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Abstract— Forest height and underlying terrain reconstruc-
tion is one of the main aims in dealing with forested areas.
Theoretically, synthetic aperture radar tomography (TomoSAR)
offers the possibility to solve the layover problem, making it
possible to estimate the elevation of scatters located in the same
resolution cell. This article describes a deep learning approach,
named tomographic SAR neural network (TSNN), which aims at
reconstructing forest and ground height using multipolarimetric
multibaseline (MPMB) SAR data and light detection and ranging
(LiDAR)-based data. The reconstruction of the forest and ground
height is formulated as a classification problem, in which TSNN,
a feedforward network, is trained using covariance matrix
elements as input vectors and quantized LiDAR-based data
as the reference. In our work, TSNN is trained and tested
with P-band MPMB data acquired by ONERA over Paracou
region of French Guiana in the frame of the European Space
Agency’s campaign TROPISAR and LiDAR-based data provided
by the French Agricultural Research Center. The novelty of the
proposed TSNN is related to its ability to estimate the height with
a high agreement with LiDAR-based measurement and actual
height with no requirement for phase calibration. Experimental
results of different covariance window sizes are included to
demonstrate that TSNN conducts height measurement with high
spatial resolution and vertical accuracy outperforming the other
two TomoSAR methods. Moreover, the conducted experiments on
the effects of phase errors in different ranges show that TSNN
has a good tolerance for small errors and is still able to precisely
reconstruct forest heights.
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I. INTRODUCTION

AS A fundamental part of forest characterization, the
estimation of the forest height seeks to offer a significant

indicator of the productivity of forests and of the biomass
level [1]. In this regard, synthetic aperture radar (SAR) and
light detection and ranging (LiDAR) are competitive systems
providing information on the vertical distribution and internal
structure of the vegetation [2]. In particular, SAR tomography
(TomoSAR) is a technique with the capability of providing
high-resolution 3-D reflectivity profiles along the azimuth,
range, and elevation coordinates by synthesizing an additional
aperture in the elevation direction [3]. The 3-D image focusing
is performed through the coherent combination of multibase-
line (MB) data, allowing the retrieval of the power backscat-
tered from the distributed targets along the vertical direction.
The TomoSAR reconstruction of the forest height and the
underlying topography relies heavily on the discrimination
and exact positions of the phase centers of the scattering
from the canopy and ground. For this purpose, polarimetric
TomoSAR, which is sensitive to the shape, direction, and
dielectric properties of the scatterers, has been widely used
for the height reconstruction of forested areas [4], [5].

There are several TomoSAR inversion algorithms, ranging
from the classical Fourier-based methods to super-resolution
techniques. Among them, the conventional Fourier-based algo-
rithms may be affected by grating lobes because of uneven
and few baseline sampling [6], [7]. This problem has been
addressed by baseline interpolation [8] or by using super-
resolution techniques, such as the Capon adaptive filtering [2],
[9], Multiple Signal Classification (MUSIC) [10], singular
value decomposition analysis [7], and compressive sensing
[11], [12]. The complex vertical reflectivity profiles of forested
areas and the lack of a larger number of uniformly distributed
MB data limit the vertical resolution of these techniques.
Under these circumstances, the location of the ground and
canopy from the reconstructed vertical profiles becomes a dif-
ficult task. To overcome this problem, decomposition methods
have been proposed as a promising solution in the localization
of ground and canopy heights [4], [13], [14], [15]. These tech-
niques are usually based on the identification and separation
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of different scattering mechanisms that occur in forested areas.
Thus, according to the expected scattering mechanisms (i.e.,
ground-trunk double bounce and volumetric scattering through
the canopy), the contributions of ground and canopy can be
determined in the estimated sample covariance matrix of the
polarimetric MB datasets.

Another system providing measurements sensitive to 3-D
forest structure parameters at high spatial resolutions is
LiDAR. Measurements acquired by LiDAR are based on
the round trip time taken by each laser pulse to travel
the distance between the sensor and the target [16], [17].
Research has demonstrated that LiDAR can characterize the
structural complexity and associated functional properties of
natural landscapes relevant to ecological investigations by
providing vertical and volumetric profiles of forest vegetation.
LiDAR metrics have proven useful for determining the forest
canopy height and structure such as the hundredth percentile
of the cumulative waveform energy relative to the ground
(RH100) [18], [19]. LiDAR data typically have superior ver-
tical accuracies and are not impacted by TomoSAR-related
errors, such as speckle noise and temporal decorrelation.
However, LiDAR acquisitions are constrained at a local scale
because of the small swath and the noticeable workload
involved in the acquisition and processing of LiDAR data
per unit area, which is higher than the one required by SAR
imagery.

LiDAR data are commonly used to assess the ability of SAR
tomography to monitor and estimate forest structure parame-
ters. Anyway, it has to be considered that when low-frequency
SAR systems (such as P- and L-band systems) are used, the
penetration of radiation into the canopy causes the height
of the effective scattering phase centers to be within the
canopy itself so that LiDAR and TomoSAR canopy surface
reconstructions can exhibit remarkable differences.

More recently, a number of studies have sought to gen-
erate forest height estimates by exploiting the synergy of
LiDAR and MB PolSAR data, with the objective of pro-
ducing wide-coverage forest height maps with high spa-
tial resolution and vertical accuracy [20]. In [21], support
vector machine (SVM) has been employed to extrapolate
LiDAR-based canopy height utilizing TomoSAR inverted
parameters. In addition, several researchers have attempted to
improve the performance of polarimetric synthetic aperture
radar interferometry (PolInSAR)-based forest height estima-
tion by extracting prior information (ground phase, mean
extinction, and so on) from the LiDAR metrics [20], [22],
[23]. However, these methods still have a strong dependency
on the simplified models.

Due to the ability of neural networks to build a hierarchy
of abstract representations of the data and, so, to act as
a nonlinear function able of representing very complicated
mathematical models [24], deep learning (DL)-based methods
have become a fundamental methodology for different remote
sensing image processing tasks [25] as well as for SAR
image processing [26]. Following this trend, some methods
start to exploit the potential of DL for the TomoSAR 3-D
reconstruction. A first preliminary DL approach has been
proposed for TomoSAR applications in urban areas [27].

In this method, the estimation of the scatterers’ position
is formulated as a classification problem, with the classes
indicating all the discretized possible positions, within the
elevation extension of the scene, of the single scatterers that
are possibly present in each range–azimuth resolution cell.
In the context of polarimetric SAR tomography, a method
named PolGAN has been proposed in [20]. Instead of using
the inversion of the data model, PolGAN reformulates the
forest height estimation as an image pan-sharpening task to
generate forest height estimation with high spatial resolution
and vertical accuracy, based on PolInSAR and LiDAR inputs
together with feedback provided by the discriminators of
PolGAN. The promising results of these solutions inspired
us to explore the DL potential on the height reconstruction
task. In this article, the multisource (LiDAR and TomoSAR)
forest height and ground height reconstruction is reformulated
as a classification task aiming at the estimation of forest
height and terrain topography adopting a DL approach, without
using any inversion model. In particular, we develop a simple
multilayer perceptron [28] architecture that is targeted for
the classification of multipolarimetric multibaseline (MPMB)
SAR images at a pixel level. The proposed architecture is
trained for extracting features and recognizing patterns within
the vector containing the values of a single MPMB SAR
pixel and exploiting them for retrieving the corresponding
LiDAR-based height value. The LiDAR data are quantized
in order to obtain a set of height reference classes the single
MPMB SAR pixels belong to, and the inputs of the network
are the elements of the covariance matrix characterizing the
MPMB SAR images. In this article, starting from the same
MPMB SAR data, the proposed architecture has been trained
for both forest height and ground height reconstruction using
the LiDAR-based canopy height and ground height values as
references, respectively. Moreover, the ability of the network
in working in the absence of data calibration, an analysis
of the robustness with respect to the covariance window
sizes and with respect to phase errors within the MPMB
SAR images, together with a comparison with state-of-the-
art methods have been carried out on the Paracou region. This
article is organized as follows. In Section II, the methodology
is presented in terms of the proposed workflow, network
architecture, and training. The description of the testing study
area and the analysis of the experimental results are presented
in Section III.

II. METHODOLOGY

Forest and ground height estimation is formulated as a
classification task: a solution based on a fully connected neural
network is proposed, named tomographic SAR neural network
(TSNN). In Section II-A, the details about the input data and
the proposed workflow are provided. The TSNN architecture
is described in Section II-B. Finally, the training of TSNN is
discussed in II-D.

A. Data and Workflow

Based on the TomoSAR principle, in order to estimate the
3-D reflectivity function along the coordinates of azimuth x ,
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range r , and elevation s, a stack of 3N single-look fully
polarimetric complex SAR images are acquired. Some pre-
processing operations (such as coregistration, phase flattening,
and calibration) have to be applied before the tomographic
processing.

After such preprocessing operations, for a fixed
range–azimuth pixel, the MPMB 3N × 1 data vector y
is defined as

y =
[

y1, y2, . . . yN
]T

yi =

[
Si

HH,
√

2Si
HV, Si

VV
]

(1)

where S P Q
i denotes the backscattering using transmitted and

received pairs of polarizations P, Q = {H, V }, and T is the
transpose operator.

In forest applications, the scattering response by the
involved distributed media has a random behavior, due to the
presence of multiple interacting scatterers in random positions.
Then, height estimation is usually based on the analysis of
the data covariance matrix R of size 3N × 3N , which in the
assumption of a zero mean data vector is given by

R = E
{

y y†}
=


C11 �12 · · · �1N

�21 C22 · · · �2N

· · · · · ·
. . .

...

�N1 �N2 · · · CN N

 (2)

where the superscript † denotes the Hermitian transpose and
E{·} is the statistical expectation operator.

In (2), the covariance matrix R of the data vector y, defined
by (1), is decomposed in N × N submatrices, each of size
3 × 3. The diagonal submatrices Ci i are related to polarimetry,
whereas the off-diagonal submatrices �i j are 3 × 3 complex
cross correlation matrices that include both polarimetric and
interferometric information [13].

It is noted that the computation of the matrix R involves a
statistical expectation operation to be performed on different
realizations of the data vector y. Since different realizations
of the random data vector are not available, the statistical
expectation is performed by means of a spatial averaging
operation on a set of neighboring range–azimuth pixels lying
in an assigned window surrounding the considered pixel.

For each range–azimuth pixel of the MPMB image stack,
we take the 3N diagonal elements of the matrix R and the
elements in the first row representing both polarimetric and
interferometric information as the input to TSNN. In particular,
the complex elements of the first row are separated into real
parts and imaginary parts. Discarding the imaginary unit,
we get the real input feature vector I of a range–azimuth pixel
with the size M × 1 (M = 3N + (3N − 1) × 2).

The LiDAR-based height values are taken as ground truth.
First, in order to have a spatial resolution comparable with
SAR data one, a spatial averaging operation is conducted on
the LiDAR-based canopy height model (CHM) and Digital
Terrain Model (DTM). The size of the adopted averaging
window is the same as the one used in the SAR covariance
matrix computation. Then, the filtered LiDAR-based is quan-
tized with a 1-m step, generating ζ labels S = [s1, s2, · · · , sζ ]

for the classification network. Indeed, the quantized CHM and

DTM values represent the reference height classes of forest
and ground to be predicted for each range–azimuth pixel.

Fig. 1 represents the data flowchart, where TSNN-CHM is
TSNN trained with quantized CHM as labels and TSNN-DTM
is TSNN trained with quantized DTM as labels.

B. TSNN Architecture

In order to extract the necessary mutual information from
MPMB SAR data, a fully connected architecture has been
designed for the proposed TSNN, whose description is pro-
vided in the following.

Supposing that the lth fully connect layer is composed with
N l neurons, each neuron is equipped with learnable weights
wl

jk and the bias bl
j , so the output of the j th neuron of the lth

layer is

zl
j =

N l−1∑
k=1

wl
jk zl−1

k + bl
j , j = 1, 2, . . . , N l (3)

where N l−1 is the number of neurons of the (l − 1)th layer.
Thus, the output vector of the lth layer is

zl
= wlzl−1

+ bl (4)

where the tensor wl is with the dimension (N l
× N l−1) and

bl is with the dimension (N l
× 1).

Let Wl
= (wl , bl) be the set of parameters of the lth layer.

The relative function performed can be described as

fl
(
z(l−1), Wl)

= σ
(
wlzl−1

+ bl) (5)

where σ is the activation function and, therefore, the overall
fully connected network function can be described as [27]

f (I, W) = fL
(

fL−1
(

f1
(
x, W(1)

)
, . . . , W(L−1)

)
, Wl) (6)

with L representing the number of layers. The output of the
network is represented by a vector of scores for each possible
class

Ĥ = f (I, W) =
[
h1, h2, . . . , hζ

]
. (7)

Here, the proposed TSNN consists of nine fully connected
layers with 400 neurons for the first eight layers, while for
the last one, the number of neurons matches the number of
considered classes. The structure is shown in Fig. 2 where
FC is a fully connected layer. All the layers, but the last,
are followed by the rectified linear unit (ReLU) activation
function that ensures the stable training procedure and fast
convergence [29]. The core element of the proposed network
is the fully connected layer followed by ReLU, which builds a
hierarchical set of features. The resulting feature maps are used
to discriminate classes with the last fully connected output
layer.

C. Loss Function

Multiclass cross-entropy function [30] is used as a loss
function when adjusting network weights W during training.
The smaller the loss the better the model. A perfect model
is equipped with a cross-entropy loss equal to 0. The cross
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Fig. 1. Workflow of the proposed TSNN. For each range–azimuth pixel of the MPMB image stack, the 3N diagonal elements of the matrix R and the
elements in the first are stacked and considered as input of the network. The complex elements are separated as real and imaginary parts and stacked as well.
The reference labels consist of the corresponding quantized LiDAR height values: CHM in case of training targeted for prediction of forest height and DTM
in case of training targeted for prediction of ground height.

Fig. 2. Architecture of TSNN. The architecture is composed of nine fully
connected layers each followed by the ReLU activation function but the last.
Each layer is composed of 400 neurons, except the last whose neurons need
to match the number of considered classes.

entropy between two statistical distributions p and q is defined
as

CE(p, q) = −

∑
x

p(x)log q(x). (8)

In this case, p is the reference distribution containing a unitary
value at the position corresponding to the i th class and q
is the estimated a posteriori probability distribution for each
class obtained by applying the softmax function to the output
Ĥ . Thus, the estimated distribution can be written as q =

[eh j /
∑

j eh j | j = 1, . . . , ζ ] and, p = [0, . . . , 1, . . . , 0] with
a unitary values at the i th position. Thus, the cross-entropy
loss is computed as

LCE = −log

(
ehi∑
j eh j

)
. (9)

D. Network Training

TSNNs are implemented with the Pytorch framework and
optimized by minimizing (9) through the Adam optimizer [31]

with the parameters β1 = 0.9 and β2 = 0.999. We start train-
ing on GeForce GTX 1080Ti GPU with 12 GB of memory.
The batch size is set as 32 and the learning rate is set as 10−4

and is fixed for all 200 epochs. The Xavier initialization [32]
has been considered for the weights of each fully connected
layer.

Given the characteristics of the available dataset, the class
imbalance issue has been addressed. Indeed, generally, class
imbalance crucially affects the classification performance:
when the frequency of certain classes is much more than
the other classes, the classification network may get biased
toward the prediction showing much better performance on
the majority classes and worse performance on the minority
classes even though the loss function presents pretty low value.
To handle such a problem, we apply weighting factors to
undersample the majority classes and oversample the minority
ones. This allows us to provide equal importance to all classes
during the training phase [33], [34].

In TomoSAR applications, generally, a phase calibration
problem has to be addressed to recover the coherence
among the acquisitions by calibrating phase errors caused by
atmosphere propagation delays or residual platform motion.
In forested areas, due to the difficulty in locating reference
targets with stable phases or to the lack of specific assump-
tions about the phase calibration function, phase calibration
entails intricate estimation procedures and frequently yields
inaccurate results [35]. In order to test the proposed TSNNs’
tolerance to phase miscalibration, the training has been per-
formed by using both calibrated and noncalibrated input data
to get TSNNs that are compared on the testing datasets. The
testing results are shown in Section III.

III. EXPERIMENTS

A. Study Area and Dataset

We address the problem of the forest canopy and ground
height reconstruction over the forest stand of Paracou region of
French Guiana shown in Fig. 3. The stack of data is composed
of six fully polarimetric P-band SAR images acquired by the
ONERA SETHI airborne system on August 24, 2009, in the
frame of the ESA’s campaign TROPISAR. The flight lines
were in a vertical direction and the Fourier vertical resolution
in about 20 m. The flight baselines and acquisition parameters

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 22,2023 at 11:31:23 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: DL SOLUTION FOR HEIGHT ESTIMATION ON A FORESTED AREA BASED ON POL-TOMOSAR DATA 5208214

Fig. 3. (Left) Geographic location of Paracou site. (Right) Image coverage.

Fig. 4. SAR data and LiDAR-based data. (a) Pauli RGB image of the
master acquisition. (b) LiDAR-based CHM. (c) LiDAR-based DTM of ROI
of Paracou region.

TABLE I
FLIGHT PLANES AND ACQUISITION PARAMETERS

of the SAR data are shown in Table I and the Pauli RGB
image of the master acquisition of the region of interest (ROI)
is shown in Fig. 4(a) (red: HH-VV, green: 2 HV, and blue:
HH + VV). Within the site, wide vegetation with a variety of
tree species can be recognized. The vegetation height ranges
between 0 and 60 m, and the terrain topography is fairly
flat with an elevation between 0 and 40 m. The territory

Fig. 5. (a) Pauli RGB image and (b) LiDAR-based CHM of testing patch1.
(c) Pauli RGB image and (d) LiDAR-based DTM of testing patch2.

is representative of forest height and underlying topography
reconstruction.

For the considered site, the LiDAR-based data are provided
by the French Agricultural Research Center for International
Development and the Guyafor project. The LiDAR-based
DTM was generated by triangular interpolation (TIN) of
the ground data. The LiDAR-based CHM was generated by
subtracting ground elevation from the raw point cloud z-values
and extracting maximum height with a 1-m resolution grid.
The LiDAR-based data under WGS84 UTM zone 22 were
projected into SAR coordinates based on an ASCII file pro-
vided by TROPISAR, providing the forest height and ground
height of a geographic position associated with an SAR
image position [36]. More details about LiDAR-based data
processing are given in [37]. In our study, LiDAR-based data
(Fig. 4(b) and (c) for forest and ground, respectively) are
used as ground truth to train and verify the accuracy of the
reconstructed results.

The number of baselines of TROPISAR is 6, that is, N = 6.
The covariance matrix R in (2) size is 18 × 18, so the input
feature vector size M × 1 of each range–azimuth pixel is
52 × 1. We select testing patch1 [shown in Fig. 5(a)] with the
size 300 × 300 pixels from the ROI of Paracou region as the
testing dataset for TSNN-CHM. The rest data are randomly
divided into the training dataset (80%) and validating dataset
(20%) to train and validate TSNN-CHM. Likewise, testing
patch2 [shown in Fig. 5(c)] with the same size is selected
as the testing dataset for TSNN-DTM, and the test dataset
is randomly divided into the training dataset and validating
dataset for TSNN-DTM. Besides, in order to test TSNNs’
performance of classification on several classes, the selected
testing patches for TSNNs extend a wide range of height
covering more height classes, as shown in Fig. 5(b) and (d).

B. Analysis of the Results

In this section, the results of the proposed method are
analyzed and discussed. To demonstrate the accuracy and
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Fig. 6. Profile plots comparison between LiDAR-based CHM (red lines) and forest height estimation over three different transect lines represented in Fig. 5
using TSNN-CHM-C (blue lines), TSNN-CHM-NC (green lines), SKP (black lines), and GLRT (magenta lines).

Fig. 7. Joint distribution between the LiDAR-based CHM and forest height predicted by TSNN-CHM-C (first row), TSNN-CHM-NC (second row), SKP
(third row) [38], and GLRT method (last row) [15] on different covariance window sizes.

efficiency of the proposed TSNNs, we test them on testing
patches and compare them with LiDAR-based ground truth.
Moreover, the comparison with the calibrated trained network
(see Section II-D) and two representative tomographic meth-
ods, namely, the sum of Kronecker product (SKP) method [38]
and generalized likelihood ratio test (GLRT) method [15],
is carried out.

Typically, TomoSAR methods perform the identification
and separation of scattering mechanisms, by relying on the
estimation of the target correlation properties measured on the
MPMB SAR image stack. To this end, spatial multilook has
to be carried out to estimate the covariance matrix, removing
speckle noise while reducing spatial resolution. To assess the
performance of the TSNNs over different levels of speckle
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Fig. 8. Quantitative results comparison. (a) RMSE and (b) Std of the ground
heights estimated by TSNN-CHMs, SKP, and GLRT methods with respect to
LiDAR-based CHM, based on different covariance window sizes.

noise and the sensitivity of the network to the window size, the
experiments are carried out using sample covariance matrices
estimated by different window sizes. In particular, the window
sizes are set to 27 × 27, 31 × 31, 37 × 37, 41 × 41, 45 × 45,
and 49 × 49 pixels, to estimate covariance matrices and get
the input vectors, as explained in Section II-A. Meanwhile,
the mean filters with the corresponding window sizes are
conducted for LiDAR-based data to match the estimation
resolution. Then, LiDAR-based CHM and DTM are quantized
with step 1 m as labels.

The TSNN-CHMs, calibrated (TSNN-CHM-C) and noncali-
brated (TSNN-CHM-NC), as well as SKP and GLRT methods,
are implemented on testing patch1 shown in Fig. 5 (first row).
In Fig. 6, the predicted forest heights by the employed methods
with respect to the window sizes of covariance matrices over
the three selected test transect lines (transect line1, transect
line2, and transect line3) shown in Fig. 5 are presented. Along
the azimuth lines, the vegetation layer is very dense, and mul-
tiple interactions from the ground and canopy are expected to
perceive. In our implementation, the forest TomoSAR heights
are generated by subtracting the estimated ground height from
the estimated canopy height by the employed methods.

From the results, it can be seen that TomoSAR forest
heights are underestimated by SKP and GLRT methods with
respect to the LiDAR-based CHM, which are actually due to
the difference between the imaging geometry of the LiDAR
and SAR system. The retrieved backscattering of contribution
from the canopy surface by TomoSAR methods is situated
in the middle of volumetric scattering. Although performing
some vertical shifts can address such an underestimation,
proper determination of the amount of shift needs additional
measurements [12]. Thus, measuring the forest height from
only SAR data with the best agreement to LiDAR-based CHM
is a challenging task. However, with the proposed TSNN-
CHMs (both calibrated and noncalibrated), a better agreement
with LiDAR-based CHM is achieved. It is interesting to note
that with the increase of the window size, the predicted forest
height profiles by TSNN-CHMs are closer to the LiDAR-based
CHM profiles: this is especially visible with transect line3.

In order to further demonstrate the performance of the
proposed TSNN-CHM, the joint distributions between recon-
structed forest height and LiDAR-based CHM of testing
patch1 are presented in Fig. 7. Forest heights estimated by

TomoSAR methods have the previously mentioned underes-
timation issue, while TSNN-CHMs forest heights are mostly
situated on the black line, representing ideal estimation. The
bigger the covariance window size is, the TSNN-CHMs forest
heights focus densely on the black line meaning a better agree-
ment with LiDAR-based CHM. The estimation of the data
covariance matrix deals with speckle noise, thus improving
signal-to-noise ratio (SNR) and leading to higher accuracy in
height estimation. It is understandable that SNR improvements
are paid at the cost of degrading the spatial resolution of
reconstructed height.

It is important to highlight that in Figs. 6 and 7, both
trained networks (i.e., TSNN-CHM-C and TSNN-CHM-NC)
have about the same performance on forest height prediction.
This is also supported in Fig. 8(a) and (b). The root-mean-
square error (RMSE) and the standard deviation (Std) of
the forest heights estimated by TSNN-CHM-NC have similar
performance. However, the results achieved by both TSNN-
CHM-C and TSNN-CHM-NC outperform SKP and GLRT.
The analysis shows that the proposed TSNN-CHM gives a
new way to reconstruct forest height without relying on the
vertical shift compensation and phase error calibration.

Furthermore, Fig. 9 presents the reconstructed tomographic
heights of testing patch2 shown in Fig. 5. From the results,
SKP, GLRT, and TSNN-DTMs calibrated (TSNN-DTM-C)
and noncalibrated (TSNN-DTM-NC) all have shown a good
agreement with LiDAR-based DTM. This agreement can be
verified from the joint distribution between the LiDAR-based
DTM and retrieval of the ground heights in Fig. 10, while
a better agreement between TSNN-DTMs and LiDAR-based
DTM can be observed: in Fig. 10, the ground heights pre-
dicted by TSNN-DTMs rely more on the black line (repre-
senting ideal estimation). In terms of the same covariance
window size, both TSNN-DTMs have better agreement with
LiDAR-based DTM compared with the estimated ground
height by SKP and GLRT methods. When the window size
becomes bigger, TSNN-DTMs ground heights gradually shrink
to the black line presenting a better estimation of ground
height. In addition, TSNN-DTM-NC shows better predic-
tion performance and fewer mistakes than TSNN-DTM-C.
Fig. 11(a) and (b) shows the quantitative results comparison of
the ground heights estimated by TSNN-DTM-C, TSNN-DTM-
NC, SKP, and GLRT method with respect to LiDAR-based
DTM. TSNN-DTM-NC better estimates terrain topography
compared with others.

The presented results show the capability of the pro-
posed TSNNs in estimating canopy and ground height within
the considered forested area, using MPMB SAR data. The
achieved results are comparable and even better than state-
of-the-art TomoSAR methods, with particular reference to the
canopy height underestimation issue. The latter, while largely
affecting classical TomoSAR methods, does not influence the
proposed estimation method. Moreover, the proposed method
is able to provide the correct height estimation without the
need for phase calibration.

In the following, the performance of TSNNs trained with
noncalibrated SAR data when dealing with different phase
errors will be discussed.
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Fig. 9. Comparison within reference LiDAR-based DTM (first row) and ground height estimated by: from second to last row, TSNN-DTM-C, TSNN-DTM-NC,
SKP [38], and GLRT method [15] on different covariance window sizes.

C. Robustness With Respect to Phase Errors

In Section III-B, the capability of the method in providing
effective results even in the case of noncalibrated data has
been shown. The TSNN-DTM-NC and TSNN-CHM-NC have
shown similar or even better results compared to the cali-
brated TSNNs. The network is somehow able to automatically
compensate for the phase offset corrupting the data or to
automatically learn how the handle such features. It is worth
noting that the testing areas (patch1 and patch2) included
pixels different from the ones selected for the training. By the
way, the testing pixels were selected nearby the pixels where
the training was conducted. This helped the algorithm in
taking care of the phase calibration issue while producing the
solution: it is expected that the phase offsets of the testing
areas were not much different from the ones of the training
data learned by the network, allowing an effective solution on
patch1 and patch2. To analyze TSNN-DTM-NC and TSNN-
CHM-NC tolerance for phase error, the proposed method
has been evaluated under controlled conditions by applying
random phase errors on testing SAR data. The idea is to
evaluate the robustness of the method when the input data are
characterized by phase offset different from the one corrupting

the training data. This is the case, for example, of a testing
area far away from the training one. With such aim, available
TomoSAR data (patch1 and patch2) have been corrupted using
an N -dimensional phase error vector as

ϕ = [ϕ1 ϕ2 · · · ϕN ]. (10)

The tests have been conducted using TSNN-DTM-NC and
TSNN-CHM-NC with the covariance window size set to 49 ×

49, under the hypothesis that the phase offset is different for
the different baseline, but, fixing a baseline, they were the
same for each polarization and across the testing patch.

The data were corrupted with various levels of phase error.
In particular, random phase errors were simulated and multi-
plied to the data. The random phase error for each baseline is
generated in three different scenarios: small error case when
the additive phase is uniformly distributed within the interval
[−π/16, π/16], medium error case when the additive phase
is uniformly distributed within the interval [−π/8, π/8],
and large error case when the additive phase is uniformly
distributed within the interval [−π/4, π/4]. The plot of the
generated phase offsets is shown in Fig. 12.
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Fig. 10. Joint distribution between the LiDAR-based DTM and ground height predicted by TSNN-DTM-C (first row), TSNN-DTM-NC (second row), SKP
(third row) [38], and GLRT method (last row) [15] on different covariance window sizes.

Fig. 11. Quantitative results comparison. (a) RMSE and (b) Std of the forest
heights estimated by TSNN-DTMs, SKP, and GLRT methods with respect to
LiDAR-based DTM based on different covariance window sizes.

The predicted forest heights by TSNN-CHM-NC are shown
in Fig. 13, where the first column gives the comparison ref-
erence without phase error applying on testing patch1. Based
on the phase errors ranging in [−π/16, π/16], the profiles of
forest height by TSNN-CHM match well with LiDAR-based
CHM along the three transect lines. Regarding the medium
error case, i.e., phase errors with range [−π/8, π/8], the
agreement between forest height by TSNN-CHM and LiDAR-
based CHM is still interesting except for transect line1 where
the results go a little worse. Furthermore, for the situation
where phase errors are in the range [−π/4, π/4], even though
fewer agreements are shown along three transect lines, the
maximum error of forest heights by TSNN-CHM with respect
to LiDAR-based CHM is limited around 5 m indicating good

robustness of TSNN-CHM. Moreover, it can be noted from
the joint distributions between LiDAR-based CHM and forest
height by TSNN-CHM-NC of three phase error vectors (shown
in Fig. 14) that well concentrate on the black lines (represent-
ing the ideal estimation) showing similar performance with the
situation without applying phase error: the robustness of the
method is evident.

The reconstructed ground heights of patch2 corrupted by
the phase errors of Fig. 12 are shown in Fig. 15, where the
first column gives the comparison reference without phase
error applied on testing patch2. In the case of small error,
i.e., phase errors ranging in [−π/16, π/16], TSNN-DTM-
NC has a similar good prediction performance with the case
of no phase error. Under the situation of medium errors,
i.e., phase errors ranging in [−π/8, π/8], the reconstructed
ground heights are still generally reliable with some isolated
errors. When the testing SAR image data are applied to the
large error case, i.e., phase errors ranging in [−π/4, π/4],
TSNN-DTM-NC exhibits more areas of incorrect estima-
tion. However, by inspecting the joint distribution between
the reconstructed ground heights and LiDAR-based DTM
reported in Fig. 16, the overall good performance of TSNN-
DTM-NC is evident, with errors appearing in more extreme
conditions.

To get a flavor of the accuracy assessment of the proposed
method, ten realizations of the experiment are conducted
for each case (small, medium, and large errors). Table II
shows the mean values of RMSE and its Std, between the
retrieved forest heights by TSNN-CHM-NC and LiDAR-based
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Fig. 12. Phase error vectors ranging in [−π/16, π/16], [−π/8, π/8] and [−π/4, π/4].

Fig. 13. Profile plots comparison between LiDAR-based CHM (red lines) and forest heights by TSNN-CHM-NC (green lines) along three transect lines.

CHM reference. Table II indicates that small phase errors in
TomoSAR data do not have much influence on TSNN-CHM-
NC’s ability to extract forest backscattering features and recon-
struct the forest height. The mean values of RMSE and Std
between the reconstructed ground heights by TSNN-DTM-NC
and LiDAR-based DTM reference of ten experiments are listed
in Table III. Again, the results are effective. Compared with
TSNN-CHM-NC, TSNN-DTM-NC has a little lower tolerance

for phase errors and performs some mis-measurements on
ground heights. Indeed, TSNN-DTM-NC and TSNN-CHM-
NC trained with noncalibrated SAR data have good robustness
to medium/small phase errors and, even in the case of large
errors, the results are generally satisfactory. This aspect of the
proposed method is of fundamental importance considering
that the feasibility and applicability of all conventional tomo-
graphic methods largely depend on the phase calibration step.
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Fig. 14. Joint distribution between LiDAR-based CHM and forest height by TSNN-CHM-NC over testing patch1.

Fig. 15. Comparison within LiDAR-based DTM and ground heights by TSNN-DTM-NC.

Fig. 16. Joint distribution between LiDAR-based DTM and ground height by TSNN-DTM-NC over testing patch2.

TABLE II
QUANTITATIVE RESULTS COMPARISON OF TSNN-CHM-NC WITHIN

DIFFERENT PHASE ERRORS

D. Test on PolInSAR Configuration

PolInSAR has shown significant success in the estimation
of canopy height and underlying ground elevation [39], [40].
In this section, we exploit the versatility, robustness, and

TABLE III
QUANTITATIVE RESULTS COMPARISON OF TSNN-DTM-NC WITHIN

DIFFERENT PHASE ERRORS

potential of the proposed TomoSAR method (MPMB) within
PolInSAR (MPMB) framework. In particular, the TSNN archi-
tecture has been retrained limiting the number of SAR images
to two. Therefore, the size of the covariance matrix is 6 ×
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Fig. 17. Profile plots comparison between LiDAR-based CHM (red lines) and forest height estimation over three different transect lines represented in Fig. 5
using TSNN-CHM-C (blue lines), TSNN-CHM-NC (green lines), and RVoG (black lines).

Fig. 18. Comparison within LiDAR-based DTM, ground height by TSNN-DTM-C, ground height by TSNN-DTM-NC, and ground height by RVoG.

6 and the input vector of each range–azimuth pixel is 16 × 1.
The construction of the LiDAR reference is the same described
in Section II-A. The training has been conducted both with
calibrated and not calibrated data for both forest and ground
height retrieval. In order to assess the performance, a com-
parison with the random volume over ground (RVoG) [41]
PolInSAR method has been carried out on testing patch1 and
patch2 (Fig. 5). In Fig. 17, the forest heights estimated by
two methods over the three testing transect lines selected in
Fig. 5 are illustrated, along with the comparison with the
LiDAR-based CHM. It can be noted that the proposed method
achieves significant agreement with LiDAR-based CHM where
the height error is limited within meters. However, the forest
height by RVoG is seriously underestimated with a height
error of around 20 m. Furthermore, in Fig. 18, the ground
heights reconstructed by two methods are shown. The results
still show a good agreement of the proposed solution with the
LiDAR-based DTM, while RVoG is characterized by a severe
overestimation with low spatial resolution.

IV. CONCLUSION

In this article, fully connected neural networks (TSNNs)
were proposed for forest height and underfoliage ground
elevation mapping using MB polarimetric SAR images. The
problem has been formulated as a classification task: TSNNs
were trained by taking elements of the sample covariance
matrix of MB polarimetric SAR data as input vectors and
the quantized LiDAR-based CHM and DTM as reference

labels. The proposed method has been trained and tested using
MPMB SAR data acquired by the ONERA SETHI sensor over
Paracou region of French Guiana in the frame of the Euro-
pean Space Agency’s campaign TROPISAR and LiDAR-based
data provided by the French Agricultural Research Center.
Experiments based on difference covariance sizes demonstrate
the proposed method’s efficiency in comparison with existing
classical tomographic techniques. Two main aspects need to
be underlined. First, the proposed technique is able to esti-
mate canopy and ground height with an accuracy comparable
to and even better than state-of-the-art TomoSAR methods,
especially with reference to the canopy height underestimation
issue, typical of classical TomoSAR methods. In addition,
the proposed method is able to provide the correct height
estimation without the need for phase calibration, avoiding the
dependence of results on such problematic processing steps.
Finally, the conducted experiments showed the robustness of
the proposed method for the presence of phase error in MPMB
SAR data, even different from the ones characterizing the
training data.

We deem that TSNN has been trained on a specific dataset:
TropiSAR datasets over Paracou region. The method provides
an accurate solution for reconstruction in a situation with the
same parameters as TropiSAR data and similar characteristics
as in the Paracou region. Changes in system parameters, such
as baseline length, flight height, and incident angles, could
greatly affect the performance of the TSNN. However, the
results show the ability of the proposed solution in extracting
mutual information from MPMB data necessary for predicting

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 22,2023 at 11:31:23 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: DL SOLUTION FOR HEIGHT ESTIMATION ON A FORESTED AREA BASED ON POL-TOMOSAR DATA 5208214

the height LiDAR values. Thus, including additional forested
areas in the training dataset will increase the generalization
ability of the solution.
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