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Abstract

We prove that the scaled maximum steady-state waiting time and the scaled maximum steady-state queue

length among N GI/GI/1-queues in the N-server fork-join queue, converge to a normally distributed random

variable as N → ∞. The maximum steady-state waiting time in this queueing system scales around 1
γ
logN ,

where γ is determined by the cumulant generating function Λ of the service distribution and solves the Cramér-

Lundberg equation with stochastic service times and deterministic inter-arrival times. This value 1
γ
logN is

reached at a certain hitting time. The number of arrivals until that hitting time satisfies the central limit

theorem, with standard deviation
σA√
Λ′(γ)γ

. By using distributional Little’s law, we can extend this result to the

maximum queue length. Finally, we extend these results to a fork-join queue with different classes of servers.

1 Introduction

Fork-join queues are a useful modeling tool for congestion in complex networks, such as assembly systems, commu-
nication networks, and supply chains. Such networks can be large and assembly is only possible upon availability
of all parts. Thus, the bottleneck of the system is caused by the slowest production line in the system. This setting
motivates us to investigate such delays in a stylized version of a large fork-join queueing system. In this setting,
a key quantity of interest is the behavior of the longest queue when the system is in the steady-state situation.
Furthermore, we assume that arrival and service processes are general and mutually independent.

As we try to model systems with many servers, we are typically interested in the behavior of this random variable
as N → ∞. In [12], it is shown that maxi≤N (Bi(s) + BA(s) − βs) is in the domain of attraction of the normal
distribution:

P

(

max
i≤N

(Bi(s) +BA(s)− βs) >
σ2

2β
logN + x

√

logN

)

N→∞−→ P

(

σσA√
2β

X > x

)

, (1)

with X
d
= N (0, 1), where {Bi(t), t ≥ 0} and {BA(t), t ≥ 0} are Brownian motions with standard deviations σ

and σA, respectively. We see from the limit in (1) that maxi≤N (Bi(s) +BA(s) − βs) centers around σ2

2β logN and

deviates with order
√
logN .

This convergence result provides a prediction of the typical delay. In this study, we aim to extend this result to
a more general setting. In particular, we investigate the maximum steady-state waiting time among the N servers
with a common arrival process maxi≤N Wi(∞) = maxi≤N supk≥0

∑k
j=1(Si(j)−A(j)). This expression follows from

Lindley’s recursion. Furthermore, we have that both (Si(j), j ≥ 1, 1 ≤ i ≤ N) and (A(j), j ≥ 1) are i.i.d. and the
inter-arrival times and service times are mutually independent. Thus Si(j) indicates the service time of the j-th
customer in queue i, A(j) indicates the inter-arrival time between the (j − 1)-st and the j-th customer. We see
that the maximum steady-state wating time is a maximum of N dependent random variables, due to the common
arrival process (A(j), j ≥ 1).

The earliest literature on fork-join queues focuses on systems with two service stations. Analytic results, such
as asymptotics on limiting distributions, can be found in [2, 6, 9, 17]. However, due to the complexity of fork-join
queues, these results cannot be expanded to fork-join queues with more than two service stations. Thus, most of the
work on fork-join queues with more than two service stations is focused on finding approximations of performance
measures. For example, an approximation of the distribution of the response time in M/M/s fork-join queues is
given in Ko and Serfozo [10]. Upper and lower bounds for the mean response time of servers, and other performance
measures, are given by Nelson, Tantawi [14] and Baccelli, Makowski [3]. These bounds can be used for fork-join
queues with large size, but apart from this, there is not much literature on the convergence of the longest queue
length in a fork-join queue as N → ∞. Some results can be found in [12, 15, 16]. In [12], the same convergence
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results are given as in this paper, but only for the Brownian fork-join queue, thus this paper extends on these
results.

This paper is organized as follows. In Section 2, we present our main results; in Theorem 1 we state that the
longest steady-state waiting time satisfies a central limit result; in Theorem 2 we show that a similar result holds
for the longest queue length, and in Corollary 1 we present a similar result when the service distributions can differ
among the different queues. In Section 3 we give an intuition why the results hold and how we prove these. Section
4 is devoted to proofs.

2 Model

We investigate a fork-join queue with N servers. Each of the N servers has the same arrival stream of jobs and
works independently from all other servers but with the same service distribution. In this section, we state the
main result for the longest steady-state waiting time in Theorem 1. We also show that a similar result holds for
the maximum queue length in Lemma 2 and Theorem 2. Furthermore, we extend the result in Theorem 2 to a
heterogeneous model in Corollary 1.

We now specify some properties of the service times and interarrival times in this fork-join queueing system.
First, the sequence of non-negative random variables (Si(j), i ≥ 1, j ≥ 1) are i.i.d. with Si(j) ∼ S, and Si(j)
indicating the service time of the j-th subtask in queue i. Furthermore, the sequence of non-negative random
variables (A(j), j ≥ 1) are i.i.d. with A(j) ∼ A, E[A(j)] = 1/λ, Var(A(j)) = σ2

A, and A(j) indicating the interarrival
time between the (j − 1)-st and the j-th task. Finally, we have that E[Si(j) − A(j)] = −µ, with µ > 0, and
(A(j), j ≥ 1) and (Si(j), i ≥ 1, j ≥ 1) are mutually independent.

We can now write the cumulative distribution function of the longest steady-state waiting time as the cumulative
distribution function of the maximum of N all-time suprema of random walks involving the interarrival and service
times.

Lemma 1. For the model given in Section 2 with Wi(1) = 0 for all i ≤ N , we have that the longest waiting time
in steady state satisfies

max
i≤N

Wi(∞)
d
= max

i≤N
sup
k≥0

k
∑

j=1

(Si(j)−A(j)). (2)

Proof. Using Lindley’s recursion [11], we can write the waiting time of tasks in front of server i as

Wi(n) = sup
0≤k≤n

n
∑

j=k+1

(Si(j)−A(j)).

Thus, the longest steady steady-state waiting time satisfies.

max
i≤N

Wi(n) = max
i≤N

sup
0≤k≤n

n
∑

j=k+1

(Si(j)−A(j)).

We have that
P(max

i≤N
Wi(∞) ≥ x) = lim

n→∞
P(max

i≤N
Wi(n) ≥ x).

Because,

max
i≤N

Wi(n)
d
= max

i≤N
sup

0≤k≤n

k
∑

j=1

(Si(j)−A(j)), (3)

we obtain the lemma by using the monotone convergence theorem.

In order to be able to prove convergence of the longest steady-state waiting time, we need some additional
structure for the service-time distribution. We define

Λ(θ) := log(E[exp(θ(S − 1/λ)]). (4)

Moreover, we write D(Λ) := {θ : Λ(θ) < ∞} and D◦(Λ) as the interior of D(Λ).
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Assumption 1. We assume there exists a γ > 0 such that

1. Λ(γ) = 0,

2. γ ∈ D◦(Λ).

The first assumption indicates that the random variable S−1/λ has a tail that is bounded by an exponential. The
second assumption is needed for our proofs. In [4, Ex. 2.2.24], it is namely stated that when γ ∈ D◦(Λ), Λ is infinitely
differentiable at the point γ. For example, when S − 1/λ has density function fS−1/λ(x) = c1 exp(−x)/(1 + x2) for
x > 0, where c1, λ are chosen such that P(S − 1/λ < x) is a cumulative distribution function and γ = 1, then the
first assumption is satisfied but the second is not, since Λ(θ) is not differentiable at θ = γ. Our main result is given
in Theorem 1.

Theorem 1. For the model in Section 2 where the sequence of service times (Si(j), i ≥ 1, j ≥ 1) satisfies Assumption
1, we have that

maxi≤N Wi(∞)− 1
γ logN

√
logN

d−→ σA
√

Λ′(γ)γ
X, (5)

with X ∼ N (0, 1), as N → ∞.

Lemma 2 (Distributional Little’s Law). Let for t ≥ 0, NA(t) indicate the number of arrivals up to time t, where
the interarrival times are i.i.d. with A(j) ∼ A. Then

max
i≤N

Qi(∞)
d
= NA

(

max
i≤N

Wi(∞)

)

. (6)

Proof. In [8], a short proof is given that for the GI/GI/1 queue under the FCFS policy, Q
d
= NA(W ). We follow

the same steps to prove that maxi≤N Qi(∞)
d
= NA (maxi≤N Wi(∞)).

First, let t > 0 be given such that the system is in steady state. Furthermore, let W̃i(j) be the waiting time of
the i-th subtask of the j-th task numbered backward in time, beginning at time t. Thus, W̃i(1) is the waiting time
of the i-th subtask of the last task arriving before time t. Now, let the random variable T (j) be such that t− T (j)
is the arrival time of the j-th task numbered backward in time. Then, observe that the event {maxi≤N Qi(t) ≥ j}
is equivalent to the event that at least one subtask of the j-th task numbered backward in time is still in the queue
at time t. Thus,

{

max
i≤N

Qi(t) ≥ j

}

=

{

max
i≤N

W̃i(j) ≥ T (j)

}

,

for j ≥ 1. The event {T (j) ≤ x} is equivalent to the event that the number of arrivals during the period [t− x, t)
is larger than or equal to j. The arrival process is a stationary process, thus the event {T (j) ≤ x} is equivalent to
the event {NA(x) ≥ j}. Additionally, the random variables maxi≤N W̃i(j) and T (j) are independent. Therefore,

{

max
i≤N

Qi(t) ≥ j

}

=

{

NA

(

max
i≤N

W̃i(j)
)

≥ j

}

.

As the system is in steady state, we get that
{

max
i≤N

Qi(∞) ≥ j

}

=

{

NA

(

max
i≤N

W̃i(∞)
)

≥ j

}

.

Now, combining the result in Lemma 2 with the main result in Theorem 1, we can find a similar convergence
result for the maximum queue length in steady state.

Theorem 2. For the model in Section 2 where the sequence of service times (Si(j), i ≥ 1, j ≥ 1) satisfies Assumption
1, we have that

maxi≤N Qi(∞)− λ
γ logN

√
logN

d−→
√

λ2σ2
A

Λ′(γ)γ
+

λ3σ2
A

γ
X, (7)

with X ∼ N (0, 1), as N → ∞.
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Proof. Let Â(j) ∼ A, let (Â(j), j ≥ 1) be mutually independent, and Â(j) and maxi≤N Wi(∞) be mutually
independent for all j ≥ 1. Then, using Lemma 2 and Theorem 1, we get that

P

(

max
i≤N

Qi(∞) ≤ λ

γ
logN + x

√

logN

)

= P

(

NA

(

max
i≤N

Wi(∞)

)

≤
⌊λ

γ
logN + x

√

logN
⌋

)

= P






max
i≤N

Wi(∞) ≤

⌊

λ
γ logN+x

√
logN

⌋

∑

j=1

Â(j)







= P







maxi≤N Wi(∞)− 1
γ logN

√
logN

≤
∑

⌊

λ
γ logN+x

√
logN

⌋

j=1 Â(j)− 1
γ logN

√
logN







N→∞−→ P

(

σA
√

Λ′(γ)γ
X1 ≤ σA

√
λ√

γ
X2 +

x

λ

)

,

with X1, X2 independent and standard normally distributed, this convergence holds, as (Â(j), j ≥ 1) and maxi≤N Wi(∞)
are independent. Thus, the theorem follows.

Until now, we considered the fork-join queueing system where each server has the same service distribution.
In Corollary 1, we show that we can extend the convergence of the longest steady-state waiting time to a more
heterogeneous setting. We examine a fork-join queueing system with N servers, where each of these N servers
belongs to one of K classes. Additionally, we assume that the size of class k with k ∈ {1, . . . ,K} grows as αkN , as
N becomes large, with 0 < αk < 1.

Corollary 1. Let K ∈ N, let k = 1, . . . ,K, furthermore, take an increasing sequence of integers given by

M
(N)
0 ,M

(N)
1 ,M

(N)
2 , . . . ,M

(N)
K > 0 with M

(N)
0 = 1, M

(N)
K = N , and M

(N)
k − M

(N)
k−1 ∈ N. Moreover, (M

(N)
k −

M
(N)
k−1)/N

N→∞−→ αk ∈ (0, 1] with
∑K

k=1 αk = 1. Let (Si(j), j ≥ 1,M
(N)
k−1 < i ≤ M

(N)
k ) be i.i.d. with Si(j) ∼ Sk,

(A(j), j ≥ 1) be i.i.d. with A(j) ∼ A, E[A(j)] = 1/λ, Var(A(j)) = σ2
A, E[Si(j) − A(j)] = −µk with µk > 0,

Λk(θ) = log(E[exp(θ(Sk − 1/λ)]), Λk satisfies Assumption 1. Furthermore, Si1(j1) and Si2(j2) are mutually in-
dependent for all i1, i2, j1, j2. Let K∗ = argmin{γk, k = 1, . . . ,K}. We assume that |K∗| = 1 and k∗ ∈ K∗.
Then,

maxi≤N Wi(∞)− 1
γk∗

logN
√
logN

d−→ σA
√

Λ′
k∗(γk∗)γk∗

X, (8)

with X ∼ N (0, 1), as N → ∞.

Proof. We prove this corollary by giving an asymptotically sharp lower and upper bound. First, observe that

max
i≤N

Wi(∞) ≥st. max
M

(N)

k∗
−1

<i≤M
(N)

k∗

sup
k≥0

k
∑

j=1

(Si(j)−A(j)),

with X ≥st. Y meaning that P(X ≥ x) ≥ P(Y ≥ x) for all x. Applying the result from Theorem 1 on the lower
bound results in (8). By using the union bound we get the following upper bound:

P

(

max
i≤N

Wi(∞) ≥ 1

γk∗

logN + x
√

logN

)

=

K
∑

l=1

P



 max
M

(N)
l−1<i≤M

(N)
l

sup
k≥0

k
∑

j=1

(Si(j)−A(j)) ≥ 1

γk∗

logN + x
√

logN



.

When l 6= k∗, we get after applying the results from Theorem 1 that

P



 max
M

(N)
l−1<i≤M

(N)
l

sup
k≥0

k
∑

j=1

(Si(j)−A(j)) ≥ 1

γl
logN + x

√

logN





N→∞−→ 1− Φ

(

√

Λ′
l(γl)γl

σA
x

)

,
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with Φ the cumulative distribution function of a standard normal random variable. Because γk∗ < γl we get that

P



 max
M

(N)
l−1<i≤M

(N)
l

sup
k≥0

k
∑

j=1

(Si(j)−A(j)) ≥ 1

γK∗

logN + x
√

logN





N→∞−→ 0.

The corollary follows.

Remark 1. In Corollary 1 we assume that |K∗| = 1. The situation that |K∗| > 1 follows analogously. Assume for
instance that |K∗| = 2, then we can introduce a new random variable S̃ such that S̃i(j) ∼ S1 with probability α and
S̃i(j) ∼ S2 with probability 1 − α, such that γ1 = γ2 = γK∗ . As N is large enough this fork-join queueing system
behaves analogous to the original fork-join queue, and for this system |K∗| = 1.

We give the proofs of the convergence of the longest steady-state waiting time in Section 4. First, we give a
heuristic explanation of why the convergence result in Theorem 1 is true, and we illustrate the structure of the
proof.

3 Heuristic analysis

To prove Theorem 1, we analyze lower and upper bounds of the tail probability of the longest steady-state waiting
time among the N servers P(maxi≤N Wi(∞) > 1

γ logN+x
√
logN) and we show that these lower and upper bounds

converge to the same limit as N → ∞. The longest steady-state waiting time has the form maxi≤N Wi(∞)
d
=

supk≥0 maxi≤N

∑k
j=1(Si(j) − A(j)). Thus the longest steady-state waiting time is the all-time supremum of the

maximum of N random walks. For all processes (X(t), t ≥ 0), we have for all t > 0

P

(

sup
s>0

X(s) > x

)

≥ P(X(t) > x). (9)

Furthermore, due to the union bound, we have for all 0 < t1 < t2 that

P

(

sup
s>0

X(s) > x

)

≤ P

(

sup
0<s<t1

X(s) > x

)

+ P

(

sup
t1≤s<t2

X(s) > x

)

+ P

(

sup
s≥t2

X(s) > x

)

. (10)

We use these types of lower and upper bounds to prove Theorem 1. Obviously, not all choices of t, t1, and t2 give
sharp bounds. We can however make an educated guess about which choices will give the sharpest bounds. Let
us first replace the sequence of random variables (A(j), j ≥ 1) with their expectation 1/λ. Thus, we look at a
simplified fork-join queue with deterministic arrivals. Because the arrivals are deterministic, the waiting times are
mutually independent, and we are able to use standard extreme-value theory. We know from the Cramér-Lundberg
approximation [1, Ch. XIII, Thm. 5.2] that P(supk≥0

∑k
j=1(Si(j) − 1/λ) > x) ∼ C exp(−γx), as x → ∞, with

0 < C < 1. Thus, P(supk≥0

∑k
j=1(Si(j) − 1/λ) > 1

γ logN) ∼ C/N , as N → ∞. Now we can conclude by using

basic extreme-value results; see [7, Thm. 5.4.1, p. 188], that

maxi≤N supk≥0

∑k
j=1

(

Si(j)− 1
λ

)

logN

P−→ 1

γ
,

as N → ∞. Thus, we know that maxi≤N supk≥0

∑k
j=1(Si(j)−1/λ) centers around 1

γ logN . In order to find suitable

lower and upper bounds of the form as given in (9) and (10), we need to estimate the hitting time

τ (N) := inf







k ≥ 0 : max
i≤N

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN







.

As mentioned before, we have that P(supk≥0

∑k
j=1

(

Si(j)− 1
λ

)

> 1
γ logN) ∼ C/N as N → ∞. Thus, a good

estimate τ̂ (N) for τ (N) should also satisfy the property that

lim inf
N→∞

N P





τ̂ (N)
∑

j=1

(

Si(j)−
1

λ

)

>
1

γ
logN



 > 0 (11)
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and

lim sup
N→∞

N P





τ̂ (N)
∑

j=1

(

Si(j)−
1

λ

)

>
1

γ
logN



 < ∞. (12)

Now, by using Cramér’s theorem and by using the fact that Λ is at least twice differentiable at γ, we know that

lim
n→∞

1

n
log



P





n
∑

j=1

(

Si(j)−
1

λ

)

≥ nx







 = −Λ∗(x), (13)

for all x > E[Si(j)−1/λ] with Λ∗(x) = supt∈R
(tx−Λ(t)); see [1, Ch. XIII, Thm. 2.1 (2.3)]. We write τ̂ (N) = ĉ logN .

Then we can conclude from Equation (13) that

lim
N→∞

1

logN
log



P





⌊ĉ logN⌋
∑

j=1

(

Si(j)−
1

λ

)

≥ xĉ logN







 = −Λ∗(x)ĉ. (14)

Thus, in order to find a good estimate τ̂ (N) for the hitting time τ (N) we need to solve two equations. First, xĉ = 1/γ,
because we know that the longest steady-state waiting time under deterministic arrivals is approximately equal to
1
γ logN . Therefore the expression xĉ logN in (14) should be the same as 1

γ logN . Second, −Λ∗(x)ĉ = −1, because

we know from (11), (12), and (14) that for large N

P





⌊ĉ logN⌋
∑

j=1

(

Si(j)−
1

λ

)

≥ xĉ logN



 ≈ 1

N
= exp(−Λ∗(x)ĉ logN).

Combining these two equations gives ĉ = 1
Λ′(γ)γ and x = Λ′(γ). Clearly, xĉ = 1/γ, and

Λ∗(x)ĉ =
Λ∗(Λ′(γ))

γΛ′(γ)
.

From [4, Lem. 2.2.5(c)], we know that Λ∗(Λ′(γ)) = γΛ′(γ), thus indeed, Λ∗(x)ĉ = 1. Finally, we can conclude that
τ̂ (N) = ĉ logN = 1

γΛ′(γ) logN . Obviously, in order to be a good estimation for a hitting time we need to have that

Λ′(γ) > 0. This is the case because Λ(θ) is convex; see [1, Ch. XIII, Thm. 5.1].
Until this point, we know the first-order scaling of the largest of N steady-state waiting times with deterministic

arrivals, and we can give an estimation of the hitting time of this value. Now, we can use these results to obtain
a second-order convergence result for the longest steady-state waiting time with stochastic arrivals. Following the
analysis above together with the lower bound in (9), we see that

P

(

maxi≤N Wi(∞) − 1
γ logN

√
logN

≥ x

)

≥ P







maxi≤N sup( 1
Λ′(γ)γ

−ǫ
)

logN<k< 1
Λ′(γ)γ

logN

∑k
j=1(Si(j)−A(j))− 1

γ logN

√
logN

≥ x






, (15)

with ǫ > 0 and small. In Lemma 3, we prove that the right-hand side in (15) converges to a function that is close to
the tail probability of a normally distributed random variable. Furthermore, we show in Lemmas 4, 5, and 6, that
this lower bound is sharp. To achieve this, we first divide the supremum over all positive numbers in the random

variable maxi≤N Wi(∞) in three parts. After that, we take the supremum over the intervals
[

0,
(

1
Λ′(γ)γ − ǫ

)

logN
]

,
((

1
Λ′(γ)γ − ǫ

)

logN,
(

1
Λ′(γ)γ + ǫ

)

logN
]

, and
((

1
Λ′(γ)γ + ǫ

)

logN,∞
)

, with ǫ > 0 and small. Consequently, we

show that the tail probabilities of the first and third suprema of the maximum of N random walks asymptotically
vanish, while

P



max
i≤N

sup
(

1
Λ′(γ)γ

−ǫ
)

logN<k<
(

1
Λ′(γ)γ

+ǫ
)

logN

k
∑

j=1

(Si(j)−A(j)) >
1

γ
logN + x

√

logN





converges to a limit close to the lower bound as N → ∞.
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Remark 2. The lower bound presented in Equation (9) gives us information about the convergence rate of the

result in Theorem 1. From the Berry-Esséen theorem [13], we know that when 1√
n

∑n
i=1 Xi

d−→ X ∼ N (0, 1),

the convergence rate is of order 1/
√
n. Thus, the lower bound in (9) shows that the convergence rate is of order

1/
√
logN .

4 Proofs

Lemma 3. Given the model in Section 2 where the sequence of service times (Si(j), i ≥ 1, j ≥ 1) satisfies As-

sumption 1, 0 < ǫ < 1
Λ′(γ)γ , t

(N)
1 =

(

1
Λ′(γ)γ − ǫ

)

logN , and t
(N)
2 = 1

Λ′(γ)γ logN , then for all x ∈ R, we have

that

lim inf
N→∞

P



max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(Si(j)−A(j)) >
1

γ
logN + x

√

logN





≥ P

(

σA

√

1

Λ′(γ)γ
− ǫX1 − σA

√
ǫ |X2| > x

)

, (16)

with X1, X2 ∼ N (0, 1) and independent.

Proof. In order to prove this convergence result, we first bound

max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(Si(j)−A(j)) ≥ max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

+ inf
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(

1

λ
−A(j)

)

.

We treat the terms on the right-hand side separately. We first prove that

inf
t
(N)
1 <k<t

(N)
2

∑k
j=1

(

1
λ −A(j)

)

√
logN

d−→ σA

√

1

Λ′(γ)γ
− ǫX1 − σA

√
ǫ |X2| , (17)

as N → ∞. Afterwards, we prove that

maxi≤N sup
t
(N)
1 <k<t

(N)
2

∑k
j=1

(

Si(j)− 1
λ

)

− 1
γ logN

√
logN

P−→ 0, (18)

as N → ∞.
The first convergence result follows from Donsker’s theorem. The left-hand side in (17) is an infimum of a

random walk with drift 0. Then for (B(t), t ≥ 0) a Brownian motion with drift 0 and standard deviation 1, by
using Donsker’s theorem [5] and the fact that the infimum is a continuous functional, we obtain that

P





inf
t
(N)
1 <k<t

(N)
2

∑k
j=1(

1
λ −A(j))

√
logN

> x





N→∞−→ P



 inf
(

1
Λ′(γ)γ

−ǫ
)

<s< 1
Λ′(γ)γ

σAB(s) > x



.

Furthermore, we can rewrite

inf
1

Λ′(γ)γ
−ǫ<s< 1

Λ′(γ)γ

σAB(s)
d
= σAB

(

1

Λ′(γ)γ
− ǫ

)

− inf
0<s<ǫ

σAB̃(s),

where B̃ is an independent copy of B. Obviously, we have that σAB
(

1
Λ′(γ)γ − ǫ

)

d
= σA

√

1
Λ′(γ)γ − ǫX1 with X1 ∼

N (0, 1). Because inf0<s<ǫ σAB̃(s)
d
= σA

√
ǫ|X2|, with X2 ∼ N (0, 1), we have that the limit in (17) follows.

In order to prove the second convergence result, we define for A ∈ Fk, with {Fk, k ≥ 1} the natural filtration,
the probability measure

Pi(A) := E



exp



γ
k
∑

j=1

(

Si(j)−
1

λ

)





1(A)



 ;

7



see [1, Ch. XIII, Par. 3]. Now, we know that

Ei

[

Si(j)−
1

λ

]

= E

[(

Si(j)−
1

λ

)

exp

(

γ

(

Si(j)−
1

λ

))]

= Λ′(γ).

Thus, by checking the conditions in [1, Ch. XIII, Thm. 5.6], we see that

P



 sup
0≤k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN + x

√

logN





= C exp

(

− γ

(

1

γ
logN + x

√

logN

))

Φ

(

− x

√

γΛ′(γ)
√

Λ′′(γ)

)

(1 + o(1)). (19)

With the same approach, we get from [1, Ch. XIII, Thm. 5.6] that

P



 sup
0≤k<t

(N)
1

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN + x

√

logN



 = o

(

C exp

(

− γ

(

1

γ
logN + x

√

logN

)))

, (20)

as N → ∞, for all x ∈ R. By applying the union bound, we get that

P



 sup
0≤k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN + x

√

logN





≤ P



 sup
0≤k<t

(N)
1

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN + x

√

logN



+ P



 sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN + x

√

logN





≤ P



 sup
0≤k<t

(N)
1

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN + x

√

logN



+ P



 sup
0≤k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN + x

√

logN



.

We can conclude from these bounds, together with (19) and (20) that

P



 sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≥ 1

γ
logN + x

√

logN





= C exp

(

− γ

(

1

γ
logN + x

√

logN

))

Φ

(

− x

√

γΛ′(γ)
√

Λ′′(γ)

)

(1 + o(1)). (21)

By using this expression it is easy to derive that for x > 0

P



max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≤ 1

γ
logN + x

√

logN





= P



 sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≤ 1

γ
logN + x

√

logN





N

N→∞−→ 1.

Similarly, for x < 0,

P



max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≤ 1

γ
logN + x

√

logN





= P



 sup
t
(N)
1 <k<t

(N)
2

k
∑

j=1

(

Si(j)−
1

λ

)

≤ 1

γ
logN + x

√

logN





N

N→∞−→ 0.

Combining these two results gives us the limit in (18). Finally, the convergence result in (16) follows from the
two limits in (17) and (18).
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Lemma 4. Given the model in Section 2 where the sequence of service times (Si(j), i ≥ 1, j ≥ 1) satisfies Assump-

tion 1, t
(N)
1 =

(

1
Λ′(γ)γ − ǫ

)

logN , δ = δ1
Λ′(γ)γ + δ2 with δ1,2 > 0 and small, and ǫ = δ1/4, then for all x ∈ R, we have

that

P



max
i≤N

sup
0≤k<t

(N)
1

k
∑

j=1

(Si(j)−A(j)) >
1

γ
logN + x

√

logN





N→∞−→ 0. (22)

Proof. We derive upper bounds for the left-hand side of (22) that converge to 0 as N → ∞.
We get by using the subadditivity property of the sup operator and the union bound that

P



max
i≤N

sup
0≤k<t

(N)
1

k
∑

j=1

(Si(j)−A(j)) >
1

γ
logN



 (23)

≤ P



max
i≤N

sup
0≤k<t

(N)
1

k
∑

j=1

(

Si(j)−
1

λ
+ δ1

)

>

(

1

γ
− δ2

)

logN



 (24)

+ P



sup
k≥0

k
∑

j=1

(

1

λ
− δ1 −A(j)

)

> δ2 logN + x
√

logN



. (25)

First, because E[ 1λ − δ1 −A(j)] < 0, we get that

P



sup
k≥0

k
∑

j=1

(

1

λ
− δ1 −A(j)

)

> δ2 logN + x
√

logN





N→∞−→ 0.

Second, we can bound the term in (24) as follows;

P



max
i≤N

sup
0≤k<t

(N)
1

k
∑

j=1

(

Si(j)−
1

λ
+ δ1

)

>

(

1

γ
− δ2

)

logN





≤ P



max
i≤N

sup
0≤k<t

(N)
1

k
∑

j=1

(

Si(j)−
1

λ

)

>

(

1

γ
− δ1

Λ′(γ)γ
− δ2

)

logN



.

Now, we can bound this further to

P



max
i≤N

sup
0≤k<t

(N)
1

k
∑

j=1

(

Si(j)−
1

λ

)

>

(

1

γ
− δ1

Λ′(γ)γ
− δ2

)

logN





≤
⌊t(N)

1 ⌋
∑

k=0

N P





k
∑

j=1

(

Si(j)−
1

λ

)

>

(

1

γ
− δ1

Λ′(γ)γ
− δ2

)

logN



.

By using Chernoff’s bound we obtain that for Λ(θ) < ∞

⌊t(N)
1 ⌋
∑

k=0

N P





k
∑

j=1

(

Si(j)−
1

λ

)

>

(

1

γ
− δ1

Λ′(γ)γ
− δ2

)

logN



 (26)

≤ N

⌊t(N)
1 ⌋
∑

k=0

exp(kΛ(θ)) exp

(

− θ

(

1

γ
− δ1

Λ′(γ)γ
− δ2

)

logN

)

= N
−1 + exp

(

(⌊t(N)
1 ⌋+ 1)Λ(θ)

)

exp(Λ(θ)) − 1
exp

(

− θ

(

1

γ
− δ1

Λ′(γ)γ
− δ2

)

logN

)

. (27)
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Now,

log

(

N
−1+exp

(

(⌊t(N)
1 ⌋+1)Λ(θ)

)

exp(Λ(θ))−1 exp

(

− θ

(

1
γ − δ1

Λ′(γ)γ − δ2

)

logN

))

logN

N→∞−→ 1−
(

θ

(

1

γ
− δ1

Λ′(γ)γ
− δ2

)

−
(

1

Λ′(γ)γ
− ǫ

)

Λ(θ)

)

.

In order to make the bound in (27) as sharp as possible, we need to choose a convenient θ. The choice of θ that gives

the sharpest bound maximizes the function θ
(

1
γ − δ1

Λ′(γ)γ − δ2

)

−
(

1
Λ′(γ)γ − ǫ

)

Λ(θ). We have that δ = δ1
Λ′(γ)γ + δ2

and ǫ = δ1/4. Furthermore, we choose θ = γ +
√
δ. This gives us a sharp enough bound in (27). We obviously have

that

sup
η∈R

(

η

(

1

γ
− δ

)

−
(

1

Λ′(γ)γ
− δ1/4

)

Λ(η)

)

≥
(

(γ +
√
δ)

(

1

γ
− δ

)

−
(

1

Λ′(γ)γ
− δ1/4

)

Λ(γ +
√
δ)

)

.

The first order Taylor series of Λ(γ +
√
δ) around γ gives

Λ(γ +
√
δ) = Λ(γ) +

√
δΛ′(γ) +O(δ) =

√
δΛ′(γ) +O(δ).

Thus,
(

(γ +
√
δ)

(

1

γ
− δ

)

−
(

1

Λ′(γ)γ
− δ1/4

)

Λ(γ +
√
δ)

)

= 1 + δ3/4Λ′(γ) +O(δ) > 1,

for δ small enough. Thus the expression in (27) is upper bounded by the term N−δ3/4Λ′(γ)−O(δ) N→∞−→ 0.

Lemma 5. Given the model in Section 2 where the sequence of service times (Si(j), i ≥ 1, j ≥ 1) satisfies As-

sumption 1, 0 < ǫ < 1
Λ′(γ)γ , t

(N)
1 =

(

1
Λ′(γ)γ − ǫ

)

logN , and t
(N)
3 =

(

1
Λ′(γ)γ + ǫ

)

logN , then for all x ∈ R, we have

that

lim sup
N→∞

P



max
i≤N

sup
t
(N)
1 ≤k<t

(N)
3

k
∑

j=1

(Si(j)−A(j)) >
1

γ
logN + x

√

logN





≤ P

(

σA

√

1

Λ′(γ)γ
− ǫX1 + σA

√
2ǫ |X2| > x

)

, (28)

with X1, X2 ∼ N (0, 1) and independent.

Proof. In order to prove this lemma, we first rewrite

maxi≤N sup
t
(N)
1 ≤k<t

(N)
3

∑k
j=1(Si(j)−A(j))− 1

γ logN
√
logN

≤
maxi≤N sup

t
(N)
1 ≤k<t

(N)
3

∑k
j=1

(

Si(j)− 1
λ

)

− 1
γ logN

√
logN

+
sup

t
(N)
1 ≤k<t

(N)
3

∑k
j=1

(

1
λ −A(j)

)

√
logN

≤
maxi≤N supk≥0

∑k
j=1

(

Si(j)− 1
λ

)

− 1
γ logN

√
logN

+
sup

t
(N)
1 ≤k<t

(N)
3

∑k
j=1

(

1
λ −A(j)

)

√
logN

. (29)

We first look at the first term in (29). This term gives the rescaled longest steady-state waiting time of N i.i.d.
D/G/1 queues. We know that

P



sup
k≥0

k
∑

j=1

(

Si(j)−
1

λ

)

> x



 ∼ C exp(−γx),

10



as x → ∞, with 0 < C < 1; see [1, Ch. XIII, Thm. 5.2]. Thus for x > 0,

P

(

maxi≤N supk≥0

∑k
j=1

(

Si(j)− 1
λ

)

− 1
γ logN

√
logN

> x

)

∼ 1−
(

1− C exp(−γ(1/γ logN + x
√

logN))
)N N→∞−→ 0.

Similarly, for x < 0,

P

(

maxi≤N supk≥0

∑k
j=1

(

Si(j)− 1
λ

)

− 1
γ logN

√
logN

> x

)

∼ 1−
(

1− C exp(−γ(1/γ logN + x
√

logN))
)N N→∞−→ 1.

Thus, the first term in (29) converges in probability to 0.
Now, we prove convergence of the tail probability of the second term in (29). This term is a supremum of a

random walk with drift 0. Then for (B(t), t ≥ 0) a Brownian motion with drift 0 and standard deviation 1, by
using Donsker’s theorem [5] and the fact that the supremum is a continuous functional, we obtain with a similar
analysis as in Lemma 3, that

P





sup
t
(N)
1 ≤k<t

(N)
3

∑k
j=1(

1
λ −A(j))

√
logN

> x





N→∞−→ P

(

σA

√

1

Λ′(γ)γ
− ǫX1 + σA

√
2ǫ |X2| > x

)

.

Lemma 6. Given the model in Section 2 where the sequence of service times (Si(j), i ≥ 1, j ≥ 1) satisfies Assump-

tion 1, δ = δ1
Λ′(γ)γ + δ2 with δ1,2 > 0 and small, ǫ = δ1/4, and t

(N)
3 =

(

1
Λ′(γ)γ + ǫ

)

logN , then for all x ∈ R, we have

that

P



max
i≤N

sup
k≥t

(N)
3

k
∑

j=1

(Si(j)− A(j)) >
1

γ
logN + x

√

logN





N→∞−→ 0. (30)

Proof. As in the proof of Lemma 4, we derive upper bounds for

P



max
i≤N

sup
k≥t

(N)
3

k
∑

j=1

(Si(j)−A(j)) >
1

γ
logN + x

√

logN





that converge to 0 as N → ∞.
First, we see that by using subadditivity and the union bound, we obtain

P



max
i≤N

sup
k≥t

(N)
3

k
∑

j=1

(Si(j)−A(j)) >
1

γ
logN + x

√

logN





≤ P



max
i≤N

sup
k≥t

(N)
3

k
∑

j=1

(

Si(j)−
1

λ
+ δ1

)

>

(

1

γ
− δ2

)

logN





+ P



sup
k≥0

k
∑

j=1

(

1

λ
− δ1 −A(j)

)

> δ2 logN + x
√

logN



.

As in the proof of Lemma 4, we have that

P



sup
k≥0

k
∑

j=1

(

1

λ
− δ1 −A(j)

)

> δ2 logN + x
√

logN





N→∞−→ 0.
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Furthermore, observe that logE[exp(θ(Si(j)− 1/λ+ δ1))] = Λ(θ) + θδ1. Now, as in the proof of Lemma 4, we can
bound

P



max
i≤N

sup
k≥t

(N)
3

k
∑

j=1

(

Si(j)−
1

λ
+ δ1

)

>

(

1

γ
− δ2

)

logN



 (31)

≤ N

∞
∑

k=⌊t(N)
3 ⌋

P





k
∑

j=1

(

Si(j)−
1

λ
+ δ1

)

>

(

1

γ
− δ2

)

logN



 (32)

≤ N
∞
∑

k=⌊t(N)
3 ⌋

exp(k(Λ(θ) + θδ1)) exp

(

−θ

(

1

γ
− δ2

)

logN

)

= N
exp

(

⌊t(N)
3 ⌋(Λ(θ) + θδ1)

)

exp(Λ(θ) + θδ1)− 1
exp

(

−θ

(

1

γ
− δ2

)

logN

)

, (33)

when Λ(θ) + θδ1 < 0. When Λ(θ) + θδ1 ≥ 0 the sum in the upper bound diverges to ∞. Now, for the case
Λ(θ) + θδ1 < 0, we have that

log

(

N
exp

(

⌊t(N)
3 ⌋(Λ(θ)+θδ1)

)

exp(Λ(θ)+θδ1)−1 exp
(

−θ
(

1
γ − δ2

)

logN
)

)

logN

N→∞−→ 1 +

(

1

Λ′(γ)γ
+ ǫ

)

(Λ(θ) + θδ1)− θ

(

1

γ
− δ2

)

.

As in the proof of Lemma 4, we have δ = δ1
Λ′(γ)γ + δ2 and ǫ = δ1/4. We now get after a similar derivation as in the

proof of Lemma 4 that θ = γ −
√
δ gives a sharp bound. First, observe that Λ(γ −

√
δ) = −

√
δΛ′(γ) + O(δ), thus

Λ(θ) + θδ1 = −
√
δΛ′(γ) + (γ −

√
δ)δ1 +O(δ) = −

√
δΛ′(γ) +O(δ) < 0 for δ small enough, thus the upper bound in

(33) holds. Second, we see that

sup
η∈R

(

η

(

1

γ
− δ2

)

−
(

1

Λ′(γ)γ
+ ǫ

)

(Λ(η) + ηδ1)

)

≥ (γ −
√
δ)

(

1

γ
− δ2

)

−
(

1

Λ′(γ)γ
+ ǫ

)

(Λ(γ −
√
δ) + (γ −

√
δ)δ1).

So, we can conclude that

(γ −
√
δ)

(

1

γ
− δ2

)

−
(

1

Λ′(γ)γ
+ δ1/4

)

(Λ(γ −
√
δ) + (γ −

√
δ)δ1) = 1 + δ3/4Λ′(γ) +O(δ) > 1

for δ small enough, thus the expression in (33) converges to 0 as N → ∞.

Proof of Theorem 1. First, to prove a lower bound, we see that

max
i≤N

Wi(∞) ≥st. max
i≤N

⌊

1
(Λ′(γ)γ)

logN
⌋

∑

j=1

(Si(j)−A(j)).

Thus, combining this inequality with the result from Lemma 3, we see that

lim inf
N→∞

P

(

max
i≤N

Wi(∞) >
1

γ
logN + x

√

logN

)

≥ P

(

σA

√

1

Λ′(γ)γ
X > x

)

.

Second, by using the union bound of the types as given in (10) and explained in Section 3, we get from Lemmas 4,
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5, and 6, with t
(N)
1 =

(

1
Λ′(γ)γ − ǫ

)

logN and t
(N)
3 =

(

1
Λ′(γ)γ + ǫ

)

logN , that

lim sup
N→∞

P

(

max
i≤N

Wi(∞) >
1

γ
logN + x

√

logN

)

≤ lim sup
N→∞

P



max
i≤N

sup
t
(N)
1 ≤k<t

(N)
3

k
∑

j=1

(Si(j)−A(j)) >
1

γ
logN + x

√

logN





≤ P

(

σA

√

1

Λ′(γ)γ
− ǫX1 + σA

√
2ǫ |X2| > x

)

.

Finally, we have that

P

(

σA

√

1

Λ′(γ)γ
− ǫX1 + σA

√
2ǫ |X2| > x

)

ǫ↓0−→ P

(

σA

√

1

Λ′(γ)γ
X > x

)

.
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