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A B S T R A C T

Under dynamic pricing, stable and accurate electricity price forecasting on the demand side is essential for
efficient energy management. We have developed a new electricity price forecasting model that provides
consistently accurate forecasts. The base prediction model decomposes the time series using wavelet transform
and then predicts it by Long Short-Term Memory. Previous studies using this model have always decomposed
time series in the same way without changing the mother wavelet. However, this makes it difficult to respond to
changes in time series that vary daily or seasonally. Therefore, we periodically switch the mother wavelet, i.e.,
flexibly change the time series decomposition method, to achieve stable and highly accurate electricity price
forecasting. In an experiment, the model improved prediction accuracy by up to 42.8% compared to prediction
with a fixed mother wavelet. Experimental results show that the proposed flexible forecasting method can
consistently provide highly accurate forecasts.
1. Introduction

In recent years, renewable energy is widely used in many countries.
Renewable energies are expected to contribute to the achievement of a
low-carbon society. While renewable energy is a clean energy source,
it is not possible to control the output power. In power systems, it
is essential to balance supply and demand. Otherwise, the resulting
voltage and frequency fluctuations would create major problems for the
consumers’ electrical equipment. Therefore, electric power companies
constantly forecast the demand and determine the amount of power
generated by each power plant so that supply and demand can be kept
in balance.

Today, with the massive introduction of solar energy into power
system, balancing supply and demand is becoming more challeng-
ing. Demand response is thus attracting attention as a solution to
this problem [1]. This is the process of changing consumer demand
patterns. One means of demand response is dynamic pricing [2], in
which electricity prices are varied from time to time, and this has been
introduced in many countries, such as European nations, the United
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States, and Australia. For example, when excessive power generation
is expected, electricity demand can be boosted by lowering electricity
prices. When the price of electricity changes from time to time due
to dynamic pricing, it becomes increasingly important to predict the
price changes for decision making of each consumer. To be more
precise, electricity price forecasting is very important for a prosumer,
or consumers who also produce electricity, which has been increasing
with the spread of solar power generation. Energy management by
prosumers based on accurate electricity price forecasts will allow them
to receive incentives on their electricity bills, and would allow for
optimal energy use for groups of prosumers without hampering the
optimization of the national/regional grid.

Electricity price forecasting methods can be divided into three main
categories: statistical methods, machine learning methods, and hybrid
methods. First, among statistical methods, Auto-Regressive (AR) mod-
els such as Auto-Regressive Integrated Moving Average (ARIMA) and
Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH)
have been widely used. Zhao et al. [3] used an ARIMA model for
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differential price time-series data, where the price is represented by
a weighted sum of past prices and noise. They also focused on the
difference in electricity consumption patterns between weekdays and
holidays. They improved short-term forecasting accuracy by adding a
‘‘weekday/holiday’’ term to the mathematical model. Tan et al. [4]
proposed a method based on wavelet transform combined with ARIMA
and GARCH models, and they tested it on data from the Spanish
electricity market and other sources. Mohsenian-Rad et al. [5] focused
on the fact that electricity prices are highly correlated with prices one,
two, and seven days before, and they calculated the price at forecast
time as a weighted sum of the prices one, two, and seven days before.
By changing the weights for each day of the week, forecasts with small
error were achieved. However, since these statistical methods represent
predictions as a linear combination of past values, the longer the past
time to be considered, the more parameters are required, making it dif-
ficult to handle complex and nonlinear time series. Therefore, machine
learning is attracting attention due to its outstanding performance in
dealing with complex and nonlinear problems.

Machine learning is used in a variety of research areas. For example,
Wei et al. [6] used machine learning to predict stock prices. Durganjail
et al. [7] used classification algorithms such as logistic regression
and decision trees to predict the resale value of homes. Lu et al. [8]
proposed an Artificial Neural Network (ANN) -based electricity price
prediction model. Lago et al. [9] compared machine learning methods
such as simple deep neural network (DNN) and LSTM with statistical
methods such as ARIMA, and they showed that machine learning can
provide more accurate predictions than statistical methods. In the study
by Xu et al. [10], they compared simple Recurrent Neural Network
(RNN), LSTM, and Gated Regression Unit (GRU) with neural networks
without recursive structure. Their results showed that simple RNN,
LSTM, and GRU could predict more accurately because they predict
based on past information. The above study showed that RNN such
as LSTM and GRU showed superior performance in electricity price
prediction. However, research using hybrid models of machine learning
and other methods has been the most popular approach in recent years,
since they can provide more accurate electricity price prediction than
prediction methods using machine learning alone.

Peng et al. [11] incorporated a differential evolution algorithm to
determine the parameters of LSTM. Assuming that this would bet-
ter capture the characteristics of the time series, an improvement
in forecast accuracy has been shown using electricity prices in New
South Wales, Australia, Germany, Austria, and other countries. Lago
et al. [12] showed that a hybrid model of Lasso Estimated Auto-
Regressive (LEAR) and DNN provides better prediction results than
methods using LEAR and DNN individually, and they verified a sig-
nificant difference in prediction accuracy by statistical tests. Since it is
very effective in forecasting non-stationary time series, research com-
bining machine learning and the wavelet transform is actively being
conducted, not only for electricity price forecasting but also for other
purposes. The wavelet transform is used to decompose a time series
by frequency. Su et al. [13] predicted natural gas consumption with a
model that integrates wavelet transform, RNN-structured deep learning,
and a Genetic Algorithm. The wavelet transform reduced the complex-
ity of the forecasting task by decomposing the original gas consumption
series into several subcomponents. For the mother wavelet, which is
a kind of parameter included in the wavelet transform, Daubechies 4
was used in Su’s study. Barzegar et al. [14] evaluated the accuracy of
four models predicting water salinity in a river in northwestern Iran;
here, ANN, Adaptive Neuro-Fuzzy Inference System (ANFIS), wavelet-
ANN, and wavelet-ANFIS were evaluated for accuracy. Daubechies 1
to 7, Symlet 3 to 5, and Haar were compared for the mother wavelet,
with Daubechies 4 having the best accuracy. They concluded that
Daubechies 4 was the best mother wavelet because its functional shape
is relatively similar to that of the salt time series, which is the target
time series of the wavelet transform. Liu et al. [15] proposed a short-
2

term forecasting method for wind power based on wavelet transform
and LSTM. In Liu’s study, Daubechies 7 was used as the mother wavelet.
In the field of electricity price prediction, Aggarwal et al. [16] pro-
posed a wavelet transform based neural network model for predicting
price profiles in electricity markets. In Aggarwal’s study, Daubechies 1
through 4 were compared as mother wavelets, and finally, Daubechies
2 was adopted. The experimental results showed that using wavelet
transform in the prediction model could improve prediction accuracy.
Singh et al. [17] used generalized neurons, which require fewer data for
training, and constructed a hybrid model with the wavelet transform.
Here, Daubechies 4 was used as the mother wavelet. That study further
compared various error functions and validated them with electricity
prices in New South Wales, Australia.

Chang et al. [18] proposed a hybrid model of wavelet transform and
LSTM and then evaluated the model using datasets from New South
Wales, Australia, and France. As in the other studies above, wavelet
transform was used for time series decomposition. First, the electricity
price time series was decomposed into several constituent series with
minor variance. The decomposed time series were then trained and
forecasted separately using LSTM, and the forecast values were summed
to generate the actual forecast price. By decomposing the time series
data with the wavelet transform, the data have a more stable variance,
allowing LSTM to capture the electricity price fluctuations accurately.
The results showed that their proposed model can significantly improve
the prediction accuracy compared to Peng’s model [11] and a model
that combines ARIMA and ANN [19]. Chang’s study predicted future
electricity prices based only on past electricity prices. Therefore, we
previously aimed to further improve the prediction accuracy by con-
sidering the electricity demand as well, based on their hybrid model of
wavelet transform and LSTM [20]. As a result, we reduced the error by
up to 53.7% in one-step-ahead prediction, which predicts the price one
hour later. Both Chang’s and our previous work employed Daubechies
5 as the mother wavelet.

There are various types of mother wavelets, and each one has its ad-
vantages and disadvantages in time-series decomposition performance
depending on the time-series shape of the transformation target as
discussed by Barzegar et al. [14]. Even though the actual electricity
price time series changes its shape from period to period, in all of the
above studies, the same mother wavelet was fixed and used throughout
the entire experimental period, although different experiments were
conducted to compare a variety of mother wavelets. In other words,
even if the shape of the time series to be forecasted changes from
period to period, the mother wavelet does not change during the
experiment. Therefore, this study aims to develop a new model that can
make predictions with more stable accuracy by periodically switching
mother wavelets. To the best of the authors’ knowledge, the proposed
forecasting model is used for the first time not only for electricity
price forecasting but also for time series forecasting, as well as other
forecasting targets. The major contribution of this paper is its proposal
for a partly new, partly improved electricity price forecasting method
that addresses cross-daily and cross-seasonal price fluctuations.

The rest of the paper is structured as follows. In Section 2, proposed
forecasting method is described. Then, in Section 3, the evaluation
experiments and results of the proposed method are presented, and
finally, Section 4, concludes the study.

2. Methods

The method proposed in this paper aims to achieve and accurate
prediction by periodically switching the mother wavelet in the hybrid
model of wavelet transform and LSTM. Fig. 1 shows an overview of the
proposed method. We first decompose the electricity price time series
and electricity demand time series by frequency using the wavelet
transform. Then, each of the decomposed time series is learned by
LSTM to predict the future electricity price. The wavelet transform has a
parameter called the mother wavelet. The decomposition performance

of the time series depends on which mother wavelet is used for which
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Fig. 1. Overview of proposed method; training and forecast test are repeated while switching mother wavelets based on forecast results. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
shape of the time series. Therefore, in the proposed method, the mother
wavelet is periodically switched to the one that matches the time series
shape as a way to prevent the degradation of prediction accuracy.
In this section, the hybrid model of wavelet transform and LSTM are
explained in detail with reference to Fig. 1, followed by a description
of the mother wavelet switching technique.

2.1. Hybrid model of wavelet transform and LSTM

Forecasting with a hybrid model of wavelet transform and LSTM
involves three key steps: preprocessing, decomposition of time series
data, and forecasting with LSTM. First, outlier processing by the Pauta
criterion and Min–max normalization are performed for both electricity
price and demand in the preprocessing stage. Next, we use the wavelet
transform to decompose the data on electricity price and demand. The
decomposition level was set at level 5 as in the previous study [20].
Time series decomposition by wavelet transform is shown in Figs. 2 and
3. Although the electricity price time series is used here as an example,
the same procedure is done for the electricity demand time series.
First, the original price time series is wavelet transformed to obtain
the component series shown in Fig. 2. The approximation extracts
the trend, which is the low-frequency component, and each detailed
series contains the higher-frequency component, such as information
on abrupt changes. Then, using the inverse wavelet transform for
the approximation and each detailed series, each of these terms is
transformed again into the time domain, as shown in Fig. 3.

After decomposing the time series data by wavelet transform, LSTM
is used to train each constituent series. The LSTM model used for
prediction consists of an input layer, an LSTM layer, and an output
layer, and the activation function of the LSTM layer is a sigmoid
function. Adam [21] was used as the optimization method. Hyper-
parameters such as the number of neurons in the LSTM layer, the
number of learning epochs, the batch size, and Adam’s learning rate
were determined by an automated procedure to objectively analyze
the accuracy of the model [9]. Specifically, parameter tuning was
performed using the tree-structured Parzen estimator [22], which is
one of the Bayesian optimization methods. The reason for adopting the
tree-structured Parzen estimator is that it can naturally handle not only
continuous variables but also discrete, categorical, and conditional vari-
ables, which are difficult to handle with standard Bayesian optimization
algorithms. It is also relatively computationally inexpensive [23]. After
3

Fig. 2. Original electricity price time series and decomposed component series
(frequency domain).
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Fig. 3. Original electricity price time series and decomposed component series (time
domain).

inputting each time series data into this LSTM model and generating
predicted values for each component of the electricity price, the overall
predicted price value was obtained by adding the predicted values
together.

The input–output relationship to LSTM at time 𝑡 is shown on the
right side within the square of ‘‘Time Series Decomposition & Training’’
in Fig. 1. In Fig. 1, the electricity price component series is represented
by blue and the electricity demand component series by orange. 𝑃𝑛[𝑇 ] is
the value of the 𝑛th component series of the electricity price at time 𝑇 ,
𝐷𝑛[𝑇 ] is the value of the 𝑛th component series of the electricity demand
at time 𝑇 , and 𝑃 [𝑇 ] is the electricity price at time 𝑇 . The length of the
time series input to LSTM is two steps between the current time 𝑡 and
time 𝑡 − 1, which is one step earlier. In addition, a time series lagged
by one step is added to each component series, making a total of 24
time series as input to the LSTM. The output of LSTM is the value of
the next step 𝑡 + 1 of each component series of electricity prices. The
predicted values of all of these price component series are then added
together to obtain the final predicted price at time 𝑡 + 1, 𝑃 [𝑡 + 1].

2.2. Switching mother wavelet

The wavelet transform used for time series decomposition is the
same as the Fourier transform. Just as in the Fourier transform, the
4

original time series was represented by scaling and translating sin and
cos waves, and in the wavelet transform, small waves called mother
wavelets play this role. Since there are many different types of mother
wavelets, the prediction error can be significant depending on the
mother wavelet.

Nine mother wavelets commonly used in time series forecasting,
as shown in Section 1, are illustrated in Fig. 4. Daubechies (db) and
Symlet (sym) are the names of the mother wavelets, and the number
after the name is called the vanishing moment. As with the degree
in a polynomial, the larger the vanishing moment, the smoother the
waveform of the wavelet. In general, when performing time–frequency
analysis with wavelet transform, it is considered best to determine
the mother wavelet based on its similarity to the shape of the time
series to be analyzed [24]. As shown in Fig. 5, the actual shape of
the electricity price time series to be analyzed varies from period to
period. As shown in Fig. 5, the price of electricity in New South Wales,
Australia, fluctuated significantly from April to August 2013, although
it fluctuated less from September to December.

Therefore, we aim to maintain high prediction accuracy by peri-
odically switching the mother wavelet to the observed fluctuations
across the days and seasons. The proposed method performs time series
decomposition and price forecasting with the various mother wavelets
shown in Fig. 4, and it switches which mother wavelet is used as
the final forecast value. In the switching process, the prediction of
the mother wavelet with the highest accuracy in the past 𝑛 weeks is
adopted as the final prediction. Although not as large as the seasonal
differences mentioned above, Fig. 5 shows that the shape of the time
series changes even within a month, while a few days would not make
much difference in the electricity price time series, so we chose to
switch mother wavelets on a weekly basis. For 𝑛, we investigate the
optimal value in the next section by validating the effectiveness of the
proposed method.

3. Experimental evaluation

3.1. Experimental setup

An experiment was conducted to evaluate the flexible forecasting
method proposed in this paper. The experimental setup was the same as
that used in our previous study [20]. We used the electricity price and
demand data of New South Wales, Australia, from 2013. This dataset
is published by the Australian Energy Market Operator (AEMO) [26],
and while the original data were for every 30 min, the hourly data
were used here. As a prediction method, we performed one-step-ahead
prediction, which predicts the electricity price for the next hour every
hour. Fig. 6 shows the one-step-ahead prediction method when the
current time is 𝑡. In both the upper and lower figures, the horizontal
axis represents time and the vertical axis represents electricity prices,
with solid lines representing prices that are already known and dotted
lines representing future prices that are yet to be known. Only elec-
tricity prices are plotted in Fig. 6, but the same procedure applies for
electricity demand. First, at the current time 𝑡, we predict the price at
time 𝑡 + 1 based on the price and demand at time 𝑡 − 2 ∼ 𝑡. Then, at
time 𝑡+1, one hour later, the price and demand at time 𝑡−1 ∼ 𝑡+1 are
used to predict the price at time 𝑡 + 2, another hour later. The above
procedure is repeated every hour.

This experiment was performed with each of the following 19
mother wavelets: 9 ways to fix the mother wavelet with Daubechies
(db) 1 to 6 and Symlet (sym) 3 to 5 and 10 ways when 𝑛, the number
of weeks to be considered in switching the mother wavelet, is changed
from 1 to 10 in the proposed method.

For the duration of the experiment, predictions were made by
repeating the time series decomposition and learning every week, as
shown in Fig. 7. Specifically, we first train a forecasting model using
price and demand data for the four weeks from January 1 to 28, 2013.
Next, we use the data from January 29 to February 4 as validation
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Fig. 4. Mother wavelet function often used in time series forecasting [25].
Fig. 5. Electricity prices in New South Wales, Australia in 2013 [26].
Fig. 6. Overview of one-step-ahead prediction.
data to check the learning status of the model. We then test the
model’s predictive performance using data from February 5 to 11.
Then, all data are shifted by one week, followed by additional time
series decomposition, training, validation, and testing. This is repeated
and tested for 53 weeks, roughly one year. The loss function used in
the evaluation was Mean Absolute Percentage Error (MAPE), which is
expressed by the following equation.

𝑀𝐴𝑃𝐸 = 100
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

|

|

|

|

, (1)

where 𝑛 is the number of data, 𝑦𝑖 is the actual value, and 𝑦𝑖 is the
predicted value.

3.2. Results

Table 1 shows MAPE over the entire experimental period for each
mother wavelet. The second line, ‘‘switching to the best MW’’, indicates
5

the case where the proposed method constantly switches to the mother
wavelet with the best prediction accuracy at that time. In other words,
it represents the theoretical optimal value of the proposed method.
From Table 1, we can see that the prediction accuracy varies depending
on which mother wavelet is used to decompose the time series. More-
over, there are mother wavelets, including the proposed method, that
are more accurate than db5, which was used in our previous work [20].
Among them, the lowest MAPE of 2.148% was obtained in one of the
proposed methods that determines the mother wavelet based on the
forecast results of the past three weeks. However, even with ‘‘switching
MW (n = 3)’’, there was a difference of about 0.07% ppt compared to
‘‘switching to the best MW’’, which is the theoretical optimum value.
The reasons for this are discussed below.

Fig. 8(a) shows, for the period of July 22 to 23, the actual electricity
price, the predicted price when the mother wavelet is fixed to db4, that
when fixed to sym5, and the proposed method of switching the mother
wavelet. The vertical axis is the price of electricity, and the horizontal
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Fig. 7. Details of experimental period.
Table 1
MAPE of each mother wavelet (MW) over entire experimental period.

Mother wavelet MAPE (%) Description

Switching to best MW 2.074660 Ideal case of
proposed method.

Switching MW (𝑛 = 3) 2.148150 Proposed method.
Switching MW (𝑛 = 8) 2.152941
Switching MW (𝑛 = 6) 2.158812
Switching MW (𝑛 = 9) 2.163366
Switching MW (𝑛 = 5) 2.164564
Switching MW (𝑛 = 7) 2.172413
Switching MW (𝑛 = 10) 2.174297
Switching MW (𝑛 = 4) 2.178161
Switching MW (𝑛 = 2) 2.182103

Symlet 5 2.196947

Switching MW (𝑛 = 1) 2.206786 Proposed method.

Daubechies 4 2.212410
Daubechies 6 2.295169

Daubechies 5 2.307206 Used in our previous studies
[20].

Symlet 4 2.399550
Daubechies 3 2.445557
Symlet 3 2.545998
Daubechies 2 2.703441
Daubechies 1 2.858116

axis is time, expressed in the form of ‘‘month-day hour’’. In Fig. 8(a), for
the proposed method, July 23 is the time of the weekly changeover of
the mother wavelet. In other words, the proposed method uses db4 as
the mother wavelet until July 22, and from July 23, it switches to sym5,
which had the best accuracy over the past three weeks. From Fig. 8(a),
we can see that by switching the mother wavelet to sym5 from the
week of the 23rd, the predicted values are closer to the actual values
than if we had used db5 as is. Fig. 8(b) shows the absolute error of the
predictions made by each mother wavelet at the time corresponding to
Fig. 8(a). Looking at Fig. 8(b), we can see that the error of the proposed
method is large at 7:00 on the 23rd but otherwise actually smaller than
the error of db5 at many other times. This means that switching mother
wavelets based on last week’s forecast results has effectively prevented
the accuracy from deteriorating.
6

Fig. 9(a) shows the MAPE of each mother wavelet for each week,
and Fig. 9(b) shows the ranking of each mother wavelet in order of
predictive accuracy, also for each week. For the sake of clarity, some of
the periods are excerpted, and the case of 𝑛 = 3 with the best results in
Table 1 is shown as representative of the proposed method. In addition,
the mother wavelets, which are more accurate than db5 as used in
our previous work, are shown as a solid line. First, in Fig. 9(a), the
horizontal axis represents the week, and the vertical axis represents
the MAPE; here, the lower the value, the higher the accuracy. This
graph shows that the proposed method (solid red line) can suppress
the average error for many weeks. In particular, for the week of April
30 to May 6, the MAPE is 6.91% when the mother wavelet is fixed
at db1, while it is 3.95% with the proposed method. In other words,
the proposed method improves accuracy by about 42.8%. In Fig. 9(b),
the horizontal axis shows the same week as in the top graph. The
vertical axis shows the ranking of each mother wavelet in the order
of decreasing error; the higher the ranking, the higher the accuracy.
Here, while the other mother wavelets are ranked 15th or lower in some
weeks, the proposed method shown by the solid red line is consistently
ranked 4th or higher. Furthermore, in the periods of April 2 to 8 and
May 7 to 13, db5 suddenly became the most accurate. This is the
reason why, in Table 1, even the best accuracy of the proposed method
was slightly different from the theoretical optimum. In the proposed
method, the mother wavelet is determined based on the accuracy of the
past weeks, so if the accuracy of one mother wavelet suddenly becomes
better, it cannot be adopted for use.

Fig. 10 shows the average rank in accuracy of the mother wavelet
shown in Fig. 9 over the entire experimental period. The lower the bar
in this graph, the higher the average rank, i.e., the higher the accuracy.
This figure shows that the proposed method maintains higher accuracy
than the other mother wavelets on average, not only during the period
shown in Fig. 9 but also throughout the entire period. These results
suggest that switching the mother wavelet may suppress the decline in
forecast accuracy from week to week.

4. Conclusion

This paper proposed an electricity price forecasting model for en-
ergy management on the demand side under dynamic pricing. This is a
significant improvement over the previously published hybrid model of
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Fig. 8. Predicted and actual prices for July 22–23 and absolute error for each mother wavelet.
Fig. 9. Prediction accuracy MAPE and rank for each mother wavelet by week.
wavelet transform and Long Short-Term Memory using the constitutive
series of electricity price and demand. Specifically, we aimed to achieve
prediction with stable accuracy by periodically switching the mother
wavelet, one of the parameters included in the wavelet transform.
We conducted an evaluation experiment of the proposed model using
hourly electricity price and demand data from New South Wales,
7

Australia in 2013. We compared the forecasting accuracy of a total of
19 patterns of time series decomposition: nine ways that are fixed to
any one of the mother wavelets and ten ways in the proposed method
of switching mother wavelets. As a result of one-step-ahead prediction,
which predicts the electricity price of the next hour every hour, the
proposed method is more stable and accurate than the method with a
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Fig. 10. Average rank of accuracy over experimental period.
fixed mother wavelet. In particular, the best accuracy was obtained by
switching the mother wavelet based on the forecast results of the past
three weeks. In this experiment, compared to the case where the mother
wavelet is fixed, the proposed method can reduce the prediction error
by up to 42.8%. In the future, we will integrate the developed electric-
ity price prediction model with existing energy management systems to
verify how well energy management can be performed with the current
prediction accuracy. Furthermore, it is important to implement the
proposed electricity price forecasting model in a real system together
with an energy management framework. In such a real system, we plan
to empirically verify that the consistently accurate price forecasting
provided by the proposed model is useful for optimizing energy use
on the demand side and has an impact on the electricity market.
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