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A B S T R A C T   

This study proposes to use exceedance posterior probabilities of a space-time random-effects model to study the 
temporal dynamics of clusters. The local time trends specified for each area is further smoothed over space. We 
modelled the common spatial and the space-varying temporal trend using a multivariate Markov Random field to 
incorporate within-area correlations. We estimate the model parameters within a fully Bayesian framework. The 
exceedance posterior probabilities are further used to classify the common spatial trend into hot-spots, cold- 
spots, and neutral-spots. The local time trends are classified into increasing, decreasing, and stable trends. The 
results is a 3 × 3 table depicting the time trends within clusters. As a demonstration, we apply the proposed 
methodology to study the evolution of spatial clustering of intestinal parasite infections in Ghana. We find the 
methodology presented in this paper applicable and extendable to other or multiple tropical diseases which may 
have different space-time conceptualizations.   

1. Introduction 

Spatial disease mapping has been vital in public health disease sur
veillance. The goal has been to investigate the geographical distribution 
of the diseases. In the end, one achieves the purpose of providing 
smoothed estimates of the risk or standardized rate ratios (SIR) and the 
exploration of the association between disease outcomes and environ
mental or demographic exposures. Findings from disease mapping may 
give clues to etiology and generate hypotheses and also inform public 
health resource allocation. The posterior probabilities from Bayesian 
estimates of disease mapping parameters can be used to detect and map 
higher than expected (hot-spots) and lower than expected (cold-spots) 
clusters of the SIR (Richardson et al., 2004). The recent availability of 
routine health information management systems has necessitated the 
development of space-time methods that accounts for spatial, temporal, 
and space-time interactions for dynamic disease mapping. Space-time 
disease mapping goes a step further to evaluate the space-time varia
tions in the SIR; whose findings can further inform public health officials 
about the effectiveness of applied or existing interventions. 

Space-time disease clustering and mapping have a long history and 
rich literature. Scan statistic cluster detection methods like the spatial 
scan statistic (Kulldorff, 2001, 1997) and the flexible scan statistic 
(Takahashi et al., 2008; Takahashi and Tango, 2005) have been utilized 
in many epidemiological studies (Azage et al., 2015; Hjalmars et al., 

1996; Odoi et al., 2004). However, they have some limitations. First, 
their measurement of spatial proximity for area data is based on dis
tances between the centroids. This obscures the effects of the varying 
shapes and sizes of areal features. Also, scan statistic methods cannot 
directly accommodate explanatory variables or confounders. 
Model-based space-time methods that utilize contiguity-based spatial 
proximity can present a comparable opportunity to investigate the 
evolution of small-area disease clusters. Bernardinelli et al. (1995) 
proposed a hierarchical model-based space-time variation of disease 
risk, where the time variation of each specific area is assumed linear 
with each time effect spatially dependent on those in neighboring areas. 
The spatial autocorrelation smoothing terms were specified via the 
conditional autoregressive (CAR) prior proposed by Besag et al. (1991). 
Their approach can be called separable parametric space-time 
modeling. A separable space-time nonparametric space-time interac
tion effect has been proposed by Knorr-Held (2000). Here, four different 
space-time interaction terms can be defined. Type I: unstructured tem
poral and unstructured spatial effects, Type II: structured temporal and 
unstructured spatial effects, Type III: unstructured temporal and struc
tured spatial effects, and Type IV: structured temporal and structured 
spatial effects. The focus, as demonstrated in many space-time epide
miological studies, has been on providing space-time variation estimates 
for the diseases. An important aspect of disease surveillance is moni
toring and evaluation of the space-time risk within hot-spots. Within the 
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Bayesian framework, disease hot-spots can additionally be deduced 
from the residual risk using exceedance posterior probabilities with set 
cutoffs (Richardson et al., 2004). This can reduce the number of areas to 
monitor especially in resource-burdened countries. We argue that, if the 
evolution of the hot-spots through time is evaluated, then the number of 
areas needed to be monitored can further be reduced to optimize scarce 
resources. Also, our understanding of the disease cluster evolution can 
inform policymakers on what can become of the disease clusters in the 
future. 

In a previous study, we adopted the Bayesian space-time model 
developed by Bernardinelli et al. (1995) to analyze the spatial clustering 
of the differential time trends and applied it to diarrhea incidences in 
Ghana. Our focus was to detect and map clusters of areas with 
increasing, decreasing, and stable time trends using Richardson and 
colleagues’ cutoffs of posterior probabilities. In this study, we seek to 
answer the following questions: First, are the area-specific risks 
diverging from the same level, or converging to the same level over 
time? Second, how do the identified hot-spots/cold-spots evolve? Third, 
do areas that are neither hot-spots nor cold spots (neutral-spots) show 
the tendency to become hot-spots? The answers to these questions are of 
strategic importance to epidemiologists and public health managers. 
The last two questions are adopted from Li et al. (2014) who asked and 
answered similar questions for the space-time variability of burglary risk 
mapping. They described a two-step univariate classification which 
proceeds as follows. First, areas are classified as hot-spots, cold-spots, or 
neutral-spots. Next, the temporal behaviors of these areas are classified 
as decreasing trend, increasing trend, or neither. Like in our previous 
study, we will adopt the Bayesian space-time model developed by Ber
nardinelli et al. (1995). Afterward, we will adopt the two-stage classi
fication described above to study the evolution of the clusters. We apply 
our models to study the space-time variability of intestinal parasite in
fections in Ghana. Intestinal parasites remain a major public health 
burden in developing countries, especially in sub-Saharan Africa. This 
disease infects more than 1 billion people, although there are concerns 
about the actual number of infections (Bethony et al., 2006; de Silva 
et al., 2003). Intestinal parasites can greatly comprise the quality of life 
of children of school-going age. Understanding the evolution of the 
hot-spots/cold-spots and the potential for neutral-spots to turn into 
hot-spots plays a fundamental public health role to guide monitoring 
and intervention. The structure of the paper is as follows. First, we 
describe the statistical modeling as applied to intestinal parasite infec
tion data in Ghana. Next, we present the findings and discuss their 
interpretation. We conclude with some implications of the findings. 

2. Statistical modeling 

Consider the space-time disease counts yij, over the finite set of i = 1,
…,M discretized spatial entities (districts in this case) and j = 1,…, J 
time steps. We assume that the counts are conditionally independent 
realizations from the Poisson distribution with mean λij = Eijrij and 
likelihood 

L
(
yij|rij

)
=
∏M

i=1

∏J

j=1

(
e− λij λyij

ij

yij!

)

(1)  

where λij = Eijrij is the mean of the Poisson distribution and ri is the 
unknown relative risk. The Poisson data generating process enforces 
mean and variance equality; E(yij|rij, Eij) = Eijrij and the variance 
var(yij|rij) = Eijrij. The expected number of cases is Eij = nijr̃j after ac
counting for district-level population differentials nij, where ̃rj =

∑

i
yij /

∑

i
nij is the overall risk for time j within the study area. We write 

yij|rij ∼ P(Eijrij). 
Next, following Bernardinelli and colleagues (Bernardinelli et al., 

1995), we decompose the log of the unknown space-time relative risk 

into a spatial pattern common to all the time steps, a linear temporal 
trend common to all areas, and a space-time interaction term that allows 
different time trends for different areas. Thus, logrij ∼ N(ηij,σ2

j ), where σ2
j 

is the variance and 

ηij = β0 + (β1 + u1i)t∗j +
∑

q
xiqγq + u0i (2)  

Here, the parameter β0 denotes the overall relative risk on the log scale, 
and β1 is a fixed effect parameter for the overall time trend. The 
parameter u1i accounts for district-specific spatially structured differ
ential time trends. Inferentially, β1i = β1 + u1i specifies the district and 
disease-specific temporal trends. The time steps are centered at the mid- 
observation period t∗j = j − N− 1

j
∑

j. The coefficients γq, q = 1,…,Q 
are the fixed effects of Q vulnerability or exposure variables xiq. Here, we 
have the spatially structured intercepts u0i which account for residual 
spatial variations. The spatially structured intercepts also account for 
unobserved ecological factors which may give rise to spatial clustering. 
The additive common spatial and temporal trends β1t∗j + u0i of the model 
can be termed as the stable component. The component allowing space- 
time interaction or local deviations from the common trends u1it∗j can be 
termed as the unstable component. We refer to (1) as a log-Gaussian 
parameterization. The alternative, yet common structure, is the log- 
linear parameterization yij|rij ∼ P(Eijrij) with logrij = β0 + (β1 + u1i)t∗j +
u0i + v0i, where v0i is the unstructured spatial random variation. The log- 
Gaussian and log-linear models are inferentially the same. But the log- 
linear parameterization has Markov chain Monte Carlo (MCMC) 
convergence issues. The spatial random effects, when modelled as the 
sum of structured and unstructured variations, have only their sum 
identifiable. This can result in MCMC convergence problems as observed 
in a previous study (Osei et al., 2022). 

We now look at modeling the random effects u0i and u1i. Each of the 
random effects could be modelled separately with the univariate con
ditional autoregressive (CAR) prior. The incorporation of correlation 
between the random slopes and intercepts will provide the answer to our 
first research question; i.e. are the area-specific risks diverging from the 
same level or converging to the same level over time? A previous study 
(Osei and Stein, 2019) has explored different mechanisms for inducing 
correlations between random intercepts and slopes. The bivariate con
ditional autoregressive (BCAR) model was found to be competitive over 
the others. The univariate CAR model extends naturally to the BCAR 
specification by replacing the univariate normal conditional distribution 
with a bivariate normal (BN) conditional distribution. Let ui = (u0i, u1i)

′ 

be a vector of the random intercepts and slopes, and u− i = (u0,− i, u1,− i)
′ 

be the vector of all random effects except ui. The conditional distribution 

is a bivariate normal distribution ui|u− i ∼ BN
(

u, Γ /
∑

l∕=i
wil

)

. The mean 

vector u = (u0,u1)
′
, where u =

∑

l
wilu0l/

∑

l∕=i
wil and u1 =

∑

l
wilu1l/

∑

l∕=i
wil. 

The spatial weights wil are fixed constants that measure the proximity of 
districts i and l. Let the set of boundary points on a district say i be 
denoted by (i). We defined wil as a binary connectivity spatial weight 
matrix such that wil = 1 if (i) ∩ (l) ∕= ∅, and wil = 0 otherwise. The 
covariance matrix Γ is of dimension 2 × 2 and captures the within-area 
correlation between the two random effects (random intercepts in this 
case). The diagonal elements equal to their conditional variances. The 
off-diagonal elements capture the correlation between them. Thus, the 
off-diagonal elements Γ12 = Γ21 capture the within-district association 
between the intercepts and slopes with their correlation coefficient 
measured by ρ = Γ12/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Γ11Γ22

√
. Since BCAR is translational invariant, 

we add the constraints 
∑

i
u0i = 0 =

∑

i
u1i = 0 for identifiability of the 

mean and to ensure proper posteriors. 
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3. Data application 

We demonstrate the proposed method by applying it to study the 
evolution of spatial clustering of intestinal parasite infections in Ghana. 
Globally, intestinal parasites are estimated to infect more than 1 billion 
people (Bethony et al., 2006; de Silva et al., 2003). Intestinal parasite 
infection occurs mainly through contact with infected environments, 
hand-to-hand contact, or contaminated food or water (fecal-oral) (Alum 
et al., 2010). Infection can lead to blood loss and the development of 
iron deficiency anemia thereby retarding the growth of children and 
cognitive deficiencies (Stephenson et al., 1993, 1990, 1989). Alternative 
intervention using the best available evidence is therefore crucial. In our 
previous study (Osei and Stein, 2017), we found evidence of spatial 
clustering via the global Moran’s Index. In this study, we demonstrate 
this methodology to evaluate the evolution of intestinal parasites clus
tering in Ghana. This is useful to understand the dynamics of the disease 
hot-spots. We use yearly intestinal parasites morbidities from 2010 to 
2014 from outpatient records. These are obtained from the District 
Health Information Management System (DHIMS) managed by the 
centre for Health Information and Management (CHIM) of the Ghana 
Health Services (GHS). The data exist in aggregated format per admin
istrative district. The geographical scale of analysis is restricted to the 
170 administrative districts of which data had been recorded for this 
period. The population information for the districts was obtained from 
the Ghana Statistical Service (GSS). Since the focus has been on studying 
the space-time random effects, we avoided the inclusion of covariates in 
the model. Thus, ηij = β0 + (β1 + u1i)t∗j + u0i. 

4. Model inference 

We estimated the model parameters by generating samples from the 
posterior density using MCMC sampling within a Bayesian framework. 
Let ψ1be the full Gaussian latent (unobservable) field and let ψ2 be a 
vector of hyper-parameters. Then the process layer is ψ1|ψ2 = {β0, β1i,

β1, ui1, ui2} and the hyper-priors is ψ2 = {σ2
j ,Γ}. Then the model can be 

summarized under a three-stage hierarchical framework; the data 
model, process model, and parameter model. Stage 1 is the data model 
where the likelihood y|ψ1,ψ2 ∼ p(y|ψ1,ψ2). Stage 2 is the process model 
where ψ1|ψ2 ∼ p(ψ1|ψ2). Stage 3 is the parameter model ψ2 ∼ p(ψ2). 
The posterior density is then p(ψ1, ψ2|y)∝p(y|ψ1, ψ2)× p(ψ1, |ψ2) ×

p(ψ2). Before estimation, we assign prior distributions to all variance 
parameters σ2

j , the fixed effects β0, β1 and the covariance Γ. We assigned 
a non-informative flat distribution for the intercept, p(β0)∝1 to ensure 
that the data drive inference. For the global time trend, β1, we assigned 
vague normal prior β1 ∼ N(0,105). We assigned a Wishart prior for the 
inverse of the covariance matrix, thus Γ− 1 ∼ W(Ω, df). This prior is a 
conjugate of the inverse of the covariance parameters of a multivariate 
normal distribution (Gelman et al., 2013; Press, 2005). The scale matrix 
is Ω and the degrees of freedom df equal to the number of random effects 
for a weakly informative distribution. We set Ω as a scaled identity 
matrix of dimension equal to the number of random effects, a specifi
cation Moraga and Lawson (Moraga and Lawson, 2012) utilized to run 
simulation studies of multivariate CAR modeling. We used the MCMC 
samplers employed in the WinBUGS software to generate samples from 
the posterior distribution. The Gibbs sampler is automatically used to 
sample values of the unknown parameters from their conditional pos
terior distribution if the prior is a conjugate of the likelihood. The soft
ware uses an expert system to select the appropriate MCMC sampler if a 
closed-form conditional posterior is not available, especially if the prior 
is not a conjugate of the likelihood. For our study, which is a form of a 
Generalized linear model, for instance, the full conditional posterior of 
the fixed effects is log-concave; hence the derivative-free adaptive-r
ejection sampling is used (Gilks and Wild, 1992). We fitted the models 
via the R2WinBUGS package (Spiegelhalter et al., 2008) of the R 

software (R Core Team, 2016). 

5. Model evaluation and comparison 

We used the Chi-square goodness-of-fit statistic based on the 
discrepancy function, χ2

obs =
∑

ij
[(yij − nijrij)

2
/nijrij] (Marshall and Spie

gelhalter, 2003) to evaluate the adequacy of the model. By generating 
predicted observations y pred

ij using the predictive distribution of the 
model, we as well compute the discrepancy for the predicted data as 

χ2
pred =

∑

ij
[(y pred

ij − nijrij)
2
/nijrij]. These two quantities are compared 

using the Bayesian p-values, Pr(χ2
obs ≥ χ2

pred). A Bayesian p-value close to 
0.5 suggests that the generated data are compatible with the model. 

6. Spatial clustering of time trends 

To answer our second and third research questions, we adopt the 
two-stage classification approach proposed by (Li et al., 2014) for bur
glary risk mapping. This proceeds as follows. First, areas are classified as 
hot-spots, cold-spots, or neither (neutral-spots). Next, the temporal be
haviors of these areas are classified as decreasing or increasing trends or 
neither (stable trend). To evaluate the first step, we adopt the spatial 
clustering classification rule and cutoffs by Richardson and colleagues 
(Richardson et al., 2004). We classify districts as either hot-spot, cold-
spot, or neutral-spot (i.e. neither hot-spot nor cold-spot) based on the 
exceedance posterior probabilities of the residual risks. We define a 
district as a hot-spot if the posterior probability p(exp(u0i)> 1|yij) > 0.8. 
Likewise, a district is defined as a cold-spot if the posterior probability 
p(exp(u0i)> 1|yij) < 0.2. Neutral-spots are those districts with posterior 
probabilities 0.2 ≤ p(exp(ui)> 1|yij) ≤ 0.8. For the second stage, which 
is the classification of time trends into decreasing, stable, and decreasing 
trends, we use the same probability cutoffs but on the local slopes, β1i. 
Thus, we define districts with increasing time trends as those with 
p(β1i> 0|yij) > 0.8, decreasing time trends as those with 
p(β1i> 0|yij) < 0.2, and stable time trends as those with 
0.2 ≤ p(β1i> 0|yij) ≤ 0.8. 

7. Results 

We report our results based on posterior samples from 2 MCMC 
chains, each with 100,000 iterations with a burn-in of 40,000. We 
checked convergence visually and also via the Brooks and Gelman plots 
and shrink factor (Brooks and Gelman, 1998). Fig. 1 shows the 
Brooks-Gelman plots for the fixed parameters. We observed the shrink 
factor to approach one as the number of iterations increased. For the 
alternative parameterization, i.e. the log-linear model, there were severe 
convergence issues. None of the model parameters converged under the 
same prior densities and initial values as the log-Gaussian model. Fig. 2 
shows the time series plots of the MCMC chains of the fixed parameters 
for the log-linear parameterization. There is a clear visual impression of 
a non-convergence of the MCMC iterations for this parameterization. 
Hence, in what follows, only results from the log-Gaussian parameteri
zation are described. We checked for model fit using the chi-square 
goodness of fit discrepancy statistics. Fig. 3 shows the Bayesian 
p-values of the observed and predicted discrepancies for each area. 
There are only a few areas with extreme p-values that indicate a lack of 
fit. With an average Bayesian p-value of 0.65 (see Table 1), there is an 
agreement that the model well fits the data since this is within the 
suggested interval [0.1,0.9]. 

The posterior means of the fixed effects are shown in Table 1. The 
parameter exp(β0) = 0.763 represents the overall relative risk after ac
counting for the spatial and temporal effects. This is epidemiologically 
interpreted as the ratio of the observed to the expected number of cases 
being lower than expected. Fig. 4 shows the details of the spatially 

F.B. Osei                                                                                                                                                                                                                                          



Spatial and Spatio-temporal Epidemiology 47 (2023) 100617

4

varying residual relative risks and time trends. These have been expo
nentiated for easy comparative interpretation. The common spatial 
trends exp(u0i) measure the residual relative risks (left panel) while the 
estimated local time trends (right panel) exp(u1i) measure the local de
partures from the overall time trend. Thus, those districts with exp(u0i)

> 1 indicate that they have higher than expected relative risk. The 

districts with exp(u1i) > 1 also indicate those with increasing time 
trends, and vice versa. There is obvious north-south trend variation in 
the residual relative risks; the risks in the northern parts are lower than 
those in the southern parts. The overall time trend β1 = 0.069 is positive 
and reflects a general yearly 7% increment in the risk. The residual time 
trends u1i (Fig. 4: Right panel) reflect the local departures from the 

Fig. 1. This figure shows the time series and Gelman plots of the iterations of the two MCMC chains for the log-Gaussian parameterization.  

Fig. 2. This figure shows the time series of the MCMC chains of the fixed parameters for the log-linear parameterization.  
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overall time trend. The south-central part is characterized by a large 
cluster of decreasing time trends. Moderate increasing time trends 
dominate with isolated areas of faster time trends. 

The within-district correlation between the residual risks and the 
time trends answers our question of whether the district-specific risks 
are diverging from the same level or converging to the same level over 
time. This correlation is observed to be negative (see Table 2), sug
gesting that the district-specific disease rates are converging to the same 
level. 

Table 3 shows the results of the two-stage classification of clusters 
into increasing, stable, and decreasing time trends. For this, 47.6% of 

districts were classified as hot-spots, 34.7% as cold spots, and 17.6% as 
neutral-spots (Neither hot-spots nor cold-spots). Figs. 5–7 (left panels) 
show the spatial distribution of the time trends within the hot-spots, 
cold-spots, and neutral-spots, respectively. The plots (right panels) 
also show the trends of the relative risks for districts with increasing 
time trends. We have focused on the relative risks for districts with 
increasing time trends because this is of particular interest in disease 
monitoring. Among the hot-spots, only five districts are observed to 
show increasing time trends while 40 districts show decreasing time 
trends. There are 36 hot-spot districts with stable time trends. Among 
the neutral-spots, there are seven districts found to have increasing time 
trends. These districts have relative risks exceeding the expected 
(rij > 1) since 2013 (Fig. 7, right panel). The implication is that these 
districts have a higher tendency to migrate into hot-spots. The cold-spots 
with increasing times trends, however, have a moderate tendency of 
becoming hot-spots since their relative risks fall below the expected, 
except few districts which have relative risks that exceed the expected. 

8. Discussion 

Here we provide the answers to our reach questions and their 
interpretation, methodologically and epidemiologically. The 

Fig. 3. Bayesian p-values of the discrepancy statistic between the observed and predicted cases of intestinal parasite infections in Ghana. The dark areas are those 
with the observed number of cases markedly higher than the numbers predicted while those in white are when the converse is true. 

Table 1 
The posterior means of fixed effects and model fit parameters.  

Parameter Estimates (CI) 

β0 − 0.27 (− 0.304, - 0.237) 
β1 0.069 (0.047, - 0.093) 
χ2

obs 892.35 
χ2

pred 838.001 

Pr(χ2
obs ≥ χ2

pred) 0.65  
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contribution to disease mapping literature is based upon the imposition 
of correlation between the residual relative risks and time trends to 
ascertain whether the area-specific risks are diverging from the same 
level or converging to the same level over time. Regarding our case study 
of intestinal parasites in Ghana, we found that the district-specific dis
ease rates are converging to the same level. We ascertained this via the 
consolidation of the two random effects into a discrete bivariate Markov 
random field with an unknown within-area correlation parameter. A 
bivariate Gaussian random field is the alternative if the data were point 
referenced. The Gaussian random field can still be sampled over a 
discrete spatial domain if the areas are collapsed into points, but one 
should not lose sight of the positional uncertainties and computational 

burden related to evaluating high dimensional matrices at each step of 
the MCMC iterations. In a related study, we compared the different 
mechanisms of exploring the correlation between random intercepts and 
slopes and found the bivariate Markov random field competitive over 
the others (Osei and Stein, 2019). 

The greater divergence of this study from existing studies is based 
upon the posterior analysis of the random effects, i.e. the residual 
relative risk and time trends. Quite frequently, spatial epidemiologists 
have been concerned with estimating and mapping spatial, temporal, 
and space-time disease variations. On some occasions, exceedance 
probabilities of the relative risks have been used to classify spatial 
clusters as inspired by the work of Richardson et al. (2004). In this study, 
we have adapted the two-stage classification proposed by Li et al. 
(2014). In their study, they decomposed the latent relative risk into 
structured and unstructured spatial, temporal, and space-time effects. 
With greater flexibility and compromise between structured and un
structured spatial variation, the use of such convolution priors (Besag 
et al., 1991) for modeling spatial random effects has attracted a lot of 
space in disease mapping literature notwithstanding their identifiability 
issues. The identifiability issue arising from modeling the spatial random 
effects as the sum of structured and unstructured variations has long 
been observed (Eberly and Carlin, 2000). In this study, we have 
bypassed the possible identifiability and MCMC convergence issues by 
first sampling the log of the relative risk from Gaussian distribution 
before the decomposition into structured spatial, temporal, and 
space-time random effects. We set the variance parameter of the 
Gaussian distribution to impose spatial exchangeability for each time 
step. In this regard, the variance parameters account for the unstruc
tured spatial effects for each time step. The empirical advantage is that 
we observed faster MCMC convergence. 

The modeling structure presented here is similar to the Bayesian 
space-time model developed by (Bernardinelli et al. (1995). The 
space-time interaction utilized can be likened to the type IV interaction 
proposed by Knorr-Held (2000) where the local time trends specified for 
each spatial entity are further smoothed over space. Here, we have 

Fig. 4. This figure shows the posterior means of the common spatial components for the residual relative risks exp(u0i) (left panel) and time trends u1i (right panel).  

Table 2 
The covariance and correlation matrix for the random effects.   

u01 u11  

Covariance matrix: Γ− 1 

u01 3.026 − 0.449 
u11 − 0.449 0.304  

Correlation matrix: R 

u01 1.000 − 0.469 
u11 − 0.469 1.000  

Table 3 
Results from the cross-classification (Clustering and time trends) of the 170 
districts.   

Time trends 

Clustering Increasing Stable Decreasing Total 

Hot-spots 5 36 40 81 (47.6%) 
Neutral-spots 7 16 7 30 (17.6%) 
Cold-spots 24 24 11 59 (34.7%) 
Total 36 (21.2%) 76 (44.7%) 58 (34.1%) 170  
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Fig. 5. This figure (left panel) shows the spatial distribution of increasing, stable, and decreasing time trends within hot-spots. The figure (right panel) also shows the 
trends of the relative risks for hot-spot districts with increasing time trends; the horizontal dotted line shows the expected relative risk. 

Fig. 6. This figure (left panel) shows the spatial distribution of increasing, stable, and decreasing time trends within cold-spots. The figure (right panel) also shows 
the trends of the relative risks for cold-spot districts with increasing time trends; the horizontal dotted line shows the expected relative risk. 
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specified local linear time trends for each spatial entity due to the fewer 
number of time steps of the data. This is, in a nutshell, a dynamic Markov 
Random field that evolves linearly over time. The limitation of the linear 
time trend is that it can over smooth and obscure possible departures 
from linearity. Alternatives and extensions are possible for the 
space-time interaction structure (Quick et al., 2013), but some data re
quirements must be met. For instance, if the exact locations of the spatial 
entities are known, then a Gaussian random field can be used for the 
spatial smoothing and paired with either discrete or continuous time 
domain models. For areal unit spatial entities like our case, one may 
suggest collapsing the districts into points represented by their cen
troids. The varying shapes and sizes can be a setback but a workaround 
to overcome such limitations has been presented by Goovaerts (2006). 
The disadvantage, however, is the computational burden imposed by 
inverting high dimensional matrices when there are many spatial 
entities. 

We now turn to the interpretation of the results directly related to 
our research questions. First, are the area-specific risks diverging from 
the same level or converging to the same level over time? The findings 
have indicated that the district-specific disease rates are converging to 
the same level. The implication is that environmental determinants of 
intestinal parasites, which varied widely in the past, are becoming 
similar as time passed. The model has not included environmental de
terminants which might have played a role in the observed variations of 
the time trends. Further studies to elucidate the role of unknown envi
ronmental determinants will be worthwhile. Second, how do the iden
tified hot-spots/cold-spots evolve? On the evolution of the clusters, the 
result is a 3 × 3 cross-categorization table that indicates the time 
trends within each cluster. For the case study, the increasing, stable, and 
decreasing time trends within each of the clusters have been detected. It 
is critical to highlight that the hot-spots with increasing time trends 
should be given immediate public health attention. The additional 
observation that deserves mention is the fact that 24 out of the 59 cold- 
spots have increasing time trends and therefore have a higher tendency 

to migrate into hot-spots if not given attention. Lastly, do areas that are 
neither hot-spots nor cold-spots (neutral-spots) show the tendency to 
become hot-spots? We postulate that the neutral-spots that have 
increasing time trends have a higher tendency to become hot-spots if 
immediate attention is not given. We have found seven neutral-spots 
with increasing time trends, and therefore we conclude that these 
neutral-spots have a higher tendency to migrate into hot-spots. 

Disease cluster detection has a rich literature. Prominent is the space- 
time scan statistics (Kulldorff, 2001). However, in the scan statistics, the 
measurement of spatial proximity is based on distances between the 
centroids. This obscures the effects of the varying shapes and sizes of the 
areal data. The use of the proposed method in this study presents a 
comparable opportunity to investigate the evolution of small-area dis
ease clusters. In future studies, we will undertake a simulation-based 
comparison between the proposed methods and the spatial scan statis
tics for cluster detection. 

9. Conclusions 

In this paper, we have presented a posterior analysis of a Bayesian 
space-time random-effects model to study the evolution of spatial dis
ease clustering. We built upon a space-time random effect framework 
leading to in dynamic Markov Random field that evolves linearly over 
time. The model has been applied to study the evolution of intestinal 
parasite infections in Ghana. Several notable implications can be drawn. 
First, for the sake of MCMC convergence, the log-Gaussian parameteri
zation is favored over the log-linear parameterization, although addi
tional simulation research should be conducted to explain the reasons. 
Second, this study has shown the evolution of spatial clusters of intes
tinal parasite infection in Ghana. The cross-classification of clusters and 
time trends and the maps showing the spatial distribution of increasing, 
stable, and decreasing time trends within hot-spots, neutral-spots, and 
cold-spots is an asset to guide public interventions such as resource 
allocation. The methods presented in this paper are applicable and 

Fig. 7. This figure (left panel) shows the spatial distribution of increasing, stable, and decreasing time trends within neutral-spots. The figure (right panel) also shows 
the trends of the relative risks for neutral-spot districts with increasing time trends; the horizontal dotted line shows the expected relative risk. 
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extendable to other or multiple tropical diseases which may have 
different space-time conceptualizations. 

Funding info 

The study received no funding. 

Ethics statement 

The study was based on aggregated data, hence, no ethical approval 
was required. 

Consent to participate and for publication 

Not applicable. 

CRediT authorship contribution statement 

Frank Badu Osei: Visualization, Writing – original draft. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

The authors would like to thank the staff of the District Health In
formation Management System (DHIMS) of the Ghana Health Services 
(GHS) for providing the data for this study. 

References 

Alum, A., Rubino, J.R., Ijaz, M.K., 2010. The global war against intestinal 
parasites–should we use a holistic approach? Int. J. Infect. Dis. 14, e732–e738. 
https://doi.org/10.1016/j.ijid.2009.11.036. 

Azage, M., Kumie, A., Worku, A., Bagtzoglou, A.C., 2015. Childhood diarrhea exhibits 
spatiotemporal variation in Northwest Ethiopia: a SaTScan spatial statistical 
analysis. PLoS ONE 10, e0144690. https://doi.org/10.1371/journal.pone.0144690. 

Bernardinelli, L., Clayton, D., Pascutto, C., Montomoli, C., Ghislandi, M., Songini, M., 
1995. Bayesian analysis of space-time variation in disease risk. Stat. Med. 14, 
2433–2443. 
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