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Summary 

Road infrastructure is vital for socioeconomic development. However, road construction 

companies face intense competition due to changes in contracting schemes that demand longer 

guarantee periods. Traditionally, road construction practices heavily rely on experience-based 

decision-making, leading to variability and poor pavement quality. To address this, contractors 

must adopt effective construction process quality control to meet functional requirements and 

reduce operational variability. 

Conventional road construction quality control practices are problematic and insufficient. 

These practices focus on end results and performance-related specifications, neglecting the 

connection between process quality and product quality. Consequently, they only verify if on-

site operational strategies meet functional requirements, without optimizing activities to 

prevent road failure. This approach fails to identify which specific activities in previous phases 

contributed to inadequate mechanical properties, hindering improvement in future projects. To 

address this, a shift is needed towards explicit and process-oriented quality control is necessary, 

while understanding the relationship between construction process quality and resulting 

pavement quality is crucial for making this transition successful. 

The complexity and non-linearity of the road construction system make it challenging to 

investigate the relationship between road construction process quality and product quality. One 

approach to tackle this challenge is to utilize data-driven techniques, such as Machine Learning 

(ML), because of the compelling capability of ML in revealing the hidden patterns in the data.   

On these premises, this research aims to develop a data-driven method to systematically 

uncover the underlying correlations between road construction process quality and product 

quality. 

Following the concept of design cycle, the methodology was defined. The problem context was 

investigated concerned with the theoretical framework and societal embedding, through 

literature review and stakeholder analysis respectively. Subsequently, the requirement 

engineering was performed based on the stakeholders’ needs to generate functional 

requirements.  

The input-output structure of the datasets required for the ML model development was 

identified, including input variables such as the quality indicator of the on-site operational 

strategies, weather conditions, mixture type, and auxiliary parameters in the operational phase 



 

 

 

of the pavement (such as traffic intensity and climate condition). More specifically, the quality 

indicator of the on-site operational strategies will be represented by the Effective Compaction 

Rate (ECR), indicating to which extent the compaction meets the requirements considering the 

compaction temperature windows and target number of roller passes. The outputs of the 

identified data structure include density degree, residual lifespan, and IRI, covering the short- 

and long-term perspectives of the pavement product quality.  

A Genetic-Algorithm-based ML model development method was designed. Given the research 

context, the regression problem will be applied to the ML model development. Specifically, 

Random Forest (RF) was selected as the ML algorithm due to its promising performance, the 

capability of overcoming overfitting issues, and interpretability. In addition, because of the 

time-variant nature of the output regarding long-term pavement performance indicators, the 

time-series regression will also be applied, where Gated Recurrent Unit (GRU) was utilized to 

tackle the complexities of non-linear regression concerned with time-series data. 

For the validation, case studies were conducted. The regression of density degree will be based 

on the data provided by the Dutch contractor Heijmans, collected from a series of construction 

projects around the Schiphol Airport. For the regression of residual lifespan and IRI, two Dutch 

highway sections (A58 and A4) with a total length of 4.1 km, were selected. Based on the 

collected data, the regression model for the density degree using RF failed to satisfy the 

corresponding requirements regarding the model performance. For the regression of residual 

lifespan and IRI, both the RF and GRU were used to develop corresponding models. For 

residual lifespan, the developed RF model outperformed the GRU model, with an R2 of 0. 8297, 

while the regression of IRI shows contradictory results, where the developed GRU model 

significantly outperformed (R2 is 0.8284). After interpreting the permutation importance, both 

cases show that the construction process quality indicator represented by ECR achieved the 

third highest importance, revealing the rather high correlation between process quality and 

product quality in asphalt construction.  
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1. Introduction 

This section provides the background of this Engineering Doctorate (EngD) project, together 

with the discovered problem and possible solutions. This section concludes with the 

representation of the outline of the entire report.  

1.1. Project Background 

Road infrastructure plays an integral role in socioeconomic development by undertaking the 

function of transporting people and goods from one location to another [1]. While there is a 

steadily high demand for road infrastructure, road construction companies are facing fierce 

competition, which mainly comes from the changes in the contracting scheme that demands 

lengthy guarantee periods [2]. Over centuries, road construction practices have been treated 

intuitively that have heavily relies on experience-based decision-making, particularly during 

the construction phase. However, road construction is an intricate and complex operation [3] 

that requires highly dynamic and adaptive operational strategies [3–5]. Consequently, 

considerable variability is generated, which is widely regarded as the root cause of poor 

pavement quality [3]. Therefore, to ensure that the constructed pavement is compliant with the 

functional requirements, it is of great importance for contractors to implement effective 

construction process quality control and reduce operational variability. 

According to the definition of [6], quality control can refer to all the actions, including 

techniques and activities, applied in the production process to meet the quality requirements. 

As pointed out by Miller et al. [7], the conventional road construction process quality control 

practices are problematic and insufficient. This is because most of the quality control methods 

are designed and conducted from the perspective of the end result, and they operate based on 

performance-related specifications. These methods greatly neglected the link between process 

quality and product quality. Consequently, the conventional road construction quality control 

schemes can only determine if the implemented on-site operational strategies can pass the 

verifications regarding pavement functional requirements or not, while no actual improvement 

can be made to optimize these activities to reduce or prevent premature road failure. In other 

words, when the post-construction sample tests indicate inadequate mechanical properties, it is 

not possible to identify which activities in the previous phases went wrong. As a result, the 

contractors are unable to carry this lesson to their future projects and try to improve their 

strategies based on past projects. That is why it becomes necessary to shift from implicit and 
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outcome-oriented quality control to explicit and process-oriented quality control, where the 

core is to closely monitor the road construction process using key process parameters. But, to 

make this transition possible, it is imperative to properly understand the relationship between 

the construction process quality and the resulting pavement quality. 

1.2. Problem Statement and Potential Solution 

To address this, Miller proposed the methodology of Process Quality improvement (PQi), 

which provides a framework to enable the quantitative measurement and evaluation of the 

variability during the asphalt paving process [8]. Specifically, the concept of the Internet of 

Things (IoT) is deployed in the construction process, using embedded sensors, to directly 

monitor and assess the asphalt.  

In the past decade, initiated by a Dutch research network called ASPARi [9], great efforts have 

been put into validating and applying the PQi framework in Dutch road construction projects.  

While PQi is gradually becoming a baseline approach for assessing construction variability, 

much less is known about how the process quality can eventually affect the product quality of 

the as-built asphalt pavement. Although there exists a strong correlation between the 

effectiveness of the road construction process and the eventual quality of the pavement, the 

current system cannot explicitly and quantitatively map this correlation. Consequently, the 

extent to which the adopted operational strategies contribute to pavement quality is still 

unknown. Given that the primary goal of monitoring and evaluating process quality is to 

improve the quality of asphalt pavement and optimize the construction process, it is important 

to have a comprehensive and unambiguous comprehension of the correlations between process 

quality and product quality in asphalt construction.  

The system's complexity and non-linearity render the investigation of the correlations between 

road construction process quality and product quality a challenging task. One possible approach 

to deal with this is to use data-driven techniques, such as Machine Learning (ML). Over the 

past few years, the Architecture, Engineering, and Construction (AEC) industry has seen 

momentum to adopt ML as a transformative tool. This is not only because of its capability of 

capturing hidden patterns underlying the data, but also due to the sheer volume of information 

and data generated, transmitted, processed, and utilized within the industry that can be used to 

better analyze the processes [10]. In general, ML can be described as an intelligent method that 

improves its performance by learning from historical data to make predictions [11]. This 
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process mimics human learning, where knowledge is gained from past experiences through 

induction, summarization, and internalization.  

Specifically, in the field of asphalt construction, great attempts were made by developing and 

utilizing ML-based empirical models to thoroughly investigate the non-linear correlations 

between various factors and asphalt pavement quality indicators, including the long-term 

performance [12–15] and in-place verification results (i.e., the mechanical properties of the 

pavement obtained through in-place or laboratory measurements) [16–18]. These studies 

considerably leveraged the capabilities of ML in tackling underlying non-linearities, thus 

facilitating the exploration of the hidden correlations between input and output parameters. 

However, previous studies in the field have predominantly limited their modeling scope to just 

one phase of the asphalt construction lifecycle, resulting in the underappreciation and 

negligence of the significance of the quality of other crucial phases, such as mixture design and 

construction to the product quality of the asphalt construction. This is specifically problematic 

because previous studies failed to perceive the quality of asphalt construction as an integral 

system, meaning the quality of every phase of its lifecycle is not only affected by itself but also 

tightly influenced by the previous phases as well. Consequently, when revealing the question 

of what leads to the achieved product quality of asphalt construction, these studies failed to 

provide a comprehensive profile that takes all the critical elements into account. 

1.3. Project Objective and Questions 

On these premises, an urgent problem at hand is to fully accomplish the transition from 

outcome-oriented road construction quality control to process-oriented quality control. This 

would require an effective scheme to capture key parameters involved in the road construction 

process, as well as an explicit understanding of the correlations between the construction 

process quality and the resulting pavement quality. While the former has been covered in the 

development and implementation of the PQi methodology, much less has been explored 

regarding the latter.  

Therefore, this EngD design project focused on the investigation of correlations between the 

construction process quality and the resulting pavement quality in order to quantify the impact 

of the construction process on the obtained quality of the pavement. Specifically, this would 

require the application of data-driven techniques, particularly ML. This is because of the 

considerable system complexity and non-linearity, as well as the compelling capability of ML 

in revealing the hidden patterns in the data.   
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To sum up, the objective of this project was formulated: 

To develop a data-driven method to systematically uncover the underlying correlations 

between road construction process quality and product quality. 

The design project objective stated in the previous section can be achieved by answering the 

following questions derived from the project context and the generated objective: 

1. How to develop the data structure to illustrate the input-output relations regarding the 

asphalt pavement process and product quality considering the lifecycle of the asphalt 

construction? 

a. What are the definitions and scopes of asphalt pavement process and product 

quality, considering the asphalt construction lifecycle? 

b. What are the indicators that can represent the process and product quality of 

asphalt pavement? 

2. How can the ML-based method be developed and used to extract information from the 

structured dataset? 

a. What are the input-output structures that can capture the potential correlation 

between process and product quality indicators?  

b. How to solve the integration conflicts between different data sources to prepare 

the datasets? 

c. What ML algorithms are suitable given the problem context, modelling 

objectives, and performance? 

d. How to train, test, and optimize the ML models to achieve optimal performance 

without yielding generality? 

e. How to analyze and interpret the developed ML models to extract knowledge 

from ML models? 

3. What conclusion and recommendations can be made based on the results of the 

investigation? 

Among them, the first question is concerned with how should data be structured regarding 

variables that should be considered and their relations. To answer this research question is the 

prerequisite of obtaining valuable output from the ML approach. The second research question 

focuses on the implementation of ML method, i.e., how different ML models are developed 

according to different modelling objectives. To answer this question, it is essential to consider 

the general ML model developing process, including dataset development, selection of ML 
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algorithms, ML model training and validation, hyperparameter optimization, and analysis of 

the obtained ML models. The last question is about a final assessment of the entire execution 

of this design project.   

1.4. Design Scope 

To specify the design focus and limitations, it is essential to explicitly determine the boundary 

of the design project.  

This project is initiated by ASPARi. Founded by the University of Twente, ten of the largest 

contractors in the Netherlands, and the Directorate General for Public Works and Water 

Management of the Netherlands (Rijkswaterstaat), ASPARi has been dedicated to 

collaboratively connecting multiple organizations in the Dutch road construction industry to 

improve the performance of the asphalt construction process and its related activities [9]. To 

incorporate the scope of this project into the specific ambitions, strategies, and needs of 

ASPARi, this project merely focused on the road construction industry in the Netherlands. 

Therefore, the data collection was also confined to the Dutch road construction industry and 

within its particular context. 

As the final deliverable of the road construction projects, various road types can be defined 

based on the construction materials (e.g., asphalt roads, concrete roads, gravel roads, etc.). 

Among them, because of various advantages that it can provide, such as jointless surface, 

superior smoothness, low degree of wear, low maintenance cost, high durability, and recyclable 

usage [19,20], the asphalt pavement has been widely used as the major form of the road 

infrastructure, particularly in the Netherlands. Therefore, to ensure the data availability and 

quality to successfully implement the data-driven techniques applied in this project, only 

asphalt roads were focused. 

Furthermore, in this study, the definition of the asphalt construction process quality followed 

the previous work of Bijleveld et al. [3], as the degree to which extent the variability of key 

process characteristics, i.e., the homogeneity of the pavement temperature and the consistency 

and effective compaction, is controlled. Therefore, the assessment of variability resulting from 

a particular operational strategy can be recognized as process quality.  

Product quality can be determined as a cluster of general product attributes that can be expected 

to satisfy the corresponding demands at an acceptable level [21]. According to [22], the quality 

characteristics of the product can be both tangible and intangible. The former mainly refers to 
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the physical attributes of the product, such as the physical properties of the product, appearance, 

and performance, while the latter is concerned with the perceived quality, including the related 

services, information, and supplier characteristics and behaviours [23]. Similarly, according to 

[24], the intrinsic characteristics of the product can be defined as the internal quality, which is 

product-based and can either be objective or subjective. The objective internal quality is 

impartially assessed based on whether the performance of the product can meet the customers’ 

expectations or has a low failure rate, thus enabling the quantitative reflection of this type of 

product quality [25]. Nonetheless, the subjective internal quality mainly concerns the 

perception of the intrinsic cue, which can be too subjective to capture. On this premise, in this 

study, the scope was confined to the identification of tangible and objective product quality. 

This is also partly due to concerns about the availability and accessibility of corresponding data 

for developing a well-structured dataset to enable the application of data-driven techniques.    

1.5. Report Structure 

The rest of the thesis has been organized as follows: after the introduction, Chapter 2 discusses 

the design methodology. Next, Chapter 3 represents the theoretical framework and the social 

context, which together illustrate the results of the investigation of the problem context. 

Chapter 4 covers the system design, representing the detailed procedure of developing the 

proposed data-driven approach to fulfil the design project objective. Chapter 5 illustrates the 

case studies conducted for validating the proposed approach and the obtained results. Chapter 

6 represents the corresponding discussion. Lastly, Chapter 7 concludes the project. 
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2. Project Design Methodology 

In order to systematically reach a design solution to the identified problem from the previous 

chapter, it is essential to follow a methodological approach. In this design project, the adopted 

methodology was referenced from the concept of the design cycle to provide systematic 

guidance to fulfil the design project objective [26]. According to Wieringa [26], four critical 

phases are included in the design cycle, namely the problem investigation, system design, 

system validation, and system implementation, to ensure that the design and improvements can 

be made after thoroughly investigating the problem context and opportunities. To align the 

design cycle with the project context, several adjustments were made on the basis of the original 

design cycle, as illustrated in Figure 1. 

Compared to the design cycle proposed by Wieringa [26], the methodology used in this project 

primarily focused on the first three design phases. Starting with the problem investigation, in 

this phase, the knowledge context and the social context of the data-driven method under design 

were explored, using the literature review and stakeholder analysis respectively. The 

knowledge context of the design provided existing knowledge related to the design questions, 

while the social context specified the goals that the design should accomplish based on the 

expectations of stakeholders. The system design phase included requirement engineering, the 

development process of ML models, and the interpretation of ML models. Lastly, the design 

was validated to assess the attainment of the desired performance by the designed products.  

It is worth noting that the original design cycle is an iterative process allowing continuous 

optimization of the design through design validation and design implementation [26]. The latter 

phase aims to implement the design solution in the real-world environment. However, to deploy 

the design output of this project into the guidance and decision-making enhancement in the 

actual road construction practices, it might encounter the challenges such as regulatory and 

legal considerations, increased cost in digital infrastructure (e.g., data storage, computational 

resources, and hardware infrastructure, etc.), and interpretability and trust. Consequently, the 

implementation of the design outcome would only stay at the conceptual level without being 

able to be validated. Given the constraints on the limited time and resources in this project, the 

implementation of the design was excluded from the project scope.  

The rest of this chapter elaborated on the details of each design phase.



  8 

 

 

 

 

Figure 1. A representation of the detailed design process 
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2.1. Problem Investigation 

In the problem investigation phase, two primary design outputs were obtained, namely the 

theoretical framework and social context. The former involved exploration and representation 

of the theories that underlie the design problem achieved through a literature review, while the 

latter pertained to the interaction between the proposed design and its relevant social 

environment, including the stakeholders involved and corresponding needs. In the subsequent 

system design phase, these two outputs served as the foundation for the requirement 

engineering of the proposed framework, leading to the identification of consistent and testable 

requirements that ensured the framework meets its intended goals and enabled verification and 

validation. Moreover, the theoretical framework, provided a formal and explicit model to 

encode the relationships among the concepts related to quality in asphalt construction and 

operation, thereby facilitating the formation of the data structure used in the ML model 

development process. 

2.1.1. The Exploration of Knowledge Framework 

The theoretical framework of this design project can connect the design questions with the 

existing knowledge by conducting a critical examination of the relevant literature. This 

examination resulted in the extraction and definition of key concepts and theories, including a 

definition of quality composition within the asphalt construction lifecycle, the identification of 

process and product quality and corresponding indicators, and an overview of the applications 

of ML in the field of asphalt construction.  

To explore the theoretical framework, a literature review was conducted to analyze the existing 

work on the topic of interest [27]. Figure 2 below represents the general process of the literature 

review. 
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Figure 2. A representation of the literature review process 

The literature review process was iterative and contained three phases. The first phase was 

mainly concerned with searching relevant literature based on identified topics. In order to 

initiate the literature search and confine the search space of relevant literature, several topics 

were defined as the keywords for searching the literature, including “asphalt construction 

process quality”, “asphalt pavement quality”, “asphalt construction quality control”, as well as 

knowledge concerned with data-driven techniques, such as “data cleansing”, “feature 

engineering”, “machine learning model development”, “machine learning in asphalt 

construction”, etc. These topics were then used as inputs in the search process of the 

corresponding literature. To ensure the quality and comprehensiveness of the extracted 

information, the types of literature included papers published in journals or conferences with 

high significance and acknowledgement, dissertations at master or doctorate levels with high 

quality and novelty, and documents that play an important guiding role in the industry. In 

addition, Scopus and Google Scholar were selected as the main platforms for the literature 

search, given that these two databases have indexed an extensive amount of literature covering 

these defined topics. Then, the pre-selected literature was further examined and filtered. More 

specifically, the titles, abstracts, and conclusions of the pre-selected literature were assessed to 

exclude irrelevant or redundant literature regarding certain topics. Subsequently, the pre-

defined topics were updated by including keywords with high levels of co-occurrence from the 

literature after the filtering process, to further expand the search space of more representative 

and relevant literature. Then, the next iteration started by using the newly updated topics as 
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inputs for the literature search. The entire exploring phase was regarded as completed until no 

more new topics were identified from the updated literature. 

The next phase of the literature review started with extracting key information from the selected 

literature after conducting the exploring phase, including the key findings, applied 

methodologies, theoretical frameworks, and any other information that is relevant to the 

corresponding topic. Then, the extracted information was analyzed by identifying the research 

patterns and comparing the discrepancies across the literature, thus developing a deep 

understanding of the existing knowledge on the corresponding. Next, the analyzed information 

was synthesized by being integrated into cohesive narratives, by identifying the main 

arguments and theories and organizing them in a logical and coherent manner.  

Lastly, the final outcome of the literature review was represented. Based on the analyzed and 

synthesized information, the theoretical framework was structured.  

2.1.2.  The Exploration of Social Context 

In order to have a better understanding of the social context of the system under design, the 

social embedding of the proposed assessment framework will be thoroughly explored, which 

represents the abstract and functional connections between the system under design and other 

elements that can realize its societal functions. 

To discover the social context of the design project, a stakeholder analysis was performed to 

identify and understand the interests of different organizations towards the project. The 

stakeholder analysis was initiated with the identification of stakeholders related to the project, 

by specifying all the individuals and organizations that have interests in or are affected by the 

project. Internal brainstorming sessions, with participants including the EngD candidate and 

the supervisory team, were conducted to generate a list of potential stakeholders, considering 

both the internal and external organizations and individuals that are directly or indirectly 

connected to the design project.  

Next, interactive activities, such as workshops and brainstorming sessions, were organized to 

collaboratively assess the interests of identified stakeholders and generate their needs. Key 

stakeholders were invited to participate in these interactive activities, where they were 

encouraged to share their expectations of the desired project outcome, challenges, and concerns, 

as well as potential support that can be offered by them. Lastly, insights were captured from 

the discussions to generate the stakeholders’ needs. 
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2.2. System Design  

The system design phase mainly focused on the development of ML models with the alignment 

of the stakeholders’ needs to fulfil the project objective. As shown in Figure 1, it started with 

the requirement engineering to generate the requirements for the design output, to explicitly 

reflect what is the design expected to achieve according to the stakeholders’ needs. Then, based 

on the identified requirements, subsequent activities involved in the system design can be 

guided and constrained.  

The rest of the system design phase was mainly concerned with the development of ML-based 

regression models to fulfil the design project objective. Figure 3 represents the overview 

workflow for the developing process of these ML models, including the establishment of 

datasets, ML model training and testing, and ML model interpretation.    

 

Figure 3. Overview of the proposed ML modelling process 

Overall, the process of dataset establishment is a crucial step in the development of ML models, 

comprising several tasks including the definition of input-output structures aligned with the 

modelling objectives, data collection, data integration, and data preparation. In the following 

step, ML models were developed using the established datasets through an iterative process, 

employing optimization algorithms to obtain optimal configurations based on the evaluation of 

the ML models on the pre-defined metrics. Lastly, the interpretability of the models was 

explored by analyzing the contribution of input features to the overall performance, providing 
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deeper insight into the inner workings of the models and a clearer understanding of the 

relationship between process quality indicators and product quality indicators.  

The details of the system design phase were explained as follows. 

2.2.1. Requirement Engineering 

The main purpose of the system design is to specify the requirements of the system under 

design and develop the system for the investigated problem. While the identification of 

stakeholders’ needs is concerned with the problem domain, which mainly focuses on the 

question of “what do stakeholders want”, the system needs mainly focus on the solution domain, 

which answers the question of “what does the system need to do”.  Therefore, based on the 

stakeholders’ needs and explored knowledge context, system requirements can be identified, 

which will be used as the guideline for the rest of the system design and validation.  

Specifically, the concept of requirements engineering will be applied in the formulation of the 

system requirements. Based on the outcomes from the stakeholder analysis regarding the 

stakeholders’ needs, firstly, the stakeholders’ needs were mapped into various functions of the 

system under design by linking what do stakeholders need to what functions should the system 

provide.  

Next, the requirements can be formulated. In order to ensure the formulated requirements are 

consistent, testable, traceable, and complete, and also enable the verification of the 

requirements, a formulation template, as proposed by [28], will be utilized. The template is 

shown in Figure 4 below.  

 

Figure 4. The template of the system requirements formulation [28] 
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2.2.2. Dataset Development 

The first step in ML development is to establish the datasets needed for providing the training 

and testing data. This step contains the formulation of the data structure, data collection and 

integration, and data preparation.  

2.2.2.1. Data Structure Formulation 

In this design project, the primary input for identifying the data structure was the theoretical 

framework explored in the problem investigation phase, which provided important concepts 

and relations from the literature. In addition, the pavement lifecycle management ontology 

developed by Sadeghian [29] was also used as a reference for generating the data structure. 

Therefore, the target variables, i.e., the outputs that the ML models are expected to predict were 

first identified, considering whether or not they can be sufficiently representative as the 

indicators to the pavement product quality. Subsequently, according to different outputs, 

corresponding input variables, i.e., factors that are likely to influence the identified target 

variables, were determined by examining the potential cause-effect relationships through the 

theoretical framework and the pavement lifecycle management ontology [29].  

For the identification of both input and output variables, brainstorming sessions and workshops 

were also held with the participation of domain experts, to collaboratively generate the 

potential variables. During these interactive sessions, the EngD candidate prepared several pre-

selected variables regarding road construction process and product quality indicators, where 

the participants were encouraged to assess whether these variables were adequate or whether 

new variables should be considered. In addition, the data availability of the identified variables 

was also discussed, to determine if it is possible to acquire a certain amount of data to enable 

the ML model development. Otherwise, variables would be removed if too less data can be 

collected. 

2.2.2.2. Data Collection, Data Integration, and Data Preparation 

To efficiently collect data according to the identified input-output structure, a data collection 

strategy was made. Based on the identified input-output structure, multiple data sources, from 

which the corresponding data can be extracted, were examined, regarding the data contents, 

data types, and relations. Subsequently, the accessibility of these data sources was evaluated, 

considering data owners, data formats (such as CSV, JSON, or XML), and authorization 

(whether the database is open, or permission is needed). Then, for different data sources, 

according to their accessibility, different data collection methods were selected, including data 
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request forms, surveys, interviews, etc. To store the collected data with a global structure for 

mapping heterogeneous data uniformly, a data warehouse was designed based on the pavement 

lifecycle management ontology [29] and the identified input-output structure.  

Because the data collection was concerned with multiple heterogeneous data sources, it is 

critical to ensure that the collected data with different resolutions can be integrated into the 

same data structure. Based on the examined data sources and the designed data warehouse, data 

integration conflicts were identified. To cope with the identified conflicts, the matching fields 

between data sources were determined, thus resolving the discrepancies. 

After collecting data from the identified sources, an exploratory analysis was performed on the 

collected data by mainly examining the correlations and patterns. According to the results of 

the performed data exploratory analysis, dimensionality reduction was conducted to remove 

variables that are highly correlated, to prevent overfitting and underfitting problems. 

Subsequently, the outliers were detected from the obtained datasets, which were removed 

eventually. Besides, the data completeness was also assessed, where missing values were 

completed using statistical characteristics of corresponding variables, such as using mean 

values. Lastly, the data transformation was also conducted, focusing on encoding the 

categorical data into numerical data thus enabling the application of ML. 

2.2.3. ML Model Training and Testing  

The training process of ML models was initiated with the selection of ML algorithms. Based 

on the problem context of the design project, supervised learning will be applied, in which 

instances with both the input and output data will be handled [30]. In addition, the development 

of ML models should fall into the regression problem, where a map between continuous input 

and output variables is expected to build [31]. In the theoretical framework, several ML 

algorithms and their characteristics were briefly represented, which was used as the foundation 

for the ML algorithm selection.  

Subsequently, the developed datasets were re-shuffled and randomly divided to support the 

training and testing processes of the ML models. In the training process, the training sets were 

used as the input of the machine learning models. However, the re-shuffled and randomly 

divided training and testing sets could still introduce biases to the predictive performance of 

the developed ML models based on a single division of training and testing sets, thus being 

unable to provide consistent assessment regarding the model performance. Therefore, a method 

named k-fold cross-validation was adopted by further dividing the subset into k non-repeating 
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sections, as shown in Figure 5. During the training process, the models were trained k times, 

using k-1 sub-training sets each time. The remaining sub-training set was then used for the 

evaluation of the model. By averaging the evaluation of the model k times, the fitness score 

was calculated. By using k-fold cross-validation, it can be ensured that all the samples of the 

training subset are involved in both the training and testing process thus ensuring better 

utilization of data, and reducing the sensitivity of the models' performances to how the training 

subset will be further split.  

 

Figure 5. A representation of k-fold cross-validation (k equals to 5) in the ML model training and testing processes [32] 

In order to obtain optimal performance of developed machine learning models, it is essential 

to fine-tune and optimize the model configurations. In this research, optimization focused on 

the hyperparameters of the models, which are external configurations of the machine learning 

model, and whose values cannot be estimated and normally define higher concepts within the 

model. In the system design phase, the hyperparameter optimization algorithm was adopted 

based on the ease of implementation and capability of finding the global optimum, to iteratively 

train and evaluate the obtained ML models until the convergence condition was met.  

The testing phase is connected with the model evaluation, where the trained models were used 

to generate predictions given the inputs from the testing sub-dataset. Then, the predictions were 

compared with the “true values” of the outputs from the testing set based on various metrics, 

thus obtaining the assessment of the model performance.  
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2.2.4. ML Model Interpretation 

Lastly, in order to explicitly represent the correlations between various process quality 

indicators and product quality indicators, the obtained regression models were interpreted. 

However, because of the black-box nature of ML, it is difficult to explicitly explain the internal 

mechanism of the ML models in terms of how the algorithm results in certain results. 

To cope with the difficulty in explaining the ML models, one widely applied approach is the 

model agnostic method, which solely examines the input and output behaviours of the models 

instead of inspecting the inner structures and parameters [33]. Therefore, in this project, 

sensitivity analyses were performed on the developed ML models, to investigate how would 

the predictions of the output variables change according to the changes regarding the input 

variables. In other words, the importance of the input variables (features) regarding the impact 

on the model errors can be examined. Various methods can be identified from the literature for 

calculating the feature importance, such as impurity-based feature importance and permutation 

feature importance [34]. Based on the applied ML algorithms, the method that can be applied 

for all the selected algorithms were applied to provide explicit insights into the models, as well 

as the hidden correlations between inputs and outputs, i.e., between process and product quality 

indicators in this study.  

2.3. System Validation 

It is essential to validate the corresponding design outputs to assess the efficacy of the proposed 

treatment in addressing the identified issues and fulfilling the established needs and 

requirements.  

This design project endeavours to validate the proposed data-driven method for analyzing the 

correlations between process and product quality indicators in asphalt construction through the 

implementation of real-world data via case studies. The initial step was to explore, assess, and 

analyze the PQi measurements over the past few years. This was followed by the filtering of 

the measurements and associated archived data based on their completeness. Besides, the 

projects used in the case studies for modelling the pavement's long-term performance were 

confined to the surface layer, given that most of the distress takes place on the pavement surface.   

Utilizing the identified cases, the system under design functioned as a pipeline to generate the 

datasets to develop different ML models for different regression tasks. Each ML model was 

assessed and interpreted. The efficacy of the method was then evaluated according to the 

alignment of the project outcomes with the requirements established in the requirement 
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engineering phase. Furthermore, the insights generated through model interpretation were 

compared with existing knowledge and previous findings within the related field, to determine 

to which extent can the design project address existing knowledge gaps and contribute to a 

more nuanced understanding of the topic. This comparison also provided insight into the 

overall robustness and validity of the findings from this design project. 
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3. Problem Investigation 

In this section, outputs of the problem investigation phase will be demonstrated, in terms of the 

theoretical framework and social context. 

3.1. Theoretical Framework 

3.1.1. Multiple Aspects of the Quality in the Asphalt Construction Lifecycle 

When applying this definition to the context of road construction projects, it is essential to map 

the inherent characteristics of the road construction project to the scale of its entire lifecycle. 

This is because the asphalt construction process is highly composite in nature, where the quality 

of each stage is influenced not only by its own factors but also by the preceding stages [35]. 

Derived from asphalt construction lifecycle ontology [29], Figure 6 illustrates an overview of 

the quality of a typical road construction project, with regard to various critical aspects. The 

pre-construction phase is primarily concerned with the properties of raw materials and the 

asphalt mixture respectively. For the former, the raw materials mainly include aggregates and 

bitumen, where the quality of these two types of raw materials plays an integral role in 

satisfying the mechanical performance of the asphalt mixtures, especially in providing the 

adhesion, which can be influenced by the chemistry of the aggregates, mixing temperature, and 

surface texture  [36–38]. After determining the composition of different raw materials, the 

asphalt mixtures can be manufactured from the asphalt plants, whose properties can be 

reflected from numerous mechanical performance indicators by conducting corresponding type 

tests. These indicators include the theoretical maximum specific gravity, measured bulk-

specific gravity, air void percentage, water sensitivity, dynamic modulus, stiffness, fatigue 

resistance, rutting depth, resilient modulus, indirect tensile strength, measured stone loss, the 

bond strength between two adhesive layers, noise reduction, etc. [39–43]. 

In the construction phase, the quality of the construction operational strategies, i.e., the logistics, 

paving strategies, and compaction strategies, can be assessed by measuring and evaluating 

corresponding key construction process characteristics. Verification results, including in-place 

measurements like nuclear gauge measurements of pavement density and laboratory tests on 

cores, can be conducted to determine the direct outputs of the on-site operations.  

Upon completion of the construction, asphalt pavements are functional in their operations and 

thus enter the post-construction phase, where external stressors such as traffic intensity and 
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weather can affect their performance. The long-term quality of the as-built pavements is 

ultimately evaluated through measurements of pavement performance in terms of the severity 

of various failure modes, such as raveling, cracking, rutting, and roughness. 

 

Figure 6. An overview of different aspects of quality within the road construction lifecycle 

Based on Figure 6, the various critical aspects pertaining to quality in the asphalt construction 

lifecycle can be roughly divided into two categories, namely process quality and product 

quality. The former can refer to the extent to which the process of making an artefact, i.e., the 

asphalt pavement, has conformed to the standards. Therefore, it includes the direct assessment 

of the quality of the operations during the construction process, i.e., to which extent the process 

is well-controlled to reduce variability. Additionally, because the operational strategies are not 

the sole factor contributing to the variability of the construction process, other factors will also 

be considered when assessing the process quality, including the ambient conditions and the 

properties of the input mixtures.  

Product quality, on the other hand, refers to how the products satisfy the tangible and intangible 

requirements, which is positively affected by the process quality indicators. In this design 

project, the product quality of the asphalt construction will be confined to the tangible quality, 

given intangible values of the pavement (such as beauty, historical values, emotional responses, 

etc.) are too abstract to evaluate and model using data-driven methods. In general, product 

quality encompasses two distinct aspects, including verification results that focus on the in-

place or short-term mechanical properties of the pavement, and long-term performance that 

will be measured regularly during inspections. Similar to the process quality indicators, the 

product quality will also receive the impact of environmental factors during the operation of 

pavements, such as climate and traffic intensity. Figure 7 provides the representation of the 

cause-effect relations between the process and product quality indicators.  

The following sections will detail the explanation and identification of the process and product 

quality and corresponding indicators. 
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Figure 7. The cause-effect relations between different quality aspects in the asphalt construction lifecycle 

3.1.2. Asphalt construction process quality and Relevant Indicators  

In this study, the definition of the asphalt construction process quality will follow the previous 

work of [3], which defines quality as the degree to which the variability of key process 

characteristics, i.e., the homogeneity of the pavement temperature and the consistency and 

effective compaction, is controlled. Therefore, the assessment of variability resulting from a 

particular operational strategy, in conjunction with specific ambient conditions and mixture 

properties, can be recognized as process quality. 

Figure 8 illustrates a holistic picture of the components involved in the asphalt construction 

process, which can be roughly divided into asphalt mixture production, on-site operations, and 

transport. Variability in the process can be caused by any of these component classes. Asphalt 

mixture production refers to the production process of asphalt mixtures, where high variability 

can be associated with the production, sampling, and testing methods. As for the on-site 

operations, it is mainly concerned with the operational activities taken on the construction site 

including the asphalt paving and compaction, which highly rely on craftsmanship in the current 

practices, and consequently. This dependence causes a high degree of variability [3,7]. Lastly, 

transport or logistics connects the different stages involved in the asphalt construction phase. 

However, variability can also be caused during the transport process if the materials are 

delivered too early or too late, which will affect the delivery and initial temperature of the 

mixture during the paving process.  
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Figure 8. Units involved in the asphalt construction process [44] 

The measurable representations of process quality can be regarded as process quality indicators. 

As illustrated in Figure 8, the on-site operations of asphalt construction mainly include the 

asphalt paving process and compaction. Therefore, the process quality indicator can be defined 

as the degree to which the asphalt layer was compacted sufficiently (i.e., enough compaction 

passes) at the right temperature (i.e., avoiding the compaction of the asphalt layer when it is 

too hot or too cold) [45–48].  

More specifically, the construction process quality is assessed using the Effective Compaction 

Rate (ECR) index proposed by [49], as indicated in Equation 1.  

ECRp,k =
np,k

N
                                                                                                                                            (1) 

where  np,k refers to the number of cells that have received ±k passes compared to the target 

number of passes and at least p% of received passes were within the defined compaction 

window, and N represents the total number of cells. 

However, ECR is only applicable for the assessment of the compaction effectiveness from a 

macro perspective, such as evaluating different sections in the asphalt pavement. As for the 

micro perspective, the evaluation of the quality of the construction operation will be scaled 

down to the centimeter level, such as the PQi methodology. Figure 9 represents the analytical 

matrix adopted in the PQi measurement, where the concept of cells has been utilized as the 
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basic analytical unit for representing the process and product quality, which is defined by the 

resolution of collected data due to the update rate and the precision of the infrared camera and 

GNSS receivers. 

 

Figure 9. Construction process quality indicators at the cell level 

Therefore, when applying this concept to a rather small resolution, i.e., the single cell, an 

adjustment will be needed. This is particularly essential when aligning the process quality of 

each cell to the measured mechanical properties such as the density, which are tested on a much 

smaller scale. According to the definition of ECR, the rate of compaction effectiveness is 

correlated with two factors, namely (1) the deviation between the achieved and target number 

of roller passes and (2) the percentage of the received roller passes within the temperature 

window. Therefore, when applying the concept of the ECR to evaluate the construction process 

quality on the scale of each cell, these two factors can be used.   

In addition, on-site operations can be intricate, whereas multiple factors apart from the exact 

execution strategies may also jointly influence the process quality, such as the type of asphalt 

mixture and ambient conditions [21]. Therefore, in the identification of process quality 

indicators, these two additional factors need to be included. 

3.1.3. Asphalt Construction Product Quality and Relevant Indicators 

Product quality can be quantitatively characterized by product quality indicators. Given the 

fact that the ultimate purpose of focusing on product quality is to improve products’ capability 

of satisfying the functional requirements [24,50], it is, therefore, essential to pay attention to 

the quality indicators of asphalt pavement that can contribute to obtaining a high level of 

satisfaction. Based on a previous study [51], there is a positive correlation between the 

performance of products and the level of satisfaction, and the research [52] indicated that a 

lower failure rate of the products may result in higher satisfaction. Therefore, product quality 
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indicators of the asphalt pavement are defined as quantitative expressions of the tangible and 

objective attributes of the pavement, related to the performance and resistance to distress from 

both the short- and long-term perspective.  

Based on the given definition, several product quality indicators can be extracted from past 

studies, which can be categorized into two types, namely indicators related to the in-place 

properties of the pavement and long-term pavement conditions, as summarized in Table 1. 

Table 1. Identified product quality indicators 

Product quality 

dimensions 

Product quality 

indicators 

Definitions 

Pavement properties Elastic modulus The elastic (or resilient) modulus of the tested pavement 

layer [53,54].  

Dynamic modulus The viscoelastic behaviour of the asphalt layer, with the 

consideration of time and temperature [55,56].   

Penetration Index (DPI) The vertical movement of the cone [57]. 

Density The density of the asphalt pavement, which plays an 

important role in the development of the distress of the 

pavement, such as rutting [58]. 

Stability and flow The internal friction and cohesion whereby cohesion is a 

measure of the bitumen binding strength, and internal 

friction a benchmark of the interlocking and friction 

resistance of aggregates.  

Aggregate gradation The particle size distribution of the coarse aggregates. 

Indirect tensile strength A high tensile strain at failure indicates that a particular 

asphalt can tolerate higher strains before failing, which 

means it is more likely to resist cracking than an asphalt with 

a low tensile strain at failure. 

Air void percentage The ratio of the air voids contained in the asphalt mixture. 

Layer thickness The thickness of the asphalt layer.  

Ride quality mean (MRI) This indicator reflects the pavement's smoothness [59]. 

Long-term pavement 

conditions 

Pavement roughness The irregularities of the pavement surface [60]. The 

condition regarding the roughness can be numerically 

represented using the International Roughness Index (IRI) 

[61]. 

Cracking The characteristics and quantification of the type and 

severity of the surface cracking, including fatigue cracking, 

block cracking, edge cracking, transverse cracking, 

longitudinal cracking, etc [62–64].  

Ravelling The surface distress caused by the shedding of aggregate 

particles and the loss of asphalt binder due to hardening [64].  

Rutting The longitudinal surface depression, which may lead to 

structural failures and the occurrence of hydroplaning [64].  

Shoving The longitudinal displacement on the pavement [65]. 

Patch The distress that will occur when the original pavement from 

a certain area has been removed and replaced by either 

similar or different materials [64].  
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Pothole Holes on the pavement surface due to the alligator cracking, 

localized disintegration, or freeze-thaw cycles [64].  

Delamination Delamination occurs due to the debonding or stripping of the 

asphalt layer, resulting in the tearing in the surface [66].  

Polished aggregate The exposed coarse aggregate due to the peeling of the 

surface binder of the pavement [65].  

Water pumping Seeping or ejection of water from beneath the pavement 

through cracks [65].  

Bleeding Excess asphalt binder occurring on the pavement surface, 

especially in the wheel paths [65].  

 

3.1.4. An Overview of ML and Corresponding Applications in Asphalt 

Construction 

The relationship between the process and product quality of the asphalt at the lifecycle scale is 

highly non-linear and too complex to capture and express using conventional statistical 

methods. To cope with this non-linearity, machine learning (ML) methods can be applied, as 

they have proven effective in solving similar problems in other domains [67–72]. ML can be 

roughly explained as an intelligent system that can learn and improve its performance based on 

historical data to make inferences [11]. As shown in Figure 10, ML mimics the human learning 

process, where the learning process happens based on the past or experiences through induction, 

summarization, and internalization. Therefore, when new situations take place in the future, 

humans can deal with them by utilizing their knowledge gained from the past through the 

learning process. As for ML, the learning process will mainly rely on the input data and inner 

algorithms. Based on the problem domains, typical ML problems can be divided into regression 

problems, classification problems, and clustering. Besides, based on the differences in the 

given datasets, ML can also be divided into supervised learning, unsupervised learning, semi-

supervised learning, reinforcement learning, etc. [73].  

Ray [74] provided a series of most widely used ML algorithms, which can be briefly classified 

as gradient descent algorithms, linear regression algorithms, multivariate regression analysis, 

logistic regression, decision tree, support vector machine, Bayesian learning, Naïve Bayes, K-

nearest neighbour, K-means clustering, and back-propagation algorithms. In addition, as the 

problems that traditional ML algorithms try to solve become more complex, the concept of 

deep learning was widely used to build “deeper” layers of abstractions from the rather simple 

and “shallow” ML architectures, thus bringing the concepts of deep learning  [75]. Several 

wide-applied deep learning techniques include Deep Neural Networks (DNN), Recurrent 

Neural Networks (RNN), and Convolutional Neural Networks (CNN) [75–78]. 
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Figure 10. The general framework of the ML approach 

In recent decades, the road construction sector has also made several attempts to conform to 

the trend of the application of ML techniques. One of the most fruitful application domains is 

developing ML-based predictive models to predict certain pavement condition indicators 

[14,15,79–81]. In these studies, the developed ML models provided a promising regression of 

the deterioration of the pavement performance. Furthermore, these studies have given the 

initiative of applying ML techniques in facilitating the preventive maintenance of road 

infrastructure. Due to the satisfying predictive performance of the ML models, these models 

can potentially steer the decision-making process for preventive road pavement maintenance. 

However, as briefly mentioned in the introduction, most of the aforementioned studies only 

investigated the correlation between pavement performance and parameters in the operation 

phase, i.e., traffic intensity, climate condition, road age, and historical inspections. However, 

the quality of the pavement condition in the operation phase will also be affected by the quality 

of the previous phases. Neglecting the importance of the construction process quality in the 

regression modeling will, consequently, not only hinder the model generality and performance 

but also the possibility of improving the current quality assurance and control practices.   

When it comes to the pavement material properties and performance tests, ML techniques were 

also widely applied in studies for predicting mechanical performance indicators, including air 

void content [82], viscoelastic behaviour [83], dynamic modulus [84–87], rutting depth [88,89], 

and indirect tensile strength (ITS) [89]. These applications can provide the possibility for 

obtaining efficient and reliable predictions of asphalt mechanical properties. This is essential 

because, in the current quality assurance schemes, tests regarding the properties of pavement 

normally will be conducted only on the asphalt cores drilled from the paved layers, which 

cannot cover the entire paved surface and will cause variability in the measurements. Also, 
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these studies lacked a systematic definition and evaluation of the construction process quality. 

Consequently, it is still unknown to what extent the variability generated from the adopted on-

site strategies affects the mechanical properties of the asphalt pavement.  

3.2. Stakeholder Analysis  

In order to have a better understanding of the social context of the system under design, the 

social embedding of the proposed framework was thoroughly explored. 

Following the description in Chapter 2.1.2, the stakeholder analysis started with the 

identification of stakeholders through internal brainstorming sessions participated by the EngD 

candidate and the supervisory team. In this study, stakeholders are defined as any individual or 

organization “having a vested interest in the decision process and either directly affecting or 

being affected by its resolution”, according to [90].  

Based on the outputs from the organized brainstorming sessions, five stakeholders were 

identified, as shown in Table 2. Among them, site managers and quality inspectors were 

persons associated with the contractors, focusing on the on-site operations regarding various 

construction activities and being involved in quality control. The asset managers, who are 

mainly responsible for the maintenance planning and pavement condition monitoring during 

the operational phase of the pavements, can be associated with both contractors and public 

clients. In addition, the ASPARi network has also been determined as the stakeholder, because 

as the initiator of this design project, ASPARi was tightly involved in the design process of the 

project by providing the necessary support in terms of supervising, knowledge, and data. Lastly, 

the EngD candidate was identified as the final stakeholder because the EngD candidate is 

directly responsible for the design project and is expected to accomplish the design objective 

within a limited time. The connections between the identified stakeholders with the method 

under design have also been explored, as summarized in Table 2.  

A workshop [91] was then organized, with participants including the EngD candidate, the 

supervisory team, and representatives of the identified stakeholders. During the workshop, 

multiple needs of the stakeholders were derived, as indicated in Table 2. 
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Table 2. The identification of stakeholders and their needs 

Stakeholder Connections with the design Needs 

Site managers • Providing construction data of 

road construction projects. 

• Incorporating the design 

outcome into the quality control 

scheme to enhance decision-

making regarding operational 

strategies.  

• To improve efficiency and 

effectiveness in making on-site 

operational strategies. 

• The ease of use and 

interpretability of the data-driven 

models. 

• Quantifying the impact of 

process quality on product 

quality. 

Quality 

inspectors 

• Providing quality inspection 

data of road construction 

projects. 

• Using the project outcome to 

improve the quality inspection 

strategy. 

• An accurate non-destructive 

method for measuring pavement 

asphalt mechanical properties.  

• Being able to trace back to the 

construction process quality 

when the undesired quality of 

certain areas of the pavement is 

inspected. 

• Based on the assessment of the 

process quality, the pavement 

quality can be obtained which 

can cover the entire pavement. 

Asset managers • Providing pavement condition 

inspection data. 

•  Using the project outcome to 

improve the maintenance 

planning and monitoring 

strategy. 

• To reduce the lifecycle cost of 

asphalt construction regarding 

maintenance. 

• To provide more efficient and 

effective maintenance strategies. 

• The ease of use and 

interpretability of the data-driven 

models. 

ASPARi network • Providing data on historical PQi 

projects. 

• Providing supervision. 

• Providing opportunities to 

contact practitioners in the road 

construction industry. 

• Inter- and intra-organizational 

integration of data, processes, 

materials, and organizations 

through the entire road 

construction lifecycle. 
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• To obtain an explicit 

understanding of the process and 

product quality of asphalt 

pavement. 

EngD candidate • Developer of the design project.  • Accomplish the design objective. 
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4. System Design 

4.1. Requirements Engineering 

The identified stakeholders’ needs from the previous chapter were translated into various 

functions that the project outcome is expected to provide. The identified functions were 

illustrated in the form of the function tree in Figure 11. 

 

Figure 11. The function tree of the data-driven method under design 

Then, each function was allocated with one or more conditions to provide further clarification 

on the degree to which the function adequately meets the expectations of respective 

stakeholders. Subsequently, several functional requirements were identified as represented in 

Error! Not a valid bookmark self-reference..  

Table 3. The identified requirements 

Requirements 

1. The system must explicitly include variables 

that can assess the quality of the construction 

on-site operations. 

2. The prediction must take into account the 

parameters in the operation phase as input 

features. 

3. The development of the ML models must use 

the construction process data collected 

following PQi methodology. 
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4. The dataset development must clearly 

represent the data integration process. 

5. The ML model development must include 

optimization. 

6. The derived ML model must accurately 

predict pavement product quality indicators 

with R2 no less than 0.8. 

7. The derived ML model must overcome the 

overfitting problem where the difference 

between training R2 and testing R2 should be 

less than 0.15. 

8. The system must be interpretable by 

indicating which features are most important 

in driving the models’ predictions.  

9. The obtained results from model 

interpretation must be compared with 

findings from previous studies. 

 

Among the identified requirements, requirements 1 to 4 are concerned with the dataset 

development that is needed for the ML model. In addition, requirement 5 is concerned with 

finding the optimal configuration in the ML model development process to ensure the best 

regression performance. Furthermore, requirements 6 and 7 specify the requirements for the 

predictive performance of obtained ML models. These requirements can serve as metrics to 

directly evaluate whether or not the developed ML models can address the issue of finding the 

correlation between process and product quality indicators. Last but not least, requirements 8 

and 9 mainly focus on the ML model interpretability, thus allowing the researcher to generate 

insights to answer the formulated design project question.  

4.2. The ML model development  

The identified requirements from the previous chapter provided a basis for aligning the design 

with stakeholders’ needs, and guiding design decisions by serving as the guideline. In Chapter 

5.2, the ML model development was elaborated, according to the process described from 

Chapter 2.2.2 to Chapter 2.2.4. 
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4.2.1. Dataset Development 

The ML model development was initiated by constructing the datasets, following Chapter 2.2.2, 

including the formulation of data structure, data collection and integration, and data preparation. 

4.2.1.1. Data Structure 

The dataset development started with the formulation of the data structure regarding considered 

input and output variables. The theoretical framework provided the information needed for 

identifying these variables, including relevant indicators for road construction process and 

product quality. To better assess these identified indicators considering the context and scope 

of the project, a workshop [91] was used to collaboratively explore potential variables with the 

key stakeholders.  

It has been determined in the workshop that the consideration of output variables, concerned 

with product quality, should cover indicators about both the mechanical properties and long-

term performance of the pavements. Among all the identified indicators regarding the 

mechanical properties of the pavements, density is widely perceived as the most representative 

and prominent parameter to determine the result verification [92–94]. Additionally, when the 

asphalt pavement reaches the desired density in the appropriate compaction temperature 

window, the optimal states for other mechanical properties, such as stiffness, fatigue 

characteristics, resistance to permanent deformation, and moisture resistance, can also be 

obtained [93]. Therefore, it is of great significance to consider density as the major target for 

the development of ML models, given its importance in representing the pavement quality and 

tight connection to the construction process.  

For the long-term performance of the asphalt pavement, Table 1 shows a series of indicators, 

which are mainly represented by the evaluation of the severity of the distress modes. There are 

several methods to represent the severity of the distress modes. The most direct way is by using 

geometric definitions, such as the length, width, depth, and size of the impacted area. However, 

in the practices of the ML application, considering all the geometric definitions of certain 

distress as model outputs may significantly increase the storage cost and modeling difficulty, 

due to the increased attribute dimensions. Besides, some data regarding these physical 

representations of the failure modes are highly confidential, which increases the difficulty in 

collecting the necessary data. Therefore, it is a common practice in the literature to apply 

indicators such as Pavement Condition Index (PCI) and Pavement Quality or Performance 
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Index (PQI) to combine the assessment of multiple failure types into one evaluation formula 

[14,15,95].  

In the Netherlands, pavement conditions of the majority of the road network are inspected, 

monitored, and managed by the Rijkswaterstaat (RWS), using the model and corresponding 

database contained in the IVON (Informatiesysteem Verhardings Onderhoud) program. 

Developed by RWS, IVON has been used as the benchmark for Dutch highway operations to 

enhance maintenance decision-making the during past decades. Specifically, the IVON 

program conducts independent inspections of its concerning failure types, including raveling, 

cracking, rutting, roughness, bearing capacity, and so on, and evaluates the severity of the 

pavement performance degradation to each failure type to support the decision-making 

regarding the year of intervention. Lastly, the condition of the road is comprehensively assessed 

based on the severity of the various modes of failure and the corresponding year of intervention, 

which will be demonstrated using the overall intervention year. When the shortest expected 

residual life (directly calculated from the nearest intervention years) of a certain failure type is 

longer than 5 years, then according to the average lifespan of the mixture characteristics, 

bearing soils capacities, and environmental and traffic impacts, the lifespan evaluation and 

intervention plan will be calibrated by an empirical model named IVONLANG.  

Another critical indicator that demonstrates the overall pavement performance is the 

international roughness index (IRI), which quantitatively defines the pavement roughness by 

using the ratio between accumulated vehicle suspension motion and the traveled distance 

within the same time window [96]. This indicator can reflect the roughness of the pavement, 

which is essential to the driving comfort and safety of road users thus also representing the 

serviceability of the pavement. On these premises, this study also extracted the corresponding 

IRI data through RWS’s inspections as a supplement to the investigation between the process 

quality and the long-term performance of the pavements in terms of roughness 

On these premises, this design project aims to investigate the correlations between the process 

quality indicators and the pavement density, intervention years obtained from the IVON model, 

and International Roughness Index (IRI) as regression outputs. Utilizing the theoretical 

framework established through the identification and analysis of product quality indicators, 

these variables have been deemed highly indicative of pavement quality from both short- and 

long-term perspectives and will serve as the focus for the development of ML models. 
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Furthermore, in an effort to optimize the suitability of the selected outputs for integration into 

the ML modelling, several modifications will be implemented. With regards to the density, the 

density degree, i.e., the ratio between the measured density and the target density for the 

specific asphalt mixture, will be used as an alternative for the direct measurement of density. 

This is because using density degree can avoid issues such as the imbalance in the data 

distribution arising from the fact that different asphalt mixtures possess distinct target densities. 

To elaborate, when processing the density data, the existence of different clusters in the output 

data can greatly impact the performance evaluation in regression tasks. For instance, when R2 

is used as the metric, the clusters in the output data distribution can result in a huge total sum 

of squares, therefore, the calculated R2 can always be high, while the actual ML model could 

be overfitting. Conversely, the density degree, being the ratio of the measured density to the 

target density, normalizes the data and eliminates the issue of imbalanced distribution. 

In addition to this, the output concerning the intervention years will also be represented as the 

remained lifespan of the pavement. This is because the intervention years are represented by 

calendar years in the IVON program, however, it may not be intuitive to interpret the 

deterioration of pavement performance if the construction years are unshown.  

The rest of this section will illustrate the development of the datasets according to the 

regression of each three of the above-mentioned outputs.  

Regression of Density Degree 

The determination of input features in the data structure applied to the regression of density 

degree will be based on the theoretical framework. As demonstrated in the theoretical 

framework, the evaluation of the quality of the construction operation can be represented in 

both the macro and micro perspectives. From the macro perspective, the road pavement will 

be divided into several sections with a certain interval regarding the length. In each section, 

ECR will be used as the indicator for the overall quality of the construction operation. As for 

the micro perspective, the evaluation of the quality of the construction operation will be scaled 

down to the centimetre level, such as the PQi methodology.  

Because for the regression of density degree, the output data of the dataset should be provided 

from the core testing results, which is also at a centimetre level. Therefore, instead of directly 

using ECR, the evaluation can be performed and represented by the deviation between the 

target and the actual number of roller passes, and the proportion of the received roller passes 

that fall within the compaction temperature window.  
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When it comes to the ambient conditions measured during the construction process, the 

corresponding data were recorded using the weather stations during the PQi practices, 

including the temperature, wind speed, pressure, humidity, and precipitation. However, 

because these weather conditions were registered in a time-series manner, it is necessary to 

utilize the statistics of the weather conditions of each project to represent the characteristics 

and trends, while reducing the dimensionality of the dataset. In this design project, for each 

type of weather condition, the mean and standard deviation will be calculated from each project 

and used as indicators. 

As for the design-related parameters, this study considered the type of asphalt mix. While the 

design characteristics of the asphalt mix play a significant role in the long-term performance 

of the road, for the purposes of understanding the correlation between construction process 

quality and long-term pavement quality, a simplification was necessary. Instead of examining 

each individual design characteristic (such as bitumen content, aggregate type, etc.), only the 

mix type indicator was used. This choice was made because the focus of this design project 

was not on exploring the individual impact of design characteristics on long-term performance, 

but rather on ensuring that the design phase was accurately represented in the ML model. This 

was achieved by consolidating all design parameters into the mix type indicator.   

Finally, Table 4 below represents the identified input-output structure for the regression of 

density degree. 

Table 4. The summary of the identified data structure for the regression of density degree 

 Variable Description 

In
p

u
t 

Roller pass deviation The deviation of the received roller passes from 

the target roller passes. 

Percentage of the roller passes 

within temperature window 

The percentage of the number of the received 

roller passes that are within the compaction 

temperature window. 

Mixture type The type of the asphalt mixture. 

Temperature - mean The mean value of the temperature during the 

construction process. 

Temperature - standard 

deviation 

The standard deviation value of the temperature 

during the construction process. 
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Wind speed – mean The mean value of the wind speed during the 

construction process. 

Wind speed – standard 

deviation 

The standard deviation value of the wind speed 

during the construction process. 

Humidity – mean The mean value of the humidity during the 

construction process. 

Humidity – standard deviation The standard deviation value of the humidity 

during the construction process. 

Pressure – mean The mean value of the pressure during the 

construction process. 

Pressure – standard deviation The standard deviation value of the pressure 

during the construction process. 

Precipitation – mean The mean value of the precipitation during the 

construction process. 

Precipitation – standard 

deviation 

The standard deviation value of the precipitation 

during the construction process. 

O
u
tp

u
t 

Density degree The ratio between the measured density of the 

asphalt pavement and the target density of the used 

asphalt mixture. 

 

Regression of Residual Lifespan and IRI 

For the regression of residual lifespan and IRI, the input variables for the dataset can directly 

use those identified for the regression of density degree. However, the inspections and 

evaluations regarding pavement performance are normally conducted at the hectometer level, 

meaning the data will be registered based on the inspection and analysis every 100 meters on 

the corresponding highways. Therefore, the calculated ECR will be used instead of roller pass 

deviations and percentages of the roller passes within temperature windows. 

Additionally, the impact of the operation of the pavements during its service, such as the traffic 

intensity and weather, can also significantly influence the condition and performance 

degradation of the pavements [81,95]. For the traffic loads, in the work conducted by [95], the 

EngD candidate considered the average daily traffic and average daily truck traffic to reflect 

the intensity of the investigated highways. Therefore, in this study, the average hourly traffic 



 

 

37 

intensities of three different types were considered, including passenger vehicles, heavy trucks, 

and medium trucks.  

When it comes to the climate conditions during the operational phase of the pavements, as 

pointed out by [97], temperature variation and moisture change can lead to a great impact on 

the material properties of the pavement structure, while studies conducted by [98] also 

indicated that the freeze-thaw cycles during the pavement operation are also a considerable 

cause to the increase of the performance deterioration process. Therefore, this design project 

followed the study by [95], to extract climate data including average annual temperature, 

average annual precipitation, and the number of freeze-thaw cycles. It is worth noting that this 

design project utilized the definition of [95] to count the number of times the temperature drops 

from freezing to thawed states as the number of freeze-thaw cycles.  

As for the labels in the dataset, although the intervention years and IRI are often evaluated and 

calculated during regular inspections, they are time-variant metrics. To account for the 

complexity of changes in road usage, this study considered a rolling time window of one year 

instead of a long-term average of road use. This approach allows for a more accurate evaluation 

of the road's condition by considering the most recent measurement and the amount of use the 

road has seen since then. Table 5 below summarizes the identified input-output structures for 

both regression outputs.  

Table 5. The summary of the identified data structure for the regression of residual lifespan 

 Variable Description 

In
p

u
t 

ECR The deviation of the received roller passes from 

the target roller passes. 

Mixture type The type of the asphalt mixture. 

Temperature - mean The mean value of the temperature during the 

construction process. 

Temperature - standard 

deviation 

The standard deviation value of the temperature 

during the construction process. 

Wind speed – mean The mean value of the wind speed during the 

construction process. 

Wind speed – standard 

deviation 

The standard deviation value of the wind speed 

during the construction process. 
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Humidity – mean The mean value of the humidity during the 

construction process. 

Humidity – standard deviation The standard deviation value of the humidity 

during the construction process. 

Pressure – mean The mean value of the pressure during the 

construction process. 

Pressure – standard deviation The standard deviation value of the pressure 

during the construction process. 

Precipitation – mean The mean value of the precipitation during the 

construction process. 

Precipitation – standard 

deviation 

The standard deviation value of the precipitation 

during the construction process. 

 Heavy truck intensity per 

workday 

The mean intensity of the heavy trucks of a 

certain road section on the workday. 

 Medium truck intensity per 

workday 

The mean intensity of the medium trucks of a 

certain road section on the workday. 

 Passenger car intensity per 

workday 

The mean intensity of the passenger vehicles of a 

certain road section on the workday. 

 Annual mean temperature The mean value of the annual temperature of the 

road section. 

 Annual mean precipitation The mean value of the annual precipitation of the 

road section. 

 Annual freeze-thaw cycle The mean value of the annual number of freeze-

thaw cycles of the road section. 

 Age The age of the pavement compared to the 

construction year. 

 Residual life-1 The residual lifespan from the previous year. 

 IRI-1 The IRI from the previous year. 

O
u
tp

u
t 

Residual lifespan The remaining years until the intervention will be 

performed, which can be calculated directly from 

the intervention years. 
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IRI The International Roughness Index, which 

quantitively reflects the roughness of the 

pavement. 

 

4.2.1.2. Data Collection, Data Integration, and Data Preparation 

Data Collection 

According to Chapter 4.2.1.1, several databases were identified as the sources for enabling the 

data collection, including the database of ASPARi network archiving data from historical PQi 

measurements, the IVON database of RWS containing inspection data regarding pavement 

conditions, and several public databases providing data regarding traffic intensities and climate. 

These databases were represented in this chapter, in terms of general data classes, attributes, 

relations, and formats. Specifically, the relations were illustrated using the concept of private 

and foreign keys, where the private keys provide unique indexes to a certain data class, while 

foreign keys provide links to private keys of other data classes  [99]. As for the data formats, 

which is mainly concerned with the types of data, Table 6 below defines the identified formats 

and descriptions from these databases. 

Table 6. Data types and corresponding descriptions 

Data types Description 

int An integer. 

double A normal-size floating point 

number with specified total 

number of digits. 

varchar A string containing letters, 

numbers, and special characters, 

with varied length. 

date A date in the format of YYYY-

MM-DD (e.g., 2023-03-14). 

 

Among these databases, the ASPARi database stores and manages data collected through PQi 

measurements that are mainly concerned with process quality indicators and other data 

associated with project characteristics. A relational database has been developed to store and 

process the data collected following the PQi methodology to support the operator guidance 

system [49]. The information covered in this relational database can be categorized into three 

types, namely project information, construction process characteristics, and analytical results. 

Among these types, the project information includes data such as the contractor’s name, the 

client’s name, the site location, the mixture type, and the construction date. The construction 
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process characteristics are mainly concerned with the measurements using the PQi 

methodology, including the asphalt temperature during the paving and compaction processes, 

the compaction passes, and the ambient conditions. Lastly, the analytical results encompass 

real-time feedback provided to the operators, such as the current state of machinery in terms of 

location and speed, as well as subsequent analytical results, such as the ECR. This database 

can provide direct data on ECR, roller pass deviation, percentage of roller passes within the 

temperature window, and various ambient weather conditions, to establish the dataset. 

However, the database developed for the purpose of an operator guidance system contains data 

that is outside the scope of this project. Therefore, a simplified database was extracted from 

the original database developed in [49] according to the input-output structure identified in the 

previous chapter, as shown in Figure 12. This simplified database primarily focused on the 

process quality indicators on the scales of cells and sections respectively. Besides, general 

project information and ambient conditions were also included.  
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Figure 12. The simplified relational database for data extracted from the PQi measurements 

When it comes to the data for product quality indicators, the data collection of pavement density 

is normally conducted by contractors using either in-place measurements or laboratory tests on 

the asphalt cores drilled from the pavements. The in-place measurements are typically non-

destructive because they do not require the direct extraction of the pavement samples, while 

the latter is widely considered as the most accurate method for providing the properties of the 

asphalt pavement [100]. Therefore, in this study, the data concerned with the density 

measurement was confined to the test results obtained from the laboratory on the core samples. 

Figure 13 represents the corresponding data structure for this type of data that can be acquired 

from the contractors, where the attributes “coreLongitude” and “coreLatitude” refer to the 

coordinates of the centroid of the extracted cores based on the WGS 84 system.  
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Figure 13. The data structure of the core density measurements 

Data related to the pavement performance were retrieved from the IVON database and yearly 

inspectional records for IRI held by RWS. Figure 14 provides an overview of the data structure 

of the information that can be requested from RWS.  

 

Figure 14. The data structure of the pavement condition data 

It is worth noting that the coordination system adopted in this database does not follow the 

WGS 84 system. Instead, a descriptive coordination system is applied, named Beschrijvende 

Plaatsaanduiding Systematiek (BPS) [101]. The BPS system determines the exact location on 

the national highway network, based on properties including: 

• Road type (e.g., national roads, provincial roads, municipal roads, etc.).  

• Road number (i.e., the number that uniquely identifies a road of a particular type.).  

• The relative distance to the nearest hectometer board. 

• The indication on the nearest hectometer board (i.e., the longitudinal distance of the 

location of the hectometer board to the starting point of the road).  
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• The type of the traffic-carrying track (baan in Dutch) (e.g., main carriageway, 

connecting road, roundabout, etc.). 

• The transverse position of the concerned traffic-carrying track in relation to the 

road orientation line (e.g., left, right, middle, etc.). 

• The type of traffic lane (strook in Dutch) (e.g., normal traffic lanes, exit lane, 

emergency lane, etc.) 

• The indication of the position in the transverse direction of a traffic lane in relation to 

other lanes of the same type on the same traffic-carrying track with respect to the road 

orientation line (e.g., left, right, middle, etc.). 

For the data needed for information during the operational phase of the pavements, two 

databases were used to extract the required data. For the traffic intensity, data were extracted 

from the database provided by RWS named INtensiteit op WEgVAkken (INWEVA), as 

represented in Figure 15. This database covers the entire Dutch highway network and registers 

the historical traffic intensity of each hectometer section with specified BPS locations. Besides, 

in this design project, the source for providing the aforementioned weather data is the dataset 

derived from the Koninklijk Nederlands Meteorologisch Instituut (KNMI), as shown in Figure 

16. Therefore, based on the closest weather station of KNMI to the target pavement section, 

the corresponding weather data can be obtained.  

 

Figure 15. The data structure of the traffic intensity data during the operational phase 
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Figure 16. The data structure of the weather data during the operational phase 

The accessibility of these identified data sources was evaluated. Table 7 below represents the 

result. Owned by the ASPARi network, the PQi database was assigned with high accessibility. 

Although permission is needed, because the EngD candidate is affiliated with the ASPARi 

network, the permission was automatically granted. Besides, because of the relational database 

as represented in [49], the data extraction could be done by directly executing SQL (Structured 

Query Language) queries to streamline the collection process. For the data regarding the 

asphalt density measurements, which are collected and managed by the contractors, the 

accessibility is low. This is because the contractors heavily rely on ad-hoc data measurements 

and registration in the pavement quality inspection practices. This resulted in the measured data 

being managed in a disorganized structure and stored in non-uniform formats (varying from 

CSV files to paper documentation). Consequently, it led to a lengthy process to extract the 

needed data from this source. Pavement condition data owned by RWS has medium 

accessibility, because although permission is needed, the IVON database can ease the 

corresponding data collection process. Lastly, both traffic intensity data and weather data 

during pavement operation were allocated with high accessibility, primarily because they are 

open to public, thus being able to be directly extracted from the corresponding websites.  

Table 7. The result of the accessibility evaluation of identified data sources 

Data sources Data owner Data format Authorization Accessibility 

PQi database ASPARi 

network 

Database tables Permission needed  High 

Density measurements Contractors CSV, paper 

documentation 

Permission needed Low 

Pavement conditions RWS Database tables Permission needed Medium 

Traffic intensity RWS CSV Open data High 
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Weather data during 

pavement operation 

KNMI CSV Open data High 

 

The data collection strategy was made accordingly. Firstly, the historical road construction 

projects were identified, where detailed PQi data must be available. Corresponding data, as 

described by the structure represented in Figure 12. The simplified relational database for data 

extracted from the PQi measurements, were retrieved. Then, meetings were arranged between 

the EngD candidate and data owners from the contractors, to jointly locate the same projects 

as identified in the previous step and extracted data from all the available documents. 

Simultaneously, data collection requests were sent to RWS data owners with specified BPS 

locations of the projects identified in the previous step. Then, the corresponding queries can be 

made by specialists from RWS to directly provide the EngD candidate with the data described 

by the structure demonstrated in Figure 14. Lastly, based on these specified BPS locations, data 

regarding the traffic intensity and weather were directly retrieved from the corresponding 

websites. 

A data warehouse was designed according to the identified input-output structures from the 

previous chapter and the determined data sources, as shown in Figure 17. This data warehouse 

functioned as the repository for storing the collected data, which also represents the 

multidimensional relationships between data to enable the selection and grouping of data [102]. 
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Figure 17. The star schema of the data warehouse for structuring the collected data
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Data Integration 

The identified data sources indicate the original form of the data, while the data warehouse 

describes the eventual structure after integrating the data from multiple sources. In order to 

seamlessly consolidate and combine the data extracted from heterogeneous sources, it is 

essential to determine the scheme of data integration. 

According to Figure 17, matching fields between tables were found. Specifically, between the 

“Cell” table and tables of “IVONDatabase”, “trafficLoading”, and “operationalWeather”, the 

matching field was identified as the sectionBPS. This is because, for all the cells registered in 

the data warehouse, corresponding BPS coordinates can be found. These BPS coordinates of 

different cells can then be aligned with the same BPS coordinates registered in the tables of 

“IVONDatabase”, “trafficLoading”, and “operationalWeather”.  

When aligning the “Cell” table and “CoreDensityMeasurements” table, the integration conflict 

was found. Several matching fields between these two tables were identified, including the 

contractor’s name, the data when the project took place, the general location of the project, and 

coordinates of centroid of the cells and drilled cores. However, coordinates of centroid of the 

cells and drilled cores are unlikely to overlap between their respective locations. Therefore, it 

can only be assumed that the process quality of a cell (i.e., in a rather local area on the pavement) 

can represent the process quality of the core, when the distance between them is distinguishably 

close.  

Therefore, it is essential to find a distance range for each core to include a certain number of 

cells within the range, which are not only sufficiently representative to reflect the process 

quality of the core but also adequately unique to avoid the situation where multiple cores share 

the information of the same cells. The latter is crucial in the application of data-driven 

techniques to maintain the singularity of the input-output mapping, i.e., one input will only lead 

to one output.  

Figure 18 provides the algorithm adopted in this design project to align the coordinates of the 

cores with the cells. Initially, the distance between every pair of cores was calculated iteratively, 

and the smallest distance was then utilized as the diameter of a circular-shaped area to identify 

the cells that will be covered, as the representation of the process quality of the target cores. 

However, in case all the cores are generally far from each other, it is necessary to introduce an 

upper limit of the radius of the circle in Figure 18.  
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Figure 18. The approach to align the locations of cores with cells 

Data Preparation 

Lastly, data preparation was conducted. According to different regression tasks, different 

datasets were derived from the data warehouse following the data structure indicated in Chapter 

4.2.1.1. 
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Then correlations between variables were determined. Specifically, the Pearson correlations 

coefficient between every two input variables was calculated, using the following equation 

[103]: 

𝑟 =
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

√∑(𝑥𝑖−𝑥̅)2 ∑(𝑦𝑖−𝑦̅)2
                                                                                                                (2) 

where 𝑟 refers to the Pearson correlations coefficient, 𝑥𝑖 and 𝑦𝑖 refer to the values of variables 

𝑥 and 𝑦 in a sample respectively, and 𝑥̅ and 𝑦̅ refer to the mean values of variables 𝑥 and 𝑦 in 

a sample respectively. 

The value of 𝑟 indicates to which extent two variables are linearly correlated. The value of 𝑟 

ranges from −1 to 1. The closer the calculated 𝑟 to 1, the higher the positive correlation can be 

determined between the two variables, while when two variables are correlated inversely, the 

calculated 𝑟 will be near −1. Therefore, based on the calculated Pearson correlation coefficient, 

variables that are highly correlated were defined, and only one of them was kept as the input 

feature for the ML model development to reduce the dimensionality of the dataset to prevent 

both overfitting (when the dataset is too complex and contains too much noise) and underfitting 

problems (when the dataset is too small to capture the patterns within the high dimensionality). 

Next, the datasets were cleaned by examining the outliers. In this study, the method named 

interquartile range method (IRM) was applied, where the outliers were defined and removed 

when the quartile range is less than 1.5 times the upper quantile or the quartile range is 1.5 

times larger than the lower quantile.  

After the dataset was cleaned, the categorical values within the dataset were transformed into 

numerical values. This is because of the inherent limitations of various ML algorithms, that 

meaningful information cannot be extracted from learning data with categorical values. Two 

methods were used for converting categorical values, namely target coding, and label encoding. 

Unlike other encoding methods, such as dummy coding or one-hot encoding which will 

increase the dimensionality of the data structure significantly, target encoding reshapes the 

categorical features by encoding them based on their effects on the target outputs [104]. 

However, when the categorical variables are ordinal or the number of categories in one variable 

is too large or too small, the target encoding might be ineffective. Therefore, the label encoding 

was used to simply use one integer to replace one certain category [105].  
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4.2.2. ML Model Training and Testing 

4.2.2.1. ML algorithm selection 

Based on the problem context of the research, in this study, two types of the ML algorithm 

were selected, namely random forest (RF) and recurrent neural network (RNN). Brief 

introductions of the two algorithms were given below. 

As a widely applied tree-based ML algorithm, RF can solve both the regression and 

classification problems on the basis of ensembled decision trees, to advance the performance. 

More specifically, in a typical structure of RF, the training set will be divided into several 

replicates using the bootstrapping methods and trained by randomized decision trees, and lastly, 

the final classification or regression can be made by voting to the best predictors [106]. As a 

powerful ML algorithm, RF can overcome the overfitting problem and improve the robustness 

against the outliers, without compromising the performance in handling non-linear 

classification and regression problems as the conventional classification and regression trees 

(CART) have demonstrated.  

Compared to RF, RNN is dedicated to tackling the complexities of non-linear regression 

concerned with time-series data. RNN can describe the dynamic behaviour of time-series data, 

by circulating states in the networks. However, the conventional architecture of RNN soon 

showed its limits, because of the problems such as the gradient’s vanishing and explosion, and 

the difficulty in learning long-term patterns. In order to tackle the aforementioned challenges, 

long short-term memory (LSTM) and gated recurrent unit (GRU) were developed and 

introduced as extensions of conventional RNN [107]. Figure 19 gives a representation of the 

three types of RNN architectures. 
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(a). Conventional RNN architecture 

     

(b). LSTM memory cell  

              

(c). GRU cell 

Figure 19. RNN architectures [108] 

Figure 19. (b) illustrates the general architecture of LSTM, where ⨂ refers to the multiplication 

operator, ⊕ refers to the sum operator, 𝜎 refers to the sigmoid activation function, 𝑡𝑎𝑛ℎ refers 

to the hyperbolic tangent activation function, 𝑥𝑡 refers to the current input data, ℎ𝑡−1 refers to 

previous hidden layer data, 𝐶𝑡−1 refers to previous memory cell unit, and 𝑦𝑡 refers to the output. 

As demonstrated in this figure, LSTM constructs different gates as the replacement for the units 

in the hidden layer of the conventional RNN architecture, shown in Figure 19. (a). Three gates, 

namely an input gate, an output gate, and a forget gate, are included in a memory cell of the 

LSTM, and process the current input data 𝑥𝑡 and previous hidden layer data ℎ𝑡−1 [109]. In all 

the gates, a sigmoid activation function is included and decides whether the gate will be open 

(when the output of 𝜎 is 1) or closed (when the output of 𝜎 is 0). The input gate additionally 
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contains a multiplication operator, which controls the flow of inputs to the rest of the network 

[110]. The forget gate allows the transmission of output information from the previous neuron 

to the next neuron, based on the weights of the output information. Finally, the output gate 

determines which information from the cell state will be transformed into the current hidden 

layer data ℎ𝑡. 

When it comes to GRU, Figure 19. (c) indicates the basic architecture. On the basis of LSTM, 

GRU combined the input and forget gates from the original LSTM architecture into an update 

gate (denoted as 𝑧 ), which determines which memory will be kept in the cell. Besides, 

compared to LSTM, GRU directly utilizes a reset gate (denoted as 𝑟) to process previous 

hidden layer data. The reset gate can then decide whether the current state will be integrated 

with previous information [108]. 

Although the structure of the GRU unit is similar to LSTM, the architecture of the GRU cell 

will require fewer external gating signals, therefore, fewer parameters are needed, and the 

training process will be more efficient. Besides, research has found that GRU has comparable 

to or even surpassed the performance of LSTM [111]. Therefore, in this design project, GRU 

will be used.  

However, when applying GRU, apart from the time-variant variables, such as IRI-1, traffic 

intensities, and climate conditions, other input features including ECR and mixture types 

cannot be processed by the default GRU layer, because these input features are time-invariant. 

Therefore, these time-variant features were reshaped into vectors using affine transformation 

as the internal state of the GRU architecture. This transformed initial state was then added to 

the hidden state of the GRU when calculating the output [112–114]. In addition, to further 

tackle the complexities and non-linearities of the problems, a hybrid network was applied by 

adding more dense layers behind the GRU layer, thus increasing the depth of the network to 

boost its performance [14,15]. 

4.2.2.2. GA-based ML Modeling Process 

After determining the ML algorithms, the actual development process of ML models was 

executed, as represented in Figure 20.  
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Figure 20. The GA-based hyperparameter optimization framework 

Each developed dataset was first divided into 80% training and 20% testing subsets. 

Subsequently, the k-fold cross-validation was applied. Considering the trade-off in terms of 

computational time and accuracy, the value of k was set to 10. 

To obtain optimal performance of developed ML models, it is essential to fine-tune and 

optimize the model configurations. Table 8 presents the list of optimized hyperparameters from 

RF and GRU.  

Table 8. The summary of the selected hyperparameters required to be optimized 

ML algorithm Hyperparameter Description 

R
F

 

n_estimators The number of decision trees in 

the RF structure. 

Max_features The number of features that will 

counted for the best split. 

max_depth The allowed maximum depth of 

each decision tree. 

min_samples_split The minimum number of 

samples needed to split an 

internal node. 

min_samples_leaf The minimum number of 

samples required to be at a leaf 

node. 

G
R

U
 

n_layers The number of the hybrid dense 

layer. 

n_neurons the number of neurons within 

each hybrid dense layer. 

units The number of GRU units. 
epochs The number of epochs for the 

model training.  



 

 

54 

A widely applied approach for hyperparameter optimization in ML is to use meta-heuristic 

methods, e.g., genetic algorithm (GA) or particle swarm optimization (PSO). This design 

project used GA-based optimization of the ML models as proposed in the literature [34].  

As shown in Figure 20, at the beginning of the optimization process, a random set of 

hyperparameter arrays was generated and used to develop the first generation of ML models. 

The performance of each model was assessed and ranked, where the best models were 

identified. By applying crossover and mutation on the top-ranking solutions, the subsequent 

generation of models was obtained. The optimization process would continue until the stopping 

criteria were met.  

Finally, the developed ML models were validated to evaluate the performance of data outside 

the range of the training set.  

In this validation process, several metrics were used to represent the regression performance of 

developed ML models, including R-squared (R2), mean squared error (MSE) and mean 

absolute error (MAE). The equations of these three metrics were given below. 

R2 = 1 −
∑ (ŷi−y̅)2n

i=1

∑ (yi−y̅)2n
i=1

                                                  (3) 

MSE =
∑ (yi−ŷi)2n

i=1

n
                                                                                 (4) 

ASE =
∑ |ŷi−yi|n

i=1

n
                                       (5) 

where 𝑛 refers to the total number of samples, 𝑦𝑖  refers to the true value, 𝑦̂𝑖  refers to the 

prediction, and 𝑦̅ refers to the mean value of the sample.    

Additionally, R2 was also used as the fitness function in the GA-based model optimization 

process to represent the fitness of each examined chromosome. 

4.2.3. ML Model Interpretation 

To explicitly represent the correlations between various process quality indicators and product 

quality indicators, the obtained regression models were interpreted in the form of feature 

importance, through a sensitivity analysis. The feature importance reflects how important the 

features are for the regression. Therefore, the feature importance analysis can provide explicit 

insights into the models, as well as the hidden correlations between inputs and outputs. For this 

purpose, the model with the highest predictive performance was used for each regression task. 
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To ensure that the feature importance interpretation can be applied to both ML algorithms, this 

design project adopted the permutation importance as the interpreting approach, which 

randomly shuffles a certain input feature and re-evaluates the model performance. By 

comparing the performance changes with the baseline performance, the importance of a certain 

input feature was obtained. 
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5. System Validation 

To validate the proposed framework, case studies were conducted. Following the system design 

demonstrated in the previous chapter, data were collected to develop datasets required for the 

ML modeling. The initial step was to explore, assess, and analyze the PQi measurements over 

the past few years. This was followed by the filtering of the measurements and associated 

archived data based on their completeness. Besides, the projects used in the case studies for 

modelling the pavement's long-term performance were confined to the surface layer, given that 

most of the distress takes place on the pavement surface.   

Specifically, the regression of density degree was based on the data provided by the Dutch 

contractor Heijmans [115], collected from a series of construction projects around the Schiphol 

Airport. For the regression of residual lifespan and IRI, two Dutch highway sections (A58 and 

A4) with a total length of 4.1 km were selected. 

After the data collection, the data integration was conducted. It is worth mentioning that for 

aligning the coordinates of drilled cores in the case study provided by Heijmans with the cells, 

the calculated radius for the circle for covering the cells was 0.3 m. Table 9, Table 10, and 

Table 11 provide examples of the collected raw data respectively, before applying the data 

exploratory analysis and data cleansing. In total, 197 data samples were collected for the 

regression task of density degree, from the projects provided by Heijmans. In addition, 156 

data samples were included in the dataset for the regression of residual lifespan, and 62 data 

samples were used for the regression of IRI. 
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Table 9. An example of the developed dataset for the regression of density degree 

Samples 

Input features Density 

degree Roller Pass 

Deviation 
Percentage 

of Roller 

Passes in 
Temperature 

Window 

Temp. 

Mean 

 

Temp. 

Std 

Preci. 

Mean 

Preci. 

Std 

Wind  

Speed 

Mean 

Wind 

Speed 

Std 

Humidity 

Mean 

Humidity 

Std 

Press. 

Mean 

Press. 

Std 
Mixture 

1 -0.4333 0.4852 8.7167 1.1040 0.0167 0.0372 24.2500 5.1498 0.8696 0.0352 1013 1.4158 38367 1.0055 
2 -0.5916 0.3161 8.7167 1.1040 0.0167 0.0372 24.2500 5.1498 0.8696 0.0352 1013 1.4158 38367 0.9827 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

 

Table 10. An example of the developed dataset for the regression of residual lifespan 

Samples Input features Residual 

lifespan ECR Mixture Age Temp. 

Mean 

 

Temp. 

Std 

Preci. 

Mean 

Preci. 

Std 

Wind  

Speed 

Mean 

Wind 

Speed 

Std 

Humidity 

Mean 

Humidity 

Std 

Press. 

Mean 

Press. 

Std 

Annual 

Mean 

Temp. 

Annual 

Mean 

Preci. 

Annual 

Freeze/Thaw 

Cycles 

Passenger 

Cars/Day 
Med. 

Trucks/Day 
Heavy 

Trucks/Day 
Residual 

lifespan-

1 
1 0.3725 ZOAB-

1 
1 21.8260 4.3129 0 0 0.7100 0.5422 0.25 0.4274 1024 0.9018 11.7195 1.5619 60 33039 2843 3419 14 13 

2 0.2955 ZOAB-

1 
1 21.8260 4.3129 0 0 0.7100 0.5422 0.25 0.4274 1024 0.9018 11.7195 1.5619 60 33039 2843 3419 14 13 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

 

Table 11. An example of the developed dataset for the regression of IRI 

Samples Input features IRI 
ECR Mixture Age Temp. 

Mean 

 

Temp. 

Std 

Preci. 

Mean 

Preci. 

Std 

Wind  

Speed 

Mean 

Wind 

Speed 

Std 

Humidity 

Mean 

Humidity 

Std 

Press. 

Mean 

Press. 

Std 

Annual 

Mean 

Temp. 

Annual 

Mean 

Preci. 

Annual 

Freeze/Thaw 

Cycles 

Passenger 

Cars/Day 
Med. 

Trucks/Day 
Heavy 

Trucks/Day 
IRI-1 

1 0.1792 ZOAB-1 3 21.8260 4.3129 0 0 0.7100 0.5422 0.25 0.4274 1024 0.9018 11.7195 1.5619 55 47318 3406 3476 1.32 0.93 
2 0.1372 ZOAB-1 3 21.8260 4.3129 0 0 0.7100 0.5422 0.25 0.4274 1024 0.9018 11.7195 1.5619 55 47318 3406 3476 1.20 0.64 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 
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Several parameters for the GA-based hyperparameter optimization were also defined including 

the size of the population, the size of offspring, crossover and mutation rates, and the total 

number of generations, as shown in Table 12. In this case study, the number of generations is 

the stopping criterion.  

Table 12. Pre-defined GA parameters 

GA parameters Description Value 

Population size The number of individuals that will be evaluated and 

selected 

100 

Offspring size The number of individuals which will be re-generated 

after one iteration 

100 

Crossover rate The probability of two random individuals after selection 

replacing their gene fragments 

0.8 

Mutation rate The possibility of the occurrence of mutation 0.2 

Number of generations The number of iterations in the GA process 100 

 

5.1 Results 

Regression of density degree 

For the regression of density regression, only RF was used to build the ML model given the 

non-time-variant nature of the model output. Based on the dataset represented in Table 9, the 

target encoding was performed on the variable of asphalt mixtures.  

Table 13 presents the model evaluation in terms of MSE, MAE, and R2. Also, Figure 21 

demonstrates the regression plots of the obtained model, including both the training and testing 

processes. Additionally, Table 14 also summarizes the results of the optimization results of the 

hyperparameters.  

Table 13. The summary of the results of the model validations for the regression of density degree 

Model R2 MSE MAE 

RF 0.1954 0.0001 0.0071 
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(a). Performance of RF model on training data        (b). Performance of RF model on training data 

Figure 21. Regression plots of the developed model for the regression of density degree 

Table 14. The summary of the optimization results regarding hyperparameter configurations for the regression of density 

degree 

ML 

algorithm 

Hyperparameter Value 

RF n_estimators 100 

 Max_features 0.05 

 max_depth None 

 min_samples_split 10 

 min_samples_leaf 2 

 

Based on Table 13 and Figure 21, it is clear that the developed RF model suffered from the 

underfitting problem, given the poor performance achieved during the training process. In 

addition, there is also a significant difference between the model evaluations in the training 

process and testing process respectively. Besides, as shown in Figure 21. (b), it has confirmed 

poor fitting performance of the resulting model.  

When a machine learning model underfitted, it cannot capture the underlying relationships. As 

a result, the feature importance computed from an underfit model will not bring any value, and 

will mislead the interpretation. Therefore, for the regression of density degree, the feature 

importance is not interpreted.  

Regression of residual lifespan 

For the regression of residual lifespan, both the RF and GRU algorithms were used to develop 

corresponding models. It is worth noting that because only two projects were selected in the 

case study, meaning there will only be two scenarios concerning the ambient conditions during 

the construction process. Because this binary scenario also applies to the mixture type, 
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therefore, the mixture type and all the ambient conditioning variables will be completely 

correlated. Therefore, all the variables regarding ambient data during the construction phase 

were removed, because their information can be represented by the mixture type. 

Table 15 presents the evaluations of two obtained models in terms of MSE, MAE, and R2. Also, 

Figure 22 demonstrates the regression plots of the obtained model, including both the training 

and testing processes. Additionally, Table 16 summarizes the results of the optimization of the 

hyperparameters.  

The results shown in Table 15 indicate that the two developed models have close predictive 

performance, however, the RF model slightly outperforms the GRU model, with an R2 of 

0.8297 compared to 0.8172.  

Therefore, for the ML model interpretation and further analysis, the RF model was used. The 

permutation feature importance was applied, and the results are shown in Figure 23. According 

to the result, it is clear that the residual lifespan assessed from the previous year has the highest 

importance among the other features. Besides, the average annual temperature also shows 

considerably higher importance, while the rest of the features are of comparable importance. It 

is worth noting that ECR, which represents the overall evaluation of the quality of the 

construction on-site operations, has a relatively higher contribution to the model’s predictive 

performance than the rest.  

Table 15. The summary of the results of the model validations for the regression of residual lifespan 

Model R2 MSE MAE 

RF 0.8297 1.3540 0.6358 

GRU 0.8172 1.2564 0.6949 
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(a). Performance of RF model on training data        (b). Performance of RF model on training data 

 

(c). Performance of GRU model on training data        (d). Performance of GRU model on training data 

Figure 22. Regression plots of the developed models for the regression of residual lifespan 

Table 16. The summary of the optimization results regarding hyperparameter configurations for the regression of residual 

lifespan 

ML 

algorithm 

Hyperparameter Value 

RF n_estimators 100 

 Max_features 0.65 

 max_depth None 

 min_samples_split 6 

 min_samples_leaf 4 

GRU n_layers 0 

 units 12 

 epochs 120 
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Figure 23. The permutation feature importance of the RF model for the regression of residual lifespan 

Regression of IRI 

As for the regression of IRI, because its dataset shares the same structure and contents 

considering the input features, therefore, same as the regression of residual lifespan, all the 

variables regarding ambient data during the construction phase will be removed. 

Similarly, two ML algorithms were selected and used, namely RF and GRU. Table 17 presents 

the comparison of the two models in terms of MSE, MAE, and R2. Also, Figure 24 

demonstrates the regression plots of each model, including both the training and testing 

processes. Additionally, Table 18 also summarizes the results of the optimization of the 

hyperparameters.  

Based on Table 17 and Figure 24, it is clear that the developed GRU model significantly 

outperformed the RF model, where the latter is considerably underfitting. The GRU model 

achieved a promising result regarding R2, with a value of 0.8284. Besides, the errors of the 

predictions compared to the true values, which are reflected by MSE and MAE, were well-

controlled. The results between the training process and testing process are close, meaning that 

the developed GRU model has reasonable generality. 

Table 17. The summary of the results of the model validations for the regression of IRI 

Model R2 MSE MAE 

RF 0.5498 0.0123 0.0847 

GRU 0.8284 0.0050 0.0600 
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(a). Performance of RF model on training data        (b). Performance of RF model on training data 

 

(c). Performance of GRU model on training data        (d). Performance of GRU model on training data 

Figure 24. Regression plots of the developed models for the regression of IRI 

Table 18. The summary of the optimization results regarding hyperparameter configurations for the regression of IRI 

ML 

algorithm 

Hyperparameter Value 

RF n_estimators 100 

 max_depth None 

 min_samples_split 20 

 min_samples_leaf 1 
GRU n_layers 2 

 n_neurons_first_layer 14 

 n_neurons_second_layer 8 

 units 18 

 epochs 210 

  

 

 

Figure 25 shows the permutation importance of each input feature. Based on the results, the 

feature IRI-1 has the highest importance. By changing the values of this feature, the model 
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performance dramatically reduced. Compared to other features, features including the mean 

annual temperature and ECR also have rather higher importance, ranking second and third 

respectively. The feature importance of the rest of the features is quite lower, while the 

differences are not considerable. However, the feature representing the characteristics of the 

mixtures ranks the lowest among all the features. 

 

Figure 25. The permutation feature importance of the GRU model for the regression of IRI 
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6. Discussion 

This section demonstrates the analyses and interpretation of the findings based on the 

undertaken validation of the system. Firstly, several major findings were summarized and 

contextualized by referring to the theoretical framework explored in this project, as well as 

other previous studies from the literature. Lastly, the significance of the study was highlighted.  

6.1. Discussion on the Results of System Validation 

For different modelling tasks, this design project has identified different data structures. 

However, it is crucial to acknowledge the trade-off made between the comprehensiveness of 

the mapping of the variables and challenges including the data availability, data completeness, 

and data quality. In this design project, the development of critical variables of the data 

structures was initiated by the development of a theoretical framework and the ontology 

proposed by [29], which encompassed the necessary concepts and theories. However, the 

identified parameters may not comprehensively reflect the properties of asphalt mixture, and 

their impact on the construction process quality and pavement quality. It is worth noting that 

the focus of this research was not on exploring the individual impact of design characteristics 

on long-term performance, but rather on ensuring that the design phase was accurately 

represented in the ML model. Therefore, a consolidated parameter would be sufficient to cover 

design-related characteristics in this project. However, this approach would simply assume that 

the same mixture types will always have the same properties, which neglects that variability 

can also be generated during the production process of the asphalt mixtures. Consequently, it 

would be ideal to expand the scope of the identification of key parameters. However, this will 

also increase the difficulty of data collection, because the expanded dimensionality of the data 

structure would require more data to ensure the predictive performance of the ML models, 

while the availability of the data will significantly influence the data collection process.  

Overall, the RF model developed for the regression of density degree failed to provide 

promising performance. The performance achieved in the training and testing process is 

significantly poor, proving the model is underfitting. Referring to the corresponding 

requirements, no effective conclusion can be drawn regarding the process quality indicators 

and the density degree through the case study conducted in this project. However, this deviates 

from the consensus from the literature that the density of the asphalt pavement should be highly 

correlated to the compaction effectiveness [49]. The possible reason could be that the 
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determination regarding the target number of roller passes and compaction temperature 

windows was incorrect, owing to the lack of a clear understanding of the importance of these 

two parameters to the overall construction process quality, as well as a lack of effective 

measuring methods among the contractors. By conducting this design project, it is hoped that 

the struggle of developing a promising ML model regarding pavement mechanical properties 

can emphasize the importance of acquiring accurate data regarding these two parameters. 

On the other hand, the obtained ML models for the regression of long-term pavement 

performance achieved promising results, in spite of using a small dataset. For the regression of 

residual lifespan, the developed RF and GRU models all obtained satisfying performance being 

checked with the requirements, where the RF model (R2 is 0.8297) slightly outperforms the 

GRU model (R2 is 0.8172). When predicting the IRI, the regression model using GRU achieved 

significantly better performance (R2 is 0.8284) compared to the RF model (R2 is 0.5498). The 

outcomes from the two regression tasks are contradictory to each other. Essentially, unlike 

conventional ML algorithms, algorithms such as GRU will have a much higher level of 

abstraction, thus prone to be greedy to the amount of the data to prevent the overfitting problem. 

This has been confirmed by the case of the regression of residual lifespan. However, a previous 

study suggested that the high reliability of the model can be achieved even with small datasets 

[7]. The size of the dataset is essential in drawing reliable conclusions; however, the 

consideration of other factors such as the quality of the data and the model's ability to identify 

significant features and relationships is also crucial to the reliability and validity of the 

conclusions derived from data analysis. In this study, the R2 of developed models reached 

0.9941 and 0.9893 on two different datasets. Besides, in the presented study, RF was also 

utilized. Compared to GRU, RF has a rather simpler architecture and less complexity. However, 

in the represented study, the developed RF model for the regression of IRI suffered from the 

overfitting problem with this small amount of data. This could potentially mean that the data 

used in this study for the regression of IRI is insufficient to support conventional ML 

algorithms, such as RF. On the other hand, the developed GRU model showed outstanding 

capability regarding feature extraction. However, it is still necessary to enlarge the dataset in 

the future, to achieve more generable ML models. 

Lastly, for both regression tasks regarding long-term pavement performance, the previous 

measurements of the pavement performance outranked the other features. This is in line with 

various studies which also applied time-series regression [15,81], which further emphasizes the 

temporal dependence of the previous measurements and their significant influence on the future 
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values. Representing the construction process quality, ECR ranked third in both cases, which 

indicates a rather high impact of construction process quality on product quality. This further 

highlights the importance of investigating the asphalt product quality from the life-cycle 

perspective. In addition, the feature representing the properties of the asphalt mixtures ranked 

the lowest. This is in line with the findings of the previous studies [116].   

6.2. Discussions on the Implications for the Industry 

During the process of accomplishing this design project, the major obstacle was collecting and 

integrating data from various organizations to develop datasets with sufficient sizes and 

adequate quality. The struggle regarding data collection implies poor data management in the 

road construction industry. Currently, there is an absence of standardization in the industry, in 

terms of data formats, protocols, and terminology. Consequently, data owned by different 

organizations are significantly inconsistent, leading to conflicts when consolidating different 

data sources. To address this issue, it is essential to acknowledge the pivotal role of a global 

ontology for pavement lifecycle management, which can provide a standardized representation 

of data using its defined concepts and relations. This can significantly ease the data integration 

process by eliminating syntactic and semantic conflicts among the data extracted from different 

sources.  

Asphalt is a highly complex material, where the quality product in each phase of the lifecycle 

is influenced by various factors and also how the previous phases unfolded [35]. This study 

provides an opportunity to scale up the regression task from the focus on one phase of the 

asphalt construction lifecycle to multiple phases, which can be regarded as a preliminary 

attempt to integrate data, organizations, and processes through the entire road construction 

lifecycle. This would be beneficial to the highly competitive environment of the asphalt 

construction sector. For instance, to the contractors, the explicit correlation between process 

and product quality can eventually help further justify the adoption of digital technologies and 

modernization of the asphalt construction process, thus improving and optimizing the planning, 

and implementation of explicit and science-based operational strategies. This would lead to 

increased productivity, and will eventually result in the reduction of the variability during the 

construction process and improve the pavement quality. Besides, for asset managers, having a 

clear understanding of the relationships between process and product quality can advance the 

preventive maintenance practice, enabling the accurate detection and prevention of potential 

distresses given the specific conditions across the entire lifecycle. 
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The explicit correlation between process and product quality can also enhance the practices 

regarding quality inspections in the context of quality control. Conventionally, the pavement 

quality is inspected as the verification of the construction outcome. Therefore, the primary 

purpose of performing quality inspections is to test the pavement quality to pass the functional 

requirements. However, no matter the test results are good or not, the contractors cannot link 

the obtained pavement quality with their on-site operations. Consequently, when the post-

construction sample tests indicate inadequate mechanical properties, they are unable to 

determine what went wrong during the construction phase and prevent the same operation in 

the future projects. With an explicit understanding regarding the relationship between the 

construction process quality and the resulting pavement quality, it is possible to achieve the 

transition from implicit and outcome-oriented quality control to explicit and process-oriented 

quality control. Thereby, it is possible to trace back the adopted on-site operations according 

to the tested pavement quality, thus enabling active and continuous learning and improvement. 

The explicit quantification of the impact of road construction process quality on the resulting 

pavement quality can also be a supplement to the roller operator guidance system. Due to the 

isolated view of the current operator guidance system, the guidance is provided to operators 

solely with the direct evaluation of the compaction effectiveness based on the data collected 

during the construction process. However, although there exists a strong correlation between 

the compaction effectiveness and the eventual quality of the pavement, the current system 

cannot explicitly and quantitatively map the quality of the compaction operations into the 

achieved quality of the construction results. Consequently, to what extent the adopted 

operational strategies can affect pavement quality is still unknown. The guidance provided to 

operators may lack precision in terms of understanding how their actions influence the final 

quality. These imply although operator guidance system has successfully achieved certain 

intra-process integration, there is an absence of inter-process integration, i.e., the integrations 

through the entire lifecycle of the road construction, considering data, processes, technologies, 

and organizations. Hence, by incorporating the explicit quantification of the impact of road 

construction process quality on the resulting pavement quality into the framework of the 

operator guidance system, it can facilitate the aforementioned integration, thus optimizing road 

construction practices and improving quality control. 
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7. Conclusion and future work 

7.1. Conclusion 

This design project aimed to investigate the correlations between asphalt construction process 

quality and product quality, using data-driven techniques. In this design project, based on the 

investigated theoretical framework and the social context, a data-driven method was proposed 

and described, which can systematically reveal the hidden correlations between process and 

product quality indicators through the development and interpretation of ML models.  

In this design project, the input-output structure of the datasets required for the ML model 

development was identified, including input variables such as quality indicators of the on-site 

operational strategies, weather conditions, mixture type, and auxiliary parameters in the 

operational phase of the pavement (such as traffic intensity and climate condition). The outputs 

of the identified data structure include density degree, residual lifespan, and IRI, covering the 

short- and long-term perspectives of the pavement product quality. 

A GA-based ML model development method was designed, where RF and GRU were selected 

as the ML algorithms. For the validation, case studies were conducted. Based on the collected 

data, the regression model for the density degree using RF failed to satisfy the corresponding 

requirements regarding the model performance. For the regression of residual lifespan and IRI, 

both the RF and GRU were used to develop corresponding models. For residual lifespan, the 

developed RF model outperformed the GRU model, with an R2 of 0. 8297, while the regression 

of IRI shows contradictory results, where the developed GRU model significantly 

outperformed (R2 is 0.8284). After interpreting the permutation importance, both cases show 

that ECR achieved the third highest importance, revealing the rather high correlation between 

process quality and product quality in asphalt construction.  

Referring to the design project questions, overall, the proposed data-driven method and 

corresponding results obtained through case studies can answer all the formulated design 

project questions. When it comes to the derived requirements, the developed regression models 

for two selected long-term performance indicators, following the proposed method, have 

satisfied all the requirements, in terms of the accuracy, generality, and interpretability. 

However, the regression model for the density degree failed to provide desirable predictive 

performance. 
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7.2. Future work 

For future work, because the case study in this design project was performed on a small dataset, 

the EngD candidate would like to expand the scope of the dataset, because it is believed that a 

larger dataset with improved data quality can enhance the ML model performance, particularly 

for the regression of density degree. Besides, the presented design project only focused on a 

confined selection of product quality indicators, while in the further study, more product quality 

indicators concerned with both in-place pavement properties (i.e., density, thickness, etc.) and 

long-term pavement performance (i.e., raveling, cracking, rutting, etc) can be considered.  

Besides, the validation of the design project is confined to internal validity by conducting case 

studies and comparing the results with previous studies. In order to rigorously validate the 

methodology and outputs, it is critical to expand the validating method to test its concurrent 

validity in the future. This can be done in the future by comparing the results obtained from the 

ML predictions with other empirical models or direct measurements of the target product 

quality indicators, under the same pre-defined input variables concerned with the process 

quality indicators.  
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