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Abstract— Researchers have developed a large number of
methods to study the brain’s function. One of the most ef-
fective techniques is in vivo whole-cell patch clamp record-
ing which allows the recording of intracellular neuronal ac-
tivity. A major issue that drastically reduces the efficiency
of in vivo patch clamping is the excessive movement of
the brain primarily caused by heartbeat and breathing,
which can be larger than the size of the neurons under
investigation. Motion compensation techniques are com-
plicated due to the lack of sensors to reliably measure
local physiologically-induced motion. This work proposes
the use of Electrical Bio-impedance (EBI) to the existing
patch electrodes in the patching pipette as a proximity
sensor. The study further develops an Extended Kalman
Filter (EKF) to estimate overall motion and then establishes
a motion compensation algorithm for the patch pipette.
The proposed method was developed on a custom lab
benchtop setup and validated during actual in vivo experi-
ments. The results of the lab experiments show a real-time
compensatory performance exceeding 80%. The in vivo
experiments achieved a performance of over 75%, confirming the ability to compensate for real physiologically induced
motion. Moreover, the method demonstrated dynamic continuous motion compensation while the electrode was advanced
to a neuron, contacting the neuron membrane without damage illustrating the ability to improve neuronal patch clamping.
As far as the authors are aware this is the first time that physiologically induced motion can be compensated for this
application and this solely relies on EBI.

Index Terms— Electrical bio-impedance sensing, motion compensation, extended Kalman filter, piezoelectric actuator

I. INTRODUCTION

PROFOUND knowledge of brain function at the cellular
level is important for understanding sensory systems

[1] and other higher brain functions. It is also important
for the development of medicines for neurological disorders
such as Parkinson’s and Alzheimer’s disease [2]. The brain
processes a large amount of information through billions of
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interconnected neurons. To understand neural processing, it
is necessary to electrophysiologically measure the internal
activity of individual neurons in their natural environment.
This requires techniques that allow in vivo intracellular record-
ings [3]. Patch clamp is originally an in vitro technique
developed in the late 1970s that allows simultaneous recording
of neuronal input and output signals with excellent temporal
and spatial resolution [4]. Since the 2000s, this technique has
been adopted for in vivo measurements in living organisms
[5]. During the whole-cell patch clamping procedure, a glass
micropipette filled with conductive solution is inserted into the
brain and advanced to a neuron of interest. Then, the pipette is
brought into contact with the neuronal membrane after which
it is locally aspirated to make electrical internal contact [6],
called a “patch”. However, making an in vivo patch is a huge
challenge with limited success due to the small size of neurons
(∼ 10 µm) [7], the lack of visualization [8], and especially
the inherent physiologically induced motion by heartbeat and
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breathing [9]. The latter involves the risk of an uncontrolled
penetration of the neuron. If this happens the whole procedure
needs to be repeated with a new micropipette [10].

Different electrophysiological studies reported various
strengths in brain motions. For instance, Lee et al. [11] found
in anesthetized mice a 10 µm peak-to-peak heartbeat-induced
motion at 6 Hz and almost no breathing-induced motion. Fee
et al. [12] found similar induced motions in rats between 10
- 40 µm for the heartbeat and a 1 µm for breathing. However,
they also found the opposite with a stronger induced breathing
component between 10 - 30 µm and almost no heartbeat
contribution (2 - 4 µm). Gilletti et al. [13] also observed
(inward) brain motions in rats, but with much larger ampli-
tudes up to even 60 µm. Lateral micromotion of the brain is
not dominant in electrophysiological studies. It is less critical
than motion in the normal direction and can be in the first
instance ignored because the pulled glass microelectrodes for
intracellular recording, while axially stiff, are laterally much
more compliant [12], [13]. These studies also illustrate that the
physiologically induced brain motion can be larger than the
actual size of the neuron itself, making patching practically
impossible in such circumstances. Another complicating and
dynamic factor to consider is the drift of amplitude motion
over time. For example, in adult rats, Sharafkhani et al. [14]
observed amplitude shifts between 10 - 60 µm over a 5-minute
period.

Manual patching requires high technical skills and much
perseverance, as the success rate of patching a neuron is very
low (less than 30%), even in experienced hands [6], [15].
Several attempts have previously been made to improve the
delicate high-precision procedure for approaching the neuron.
An experimental setup consisting of a motorized manipulator
with a gripper holding a glass micro-pipette was designed by
Lee et al. [16] to make this high-precision required procedure
more controllable. The patch clamp procedure was refined by
Kodandaramaiah et al. [17] with a more advanced platform
adding an automatic pressure system to the pipette to perform
the actual patch. One of the difficulties of in vivo patching is
that it is a “blind” procedure. This problem was addressed
by the introduction of assisted two-photon microscopy, in
which a fluorescence-stained pipette and a tagged neuron are
visualized [18]–[20]. This approach was found to facilitate the
in vivo patch clamp procedure, but has limitations, including
depth restriction of ∼ 1 mm, a limitation in accessibility and
location, and it does not compensate for brain motions.

The latter was addressed by a few studies [12], [15]
that physically compensated the pipette for the physiological
motion. For instance, Fee et al. [12] proposed a mechanical
stabilization system based on a linear finite impulse response
filter that extracts motion information by using a filtered
electrocardiogram (ECG) and respiratory pressure. Stoy et al.
[15] proposed a similar approach, where the impulse response
is computed from both ECG and breathing signal. In these
studies, the ECG and respiratory events were used to com-
pensate for motion by an average extracted impulse response
of heart rate/breathing, in which a real-time motion estimation
was not foreseen and had to be manually scaled in amplitude.
In addition to neuroscience, motion compensation is also

attracting the attention of different medical applications with
various approaches, such as imaging-assisted techniques [21]–
[23], novel sensory feedback [24], [25], and machine/deep
learning methods [26]–[28].

To overcome the imperfections of previous motion com-
pensation methods, a novel method based on an Extended
Kalman Filter (EKF) and Electrical Bio-impedance (EBI)
sensing is proposed in this work. EBI is a recently developed
impedance-based non-invasive technique for quantifying the
composition of biological tissue [29]–[31]. It is used in various
applications, such as in eye surgery for puncture detection
[32] and proximity sensing [33], abnormal tissue detection and
measurement in the prostate [34], the neck [35], lymph nodes
[36], and muscle contraction [37]. The sensing principle of
EBI is highly compatible with the kind of micro-pipettes used
for patch clamping [15] and is therefore used in this study
as a proximity detector to observe the motion of a structure
at the front of the pipette. To the authors’ knowledge, this is
the first time that a control strategy for physiological motion
compensation has been presented that utilizes EKF estimation
with EBI feedback.

The main contributions of this work are:

• creation of a motion controller architecture based on EKF
estimation and EBI proximity detection.

• development of two dedicated mechanical setups: a
benchtop test setup and in vivo setup.

• validation of the proposed algorithm using the benchtop
setup and synthetical heartbeat/breathing motion,

• determination of in vivo feasibility in animal experiments
and further verification of control strategy.

The remainder of the paper is organized as follows: Section
II introduces the proposed motion compensation discussing the
physiologically induced motion, EBI sensing, EKF approach
with two different observation models, and the control strategy.
Section III covers the benchtop setup and verifies the two
proposed observational models on the generated synthetic
motion. Section IV covers the in vivo setup and validates the
motion controller. Section V discusses the results and section
VI draws the conclusions.

II. EBI-BASED MOTION COMPENSATION

A. Physiological Induced Motion

The first step undertaken was to link the brain motion to its
physiological origin in anesthetized animals. For this purpose,
vibrometry was performed on the cerebellar surface (Ethical
approval number: P071/2022) of Mongolian Gerbils using
a chromatic confocal sensor (CCI; STIL® O3PS0382002;
sample frequency: 70 kHz; resolution: 70 nm). The result of
a typical surface measurement is shown in Fig. 1(a) which
exhibits a superposition of two different periodic components:
a fast alternating component with a period of approximately
0.38s corresponding to the heartbeat, and a breathing compo-
nent with larger perturbations lasting four times as long. The
induced amplitudes of heartbeat and breathing are approxi-
mately 10 µm and 8 µm, respectively, and are consistent with
previous observations in literature (see also Sec. I).

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3307489

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 28,2023 at 11:17:56 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: PHYSIOLOGICAL MOTION COMPENSATION FOR NEUROSCIENCE RESEARCH BASED ON ELECTRICAL BIO-IMPEDANCE SENSING 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

5

10

15

20

physiological motion

9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.00

0.25

0.50

ECG signal

Time(s)

Time(s)

�
m

ot
io

n 
( 

 m
)

�
m

ot
io

n
( 

 m
)

breathing breathing

-0,25

-0,50

-0,75

-1,00

-1,25

E
C

G
(V

)

(a)

(b)

Fig. 1. (a) In vivo physiological motion. (b) Zoomed portion of physio-
logical motion signal (in blue) with superpositioned ECG signal (in red).

Figure 1(b) shows an enlarged time slice of Fig. 1(a)
covering one breathing period which equals four heartbeat
periods (blue trace), The figure also includes an overlay of
the animal’s electrocardiogram (ECG; red trace). The signal
was obtained below the armpits, across the chest with a low
noise differential amplifier (SRS® SR560; band-pass filter: 0.1
- 2 kHz). The ECG visually confirms that the two previously
mentioned components are indeed of physiological origin.
This is evident by the strong correlation 1) between the QRS
complexes (rapid negative-positive-negative alternations) in
the ECG and positive crests in the motion; and 2) between
the muscle breathing artifacts in the ECG (see two black
rectangles), and the two largest positive motion crests at
approximately 9.75 and 11.25s. Note that the large crests are
in fact superpositions of both physiological components.

B. EBI for Neuroscience Research

Due to specific limitations of the brain, such as the small
size of neurons (∼10 µm), lack of external space, the limited
penetration depth of photons, and the anatomical complexity
of the brain itself, it is practically impossible to optically
measure the motion of neurons deeper inside the brain. As
a good alternative, an EBI approach is applied in which the
(patch) micro-pipette is enabled as a proximity sensor. The
underlying principle is that the distance to an object (e.g., a
neuron) is estimated by the electrical impedance at the front
of the pipette. The fully implemented version of our custom
EBI is able to measure the complex impedance (resistance
and reactance) over a large frequency range, but because it
is deployed as a motion sensor we use only the most relevant
impedance at the lowest available frequency (here 156.25 Hz).

Figure 2(a) shows the lumped model of the principle elec-
trical circuit, which consists of an input source (Vinput), a
voltage-controlled current source (VCCS), and a glass micro-
pipette. The components Rpipette and Cpipette represent the

complex impedance of the glass pipette. Rvar is the resistance
of the path between the opening at the front of the glass pipette
and the external medium (normally cerebrospinal fluid). Its
value depends on the proximity of an object (e.g., a moving
neuron) and is approximately inversely proportional to the
distance d between the pipette tip and the closest object.
For motion compensation, Rvar, and more specifically its
variation is important here, which cannot be measured directly
and independently. Nevertheless, the variation of the total
impedance (AC component) forms a good approximation
at low frequencies where Cpipette is neglectable. The total
impedance is the ratio of the induced voltage (Voutput) to the
current Ipipette imposed by the VCSS, where Ipipette is equal
to the input voltage (Vinput) times the VCCS’s transconduc-
tance (gm). Vinput is generated by a Field-Programmable Gate
Array (FPGA, CompactRIO, National Instruments®) circuit,
which also performs the complex impedance calculations in
real time. To filter out high-frequency noise at the output of
the pipette, a first-order lowpass IIR filter is implemented
in the FPGA circuit. The input signal is a periodic signal
consisting of a series of spectral components with power 2
between 156.25 Hz and 20 kHz (i.e., 156.25, 312.5, 625, ...,
20000 Hz), such that the periods are an integer multiple of
the length of the (inverse) Fourier transform (n=128; SR= 20
kHz), preventing spectral leakage. As mentioned earlier, only
the lowest frequency is used for impedance in this study.

(a) (b)

(c)
Distance to surface ( )

Neuron

VCCS Pipette

0 5 10 15 20
0

25

50

75

100

125

150

175

200 pipette 1
pipette 2

Distance to surface ( )

0 20 40 60 80 100 120 140 160
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

trial 2
trial 3
trial 4
trial 5

trial 1VCCS Saturation

Fig. 2. (a) Equivalent electrical diagram. (b) Example of repeated
benchtop setup impedance-distance relationships between using an
un-pulled pipette and Parafilm®. (c) Example of repeated impedance-
distance relationships on the in vivo setup with two pulled pipettes.

Figure 2(b) shows an example of repeated (n=5) measured
impedance-distance relationships on the benchtop setup (see
III-A) between an un-pulled glass pipette and Parafilm® sur-
face immersed in conductive saline, here simulating a neuron
in the brain. Figure 2(c) shows the relationships for two pulled
glass pipettes as used in the in vivo experiments, measured
under similar conditions. Besides the VCCS saturation region,
the general trend of the gradient is decreasing monotonically
where it is inversely proportional at long distances and satu-
rating at close distances. When the tip of the pipette is close
to the Parafilm®, the electrical impedance and thus Voutput

will dramatically increase until VCCS saturation is reached.
The un-pulled glass pipettes have Rpipette and Cpipette values
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of about 5 kΩ range and 1 pF , respectively (1B100F-6,
World Precision Instruments®, USA); the pulled pipettes have
a typical Rpipette between 5 and 1 MΩ. The final impedance
values also depend on the concentration of electrolyte solution
used in the pipette. For in vivo patch clamp experiments
pulled micro-pipettes are used with a much finer tip and larger
impedance values (Rpipette: 0.5 MΩ - 2 MΩ; Cpipette: > 1
pF ). In that case, an intracellular amplifier is used with built-
in nA VCCS and pipette impedance compensation. Pipette
compensation is recommended but not necessary to perform
motion compensation.
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Fig. 3. Example of an in vivo impedance measurement with a pulled
pipette, together with the corresponding ECG.

Figure 3 shows a typical example of an in vivo impedance
measurement (blue trace) with a moving neuron. The cor-
responding ECG signal (red trace), which was obtained in
the frontal direction across the chest (the ground electrode
connected was connected to the animal’s nape of the neck) is
included in this measurement. The breathing period is twice
that of the heartbeat, as evidenced by the alternating varying
size of the crests. Similar to the CCI measurement in Fig. 1(b),
there is also here a good correlation between the phase of the
impedance and the timing of the QRS profile in the ECG. Note
that impedance measurement compared to CCI have a larger
amount of noise (mainly unrelated physiological activity), and
the polarity is opposite due to the inverse relationship with
distance (Fig. 2(b)).

C. Extended Kalman Filter

In vivo motion compensation is not a simple problem that
can be solved by simple means such as passive filtering
and feedback. There are several challenges, some already
mentioned in earlier sections that all need to be addressed
at once. The most critical challenges identified here are: the
non-linearity and noise of the EBI sensor, the simultaneous
compensation of two superimposed motions, the requirement
of strict phase alignment with the periodic motions, and
the dynamic nature of the motions themselves. Given these
requirements, a dynamic model-based compensation approach,
relying on an EKF is adopted. Rather than servoing or compen-
sating motion based on noisy sensor data, the compensation
is conducted based on the estimated hidden noiseless model
state.

Kalman Filters (KFs) are model-based filters that are often
employed to estimate the hidden states of a dynamic system

[38]. The basic KF is originally developed for linear systems
[39], but later improved to Extended Kalman Filter (EKF)
for non-linear systems, such as in this work. The EKF is a
Bayesian filter based on the hidden Markov model [40]. The
state space model of the EKF is expressed as:

x̂(t+∆t) = F (∆t)x̂(t) + µ(t) (1)

z(t) = h(x̂(t)) + v(t) (2)

The vector x̂(t) is a vector that collects estimates of the
states at current time t. Whereas x̂(t +∆t) is the prediction
of the states at next time step, with ∆t is the time step. z(t) is
the input signal which is provided by the EBI. F (∆t) is the
state transition matrix and h(x̂(t)) is the system’s observation
model. Here, all states are assumed to evolve through a random
walk, with µ(t) ∼ N (0, Q) the process noise. It is used to
describe the deviation between the estimation from the chosen
model and the input sensor signal, which include several dif-
ferent noise sources from the environment. The measurement
noise of the EBI sensor is v(t) ∼ N (0, R), which is the
uncertainty associated with the EBI sensor. The Q0 and R0

are initial guesses that were estimated from experiences in
previous experiments where they were calculated based on
the collected data from the EBI sensor. The procedure of
the EKF estimation is presented in Algorithm 1. The whole
EKF procedure is recursive [41], such that state estimates are
updated as soon as new sensor readings arrive. And if there is
a missing measurement, the update step will be skipped and
keep the last state estimation.

5

Algorithm 1: Extended Kalman Filter [43]

initialize 𝑷𝟎, 𝑥0, 𝑅0 𝑎𝑛𝑑 𝑸𝟎;

while EBI signal input do

ෝ𝒙𝒌
− = 𝒇(ෝ𝒙𝒌−𝟏) ; /* Prediction step */

𝑷𝒌
− = 𝑭𝒌𝑷𝒌−𝟏𝑭𝒌

𝑻 + 𝑸𝟎 ;

𝑲𝒌 = 𝑷𝒌
−𝑯𝒌

𝑻/(𝑯𝒌𝑷𝒌
−𝑯𝒌

𝑻 + 𝑅0); /* Update step */

ෝ𝒙𝒌 = ෝ𝒙𝒌
− +𝑲𝒌 𝑧𝑘 − ℎ ෝ𝒙𝒌

− ;

𝑷𝒌 = 𝑰 − 𝑲𝒌𝑯𝒌 𝑷𝒌
− ;

Ƹ𝑧𝑘 = ℎ ෝ𝒙𝒌 ; /* Output step */

𝑘 → 𝑘 + 1 ;

end

Legend

ෝ𝒙𝒌
− Prediction of states at time step 𝑘

𝑷𝒌
− Predicted error covariance matrix

𝑷𝒌 Error covariance matrix

𝑭𝒌 State transition matrix

𝑸𝟎 Process noise covariance

𝑲𝒌 Kalman gain

𝑯𝒌 Observation matrix

𝑅0 Measurement noise covariance

z𝑘 EBI sensor measurement at time 𝑘

Ƹ𝑧𝑘 Final predicted output

[4] L. Cheng and M. Tavakoli, “Ultrasound image guidance and robot impedance control for beating-heart surgery,” Control Engineering Practice, vol. 81, pp. 9–17, 2018.From the preliminary CCI and EBI measurements in Fig.
1 and Fig. 2, and related works in the literature [11], [12],
[22], [42], the physiologically induced motion of heartbeat and
breathing can be roughly approximated by a sinusoidal signal.
Based on this approximation, two different observation models
h(x̂(t)) are proposed. A first observation model possessing
a single dominant mode that corresponds to the heartbeat
(or alternatively breathing) and another with additionally a
mode that corresponds to the motion induced by breathing
are proposed.

1) Heartbeat-induced motion: For the motion induced by
heartbeat only, an observation model h(x̂(t)) based on a single
sinusoid is proposed:

h(x̂(t)) = c(t) + r1(t) sin(ω1(t)t+ ϕ1(t)),

= c(t) + r1(t) sin(θ1(t)),
(3)

where c(t) is a motion offset, r1(t) the amplitude, ω1 the angu-
lar frequency, and θ1(t) = ω1(t)t + ϕ1(t) the (instantaneous
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angular) phase with ϕ1(t) a phase shift. The state vector is
here defined as

x̂(t) ≜ [c(t), r1(t), ω1(t), θ1(t)]
T (4)

and is estimated with (1). The corresponding state transition
matrix is equal to

F (∆t) =

I2×2 0 0
01×2 1 0
01×2 ∆t 1

 , (5)

with diagonal matrix I2×2 and zero matrix 01×2. The obser-
vation matrix is equal to

HT (∆t) =

(
∂h

∂x

)T ∣∣∣∣
x̂(t+∆t|t)=F (∆t)x̂(t|t)

=


1

sin(θ̂1(t+∆t | t))
0

r̂1(∆t | t) cos(θ̂1(t+∆t | t))

 ,

(6)

with x̂(t+∆t | t) the estimated states of the next time step.
2) Heartbeat and breathing-induced motion: For the com-

bined heartbeat and breathing-induced motion, an observa-
tional model h(x̂(t)) based on the superposition of two
sinusoids is proposed:

h(x̂(t)) = c(t) + r1(t) sin(θ1(t)) + r2(t) sin(θ2(t)). (7)

The chosen state vector is equal to

x̂(t) ≜ [c(t), r1(t), r2(t), ω1(t), θ1(t), ω2(t), θ2(t)]
T , (8)

where r1(t), ω1(t), θ1(t) and r2(t), ω2(t), θ2(t) represent the
amplitude, angular frequency, and phase for heartbeat and
breathing, respectively. Based on the state vector (8), the state
transition matrix and the observation matrix become

F (∆t) =


I3×3 03×1 03×1 03×1 03×1

01×3 1 0 0 0
01×3 ∆t 1 0 0
01×3 0 0 1 0
01×3 0 0 ∆t 1

 , (9)

HT (∆t) =



1

sin(θ̂1(t+∆t | t)))
sin(θ̂2(t+∆t | t)))

0

r̂1(∆t | t) cos(θ̂2(t+∆t | t)))
0

r̂2(∆t | t) cos(θ̂2(t+∆t | t)))


. (10)

D. Motion Compensation Control Strategy
The proposed control strategy is based on an EKF estimator

with an additional accumulator to accommodate the differ-
entiating effect of the EBI. Recall that the EBI represents
not the absolute but the relative motion of the object. The
block diagram of the controller with EBI and compensation
actuator is shown in Fig. 4(a) and includes one input (Zk),
one output (xoutput,k), and three control blocks (i.e., EKF,
amplitude adjustment, and motion controller). The first block

in the controller is the EKF. It receives input from the EBI
and predicts the new estimates for angular frequency(s) ωk,
phase(s) θk, and residual input amplitude(s) rk.

EKF motion
controller actuator

amplitude
adjustment

EBI

Physiological
motion

rk(V )
rc,k(V )

Zk(MΩ)

ωk(rad/s)

θk(rad)

Vc,k(V )

xk(µm)

N

(a)

(b)amplitude adjustment
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rk > rth?
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Y
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rk < rk−1?

rc,k = rc,k−1 + rk

rc,k = rc,k−1

rc,k = rc,k−1 − rk

rc,k(V )

xoutput,k
(µm)

Fig. 4. (a) Control schematic for EBI-based motion compensation. (b)
Iterative update of the control voltage amplitude

The second block is the amplitude adjustment block (Fig.
4(b)). It is a dedicated and heuristic block that provides the
actual output amplitude(s) rc,k. This block is mandatory and
copes with the disparity between the absolute motion of the
object/pipette and their relative motion sensed by the EBI.
The main function is amplitude accumulation and operates
as follows: the output amplitude (rc,k) is incremented by
the EKF-amplitude (rk) when the EKF-amplitude value is
increased; otherwise, it is decremented with rk. Whenever
the EKF amplitude is equal to or less than a preset threshold
rth, the previous output amplitude is retained. ωk and θk do
not follow this algorithm and are continuously updated by the
EKF block to maintain the phase relationship with the residual
motion component in the input signal.

The motion controller is the last block in the controller
and provides the output control signal (Vc,k). The output
signal provides the instantaneous voltage corresponding to the
position of the compensation actuator and is calculated by the
observation model ((3) or (7)) and its state vector ((4) or (8)).
Note here rk is substituted by rc,k due to the intermediate
amplitude adjustment block.

III. EXPERIMENTS AND RESULTS: VERIFICATION

This section verifies the EKF control scheme involving both
models proposed in Section II. To assess the performance in a
lab setting, a benchtop test setup was developed that was able
to generate physiological motions and compensate for them
in real time using an EBI input sensor and the proposed EKF
model(s). The benchtop setup is explained in the first section
and then validated in the remaining two sections.
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Fig. 5. Benchtop experimental setup: 1 –NI® FPGA; 2 –NI®

EtherCAT; 3 –Batteries (+/-12V); 4 –VCCS; 5 –Laser distance sen-
sors; 6 –3-DoF linear stage; 7 –Distance sensor power supply; 8 –
Actuator controllers; 9 –Compensation actuator; 10 –Pipette holder;
11 –Pipette; 12 –Plastic container with Parafilm® on bottom; 13 –
Stimulation actuator; 14 –Breadboard.

A. Benchtop Setup

The custom benchtop setup (Fig. 5) contains three main
functions: EBI-sensor ( 1 , 3 , 4 , 11 ), motion generation
( 2 , 5 , 8 , 13 ) and motion compensation ( 2 , 5 , 8 , 9 , 10 ).
All components are directly or indirectly mounted on a rigid
aluminum breadboard ( 14 ) to ensure good mechanical and
optical stability. The object under test is a piece of Parafilm®

glued to the bottom of a small fluid-filled (physiological saline,
0.9%) plastic container ( 12 ), which is connected to the ground
wire of the EBI sensor. The latter is mounted on a vertically
movable platform ( 13 ), as explained later. The motion gener-
ated from 13 is transmitted to the plastic container, connecting
the Parafilm® and EBI’s ground wire, and is sensed by the
pipette ( 11 ) - EBI sensor combination. The main components
of this sensor are a National Instrument® FPGA ( 1 ) and
galvanically isolated VCCS ( 3 , 4 ) that provides the neces-
sary signals/calculus to compute the complex instantaneous
impedance ( 11 ) every 10 ms. For reliability, silver wires are
used in the connection of pipette and conductive liquid in the
cup.

For motion generation and compensation, high-precision
micropositioned piezoelectric actuators (APF503, Thorlabs®,
USA) are used ( 9 , 13 ). The maximum stroke of the actuators
is 310 µm and is in range of the typical physiological motion.
The pipette is attached to the compensation actuator with a
custom braided sleeve pipette holder ( 10 ) [43]. This assembly
is in turn attached to a 3-DoF stage to allow precise manual
positioning. The benchtop setup includes two additional high-
resolution (∼ 0.7 µm) laser distance sensors ( 5 ; OM70,
Baumer® Group, Switzerland) that measure the actual motion
of the pipette and the movable platform at 250 Hz.

The actual motion compensation algorithm is implemented
and executed on an external PC. The input (impedance,
distance sensors) and output (actuators) signals between the
setup and PC were interfaced with a NI® EtherCAT ( 2 ) using
the open-source robotics middleware suite Robot Operating
System (ROS) and ran at 100 Hz.

B. Heartbeat Motion Compensation

According to Sec. II-A and literature, there are mainly two
physiological components present in the in vivo measurements.
In some cases, only one of the two is dominant (mostly
heartbeat, and is the focus here) and sufficient to compensate
for. Therefore, in this case, a simple sinusoidal stimulation
signals d(t) was used according to (11) and sent to 13 ,
with f the generation frequency, t time and A the stimulation
amplitude, here chosen around 30 µm.

d(t) = A (sin (2πft) + 1) [µm]. (11)

To verify the applied control strategy, a range of frequencies
(i.e., f = 1, 2, 3, 4, 5 Hz) was applied over the full heartbeat
range [44]. To validate the repeatability, each measurement
was repeated five times. Figure 6 shows one of these results
at a frequency of 2 Hz. Panel (a) shows a steady state time
fragment of estimated EKF states (i.e., input estimate based
on observation model, and accompanying estimated frequency
in green) before the actual compensation starts. To evaluate
the estimation performance, they are compared to their true
counterparts, namely EBI input (red) and generated motion
frequency (yellow). Despite the large input noise of the EBI
sensor, we confirm by tests and (real) experiments that the
internal EKF states of the system are able to accurately and
reliably estimate the frequency (green vs. yellow) and more
important to estimate the instantaneous target motion (blue
vs. red). In this open-loop operation (Fig. 6), it is clear that
the EKF acts as a narrow bandpass noise reduction filter,
which is the purpose and expected by the imposed model. The
dynamic behavior of the compensation algorithm is illustrated
in panel (b). It shows the course of the input EBI signal (red),
the internal model estimation (blue), and the output voltage
(green) when, after stabilizing the internal states (e.g., panel
(a)), the compensation output is activated (here at 5s). After
some internal amplitudes adjustments (green steps) and fine-
tuning of internal states in the EKF, the input (red) and EKF
estimation (blue) are reduced to under-threshold signals. The
result of this is shown in panel (c) by the actually measured
motions of the pipette (blue; compensation motion), actuator
(red; generated motion), and their difference (black; compen-
sation error). Note that the compensation error is due to the
internal built-in threshold (see Fig. 4) and to distortions of the
actuator that cannot be compensated for, such as harmonics.

To quantitatively evaluate the compensation performance,
the error(s) over five periods after the compensation signal has
converged were calculated. Three metrics are used, the Root
Mean Square Error (RMSE; (12)), the Maximum Absolute
Error (MAE; (13)), and the Normalized Root Mean Square
Error (NRMSE; (14)).

RMSE =

√∑N
i (yi − ŷi)2

N
, i = 0, 1, 2, ..., N, (12)

MAE = max {|yi − ŷi|} , i = 0, 1, 2, ..., N, (13)

NRMSE =
RMSE

ŷmax − ŷmin
× 100%, (14)
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Fig. 6. Fragment of the steady state time at f = 2 Hz. (a) The performance of the EKF on heartbeat motion. (b) Heartbeat motion compensation
at 2Hz. (c) Compensation results from laser distance sensors.

TABLE I
RESULTS, OVER 5 GROUPS OF EXPERIMENTS PER FREQUENCY.

Frequency (Hz)
Motion (µm) Compensation

Percentage (%)RMSE MAE NRMSE
Mean STD Mean STD Mean STD Mean STD

1 1.75 0.29 4.65 0.57 5.77 1.07 84.82 1.43
2 1.78 0.22 4.54 0.36 6.36 0.17 85.12 1.25
3 2.12 0.31 5.26 0.62 6.81 0.88 83.10 1.73
4 2.10 0.28 5.44 0.54 7.09 0.95 81.71 1.83
5 3.79 0.39 7.81 0.78 12.83 1.82 73.61 2.90

yi and ŷi represent the instantaneous absolute motions of
the pipette and stimulation measured by the laser distance
sensors. Standard Deviation (STD) is also calculated as the
experiments are repeated five times. Additionally, a compen-
sation performance (CP) factor to evaluate how much motion
is compensated is introduced:

CP =

(
1− MAE

(ŷi)max − (ŷi)min

)
× 100% (15)

Table I summarizes the results for those of the five different
frequencies. Across all measurements, the performance factor
for the proposed motion compensation algorithm exceeds 80%
except for 5 Hz, which is around 74 %. However, it must be
noted that this frequency is beyond the physiological range of
the Gerbil [44] but is presented here to challenge the proposed
controller and setup.

C. Heartbeat and Respiratory Motion Compensation
During in vivo patch clamping, one noticed that the induced

breathing motion could sometimes not be ignored. Here the
more advanced observation model in Sec. II-C.2 is verified.
To generate a combined motion of heartbeat and breathing,
the following model is used and sent to 13 :

d(t) = A1 (sin(2πf1t) + 1) +A2 (sin(2πf2t) + 1) [µm]. (16)

1) Amplitude and frequency: During the in vivo patch clamp
procedure, the animal is under anesthesia. The breathing and
heart rate may increase because the anesthesia level will go
down as the experiment progresses [44]. To simulate this
behavior in this experiment, the generated motion frequency

and amplitudes are made to vary from A1 = 25 µm to 30
µm, f1 = 1.9 Hz to 2.1 Hz, and A2 = 8 µm to 10 µm,
f2 = 0.8 Hz to 0.9 Hz with a step change during the motion
compensation. Note that the stimulus step changes are not
physiological but are introduced to challenge the controller.
The results of this test are shown in Fig. 7. Panel (a) shows
the EKF responses to a step change of both frequencies and
amplitudes. The estimation is able to converge to the ground
truth and be back on the right track. Despite the change
of amplitude and frequency of the motion causing transient
behavior, the amplitude of the EBI still decreases as visible in
panel (b). This indicates that the relative motion between the
pipette tip and neurons is very well compensated. Panel (c)
illustrates the results of one of the five repeated experiments.
The black error line fluctuates along with the generated motion
but overall with a CP of 81.72%. Table II summarizes the
results over the five different groups and shows a small STD
for all four valuation metrics.

2) Pipette sudden moving: Another possible scenario that
can occur during in vivo patch clamping is a sudden change
in the position of the pipette due to a sudden movement of
the animal, or another (un)intentional perturbation. To relocate
the pipette or switch to another neuron, the pipette will need
to move forward/away from the neuron. This procedure is
basically carried out continuously during the in vivo patch
clamp experiment. Therefore, this scenario was implemented
to test the proposed motion compensation controller. There
were in total of five 10 µm step changes (shown in Fig .8)
performed with three approaching steps and two retreating
steps. Each step change was made with the micro precision
linear stage in the setup as shown in Fig .5. After every
forward or retreat, a transient behavior can be observed in
the estimated amplitude of heartbeat rh,k, breathing rb,k,
and frequency. However, as is visible in panel (a), the EKF
managed to quickly converge to the correct value after each
step. Moreover, the estimated amplitudes of both heartbeat and
breathing are reduced, and both amplitudes maintain a low
level close to zero while step changes happen. In the last step,
the pipette is at a different location than before the first step,
but it still performs a steady-state compensation as shown in
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TABLE II
RESULTS, OVER 5 GROUPS OF CHANGING FREQUENCY EXPERIMENT.

Motion (µm) Compensation
Percentage (%)RMSE MAE NRMSE

Mean STD Mean STD Mean STD Mean STD
3.21 0.38 7.11 0.58 8.25 0.89 81.72 1.28

TABLE III
RESULTS, OVER 5 GROUPS OF PIPETTE MOVING EXPERIMENT.

Motion (µm) Compensation
Percentage (%)RMSE MAE NRMSE

Mean STD Mean STD Mean STD Mean STD
1.86 0.73 4.53 1.18 5.25 2.11 87.23 3.45

panel (c).
The results of the two different scenarios are listed in Table

II and III and show good performance with a CP of more than
80% and an MAE of ∼ 7 µm. In principle, this performance
is necessary to create a reliable in vivo patch at a neuron with
a size of ∼ 10 µm [7].

IV. EXPERIMENTS AND RESULTS: IN VIVO VALIDATION

After several different scenarios of benchtop verifications,
in vivo validations in gerbils are performed in this section.

A. In vivo Experimental Setup
The in vivo platform (Fig. 9) used in this section was func-

tionally similar to the benchtop with comparable components
(see figure caption), but without motion generation and motion
measurement components. Other differences specific to the in
vivo patch clamp procedure were: first, an additional pressure
assembly consisting of a flexible silicon pressure tube ( 5 ),
articulating support arm ( 3 ), and special pipette adapter ( 9 )
to provide positive and negative air pressure were added;
second, the manual 3-DoF micromanipulator was replaced
with a motorized version (SUTTER INSTRUMENT® MP-
225, 4-DoF) for remote neuronal search; third, pulled pipettes
( 6 ) were used with a fine tip (� 2 ∼ 3 µm, see inset
Fig. 9 for microscopic view; Z ∼ 1.5 MΩ), whereas for
desktop measurements unpulled pipettes (� 1 mm; Z ∼ 0.1
MΩ) were used; and fourth, a dedicated intracellular patch
clamp amplifier (DAGAN® BVC-700A) with internal nA-
VCCS and pipette impedance compensation (bridge balance
and capacitance compensation) was used.

The whole assembly was mounted on a small aluminum
breadboard in an EM-shielded and soundproof room. The
anesthetized animal was mechanically secured with a metal
rob to a heavy frame, minimizing additional breathing artifacts.
All procedures were approved by the KU Leuven Ethics
Committee for Animal Experiments (P071/2022, approved on
August 18, 2022) and were in accordance with the National
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Fig. 9. In vivo setup: 1 –Piezoelectric controllers; 2 –NI® Ether-
CAT; 3 –Articulated clamp; 4 –Four-DoF motorized stage; 5 –Flexible
silicon pressure tube; 6 –Pipette tip; 7 –Control laptop; 8 –Animal
fixation frame; 9 –Pipette adapter; 10 –Piezoelectric actuator; 11 –
Pipette holder; 12 –Anesthetic gerbils.

Institutes of Health’s Guide for the Care and Use of Laboratory
Animals.

B. Stationary Motion Compensation
The in vivo procedure, in brief, is as follows. A glass

pipette, with silver wire inserted in it as the electrode, under
positive pressure is passed through the brain surface and then
under reduced pressure advanced to the desired region in the
brain. The ground wire of the EBI sensor was placed in
the nape of the neck of the animal. Once an object (e.g., a
neuron) is detected (increase in impedance), the pressure is
further released and the compensation procedure is started.
While continuously compensating, the object of interest is
approached under the operator’s command until contact is
made. Finally, negative pressure is applied to the pipette after
which the patch is made. During validation, a maximum EBI
detection current of 100 nA was applied to minimize the risk
of early membrane electroporation, although, if present, it does
not affect the validation of the EKF. For comparison with
the other EKF signals, the ECG signal was simultaneously
monitored and stored.

The in vivo performance of the proposed controller is
demonstrated in Fig. 10. During stationary motion compensa-
tion, the pipette was forwarded toward the neuron of interest
until motion was detected by the EBI sensor. The position of
the pipette was then fixed and kept at a fixed distance from
a neuron. All panels depict the relevant signals (input signal
EBI, red; EKF input estimation based on observational model
(7), blue; EKF heartbeat and breathing amplitudes estimations,
green and yellow; the measured ECG, pink; and the EKF
output compensation signal, green) before and after switching
on compensation.

A few general observations can be made over the different
in vivo examples. First, before enabling compensation, the
EKF performs good real-time regression (EKF estimation)
on real in vivo data (EBI). This is shown in more detail by

TABLE IV
RESULTS, OVER 4 GROUPS OF in vivo COMPENSATION.

Component
Compensation

Percentage (%)
Mean STD

Heartbeat motion 76.05 14.39
Respiratory Motion 75.01 9.44

the magnification in Fig. 10(a) 1), which also visualizes the
excellent phase correlation between the EBI/EKF estimation
and the QRS complex in the ECG. This excellent correlation is
also valid for the output (green) as shown in the magnification
in Fig. 10(b) 3) after the compensation was started.

A second observation is a sharp reduction in amplitudes
of the periodic components in the input signal (EBI) after
enabling compensation (Fig. 10(b) 2)). This is indicated by
the sudden decrease in the (remaining) estimated heartbeat
amplitudes rh,k and breathing amplitudes rb,k at the input and
also visually by the EKF estimate.

A third observation is that despite the noisy and rather
chaotic input (EBI/EKF estimation before enabling compensa-
tion), the output signal (green) appears to be more consistent
during effective steady-state compensation.

A problem with in vivo experiments is how to quantify
performance since the real motions are unknown. As a com-
promise, one can use the steady states of the input signal (EBI)
before and after enabling compensation, which are a good
reflection of the un- and compensated motions, respectively.
The compensation percentage then becomes

CPvivo =

(
1− mean(Auncompen)

mean(APP )

)
× 100%, (17)

where Auncompen is the peak-to-peak amplitude of uncom-
pensation leftover EBI and APP is the peak-to-peak EBI
amplitude without motion compensation. Table IV illustrates
the results of CPvivo of both components, in which more than
75% motion is compensated and the following approach to
neurons procedure can be performed.

C. Dynamic Motion Compensation

This subsection illustrates a further step in the patch pro-
cess in which compensation is achieved while advancing
the pipette toward the neuron. According to the impedance-
distance relationship described in Sec. II-B, the impedance
will increase as it approaches the neuron. In the extreme the
impedance (resistance) will grow to infinity, in our realistic
application this means clipping the value. This is illustrated
in Fig. 11 (a) where this kind of progression from enabling
compensation (∼ 25 s) until clipping (∼ 100 s; end of forward
movement) is shown. Note that for a certain period of time
(∼ 58 - 68 s) the compensation was temporarily disabled.
Details of this period are in panel (b), where the fluctuations
induced by the physiological motion appear again on the
EBI when there is no motion compensation. The estimated
amplitudes for both heartbeat and respiratory motion (i.e.,
rh,k and rb,k) components also increased after the algorithm
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Fig. 10. In vivo motion compensation at a fixed distance from a moving object (e.g., neuron). 1) The EKF estimation along with the ECG. 2)
Decrease of estimated amplitudes of heartbeat rh,k and breathing rb,k when compensation starts. 3) The compensation voltage and the ECG
signal.

Fig. 11. In vivo motion compensation during forward advancement while also making contact with the object under test. (a) The whole procedure
of the experiment with the patch point. (b) The difference of the EBI, estimated amplitude between with and without motion compensation.
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Fig. 12. Frequencies of both heartbeat and breathing during the in vivo
patch clamp.

was manually stopped. When the algorithm was started again,
the fluctuations of the EBI signal were minimized and both
amplitudes estimated by the EKF decreased, which indicates
the relative motion between the tip of the pipette and the
neuron membrane is reduced. This example illustrates the
algorithm’s ability to maintain compensation in the presence
of a dynamically changing operating point.

To further demonstrate the performance of the proposed
control strategy, Fig. 12 shows the estimated frequencies of
both heartbeat and breathing from the EKF between 50s - 100s
during the in vivo patch clamp procedure. The heartbeat and
breathing frequencies of the animal were calculated through
the Fast Fourier Transform (FFT) with a window of 500 data

points, which for a sample rate of 100 Hz in this work, leads
to a 5s time window. It is clear to observe that with motion
compensation and pipette approaching neurons, the proposed
controller can still perform stable and maintains an accurate
estimation of physiological motion frequencies.

Reaching the motion compensation during the in vivo ex-
periment shows the promising performance of the proposed
algorithm. It provides great potential for further patch clamp
since this approach procedure is the essential step when
performing the in vivo patch clamp on the neurons.

V. DISCUSSION

The aim of this work was to develop a mechanical setup and
EKF algorithm to compensate for the physiological motion
of a neuron to ease the procedure of in vivo patch clamp
experiments.

In this work, a motion compensation strategy solely based
on EBI sensing, using the available patch pipette is pro-
posed. For this, we exploited the monotonically decreas-
ing impedance-distance trend between pipette and object
(Parafilm®) as was characterized in our previous work using
ex vivo calf brain [45]. The difference in the impedance-
distance relationship (between different test objects or between
benchtop and in vivo setup) is not a barrier in this work.
Moreover, it is not advisable to depend on it since pulled
pipettes can vary significantly in impedance. Furthermore, due
to temperature, stress level, and accessibility, the environment
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itself will also vary under in vivo experiment conditions. Thus,
the proposed method is designed to be independent of spe-
cific pipettes and environmental characteristics. An attention
point in the impedance-distance relationships in Fig. 2 (b) is
saturation due to practical limitations (e.g., voltage clipping
in EBI sensor, current leakage between pipette and object,
etc.). This saturation is unavoidable and can be mitigated by
choosing another (larger) operating range, which in turn results
in a lower signal-to-noise ratio at large distances. During
development on the test bench, we used a fixed range, and in
the in vivo setup, the range was chosen based on the intended
purpose (i.e., distal or proximal compensation).

To develop and verify the proposed motion compensation
strategy, an experimental benchtop setup was built with motion
sensors and simulation capabilities. Two different observation
models were tested, a simple for only a dominant heartbeat and
an advanced one for both heartbeat and breathing. Different
scenarios over a range of heartbeat frequencies were tested.
Results showed that over different conditions the CPs were
larger than 73% for the simple model and larger than 81% for
the advanced model, which is reasonable because one more
component (breathing) is included in the observation model
despite it not being the major source of the physiological mo-
tion compared to the heartbeat. This also shows the potential of
the algorithm for the following in vivo experiment, here solely
based on the bio-impedance measurement, and illustrates the
stability of the benchtop setup.

For in vivo experiments, a lean-and-mean setup using the
advanced model was developed, where a compensation result
of at least 75% was achieved. The in vivo performance is
very good, but as expected less than on that of the benchtop.
This is for instance due to differences in environment (in
vivo brain versus saline water in a cup), stimulus (i.e., the
discrepancy between model and reality, dynamic behavior such
as rate changes), setup (e.g. different pipette, less mechanical
stability), and scenarios (static vs. dynamic behavior). During
and after a successful patch, the EBI will reach saturation
and lose its function (shown in Fig. 11(a) after ∼ 110s). It
is up to the experimenter whether or not to turn off motion
compensation. The result of the latter is unpredictable due to
loss of feedback and is not recommended. In most cases, after
a successful patch, it is even not necessary anymore given the
flexibility of the neuron.

Due to the space limitations of the patch pipette (shown in
Fig. 9), only one EBI sensor was implemented here. Based on
this, the motion compensation control strategy was proposed
in Sec. II-D. The amplitude will stop updating when the
variation is lower than a preset threshold value, which now
the measured bioimpedance signal is close to a flat line and
indicates no relative motion between the pipette tip and the
neuron surface. The lower the threshold value, the less residual
motion will remain and the measured EBI signal will be closer
to a flat line. However, a smaller threshold value will also
compromise the measured EBI signal since it contains less
information about the motion. Nevertheless, the closer to the
neurons, the less fluctuation of the impedance range when
distance changes (Fig. 2). Thus, the performance of the system
will not be influenced too much by choosing different preset

thresholds, which shows the robust stability of the proposed
control strategy. Furthermore, the combination of the EKF and
the EBI provides a novel way of detecting the motion of the
neurons and using it for motion compensation.

For future study, other biological signals that may link
to the physiological motion (e.g. ECG) are suggested to
be implemented with the EBI together to provide a more
accurate and stable motion detection source. Moreover, a more
advanced control schematic with other signal inputs is also
considered to be integrated with the current system.

VI. CONCLUSION

In this work, an EKF-based motion compensation strategy
to neutralize the motion of a neuron by using only EBI
sensing is proposed. Measurements obtained under different
conditions and scenarios showed a compensation performance
of at least 80% and 75% for the benchtop and in vivo setup,
respectively. The capabilities of the current technique have
been successfully demonstrated, which has the great potential
to significantly improve the success rate of in vivo intracellular
experiments and other related applications.
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