq. (5.7) can be
disregarded for all problems except those in which thermo-elastic dissipation is of
primary interest. For problems with smoothly changing temperature distributions, an
uncoupling process can be considered, where the time history of the displacements
closely follows that of the temperature. In isotropic thermo-elastic solid bodies, shear
waves are not affected by thermal effects [24, 25].

5.2.5. CONSTITUTIVE LAW FOR THERMO-ELASTICITY

To model the thermo-elastic behaviour of a body, the material constitutive relation
needs to be specified. For this analysis, the linear Hookean law under the influence of
thermal expansion is used to describe the behaviour of small deformations [26]. From
Hooke’s law, the stress tensor is related to the strain tensor, or the displacement
components, and temperature change ∆T as

σi j =Ci j klεkl +γi j∆T, (5.38)

where Ci j kl is the material 4th-order stiffness tensor, i , j ,k, l as referring to the three-
dimensional Cartesian coordinate system, which for isotropic materials can be assumed
symmetric Ci j kl ≈ E . The strain is denoted by εkl , γ represents the thermal expansion.
Recalling Eq.(5.29) and using Eq.(5.38), it becomes

∫
V

{(
Eε+γ∆T

)
: δε−

(
f−Λ2 ∂

2u

∂t 2

)
·δu

}
dV −

∫
∂V

t ·δudA = 0. (5.39)

Eq.(5.39) represents the virtual work equation for a linearly elastic material subject to
both mechanical and thermal loads. The equation represents a generalisation of the
principle of Lagrange’s virtual work for thermo-elastic problems, by incorporating the
stress tensor as a function of temperature. It can be treated as an isotropic growth
problem assuming a linear dilatation for small deformations and defining the strain as
a function of the deformed and undeformed metric tensors such as
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εi j = 1

2
(Gi j − g̃i j ) = 1

2
(Gi j −Γ2/d (X k )gi j ), (5.40)

where Gi j is metric tensor in the deformed configuration, gi j is the metric tensor, d is
the body’s spatial dimension. The components of the covariant metric tensor are defined
via the inner products

gi j = gi ·g j , (5.41)

where

gi =
∂r

∂ξi
, (5.42)

where ξi represents a set of the Lagrangian coordinates, to parametrise the (Eulerian)
position vector to material points in the body’s undeformed position:

r = r(ξi ). (5.43)

As the body deforms, the Lagrangian coordinates remain "attached" to the same
material points, The body’s deformation can therefore be described by the vector field
that specifies the position vector to material points in the deformed configuration,

R = R(ξi ). (5.44)

As in the undeformed coordinate system, it forms the tangent vectors to the deformed
coordinates lines ξi = const . and denote by

Gi = ∂R

∂ξi
. (5.45)

The inner product of these vectors defines the metric tensor in the deformed
configuration

Gi j = Gi ·G j . (5.46)

In general, the displacements induced by such isotropic expansion will be incompatible
and it would be impossible to (re-)assemble the individually grown material elements
to a continuous body unless the material elements undergo some deformation. The
elements’ deformation relative to their stress-free shape will generate internal “growth
stresses". when subjected to external loads and body forces the body will undergo
further deformations until the stress balances the applied loads.

5.2.6. FINITE ELEMENT IMPLEMENTATION IN OOMPH-LIB

Within oomph-lib, thermo-mechanical problems are regarded as nonlinear and it is
assumed that the problem is discretised in time and space [20]. i.e. the problem’s
(approximate) solution must be represented by M discrete values V j ( j = 1, ..., M); the
nodal values in a finite-element mesh. Boundary conditions and other constraints
prescribe some of these values, and so only a subset of the M values are unknown.
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These unknowns are denoted by Ui (i = 1, ..., N ) and assume that they are determined by
a system of N non-linear algebraic equations that may be written in the residual form.
It is,

Ri (U1, ...,UN ) = 0 for i = 1, ..., N . (5.47)

To solve the above system, oomph-lib uses Newton’s method. The method requires the
provision of an initial guess for the unknowns and the repeated solution of the linear
system

N∑
i=1

Ji jδU j =−Ri for i = 1, ..., N (5.48)

where,

Ji j = ∂Ri

∂U j
, for j = 1, ..., N (5.49)

is the Jacobian matrix. The solution of the linear system is followed by an update of the
unknowns,

Ui :=Ui +δUi for i = 1, ..., N . (5.50)

The solutions are repeated until the infinity norm of the residual vector ||R||∞ is
sufficiently small. Therefore, implemented a finite-element-type framework in which
each “element" provides a contribution to the global Jacobian matrix J , and to the
global residual vector, R.

DOMAIN DISCRETISATION

The discretisation is developed via an isoparametric Galerkin approach, in which the
domain is divided into elements, and for each element geometric shape functionsψi (x j )
(basis functions) are used. In order to represent the unknown vector field U(X j ) using
the basis functions, the following approximation is made

Ui (X k ) =
N∑

j=1
Ui jψ j (X k ), (5.51)

where Ui j is treated as the unknown Eulerian nodal position. With this discretisation,
the variations in x(X j ) correspond to variations in the nodal positions Xi j , so that

δU =
N∑

j=1
δXi jψ j ei , (5.52)

and

∂δU

∂X k
=

N∑
j=1

δXi j
∂ψ j

∂X k
ei . (5.53)
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Making use of the shape functions, the resulting equilibrium equation (Eq. (5.29)) in
discretised form using the index notation is

N∑
k=1

N∑
m=1

{∫
V

[
3∑
i

3∑
j
σi j

(
N∑

l=1
Xkl

∂ψl

∂Xi

)
∂ψm

∂X j
−

(
fk −Λ2

(
N∑

l=1

∂2Xkl

∂t 2 ψl

))
ψm

]
dV

−
∫
∂V

tkψmdA

}
δXkm = 0.

(5.54)

Note that in the equilibrium equation, the contribution of each element to the global
Jacobian matrix and the global residual vector is calculated via the integration over its
volume and boundary, respectively. The displacement boundary condition determines
the positions of all nodes that are located on the boundary A. It also requires that their
variations vanish,

Xi j = xBC (Ξl j ) if node j is located on A. (5.55)

and

δXi j = 0 if node j is located on A. (5.56)

The variations of all other nodal positions are arbitrary (and independent of each other).
Therefore, the terms in the curly brackets in Eq.(5.57) must vanish individually. This
provides one (discrete) equation for each unknown Ukm . Finally, this set of equations
can be assembled in an element-by-element fashion.

Assuming small displacements and small displacement gradients, the small-strain
tensor can decompose into its elastic and viscous components including a dissipative
parameter µ. It gives,

N∑
k=1

N∑
m=1

{∫
V

[
3∑
i

3∑
j
σi j

(
N∑

l=1
Xkl

∂ψl

∂Xi

)
∂ψm

∂X j
−

(
fk −Λ2

N∑
l=1

(
∂2Xkl

∂t 2 −µ∂Xkl

∂t

)
ψl

)
ψm

]
dV

−
∫
∂V

tkψmdA

}
δXkm = 0.

(5.57)

The heat equation (Eq.(5.35)) can also be expressed in a discrete form using the following
discretisation:

T =
N∑

l=1
Tlψl , (5.58)

Ṫ =
N∑

l=1
Ṫlψl , (5.59)

∂T

∂Xi
=

N∑
l=1

Tl
∂ψl

∂Xi
, (5.60)
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δT =
N∑

m=1
δTmψm (5.61)

∂δT

∂Xi
=

N∑
m=1

δTm
∂ψm

∂Xi
, (5.62)

H =
N∑

l=1
Hlψl . (5.63)

Then, ∫
V
α ṪδT dV +β

∫
V
∇T ·∇δT dV −

∫
∂V

qnδT dA

−
∫

V
HδT dV = 0,

(5.64)

yields

N∑
m=1

[∫
V
α

N∑
l=1

ṪlψlψmdV +β
N∑

l=1

∫
V

Tl
∂ψl

∂Xi

∂ψm

∂Xi
dV −

∫
∂V

qnψmd A

−
∫

V

N∑
l=1

HlψlψmdV

]
δTm = 0

(5.65)

Eq.(5.65) can be assembled as an external source to Eq.(5.57), i.e. in the same fashion as
the traction condition is assembled, and the derivatives approximated by finite
differences.

Overall, the assembly of the multi-physics problem contains the elastic (WE ), inertia
(WI ), dissipation (WD ), traction (WT ), conductivity (WK ), thermal capacity (WK T ), flux
(WQ ) and internal heat generation (QH ) contributions as

WE +WI +WD +WT +WK +WK T +WQ +QH = 0. (5.66)

where

WE =
N∑

k=1

N∑
m=1

{∫
V

[
3∑

i=1

3∑
j=1

σi j

(
N∑

l=1
Xkl

∂ψl

∂Xi

)
∂ψm

∂X j

]
dV

}
δXkm , (5.67)

WI =
N∑

k=1

N∑
m=1

{
−

∫ [(
fk −Λ2

(
N∑

l=1

∂2Xkl

∂t 2 ψl

))
ψm

]
dV

}
δXkm , (5.68)

WD =
N∑

k=1

N∑
m=1

{
−

∫ [(
Λ2µ

N∑
l=1

∂Xkl

∂t
ψl

)
ψm

]
dV

}
δXkm , (5.69)

WT =
N∑

k=1

N∑
m=1

{
−

∫
A

tkψmdA

}
δXkm , (5.70)
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WK =
N∑

m=1

[
β

N∑
l=1

∫
V

Tl
∂ψl

∂Xi

∂ψm

∂Xi
dV

]
δTm , (5.71)

WK T =
N∑

m=1

[∫
V
α

N∑
l=1

ṪlψlψmdV

]
δTm , (5.72)

WQ =−
N∑

m=1

[∫
∂V

qnψmd A

]
δTm , (5.73)

WH =−
N∑

m=1

[∫
V

N∑
l=1

HlψlψmdV

]
δTm . (5.74)

5.3. COUPLING THE DISCRETE AND CONTINUUM

After having formulated thermo-viscoelasticity using the oomph-lib implementation of
FEM, let us dive into the volume coupling between the discrete element method (DEM)
and FEM to perform multi-scale analyses. The coupling is based on the decomposition
domain method with the weighting of all governing equations. We have extended the
formulation of the coupling method previously developed by Cheng et al. [21] for
mechanical problems for thermo-elasticity. Fig. 5.3 illustrates the mapping of the
velocity vector and temperature of a discrete element onto the FEM nodes.

Figure 5.3: Mapping of discrete particle velocity and temperature (~vDE
α , θDE

α ) onto FEM nodes (~vDE
i , θF E ). The

arrow represents the difference between the DEM solution mapped from the discrete particles and the FEM
solution.

First, the coupling weight w(x) is defined as a monotonic function of the position vector
x in the DEM subdomain, and subsequently 1−w(X) in the FEM subdomain, with

w(x) = 1 ∀x ∈ΩDE \ΩC,
w(x) = 0 ∀x ∈ΩFE \ΩC,
w(x) ∈ [0,1] ∀x ∈ΩC.

(5.75)

Here, ΩDE and ΩFE represent the discrete and solid domains, respectively, and ΩC

denotes the interface between these two domains.
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5.3.1. COUPLED GOVERNING EQUATIONS

The governing equations for the linear momentum balance of the continuum (see
Eq.(5.16)) and the discrete elements are as follows.∫

V

{
σ : δε−

(
f−ρ ∂

2u

∂t 2

)
·δu

}
dV −

∫
∂V

t ·δudA = 0, (5.76)

where ρ is the density of the undeformed body, f is a body force density acting on the
domain Ω, and t denotes surface traction acting on a subset of the body’s boundary,
Γt ⊂ ∂ΩFE. σ and ε are a work conjugate pair of stress and strain tensors, and δX and δε
are the virtual variations of the position vector and strain tensor.

mα
dvα
dt

− fb
α−

Nα∑
β=1

fαβ = 0, (5.77)

where fb
α is the body force acting at the discrete particle position xα and fαβ are the

contact force acting at the contact point xc
αβ

for β = 1, ..., Nα, denoting the contact

partners of particles α= 1, ..., Np .

Multiplying the governing equations with their respective coupling weights, for δW F E

and δW DE give the weighted sum of the total virtual work δW = δW F E +δW DE , with

δW FE =
Ne∑

e=1

∫
ΩFE

e

(1−w)

{
σ : δε−

(
f−ρ ∂

2X

∂t 2

)
·δX

}
dV

+
Nr∑

r=1

∫
ΓFE

r

t ·δXdA.

(5.78)

δW DE =
Np∑
α=1

[
wα

(
mα

d2xα
dt 2 − fb

α

)
−

Nα∑
β=1

wαβfαβ

]
·δxα, (5.79)

where Ne and Nr are the total numbers of volume and surface elements in Ω and Γt ,
respectively, and Np is the number of discrete particles. We use the short-hand notation
w(xα) and w(xc

αβ
) for the weights at the particle positions and contact points. δxα is a

variation of the position of particle α.

We require the difference between the FEM and DEM displacements in the last time
step, uFE = X |t −X |t−dt and uDE = vDEdt , to be vanishingly small at the macroscopic
scale. A continuous particle velocity field vDE is defined using coarse-graining that will
be introduced later, in Section. 5.3.2. To enforce the kinematic constraint on ΩC , we
penalize the field of the displacement difference at the macroscopic scale uFE−uDE. This
gives rise to an additional term in the virtual work equation, δW = δW F E +δW DE +δC ,
with

δC = ε∫ΩC (uDE −uFE) · (δx−δX)dV

= ε
∫
ΩC

(uDE −uFE) ·δxdV︸ ︷︷ ︸
:=δC DE

+ε
∫
ΩC

(uFE −uDE) ·δXdV︸ ︷︷ ︸
:=δC FE

, (5.80)
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where ε is the penalty parameter, which must be strictly positive in the overlapping
domain to avoid the singular values. uDE and uFE are the displacement fields
interpolated via the finite element basis functions ψi (i = 1, ..., N ), respectively, δx and
δX denote the variation of position vector at the microscopic and macroscopic scales.
Substituting uFE = ∑N

j=1 uFE
j ψ j , uDE = ∑N

j=1 uDE
j ψ j , δX = ∑N

i=1δXiψi , and

δx =∑N
i=1(

∑Np

α=1Πiαδxα)ψi , the discretized forms of δC become

δC FE = ∫
ΩC ε(uFE −uDE)︸ ︷︷ ︸

:=−bC

·δXdV

=∑N
i=1 ε

N∑
j=1

∫
ΩC
ψiψ j dV (uFE −uDE)︸ ︷︷ ︸

:=−fC
i

·δXi . (5.81)

δC DE = ∫
ΩC ε(uDE −uFE) ·δxdV

=∑Np

α=1 ε
N∑

i=1

N∑
j=1

∫
ΩC
ψiψ j dV (uDE −uFE) ·Π jα︸ ︷︷ ︸

:=−fC
α

·δXα. (5.82)

where Πiα denotes the projection matrix between the discrete particles and finite
elements, α iterates from 1 to Np , with Np being the total number of discrete particles
per coupled finite element. Substituting Eq. (5.81) and Eq. (5.82) into the virtual work
equation δW yields

δW =
Ne∑

e=1

∫
ΩFE

e

(1−w)

{
σ : δε−

(
f+ 1

1−w
bC −ρ ∂

2X

∂t 2

)
·δX

}
textdV

+
∫
ΓFE

r

t ·δXd A+
Np∑
α=1

[
wα

(
mα

d2xα
dt 2 − fb

α−
1

wα
fC
α

)
−

Nα∑
β=1

wαβfαβ

]
·δxα.

(5.83)

Similar to the governing equation for linear momentum conservation, the energy
balance equations for the continuum (Eq. (5.24), only taking into account the heat
transfer within the volume) and the discrete system are coupled using FEM and DEM.∫

V

{
ρcp

∂T

∂t
+kcond∇2T

}
δT dV = 0 (5.84)

and,

ραcp,α
dTα
dt

+
nα∑
β=1

kcond ,α(Tβ−Tα)
aαβ
lαβ

= 0, (5.85)

where ρα is the particle density, cp,α is the specific heat of the material, Tα, Tβ are the
temperatures of particles α,β, respectively. kcond ,α is the conductivity of the material,
lαβ and aαβ are the distance between the centres of particles and the contact area,
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respectively. Now, multiplying the governing equations with their respective coupling
weights for δH F E and δH DE gives the weighted sum of the total virtual work
δH = δH FE +δH DE, with

δH FE =
Ne∑

e=1

∫
ΩFE

e

(1−w)

{
ρcp

∂T

∂t
+kcond∇2T

}
δT FEdV. (5.86)

The above equation is the virtual heat equation for the finite element analysis of heat
transfer. It relates the virtual heat done by external flux to the temperature distribution
within the continuum. Subsequently, the virtual heat done by external flux to the
temperature distribution within a collection of discrete particles is related to

δH DE =
Np∑
α=1

[
wαραcp,α

dTα
dt

+
nα∑
β=1

wαβkα(Tβ−Tα)
aαβ
lαβ

]
·δTα. (5.87)

We require the difference between the FEM and DEM temperature in the last time step,
θFE = T |t −T |t−d t and θDE = θ̇DEdt to be vanishingly small. The homogenization
operation including coarse-graining that maps any physical variables between the
discrete particles and finite elements will be introduced later in Section. 5.3.2. To
enforce the constraint on thermal in the overlapping domain ΩC, we penalize the rate
of temperature at the macroscopic scale. This gives rise to an additional term in the
virtual work equation, δH = δH FE +δH DE +δC T , with

δC T = εT
∫
ΩC (θDE −θFE) · (δTDE −δTFE)dV

= εT
∫
ΩC

(θDE −θ,FE) ·δTDEdV︸ ︷︷ ︸
:=δC T,DE

+εT
∫
ΩC

(θFE −θDE) ·δTFEdV︸ ︷︷ ︸
:=δC T,FE

= 0, (5.88)

where εT is the thermal penalty parameter [ W
mK ][ 1

m2 ], which must be strictly positive in

the overlapping domain to avoid the singular values. Substituting θFE = ∑N
j=1θ

FE
j ψ j ,

θDE = ∑N
j=1θ

DE
j ψ j , δTFE = ∑N

i=1δTFE
i ψi , and δT DE = ∑N

i=1(
∑Np

α=1ΠiαδT DE
α )ψi , the

discretized forms of δC T become:

δC T,FE = ∫
ΩT,C ε

T (θFE −θDE)︸ ︷︷ ︸
:=−bT,C

·δT F E dV

=∑N
i=1 ε

T
N∑

j=1

∫
ΩT,C

ψiψ j dV (θFE −θDE)︸ ︷︷ ︸
:=−fT,C

i

·δT FE
i . (5.89)

δC T,DE = ∫
ΩT,C εT (θDE −θFE) ·δT DEdV

=∑Np

α=1

N∑
i=1

N∑
j=1

εT
∫
ΩC
ψiψ j dV (θDE −θFE)Π jα︸ ︷︷ ︸

:=−fT,C
α

·δT DE
α . (5.90)
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Substituting Eq. (5.89) and Eq. (5.90) into the virtual work equation δH = δH FE+δH DE+
δC T yields

δH =
Ne∑

e=1

∫
ΩFE

e

(1−w)

{
ρcp

∂T

∂t
+kcond∇2T + 1

1−w
bT,C

}
δT FEdV

+
Np∑
α=1

[
wαραcp,α

dTα
dt

+
nα∑
β=1

wαβkα(Tβ−Tα)
aαβ
lαβ

− fT,C
α

]
·δT DE

α .

(5.91)

5.3.2. COARSE-GRAINING FOR HOMOGENIZATION

The coupling terms in Section. 5.3.1 requires defining the homogenized physical
variables from the discrete particles to the finite elements. Here we introduce
coarse-graining (CG), a local smoothing technique that defines continuum fields (ρ,~v ,
σ, q), locally satisfying conservation laws [27]. For instance, the coarse-grained density
may be defined as

ρ(~x) = ρm ◦W =
N∑
α=1

mαW (~x −~xα), (5.92)

Where mα is the mass of particle α, ~xα is the particle position, and W is a spatial
smoothing kernel, which in n− dimensional space

• is normalized:
∫ n
R W (x)dx = 1,

• is non-negative: W (x) ≥ 0 for all x ∈Rn

• has compact support: ∃c ∈R : W (x) = 0 for all | x |> c

Two typical CG functions are the cut-off Gaussian and the Lucy polynomial [19]

W G (x) =
{

C Gexp
(
− |x|2

2(c/3)2

)
if | x |< c,

0 else,

W L(x) =
{

C L
(−3(| x | /c)4 +8(| x | /c)3 −6(| x | /c)2 +1

)
if | x |< c,

0 else,

(5.93)

where C G and C L are the appropriate factors for normalization. Note, for spherical
particles, W is isotropic in space in c is the only parameter that controls the support of
the CG field.

Fig. 5.4 illustrates the particle density and stress fields extracted using CG.
CG is used to homogenize both the displacement field and the temperature field from
discrete particle computations presented in Eq. (5.80) and Eq. (5.88). To this end, the
particle velocity field and particle rate of the temperature field can be written in terms of
their homogenization operator, namely
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Figure 5.4: a) Coarse-grained density field b) Coarse-grained stress field [27].

vDE
i =

Np∑
α=1

Πiαvα, where


Πiα = mαψi (x)

Np∑
α=1

mαψi (x)

for c = 0

Πiα =
∫
Ωe mαW (x−xα)ψi (x)dx

Np∑
α=1

∫
ΩmαW (x−xα)ψi (x)dx

for c > 1.
(5.94)

and,

θ̇DE
i =

Np∑
α=1

Π̃iαθ̇α, where


Π̃iα = mαcp,αψi (x)

Np∑
α=1

mαcp,αψi (x)

for c = 0

Π̃iα =
∫
Ωe mαcp,αW (x−xα)ψi (x)dx

Np∑
α=1

∫
Ωmαcp,αW (x−xα)ψi (x)dx

for c > 1.
(5.95)

where Πi ,α and Π̃i ,α are the homogenisation operators for the velocity and rate of
temperature fields. Note, when cp the specific heat capacity is constant for all particles,
Πi ,α = Π̃i ,α. ψi are the finite element basis functions. We make use of this simplification
in the following for the implementation of the coupled code.

5.3.3. THE COUPLING ALGORITHM

The thermo-mechanical volume coupling implementation requires four governing
equations to be weighted in the dynamically adapted coupling zone. Therefore, both
the finite element and discrete particle classes, in oomph-lib [20] and
MercuryDPM [19], respectively, are extended with member functions to evaluate the
local coupling weights similarly as developed previously by Cheng et al. [21] at the
integration points, particle positions, and contact points. The weighting function is
assumed to be in the FEM shape function space (and thus moves if the thermo-elastic
body deforms); thus we first set its nodal values and then interpolate for a given
location, using the FEM basis functions w(X) = ∑N

i=1 wiψi (X). The implementation is
depicted in Fig. 5.5.
The algorithm presented in Fig. 5.5 contains the following steps:

• At each time step, the hierarchical grid detection method of MercuryDPM [19] is
employed to determine whether an Element overlaps with the discrete particles.
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Figure 5.5: Implementation of FEM-DEM thermo mechanical volume coupling in the MercuryDPM and
oomph-lib codes [21].

• During the homogenization process, which involves transferring the continuum
velocity and temperature fields from discrete particles to elements (described by
Eq. (5.94)), the local coordinates of particle positions in the coupled element are
obtained. This transformation is achieved using the FEM basis functions.

• The boundary conditions, coupling forces, and fluxes are updated based on the
revised velocity, positions, and temperature fields in the discrete and solid
subdomains, handled respectively by MercuryDPM and oomph-lib.

• The simulation iterates through these steps until the condition t ≤ tmax is no
longer true.
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5.4. RESULTS AND DISCUSSION

In this section, we first analyse the unsteady heat transfer problem in discrete and solid
media using MercuryDPM and oomph-lib, respectively. It verifies that the implemented
coupling approach works properly for each physics. Then, the coupling
implementation using both software is also verified for the unsteady heat problem
along with the conservation of thermal energy within the system. To verify the accuracy
of the thermo-mechanical description in the solid medium, mechanical tests are
conducted and validated against analytical solutions. Finally, a multi-scale framework
is presented to demonstrate the capabilities of the present implementation to address
multi-physics scenarios such as the laser sintering process.

5.4.1. UNSTEADY HEAT TRANSFER

To verify the unsteady heat transfer problem in the discrete and solid media, and
compare it against the analytical solution described in Appendix 5.7.1, we evaluate the
domain illustrated in Fig. 5.6.

L

x

y

T
2

T
1

Figure 5.6: Domain of length L to be evaluated using Eq. (5.107). T1 and T2 are the temperatures at the bottom
and top surfaces, respectively. We make the assumption that there is no internal heat generation H = 0, and
no heat flux or heat transfer occurring across the boundaries of the volume V .

The material and boundary conditions are listed in Table 5.1.

Table 5.1: Material DEM properties, dimension and boundary conditions.

property units value
ρDE M [kg/m3] 1200
kDE M

cond [kg/m3] 1.9×107

cDE M
p [ J/Kg K] 2000

L [m] 0.025
T |t=0 = T0 ∀ 0 < y < L [◦C] 2.5
T |y=0 = T1 ∀ t > 0 [◦C] 2.5
T |y=L = T2 ∀ t > 0 [◦C] 400

First, the discrete element simulation is performed using MercuryDPM. For this, a 3D
elastoplastic beam [2] composed of 800 mono-size particles of radius R = 25.0×10−4 m
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is built, where the particles are arranged in a 4×4×50 grid such that the particles overlap
by 0.001R. It has a volume fraction of about 64%. The simulation neglects the effects of
gravity and friction, while the contact properties are listed in Table 5.2.

Table 5.2: Contact properties.

Property, symbol units Value
Loading stiffness, k1 [N/m] βER
Unloading stiffness, k2 [N/m] 10k1

Cohesion stiffness, kc [N/m] k1

Penetration depth, φ [-] 0.01

The magnitude of stiffness k1 is chosen based on the macro-micro relation k1 = βER
[28], where β= 0.1 and E = 1.0 GPA are used in our work. We neglect heat radiation and
convection and only consider heat conduction through the particle-particle contacts.
Fig. 5.7 shows the results of the diffusion process at different times t , along the y−
direction.

Figure 5.7: Left) Discrete domain. Right) Temperature distribution in the discrete domain at different times
during the heat transfer. We assume that there is no internal heat generation H = 0, and no heat flux or heat
transfer occurring across the boundaries of the volume V . Dotted lines represent the simulation and solid lines
represent the analytical solution.

Fig. 5.7 shows the simulation results of the diffusion, starting from the initial temperature
of T0, prescribed to all nodes at t = 0 s, except for the particles located at the top surface.
As time progresses, the heat diffuses through the particles until it reaches a steady-state
condition at t = 3.0 s. The comparison between the DEM simulation and the analytical
solution (derived in Appendix 5.7.1) shows good agreement, with less than 1% error in
the calculation of the transient problem. The DEM simulation using MercuryDPM is
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thus well suited to modelling the unsteady heat transfer problem.

Subsequently, a solid beam is simulated using oomph-lib, where dissipative effects and
thermal expansion are not considered, (see Eq. 5.66, WD = 0), similar to the DEM
model. The solid beam employs a total of 4 elements in the x− and z− directions, and
30 elements in the y− direction, utilizing an elastic cubic mesh with 8 nodes per
element. The constitutive relation of the beam is represented by the generalized
Hooke’s law, and Poisson’s effect is not considered. In order to calibrate density, heat
capacity, and thermal conductivity in the FEM simulations, we assume DEM heat
conduction description without heat source (see Eq. (5.85)):

ραcp,α
dTα
dt

+
nα∑
β=1

kcond ,α(Tβ−Tα)
aαβ
lαβ

= 0, (5.96)

with contact area ai j =
√

Ri jδi j , li j = 2R −δ. For 1D chain constant ai j = a, Li j = L,

m = ρV , particle volume Vp

ρVp cp
dTα
dt

+akcond

(
Ti+1 −Ti

L
− Ti −Ti−1

L

)
= 0. (5.97)

Now, the FEM heat conduction equation in 1D without a heat source:

ρF E cF E
p
∂T F E

∂t
+ ∂

∂x

(
kF E

cond

∂T F E

∂x

)
= 0. (5.98)

Using Finite differences and considering mesh size L, is possible to approximate spatial
and temporal derivatives in the heat conduction equation. This numerically solves the
equation on a discrete mesh and calculates how temperature evolves over time and
space.

ρF E cF E
p

∂T F E
i

∂t
+ kF E

cond

L

(
Ti+1 −Ti

L
− Ti −Ti−1

L

)
. (5.99)

Using volume fraction ν=Vp /L3, we get

ρF E = νρDE = Vp

L3 ρ
DE . (5.100)

Assuming same heat capacity per L3 volume element,

ρDE Vp cp Ti = ρF E cF E
p Ti L3 (5.101)

cF E
p = cDE

p , (5.102)

then, comparing Eq. (5.96) and Eq. (5.98) we have

kF E
cond = kcond

a

L2 (5.103)

Fig. 5.8 illustrates the diffusion in the solid beam at different times along the y−
direction.
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Figure 5.8: Left) Solid domain. Right) Temperature distribution in the solid domain at different times during
the heat transfer. We assume that there is no internal heat generation H = 0, and no heat flux or heat transfer
occurring across the boundaries of the volume V . Dotted lines represent the simulation and solid lines
represent the analytical solution.

As seen in Fig. 5.8, the unsteady heat transfer problem using FEM is also consistent with
the analytical solution presented in Appendix 5.7.1. As the heat is transferred through
the solid elements, the temperature reaches a steady state at t = 3 s. It validates the FEM
implementation using oomph-lib to model unsteady heat transfer by conduction.

Subsequently, the coupled simulation between DEM and FEM is performed to verify
the difussion through the media. The length of the domain is divided by the solid and
discrete media, where one discrete particle per element is set inside a finite solid
element. Table 5.3 lists the penalties and coarse-grained width for the simulation.

Table 5.3: Coupling properties.

Property, symbol units Value
Thermal penalty, εT [W/m3 K] 2×10−1

Mechanical penalty, ε [Pa/m2] 1×10−2

Tolerance, tol [-] 1×10−8

Coarse-grained width, CG w [m] 0.5R

Fig. 5.9 shows the temperature evolution in the coupled domain at different times along
the y− axis.

The agreement of heat transfer between both media, DEM and FEM, is satisfactory, with
less than 1% error compared to the analytical solution as depicted in Fig. 5.9. It verifies
the diffusion between both domains and the continuity of temperature fields.
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Figure 5.9: Left) Coupled domain. Right) Temperature distribution in the coupled domain at different times
during the heat transfer. We assume that there is no internal heat generation H = 0, and no heat flux or heat
transfer occurring across the boundaries of the volume V . Dotted lines represent the simulation and solid lines
represent the analytical solution.

5.4.2. CONSERVATION OF THERMAL ENERGY

By maintaining the discrete and solid media at different temperatures and waiting until
the thermal equilibrium is reached, the conservation of thermal energy (neglecting
convection and radiation) is tested in the coupling implementation. For this test, the
temperature is set to 120 ◦C for all discrete particles, while the solid elements are set to
100 ◦C, see Fig. 5.10. The DEM and FEM simulation properties are set similarly to the
unsteady heat transfer problem discussed previously in Section 5.4.1.

Figure 5.10: Discrete and solid media coupled and set to different temperatures. We assume no internal heat
generation H = 0, and no heat flux or heat transfer occurring across the boundaries of the volume V . The
colour bar represents the temperature.
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As time progresses, the heat is transferred through the coupled medium, increasing the
temperature of the solid elements, and decreasing the temperature of the discrete
particles until reaching approximately an average value. The temperature evolution
over time is visualized in Fig. 5.11

Figure 5.11: Conservation of thermal energy within the coupled domain. Temperature is measured along
the y− axis. Circles represent the discrete elements, squares represent the solid elements. The dashed area
indicates the coupling zone.

As visualised in Fig 5.11, the coupled system reaches a final temperature of 109.3 ◦C,
which represents an error of less than 1%. Ideally, the final temperature of the coupled
domain should be 110 ◦C. This error can be attributed to the homogenization of material
properties between DEM and FEM. In this case. Coarse-graining [22] can be employed to
extract continuum quantities precisely, and future studies may be conducted to address
a refined calibration of the models.

The results of heat transfer and thermal energy demonstrate that the coupling
implementation describes the diffusion between the granular and solid media. It
extends the coupling framework previously developed by Cheng et al. [21] for
mechanical problems. The authors validated the mechanical coupling approach
through various analytical solutions, and thus the present study continues to focus on
the thermo-mechanical effects, specifically using oomph-lib, where the capabilities of
the FEM framework are analysed to address thermo-viscoelasticity.

5.4.3. THERMAL DEFLECTION

To verify the thermal deflection in a solid medium, an isotropic cantilever beam problem
is defined. Table 5.4 lists the parameters and boundary conditions used in the oomph-lib
simulation.
The number of elements for the FEM analysis is set to 4 in x− and z− directions, and 50
elements in y− direction. The constitutive relation of the beam is described by the



5.4. RESULTS AND DISCUSSION

5

117

Table 5.4: Parameters for simulation

Parameter Units Value
Length - ly [m] 25.0
Height - lz [m] 0.5
Width - lx [m] 0.5
Flexural rigidity - M/E I [N/m2] 1.0×10−38

Conductivity - β [W/mK] 1.0
Thermal expansion - α [1/◦C] 0.0−7.1×10−3

Gravity - g [m/s2] 0.0
T |t=0 = T0 [◦C] 0.0
T |z=ly = T1 ∀ t > 0 [◦C] 1.0
T |z=0 = T2 ∀ t > 0 [◦C] 0.0

generalized Hooke’s law, and the Poisson effect is neglected. This corresponds to a
steady heat transfer problem, for which is assumed that the thermal equilibrium is
reached once the simulation starts. Two temperatures, T1 = 1.0 ◦C and T2 = 0.0 ◦C, are
set to the top (z = lz ) and bottom (z = 0) surfaces of the domain, respectively. The beam
is fully constrained at lx = 0. Fig. 5.12 shows the cantilever beam and the thermal
deflection.

Figure 5.12: Thermal deflection of a cantilever beam. The beam of length ly is fully constrained at x = 0. We
assume no internal heat generation H = 0, and no heat flux or heat transfer occurring across the boundaries of
the volume V .

Fig. 5.12 shows the cantilever beam deflecting. The displacement results for the nodes
along the −y axis, located at z = lz /2, with different thermal expansion coefficients α,
are presented in Fig. 5.13.
The cantilever beam deflects higher according to the increment of its thermal
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Figure 5.13: Deflection results of the nodal points along the y− axis, located at z = lz /2 in the cantilever beam.
the crossed lines represent the FEM simulation and the solid lines represent the analytical approximation.
Different thermal expansion coefficients α are tested.

expansion, as visualized in Fig. 5.13, which describes the effect of temperature in the
body. Comparing the simulation against the analytical solution developed in
Appendix 5.7.2, the FEM simulations present good accuracy.

5.4.4. VIBRATION OF A CANTILEVER BEAM

In order to verify the accuracy of the FEM model to describe thermo-viscoelastic
problems, the vibration of a cantilever beam is analysed. As a single analytical solution
for the thermo-mechanical problem is not trivial, several tests are designed to validate
the problem separately, verifying the contribution of each term in Eq. (5.66). Fig. 5.14
illustrates the cantilever beam.

F(t)

Figure 5.14: Cantilever beam of length Ly , height Lz , width Lx , and square cross section. F represents the axial
force applied at the free end at t = 0 s. The red point represents the measuring points.

The cantilever beam is fully constrained at Ly = 0, and an axial force f is located at the
free end as indicated in Fig. 5.14. This force disrupts the equilibrium at t = 0 s. The
model properties are listed in Table 5.5.
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Table 5.5: Model parameters for simulation.

Parameter Units Value
Length - Ly [m] 1.25×10−2

Height - Lz [m] 1.0×10−3

Width - Lx [m] 1.0×10−3

Inertia - I [Kg/m2] (1.0/12.0)∗W 4

Young’s modulus - E [Pa] 1.0×1013

Density - ρ [kg/m3] 5.0×107

Simulation time - tmax [s] 50
Gravity - g [m/s2] 0.0
Force - F [N] 3.5×105

Dissipation - µ [N s/m] 5.0×10−5

Conductivity - β [W/mK] 1.0×104

Thermal expansion - α [1/◦C] 1.0

The solid beam contains a total of 2 finite elements in the x− and z− directions, and
25 finite elements in the y− direction, utilizing an elastic cubic mesh with 8 nodes per
element. The constitutive relation of the beam is represented by the generalized Hooke’s
law, and Poisson’s effect is not considered.

DYNAMIC ELASTIC RESPONSE

The elastic response of the cantilever beam is simulated, considering the elastic WE and
inertia WI terms in Eq. (5.66). The illustration of the oomph-lib simulation is depicted
in Fig. 5.15.

Figure 5.15: Dynamic elastic response of the cantilever beam. F represents the applied force at t = 0 s, the dot
located at the free surface represents the measured point, and the colour bar the stress along the beam.

As the cantilever beam vibrates due to the perturbation F at t = 0 s, the nodal
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displacement of the point located at the centre of the free surface is measured. The
result of the nodal displacement is presented in Fig. 5.16
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Figure 5.16: Displacement of the node located at the free surface of the cantilever beam. The dashed line
represents the simulation, and the solid line represents the analytical solution.

The nodal displacement of the end of the cantilever beam is tracked during the
simulation, which describes a harmonic oscillation typically observed in fully elastic
systems. As visualised in Fig. 5.16 both the amplitude and period agree with the
analytical solution developed in Appendix 5.7.3.

DYNAMIC THERMO-ELASTIC RESPONSE

The thermo-elastic response of the cantilever beam, depicted in Fig. 5.14 is simulated,
considering the elastic WE , inertia WI , conductivity WK , and thermal capacity WK T

terms in Eq. (5.66). It is assumed that the thermal equilibrium of the beam is reached
instantaneously, once the simulation starts t = 0 s, We assume no internal heat
generation H = 0, and any flux through the boundaries is neglected qn = 0. The
temperature on the surfaces of the beam is set to T = 273.0 K, at t = 0 s. Fig. 5.17
illustrates the oomph-lib simulation.
As the cantilever beam vibrates due to the perturbation F at t = 0 s, the nodal
displacement of the point located at the centre of the free surface is measured for five
thermal gradients ranging from ∆T = 0 K to ∆T = 250.0 K. The nodal displacement
results are depicted in Fig. 5.18.
The results indicate that the amplitude of the oscillation of the nodal displacement at
the measuring point located at the end of the cantilever beam is affected linearly as the
temperature difference ∆T increases, see Fig. 5.18. This is because the thermal
expansion of the material leads to changes in the mechanical properties of the beam,
affecting its response to the applied load. The frequency of oscillation remains the same
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Figure 5.17: Dynamic thermo-elastic response of the cantilever beam. F represents the applied force at t = 0 s,
the dot located at the free surface represents the measured point, and the colour bar the temperature along
the beam.
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Figure 5.18: Displacement of the node located at the free surface of the cantilever beam. The dashed lines
represent the simulation according to different gradients of temperature. The blue dashed curve represents
the FEM simulation at ∆T = 0 K .

for all curves, as it is primarily determined by the material properties and geometry of
the beam.

DYNAMIC ELASTIC AND DISSIPATIVE RESPONSE

The elastic and dissipative response of the cantilever beam is simulated, considering the
elastic WE inertia WI , and dissipation WD terms in Eq. (5.66). The results of the nodal
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displacement located at the free surface of the cantilever beam are depicted in Fig. 5.19
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Figure 5.19: Displacement of the node located at the free surface of the cantilever beam. The dashed line
represents the simulation, and the solid line represents the analytical solution.

As the cantilever beam vibrates due to the perturbation F at t = 0 s, the nodal
displacement of the point located at the centre of the free surface is measured. The
nodal behaviour describes a harmonic oscillation, decreasing over time, typically
observed in elastic bodies under frictional forces, with dissipation µ. As visualised in
Fig. 5.16 both the amplitude and period agree with the analytical solution developed in
Appendix 5.7.4.

DYNAMIC THERMO-ELASTIC AND DISSIPATIVE RESPONSE

The thermo-elastic and dissipative response of the cantilever beam is simulated,
considering the elastic WE inertia WI , dissipation WD , conductivity WK and thermal
capacity WK T terms in Eq. (5.66). It is assumed that the thermal equilibrium of the
beam is reached instantaneously, once the simulation starts t = 0 s, we assume no
internal heat generation H = 0, and any flux through the boundaries is neglected qn = 0.
The temperature on the surfaces of the beam is set to T = 100.0 ◦C. The results of the
nodal displacement located at the free surface of the cantilever beam are depicted in
Fig. 5.20

The simulation results demonstrate that the measuring point, located at the free
surface of the cantilever beam, oscillates with higher amplitude as the temperature
increases. The displacement of the cantilever, considering dissipation µ, is also affected
by temperature, leading to an over-damping compared to the mechanical test where
∆T = 0. in addition, an increase in temperature can cause an increase in the damping
coefficient of the beam, which may lead to faster dissipation of energy as visualized in
Fig. 5.20. This behaviour is consistent with the expectations of thermo-mechanical
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Figure 5.20: Displacement of the node located at the free surface of the cantilever beam. The dashed line
represents the simulation according to different gradients of temperature. The blue dashed curve represents
the FEM simulation at ∆T = 0 K .

systems, where temperature-dependent material properties can significantly influence
the dynamic response and dissipation characteristics of structures.

5.4.5. MULTI-SCALE SINTERING SIMULATION

The present investigation showcases the capabilities of two open-source software
packages, MercuryDPM and oomph-lib, for modelling multi-physics problems and
assessing their accuracy when coupled for a multi-scale framework.

One of the specific multi-physics and multi-scale scenarios we explore is laser sintering.
This process involves the simultaneous solution of thermal equilibrium and
momentum balance equations during the interaction of a laser beam with particulate
materials (powders). The length scale at which the laser impacts and sinters individual
particles is on the order of micrometres, whereas the collection and behaviour of
millions of particles on the working stage occur at the scale of centimetres. Such a
wide-ranging scale makes the laser sintering process impractical to model using a
single scale itself.

In this context, our coupling framework is designed to capture the micro-scale
intricacies of laser sintering while representing the outer domain as a solid using
oomph-lib. Figure 5.21 shows the proposed approach.

To simulate laser sintering, we utilize a two-domain system. In the central region, we
insert 8800 particles to represent micro-scale resolution. This central domain is
surrounded by an outer domain composed of finite elements. The total number of
finite elements in the system is 12455, encompassing both the solid and macro-scale
aspects of the process. At the interface between these discrete particle domains and the
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Heat transfer model + sintering   

Figure 5.21: Multi-scale framework to simulate the laser sintering process using MercuryDPM and oomph-lib.

solid finite element domain, there are a total of 1500 volume coupling elements. Each
coupling element contains a single discrete particle. The dimensions of the domain
have been chosen to be representative, based on the average size of PA12 particles,
which is approximately 125 µm. For a visual representation of this configuration, see
Figure 5.22.

Figure 5.22: Coupled domain to simulate laser sintering. Discrete elements (particles) are modelled using
MercuryDPM, finite elements are modelled using oomph-lib. The domains are coupled using volume
elements, containing one discrete element per volume.

The material parameters are listed in Table. 5.6
A temperature and pressure-dependent visco-elastic-plastic model [2] is utilized to
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Table 5.6: Material properties

Property - symbol units value
Radius - RDE M [µm] 125
Density - ρDE M [kg/m3] 1020
Heat capacity - cDE M

p [J/kg K] 1200
Thermal conductivity - kDE M

cond [W/mK] 0.240
Thermal convectivity - kDE M

conv [W/mK] 635.73
Emissivity - εDE M [-] 0.164
Melting point - Tm [◦C] 186

describe the interactions, implemented in MercuryDPM [19]. The properties associated
with this model are listed in Table 5.7.

Table 5.7: Contact properties.

Property - symbol units value
Loading stiffness - k1 [N/m] βER
Unloading stiffness - k2 [N/m] 10k1

Cohesion stiffness - kc [N/m] k1

Range of melting - Tvar [◦C] 0.1 Tm

Adhesive distance - δa , [m] 0.001
Thermal expansion - δaT [K−1] 0.0001

The particles are just at contact, the effect of gravity is neglected, and friction among the
particles is not considered. The loading stiffness k1 is determined based on the macro-
micro relationship k1 =βER [28], where we set β= 0.1 and E = 1.0 GPa in our work. The
initial temperature of the system is T = 150 ◦C. The thermal energy dissipation is only
considered in the discrete media since convection and radiation are not implemented in
the solid model. Future studies will describe all the modes of heat transfer in oomph-lib.

Regarding the sintering model, our temperature-dependent rheological model for
visco-elastic particles is utilized [8]. The model requires the calibration of fluidity C1

and surface tension γ. Our previous investigation, discussed in Chapter 4, estimated the
range of these parameters according to the laser set-up. Table 5.8 lists the parameters.

Table 5.8: Sintering model parameters

Property - symbol units value
Fluidity - C1 [Pa−1s−1] 3.41
Surface tension - γ [mN/m] 48.56

In Chapter 4, we determined the extent of absorption achievable by particles when
irradiated by a laser beam. This analysis involved ray tracing simulations, which
provided insights into the level of absorption based on the overlap and energy input.
Here, we utilize the same results obtained from the ray tracing simulations, and
Table 5.9 summarizes the laser configuration.
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Table 5.9: Laser and material properties.

Parameter - symbol units value
Laser radius - Rl µm 15
Irradiated energy - Ei n µJ 384
Hatch distance - hl µm 250
Pulse duration - tl ms 1
Reflectance - Rl [−] 0.05

In laser sintering and materials processing, the estimation of the scan speed can be
computed as:

vl =
hl

tl

Ei n

πR2
l (1−Rl )

, (5.104)

The scan speed we have computed, approximately 3.85 m/s (as detailed in Table 5.9),
is remarkably high compared to the conventional laser operation speed range of 0.01−
1.0 m/s. To provide context for this deviation, it’s important to note that these values are
based on our earlier investigation in Chapter 4, where we characterized the absorption
behaviour of PA12 particles under irradiation with an energy level of Ei n = 384 µJ over a
pulse duration of tl = 1 ms.

We use Hooke’s law for the material constitution of the finite elements, assuming small
deformations. We neglect the Poisson’s effect and the coefficient of thermal expansion is
set to α= 0.0001 K−1. Regarding the overlapping coupling zone, Table 5.10 summarises
the parameters used in our simulations. These parameters are specifically chosen to
ensure the thermo-elastic effect within the coupling zone.

Table 5.10: Coupling properties.

Parameter - symbol units Value
Thermal penalty - εT [W/m3 K] 2×10−1

Mechanical penalty - ε [Pa/m2] 1×10−2

Tolerance - tol [-] 1×10−8

Coarse-grained width - CG w [m] 0.5R

Fig. 5.23 illustrates the simulation of the coupled system.
Following the irradiation of surface particles with an energy input of Ei n = 384 µJ over a
duration of t = 0.001 s, as depicted in Fig. 5.23, heat is transferred to adjacent particles.
This heat transfer facilitates mobility and interpenetration among the particles, which
is essential for the sintering process. The temperature changes over time during this
simulation are illustrated in Fig. 5.24, for particles located at the top surface within the
spot radius.
The temperature of the particles located at the surface reaches T = 210 ◦C, which is high
enough to sinter PA12. The laser is switched off at t = 0.001 s, the moment at which the
cooling period starts, decreasing the temperature of the system by thermal dissipation
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Figure 5.23: Coupled simulation of the selective laser sintering process at t = 0.001 s. The region where the
laser heats the particles corresponds to the red area.
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Figure 5.24: Temperature evolution of the region within the laser heats the particles.

until it reaches the initial temperature, T = 153 ◦C. The axial reduction of the system is
visualised in Fig. 5.25.
As shown in Fig. 5.25, particles situated in the region receiving higher energy
(highlighted in red) absorb more energy, thus accelerating the sintering process
compared to particles with lower temperatures, considering the material’s melting
point at Tm = 185 ◦C. This energy absorption disrupts the initial arrangement of
discrete elements, leading to a reduction in volume due to densification. To assess the
mobility and, consequently, the sintering impact in the y− direction, we calculate the
thermal stress as follows:

σther mal (y) =αE∆T (y)(Ly − y)/Ly , (5.105)
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Figure 5.25: Axial reduction of the coupled system, visualized only on the half of the discrete domain. Note,
the colour bar has been modified to observe the diffusion.

whereα is the coefficient of thermal expansion of the material. E is the Young’s modulus,
∆T is the change in temperature, Ly is the original length, and y is the displacement of
both discrete and finite elements. The thermal stress on average, along the y− direction,
is visualised in Fig. 5.26.
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Figure 5.26: Thermal Stress of the coupled simulation during laser sintering. Dots represent the MercuryDPM
results, while the squares are the oomph-lib results. The grey area represents the overlapping zone.
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The results reveal how temperature fluctuations impact stress within the coupled
domain. At t = 0.001 s, we observe elevated thermal stress, primarily attributed to the
high temperatures resulting from the laser still being active. This stress gradually
decreases along the y− axis as the system’s temperature reduces during the cooling
phase when the laser is switched off. However, residual stress persists as a consequence
of the sintering process among the discrete elements.

5.5. CONCLUSIONS AND OUTLOOK

This investigation presented a thermo-viscoelastic approach for analysing
multi-physics processes. It begins by establishing the thermo-elastic formulation,
which involves reviewing the momentum balance and thermal energy equations, and
the implemented Galerkin method on the open-source software oomph-lib. The
coupling approach is then formulated to handle the thermo-mechanical overlapping
zone, integrated with MercuryDPM and enriched with coarse-graining.

Computational tests were conducted to verify the capabilities of MercuryDPM,
oomph-lib, as well as the coupling approach in handling heat and thermo-viscoelastic
problems. The results demonstrate good agreement with analytical solutions,
indicating the efficacy of the software and the implemented coupling approach. It
allowed us to analyse multi-physics scenario of the selective laser sintering process,
modelled within a multi-scale perspective.

The laser sintering simulation considered the laser-particle interactions, the contact
rheological model for sintering, and the elastic constitutive behaviour of the
surrounding continuum. It is important to note that certain assumptions were made,
such as the ideal distribution of particles, neglecting mass exchange, the effect of
thermal dissipation in the solid media, and the crystallization process during cooling.
However, this initial study paves the way for future simulations and improvements. For
example, future studies can focus on refining and enhancing the current approach by
addressing laser strategies, random particle packing and material properties.
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5.7. APPENDICES

5.7.1. APPENDIX: UNSTEADY HEAT TRANSFER

The unsteady heat conduction problem consists of determining the temperature fields
T (x, y, z, t ) at any point within a domain such as

α

(
∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2

)
= ∂T

∂t
, (5.106)
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where α = kcond /(ρcp ) is the thermal diffusivity coefficient of the system, being kcond

the material conductivity, ρ the material density, and cp the heat capacity. Neglecting
the inner heat generation rate, an analytical solution is proposed by Weigand [29] to
measure the temperature field along y− axis of a 2D domain

T (y, t ) = T1 + y∆T

L
+∆T

∞∑
n=1

Cn sin
(nπy

L

)
e−(nπ)2 αt

L2 , (5.107)

where the coefficients Cn are defined as

Cn = 2

L

∫ L

0
(Lθ0 − y)sin(nπy)d y, (5.108)

and θ0 is a dimensionless quantity defined as θ0 = T0(y)−T1
T2−T1

, being T1 and T2 the constant
temperatures at the bottom and top surfaces, respectively. n indicates the number of
sinusoidal modes considered in the series expansion. L represents the domain length as
illustrated by Fig. 5.27.
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y
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1

Figure 5.27: T1 and T2 are the temperatures at the bottom and top surfaces, respectively. We make the
assumption that there is no internal heat generation H = 0, and no heat flux or heat transfer occurring across
the boundaries of the volume V .

5.7.2. THERMAL DEFLECTION OF A CANTILEVER BEAM

In order to couple the heat equation and solid mechanics, we consider the uniform
thermal deflection of an elastic body that is differentially heated, and restricted at one
side (cantilever problem). The top surface is heated at temperature T2, while the
bottom surface is maintained at the reference temperature T1. The problem is
illustrated in Fig. 5.28.
In this context, we assume that the elastic body’s material properties are
temperature-dependent, with a coefficient of thermal expansion by α. As a result, the
body will expand or contract according to α when the temperature changes, resulting in
deformation and stress that can be modelled by solid mechanics equations. Note that
when T2 > T1, the deflection is upward, and the angle of rotation is counterclockwise.
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Figure 5.28: Illustration of the problem with temperature differential, δ deflection, and θ rotation.

The temperature variation over the beam’s height is assumed to be linear. The beam’s
average temperature, occurring at the mid-height of the beam (h/2), is given by

∆T = T1 +T2

2
. (5.109)

If the beam is free to expand longitudinally, its length will increase by an amount of δT ,

δT =αl

(
T1 +T2

2

)
L, (5.110)

where α is the coefficient of thermal expansion of the material, and L is the length of
the beam. To determine the deflections due to temperature differentials, consider the
element of length dx cut out from the structure. The changes in the length of the element
at the bottom and top are α(T2 −T0)dx and α(T1 −T0)dx, respectively. If T2 is greater
than T1, the sides of the element will rotate towards each other through an angle dθ.
This angle is related to the changes in dimensions by the following equation, obtained
from geometry

hdθ =α(T2 −T0)dx −α(T1 −T0)dx, (5.111)

where h is the height of the beam. Therefore, we have

dθ

dx
= α(T2 −T1)

h
. (5.112)

Since the curvature κ can be described as the derivative of the angle of rotation θ with
respect to the position x (for small angles of rotations), which represents the deflection
of the structure v , we can write

κ= 1

ρ
= dθ

dx
= d 2v

dx2 . (5.113)

Furthermore, if the material of the structure behaves elastically and follows Hooke’s law,
the curvature is related to the bending moment M and the flexural rigidity E I of the
structure as follows,

κ= 1

ρ
= M

E I
. (5.114)
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Combining these equations, we obtain the differential equation

d 2v

dx2 = M

E I
= α(T2 −T1)

h
. (5.115)

If the beam is able to change in length and deflect freely, there will be no stresses
associated with the temperature changes described in this section. However, if the
beam is restrained against longitudinal expansion or lateral deflection, or if the
temperature changes do not vary linearly from top to bottom of the beam, internal
temperature stresses will develop.

To find the deflection, the following equations can be used

dV

dx
= α(T2 −T1)

h
x +C1. (5.116)

If the boundary condition is v ′(0) = 0, then C1 = 0. Subsequently,

v = α(T2 −T1)

h

(
x2

2

)
+C2. (5.117)

If the boundary condition is v(0) = 0, then C2 = 0. Thus, the deflection δ and angle of
rotation θ at end b of this structure (due to the temperature differential) are as follows

δB = v(L) = α(T 2−T 1)L2

2h
. (5.118)

θB = v
′
(L) = α(T 2−T 1)L

h
. (5.119)

Now, the reaction R and moment M of the structure can be found using the
superposition method, which in cantilever beams gives

(δb)2 = RbL3

3E I
(θb)2 = RbL2

2E I
. (5.120)

(δb)2 =−MbL2

2E I
(θb)2 =−MbL

E I
. (5.121)

The equations of compatibility can be written as follows

δb = δb + (δb)2 + (δb)3 = 0. (5.122)

θb = θb + (θb)2 + (θb)3 = 0. (5.123)

Substituting the appropriate expressions, we get

α(T 2−T 1)L2

2h
+ RbL3

3E I
− MbL2

2E I
= 0, (5.124)

α(T 2−T 1)L

h
+ RbL2

2E I
− MbL

E I
= 0. (5.125)
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Therefore,

Rb = 0, Mb = αE I (T 2−T 1)

h
. (5.126)

The fact that Rb is zero could have been anticipated initially from the symmetry of the
fixed-end beam.

5.7.3. VIBRATION OF AN ELASTIC CANTILEVER BEAM

For the elastic bending of a cantilever beam with a uniform cross-section, as shown in
Fig. 5.29, a transverse vibration force F (x, t ) was applied at the end.

L

a b

F(t)
h

dx

M(x, t)

S(x, t)

S(x, t) + ∂S(x, t)
∂x

dx

M(x, t) + ∂M(x, t)
∂x

dx

F(x, t)

Figure 5.29: (Top) Cantilever beam of length Ly , height (Lz ), width Lx , and square cross section. F represents
the axial force applied at the free end at t = 0 s. Points a and b represents measuring points. (Bottom)
infinitesimal points to describe the bending moment M , and shear force S of the beam.

Let the length be denoted by L, and the cross-sectional area be denoted by A. Assuming
that the cross-sectional height h is relatively small compared to the beam’s length, the
inertia force in the beam element can be expressed as

F = (ρAdx)
∂2u

∂t 2 (x, t ), (5.127)

where u represents the transverse displacement, ρ is the mass density of the beam.
Therefore, the shear force equation for the beam element can be written as

(S(x, t )+dS(x, t ))−S(x, t )+F (x, t )dx = (ρAdx)
∂2u

∂t 2 (x, t ), (5.128)

where dS = ∂M
∂x dx. The moment equation for a beam can be expressed as

(M(x, t )+d M(x, t ))−M(x, t )+ (S(x, t )+dS(x, t ))dx +F (x, t )dx
dx

2
= 0, (5.129)
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where d M = ∂M
∂x dx. The shear force and moment equations can be simplified as follows

∂S

∂x
(x, t )+F (x, t ) = (ρAdx)

∂2u

∂t 2 (x, t ), (5.130)

−∂M

∂x
(x, t ) = S(x, t ). (5.131)

The force equation can be written in terms of displacement and transverse force

−∂
2M

∂x2 (x, t )+F (x, t ) = (ρAdx)
∂2u

∂t 2 (x, t ), (5.132)

The relation between the bending moment and transverse displacement is expressed
using the strength of materials

M(x, t ) = E I (x)
∂2u

∂x2 (x, t ), (5.133)

where E is the elastic modulus, and I is the moment of inertia of the beam. When the
beam has a uniform cross-section, the equation of the vibrational beam can be
transformed as

F (x, t ) = E I
∂4u

∂x4 (x, t )+ (ρAdx)
∂2u

∂t 2 (x, t ). (5.134)

For free bending vibration, the applied force is zero, therefore, the equation is reduced
to

E I
∂4u

∂x4 (x, t )+ (ρAdx)
∂2u

∂t 2 (x, t ) = 0. (5.135)

The solution of the above equation can be obtained through a separation of the
dependent variable method expressed as

u(x, t ) =U (x)V (t ). (5.136)

Thus, the free vibration of the beam can be deduced in the form of a separable variable
method expressed as

E I

(ρAdx)

∂4U (x)

∂x4 V (t )+ ∂2V (t )

∂t 2 U (x) = 0 (5.137)

E I

(ρAdx)
V (t )

∂4U (x)

∂x4 +U (x)
∂2V (t )

∂t 2 = 0 (5.138)

− E I

(ρAdx)

∂4U (x)
∂x4

U (x)
=

∂2V (t )
∂t 2

V (t )
. (5.139)

The last equation can be further simplified by introducing a separation constant ω2,
leading to
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∂4U (x)
∂x4

U (x)
=+ω2 and

∂2V (t )
∂t 2

V (t )
=−ω2

(
E I

ρAdx

)
. (5.140)

These equations can be solved separately, leading to the general solution of the form

u(x, t ) =
∞∑

n=1
[An cos(nπx/L)+Bn sin(nπx/L)]sin(ωn t ), (5.141)

where L is the length of the beam, ωn = n2π2
√

E I /(ρAdxL4), and An and Bn are
constants determined by the initial conditions.

Separating the time and spatial variables, respectively, we have

∂2V (t )

∂t 2 +ω2V (t ) = 0, (5.142)

(
∂4U (x)

∂x4 )−ω2 (ρAdx)U (x)

E I
= 0, (5.143)

(
∂4U (x)

∂x4 )−β4U (x) = 0, (5.144)

The solution of the above equation can be written as

V (t ) = B1 sin(ωt )+B2 cos(ωt ). (5.145)

The displacement solution is satisfied if

β4 = ρA

E I
ω2. (5.146)

The displacement equation for the vibration mode is assumed as

U (x) = A0 sin(βx)+ A1 cos(βx)+ A2 sinh(βx)+ A3 cosh(βx). (5.147)

where A0, A1, A2, and A3 are constants that can be obtained by applying the boundary
conditions. The boundary conditions of the fixed-free beam are

U (0) = 0 (zero displacement) U ′(0) = 0 (zero slope) at x = 0, (5.148)

and,

U ′′(L) = 0 (zero bending moment) U ′′′(L) = 0 (zero shear force). at x = L (5.149)

Applying the first boundary condition, we get

A1 =−A3, (5.150)

and applying the second boundary condition, we get
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A0 =−A2, (5.151)

Thus, the harmonic solution can be expressed as

U (x) = A0sin(βx)− sinh(βx)+ A1cos(βx)−cosh(βx), (5.152)

d 2U (x)

dx2 =−β2[A0sin(βx)+ sinh(βx)+ A1cos(βx)+cosh(βx)], (5.153)

d 3U (x)

dx3 =−β3[A0cos(βx)+cosh(βx)− A1sin(βx)− sinh(βx)]. (5.154)

Substituting x = L and applying the second boundary condition, we get

d 2U (L)

dx2 =−β2[A0sin(βL)+ sinh(βL)+ A1cos(βL)+cosh(βL)] = 0, (5.155)

A1 =−A0

[
sin(βL)+ sinh(βL)

cos(βL)+cosh(βL)

]
, (5.156)

[
A0sin(βL)+ sinh(βL)+ A1cos(βL)+cosh(βL)

]= 0. (5.157)

Forming the equations into matrix format, we have[
sin(βL)+ sinh(βL) cos(βL)+cosh(βL)
cos(βL)+cosh(βL) −sin(βL)+ sinh(βL)

][
A0

A1

]
=

[
0
0.

]
(5.158)

By solving the system, we obtain the characteristic equation

cos(βL)cosh(βL) =−1. (5.159)

Therefore, the roots of the above equation are

βL = 1.87510 for n = 1
βL = 4.69409 for n = 2.

(5.160)

The circular frequency of the beam can be expressed as

ω2 =β4 E I

ρA
, (5.161)

ω= (βL)2

√
E I

ρAL4 . (5.162)

The natural frequency of the cantilever beam, which represents the mode of vibration,
can be calculated as

f = ω

2π
= (βL)2

2π

√
E I

(ρA)L4 . (5.163)
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Figure 5.30: Modes of vibration of a cantilever beam.

Fig. 5.30 shows the different modes of vibration of the problem.
The modes of vibration of a beam depend on its shape, length, and material properties,
and each mode corresponds to a specific natural frequency of the beam. These natural
frequencies determine how the beam will vibrate when excited by a force or other
disturbance.

5.7.4. VIBRATION OF AN ELASTIC AND DISSIPATIVE CANTILEVER BEAM

The model of a cantilever beam considering dissipation, disrupted by a transversal force
at the free end, can be expressed by the following equation:

E I
d 4u

dx4 (x, t )+µdu

d t
(x, t )+k

d 2u

d t 2 = F (x, t ), (5.164)

where u(x, t ) is the transverse displacement of the beam at position x and time t , E I is
the flexural rigidity of the beam,µ is the damping coefficient, k is the spring constant due
to the material and boundary conditions, and F (x, t ) is the load applied to the beam. The
solution considering dissipation involves the use of the Euler-Bernoulli beam theory,
which takes into account the damping effect of the material. The displacement equation
for a cantilever beam with damping can be expressed as

u(x, t ) =
∞∑

n=1
An sin

(nπx

L

)
e−µωn t sin(ωdn t +φn), (5.165)

where µ is the damping ratio, ωn is the natural frequency of the beam, and
ωdn =

√
1−µ2ωn is the damped natural frequency. The constants An and φn are
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determined by the initial conditions. The displacement solution with damping shows
that the amplitude of the vibration of the beam will decrease over time due to the
damping effect of the material. This means that the displacement of the beam will
reach a steady-state value, which is smaller than the maximum displacement that
would occur in the absence of damping.

5.7.5. VIBRATION OF AN ELASTIC AND/OR DISSIPATIVE CANTILEVER BEAM

WITH TEMPERATURE

To include the effect of temperature for thermo-mechanical analysis of the cantilever
beam, the thermal energy balance is considered.

ρCp
∂T

∂t
−∇· (k∇T ) = 0, (5.166)

where ρ is the material density, Cp is the specific heat capacity at constant pressure, T
is the temperature, k is the thermal conductivity. We can couple this equation with the
mechanical equation of motion for the cantilever beam by adding a term that represents
the effect of temperature on the material stiffness, such as

E I (T )
d 4u

dx4 (x, t )+µ(T )
du

d t
(x, t )+k(T )

d 2u

d t 2 (x, t ) = F (x, t ), (5.167)

where E I (T ), µ(T ), and k(T ) are the temperature-dependent bending stiffness,
damping coefficient, and mass density. These quantities can be obtained from
experimental data or from theoretical models that take into account the effect of
temperature on the material properties. As the analytical solution is not trivial, we use
oomph-lib to handle both the mechanical and thermal equations simultaneously,
validating the mechanical and thermal fields in the previous tests.
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6
CONCLUSIONS AND OUTLOOK

This thesis provides an investigation of the sintering process of visco-elastic powders
using a multi-scale approach and multi-physics methodology. The research has yielded
valuable insights into the impact of process and material parameters, particularly in the
context of applications like laser sintering and dilatometric analysis. The sintering
model accurately computes the sintering rate of visco-elastic particles, such as
polymers, and has been developed, calibrated, validated, and applied through various
investigations. It enables future studies to refine and customize the process for diverse
targets and applications, serving as a virtual prototype.

The thesis’s interrelated investigations cover the entire spectrum of the sintering
process sequentially, from micro-scale particle-particle interactions modelled using
DEM to macro-scale continuum deformations modelled by FEM, as follows.

The initial study, described in Chapter 2, introduced a DEM model that uses a sintering
regime map to forecast the sintering kinetics of visco-elastic particles. This model takes
into account the material’s contact rheology around melting during particle-particle
interactions and demonstrated remarkable consistency with experimental observations
on different polymers such as PA12, PS, and PEEK. Additionally, the model is capable of
predicting the sintering kinetics for degraded materials, such as those that have
undergone powder recycling or annealing processes.

In Chapter 3, the sintering model was improved by including the heat balance equation
within the linear momentum conservation, and then provide a more comprehensive
understanding of the multi-physics involved in the sintering process. This included
accounting for different modes of heat transfer, such as conduction between particles,
convection with and radiation to the environment. Additionally, a non-homogeneous
laser energy input was considered, and a new ray tracing model was developed to
compute particle temperature at each time step and particle-particle
inter-penetrations. The findings of the study demonstrated that energy density and the
time-dependent nature of visco-elastic coalescence have a significant impact on the
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sintering process. Furthermore, experimental data on two materials, PA12 and PS, were
used to calibrate the model.

In Chapter 4, the impact of process parameters on the sintering process was explored
by investigating the densification of pellets made of PA12 powder. The investigation
utilized the current temperature and pressure-dependent DEM model, which
accurately predicted the shrinkage of the experiments. The study analysed different
factors such as holding time, process time, sintering temperature, and pressure. The
findings revealed that process time and pressure assisted sintering significantly,
particularly when the pellet is close to the material’s melting point.

In Chapter 5, a novel thermo-mechanical model was developed to simulate the intricate
interplay between heat dissipation and mechanical deformation using finite elements
and discrete elements. The significance of volume coupling was showcased as it enabled
the transition between both media. Through this approach, the sintering process was
simulated, seamlessly integrating both microscopic and macroscopic perspectives while
upholding the principles of thermal energy conservation and momentum conservation.

In conclusion, the multi-scale sintering model of visco-elastic powders presented in
this thesis provides a tool for optimizing sintering processes for various industrial
applications via virtual prototyping.

The following are some key messages and conclusions from this thesis:

1. This thesis introduces a novel DEM framework that can accurately predict the
sintering behaviour of visco-elastic powders at both short and long time-scales.

2. The sintering model considers the material contact rheology during
particle-particle interactions and enables the calibration of model parameters for
recycled particles.

3. Bayesian inference was used to calibrate sintering material parameters, which
were then validated using experimental data. This grain learning approach
provides a robust and data-driven method for parameter calibration.

4. The study found that sintering takes two to three times longer for aged polymer
powders, highlighting the importance of carefully selecting and storing materials
for sintering processes.

5. A new DEM model was developed that includes energy absorption and laser
sintering based on ray tracing. This model provides insights into the impact of
inhomogeneous, localized laser energy parameters on the sintering process and
can help optimize sintering outcomes.

6. A new DEM model to study densification of visco-elastic pellets, which was
validated using dilatometric experimental data.

7. Longer process times and external pressure are the process parameters that assist
further densification of PA12 pellets.
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8. A Multi-scale and multi-physics DEM-FEM model to simulate thermo-mechanical
processes.

9. Coarse-graining enriched homogenization technique, which enhances the
coupling framework’s accuracy and efficiency.

OUTLOOK

1. Chapter 2: In future studies, the proposed approach could be utilized to analyse
the strength evolution by sintering. It would help to avoid surface defects from
the poor cohesion of sintered layers. This approach may also be extended to
investigate the influence of different particle shapes and surface treatments on
sintering behaviour.

2. Chapter 3: To effectively apply this model to realistic powder mixtures, further
work can explore the influence of different mechanical properties, and material
parameters such as poly-disperse size distribution, particle size, and volume
fraction, on sintering kinetics. Additionally, the proposed approach can be
extended to investigate laser sintering of metallic and ceramic powders, as well as
as well as the effect of printing on multiple layers.

3. Chapter 4: It presents several avenues for future studies to improve the sintering
model’s predictive capability. One potential area of focus could be incorporating
the crystallization process during the cooling stage into the DEM model, which
would provide further insight into the densification. Additionally, the effect of
dilatation due to the presence of air or bubbles, which can cause additional
pressure effects, could be incorporated into the model by exploring a function
that describes fluidity based on experimental data. The results of DEM
simulations would be useful to develop predictive models for powder
densification and sintering, which could aid in the optimization of process
parameters and the design of new materials.

4. Chapter 5: Future work can focus on extending the continuum model presented
in this chapter to include the effects of anisotropic material properties and
micro-structure, which may have a significant impact on the sintering process.
The model could be extended to investigate the sintering of other materials, such
as metals and ceramics, which exhibit different deformation behaviours.
Additionally, laser strategies can be analysed in future studies.
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