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A B S T R A C T   

Assigning detailed use categories to buildings is a challenging and relevant task in urban land use classification 
with applications in urban planning, digital city modelling and twinning. This study aims to provide the cate-
gorisation of buildings with detailed use information by considering the possibilities of mixed-use. Mixed-use 
combines different use forms, and serves as a new type of use category. We obtain attributive information by 
combining satellite imagery that reflects spatial information and textual information from publicly available 
point-of-interest data collected by citizens and available on online maps. We propose a multimodal transformer- 
based building-use classification method to capture and fuse these different data sources within an end-to-end 
learning workflow. We evaluate the effectiveness of our proposed method on four urban areas in China. Ex-
periments show that the proposed method effectively maps building use according to eight types of fine-grain 
categories, with a Micro F1 score equal to 80.9%, and a Macro F1 score equal to 62% for Wuhan research 
area. The proposed method is able to harness the relationship between the features obtained from the different 
data sources and results in higher accuracy than the state-of-the-art fusion-based multimodal integration 
methods. The proposed method can effectively increase the attributive grain of building use resulting in high 
classification accuracy.   

1. Introduction and related work 

Urban land use, as the highest level of human modification (Li et al., 
2020; Theobald et al., 2020), reflects socio-economic functions and 
human activities. It is an important component of urban planning (Sri-
vastava et al., 2019), landscape design, environmental management, 
health promotion, biodiversity conservation (Chen et al., 2021b) and 
city digital twins (Akroyd et al., 2022; Xia et al., 2022). Most research 
currently provides dominated categories for each land use unit and ex-
cludes the presence of mixed-use (Chen et al., 2021b; Gong et al., 2020; 
Häberle et al., 2022; Srivastava et al., 2018b; Zhu et al., 2019). Mixed- 
use is defined as a blending of multiple uses of a single object in the same 
space. Mixed-use may occur for different spatial units, in particular in-
dividual buildings, street blocks, and neighborhoods (Raman and Roy, 
2019). Mixed-use, however, is a critical component in smart growth 
(Song et al., 2013), public health (McGuire, 2014), quality of life (Ur-
banism, 2000), compact cities, eco-cities, cycling-friendly cities, and 
sustainable development (Jiao et al., 2021). For example, The Congress 
of New Urbanism’ Charter argues that: “Neighborhoods should be 

compact, pedestrian-friendly, and mixed-use”(Urbanism, 2000). Thus, 
acquiring mixed-use information is the basis for evaluating existing 
planning and design as well as for planning future urban development 
strategies. Recent research on mixed-use focuses on its quantification, e. 
g. using Shannon diversity index (He et al., 2021) of administrative units 
without considering detailed use information. Therefore, it is important 
to map land use including its mixed-use. 

Due to the population increase and high urbanisation rates, urban 
land use changes rapidly. Collecting land use information including 
mixed-use at fine spatial scales is usually laborious and resource inten-
sive, involving numerous field surveys (Liu et al., 2018; Zhan et al., 
2014). This makes it imperative to design models that are capable of 
automating the generation of accurate and up-to-date land use maps 
including mixed-use. 

Remote sensing (RS) images can provide interesting and specific land 
use information. The methods for Land use classification (LUC) from RS 
images can be categorized into three types based on the way of using 
images information. 1) Traditional pixels based classification methods 
such as support vector machines, fuzzy k-means clustering algorithms 
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(He et al., 2014), maximum likelihood classification (He et al., 2014; 
Khorram et al., 1987; Rozenstein and Karnieli, 2011), which use the 
spectral information of individual pixels directly. 2) Object based image 
segmentation and classification methods (Galletti and Myint, 2014), 
which consider image spectral information and incorporate geometric 
and texture information of segmented objects. 3) Deep learning based 
image classification methods (Bergado et al., 2020; Huang et al., 2018a; 
Li and Stein, 2020; Zhang et al., 2018a, 2019; Zhou et al., 2020), which 
automatically learn a large number of deep features from images 
without manual feature extraction. These last methods usually obtain 
better performance than OBIA. 

While the spatial resolution of RS images and available classification 
methods have improved, it is still challenging to obtain detailed land use 
information. Other types of data sources may also provide land use in-
formation, such as social media images reflecting building instance 
classification (Hoffmann et al., 2022; Hoffmann et al., 2019; Zhu et al., 
2019), and social text information reflecting land use information (Chen 
et al., 2020; Häberle et al., 2019; Jendryke et al., 2017; Zhu et al., 2019). 
Multiple data sources have been combined in the past for detailed urban 
land use classification (Chen et al., 2021a; Gong et al., 2020; Hu and 
Wang, 2012; Huang et al., 2018b; Song et al., 2018). Here we consider 
point of interest (POI) data point data with coordinates and a site name, 
indicating for instance, use information of a location. POI data has been 
employed for building use classification (Deng et al., 2022; Lin et al., 
2021), urban mixed-use measurement (Liu et al., 2018; Yue et al., 2017), 
and urban land use mapping (Barlacchi et al., 2021; Zhong et al., 2020). 
To achieve land use maps with detailed use information, we will 
leverage multiple data sources, capitalizing on the recently developed 
possibilities to fuse social media and RS data for geo-information 
retrieval, following Zhu et al. (2022). 

Each data source can be seen as a modality. Multimodal integration 
refers to the process which integrates information from multiple mo-
dalities to create a coherent perception or understanding of the world. 
Multimodal integration methods can be divided into three types, 1) Data 
fusion at the early or input level (Khorram et al., 1987), where data that 
share the same form of media are combined, generating a new type of 
data. An example is the fusion of panchromatic images with multi-
spectral images to produce a new image with high spatial and spectral 
resolution (pansharpening). 2) Feature fusion at the intermediate level 
(Antol et al., 2015; Mroueh et al., 2015; Ouyang et al., 2014; Wu et al., 
2014), where features are extracted from different forms of media and 
fused into one same feature space. For instance, information is extracted 
from an image and from a text, both are transposed into a vector, and 
vectors of these two modalities are concatenated into a new vector. 3) 
Decision fusion at the late level (Cao et al., 2018; Chen et al., 2021a; 
Gong et al., 2020; Häberle et al., 2022; Workman et al., 2017), where 
each modality generates one decision, while results of different modal-
ities are combined to generate an overall decision. Feature fusion and 
decision fusion are most suitable for research with input data consisting 
of different form of media such as image and text. So far, LUC research 
has been based primarily upon multimodality decision fusion (Cao et al., 
2018; Chen et al., 2021a; Gong et al., 2020; Häberle et al., 2022; Lu 
et al., 2022; Workman et al., 2017; Zhong et al., 2020), while feature 
fusion based LUC studies (Srivastava et al., 2019) are rare. 

Much effort has been made to develop multimodality land use clas-
sification. So far, the following problems have not yet been solved:  

1) LUC research is mainly based upon pixels, objects (Häberle et al., 
2022; Kang et al., 2018; Srivastava et al., 2019), and scene blocks 
(Zhang et al., 2018b; Zhou et al., 2020) as basic units. The bigger 
spatial units, however, may contain several land use categories, 
while current research usually assigns a single dominant category to 

each unit, thus neglecting mixed-use from the majority type of land 
use unit.  

2) When fusing imagery information with textual information, most 
research use the decision fusion multimodal integration, neglecting 
the relationship between different modality features. For example, 
Häberle et al. (2022) used Bi-directional LSTM for text classification, 
several CNN models to classify images, and a single decision fusion 
method to combine their results. Song et al. (2018) used RS image to 
obtain building outline and POI data to determine building use cat-
egories. Chen et al. (2018b) firstly classified POI, then integrated 
land use results based upon POI with information from other data 
sources. Chen et al. (2018b) and Liu et al. (2017) combined the 
classification of POI with other data features for land use classifica-
tion. Bao et al. (2020), Feng et al. (2021) and Lu et al. (2022) 
transformed the classification results of POI data to image and 
combined these with other image features for land use classification. 
The above research integrated the classification of textual data with 
features from other data or classification results but has not effec-
tively used the relations between features extracted from different 
modalities. 

To alleviate the above shortcomings, we realized that buildings may 
be devoted to more than one human activities. Considering that building 
use classification is a subset of land use classification, we propose 
multimodal Transformer-based feature fusion for building use classifi-
cation based on remote sensing images and POI data. In our study, 
buildings are the objects with the smallest non-divisible units for land 
use classification. Rather than the current land use studies giving a 
dominant category to land use units, we give building use categories 
considering mixed-use situation. To do so, we utilise the relationships 
between different modalities by projecting textual features and image 
features into the same space, and then use a Transformer network 
(Vaswani et al., 2017) to classify fused features. The contributions of this 
work are as follows:  

1) We increase the spatial and attributive grain of LUC by considering 
mixed-use of objects (buildings) level land use units. Thus, we 
diverge from assigning a dominant use category to each land use 
unit. Instead, we aim to predict the complete set of use categories for 
each building by considering various combinations of uses as a 
distinct type of building use category. By doing so, we aim to enrich 
the semantic information associated with buildings, offering a more 
comprehensive understanding of their functional attributes. In 
particular, it allows us to capture the intricate and diverse ways in 
which buildings are used, and provides a more nuanced represen-
tation of urban spaces.  

2) We propose multimodal Transformer-based feature fusion, which 
simultaneously learns textual features, image spatial features and 
their relationships, and gives different modality features different 
attention.  

3) We investigate the synergy between RS and POI for fine attributive 
grain building use classification, and the performance of decision 
fusion based and feature fusion based multimodal integration 
method for building use classification. 

2. Study area and data 

We selected four urban study areas from China: Wuhan, Zhengzhou, 
Xiamen, and Beijing, both in China (Fig. 1). These study areas cover 
northern China, middle China, southern China, and represent a diverse 
range of geographic characteristics, including coastal and inland cities. 
In terms of social and economic factors, Beijing is classified as a first-tier 
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city due to its high level of development and significant economic in-
fluence. Zhengzhou and Wuhan have recently been designated as first- 
tier cities, and Xiamen is considered a second-tier city. The choice of 
these four research areas is deliberate and idiosyncratic. They serve as 
unique test cases to evaluate the transferability of our proposed model. 
By including cities with different levels of development and economic 
profiles, we can assess how well our model adapts to varying urban 
landscapes and verify its effectiveness in diverse contexts. 

The Wuhan study area covers most area of the Jianghan district, and 
parts of the Dongxihu, Qiaokou, and Jiangan district. The Zhengzhou 
study area covers parts of the Zhongyuan, Huiji, Jinshui, Guangchen-
ghuizu, and Erqi districts. The Xiamen study area mainly lies in the Huli 
district and includes parts area of Siming district. Finally, the Beijing 
study area fully covers the Shijingshan district, and parts of the Men-
tougou, Haidian, Xicheng, Fengtai districts. Satellite images of the first 
three cities were obtained from the SuperView-1 satellite, all with a 
consistent spatial resolution of 0.5 m, while the image of Beijing was 
acquired from the GF-2 satellite, with the same spatial resolution. Im-
ages of Wuhan, Zhengzhou, Xiamen, Beijing is from 2019, 2016, 2020, 
and 2022, respectively. POI data of the four cities were acquired from 
“Amap” (https://lbs.amap.com/) from the same years same with their 
satellite images. Building footprints of the four cities are downloaded 
from the “Baidu Map” acquired in the year corresponding to their sat-
ellite images. These contain 6566,40,487, 7179, and 54,445 building 
footprints, respectively. 

3. Methodology 

Building is the basic spatial unit of this research; to determine its use 
category, we need three key processes (Fig. 2). We first capture the RS 
image and POI data corresponding to the same building, and use a file to 
align these two types of data. Second, we generate building use classi-
fication data sets by manually labelling their category and specifying 
their uncertainty. Third, we use this data set to train the multimodal 
deep learning method, and used this trained model to classify unlabelled 
buildings. 

3.1. Data sets generation 

We merged adjacent building polygons if adjacent polygons belong 
to the same building but were divided into several parts. Next, we used 
building polygons to capture aerial images. As shown in Fig. 2, we 
generated the centre point of every building polygon, and then captured 
RS image patches by using the centre point as the captured patch's centre 
and setting a suitable patch size. This progress can guarantee that the 
corresponding building lies in the centre of the captured RS image patch 
with its surrounding around the patch. In this research, the size of 
extracted patches is 224 × 224 pixels. This size is large enough to 
involve most buildings' own and their surroundings' information. 

Matching between POI data and building polygons is done according 
to their spatial relationship. Most POI lie within the building's polygon, 

Fig. 1. Locations of four research area and their RS image. Beijing is a first-tier city, Zhengzhou and Wuhan are new first-tier cities, and Xiamen is a second-tier city.  
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while some POIs that describe the information of buildings may be 
outside the building footprint, e.g., some of the POIs of the blue circle in 
Fig. 2. Therefore, we matched every POI with its corresponding building 
by searching the nearest building of that POI within a 5 m radius. 

We labelled the building use category based upon two modalities 
according to the land use classification system proposed by the Ministry 
of Housing and Urban-Rural Development of the People's republic of 
China (CAUPD, 2018), see appendix. According to this classification 
system, building use is classified into six main types (Table 1). Currently 
building use classification considering mixed-use is rare (Srivastava 
et al., 2018a). In our research we have considered buildings' mixed-use 
by assigning class labels that combine multiple categories. 

We selected the Wuhan study area for generating the labelled data 
set, containing 6566 building footprints. We labelled building category 
by combining a visual inspection of RS image and doing a reading 
analysis of the POI data. For example, some residential, industrial, 
buildings can be interpreted from RS image only, and POI data can tell if 
other usage occurs involved in these buildings. Some buildings are hard 
to interpret from RS image, and are labelled according to their POI. And 
some buildings lack POI and are hard to interpret from RS image; those 

assigned the category “Unknown”. We found that 34.8% buildings lack 
POI data, while 45.7% among these are hard to label from only their 
corresponding RS images. After labeling, building use was classified int 
23 categories. As shown in Table 1, the number of samples for the 
different categories is too low to train the multimodal deep learning 
model. Therefore, we selected 5451 buildings in 8 categories. i.e. the 
bold categories in Table 1, for our experimental analysis. We randomly 
selected 60% of the labelled buildings as training samples, 20% as 
validation samples, and 20% as test samples. 

Table 2 shows the number of labelled samples in each category in 
different data sets, and the proportion of samples including POI data. All 
samples of the category of “RBA”, “BA”, and “RA” contain POI data, 
counting 9.8% of the total, where labelling into these categories relies on 
POI data. Also, 98.9% in category “RB”, 96.5% in category “B”, and 
84.7% in category “A” contain POI data, being 57.2% of the total. The 
reason is that most of the labels are determined according to two types of 
data, especially the POI data, and only a few samples can be assigned 
labels according to the labels of the surrounding similar buildings. 
88.5% of “I” (industrial use buildings) lack POI data, but these can be 
well recognised from the satellite image. Finally, 46.7% of “R” have no 
POI data, which means these residential buildings are labelled according 
to satellite imagery only. 

Fig. 2. Workflow of the proposed method.  

Table 1 
Considered use categories and the statistic of the generated data set.  

Category Number Category Number Category Number 

Unknown 1044 R A 60 B A S 1 
R 2414 R S 2 B I 11 
B 1024 R B A 164 B I W 3 
A 196 R B A S 1 B S 5 
I 87 R B I 6 B W 16 
W 4 R B S 5 A I 2 
S 5 B A 186 Being build 9 
R B 1320 B A I 1 Total 5451/6566 

R: Residential use; B: Business-related and commercial service facilities use. 
W: Logistics and warehousing use; A: Public management and public service 
facilities use. 
S: Roads and transportation facilities; I: Industrial use. 

Table 2 
The statistics of labelled building samples in different sub-sets of Wuhan.  

Category Training Validation Testing Sum Samples with POI data 

R 1462 471 481 2414 1287 53.3% 

B 600 216 208 1024 988 96.5% 
A 109 42 45 196 166 84.7% 
I 54 17 16 87 10 11.5% 
R B A 107 31 26 164 164 100% 
B A 120 30 36 186 186 100% 
R B 794 261 265 1320 1305 98.9% 
R A 31 13 16 60 60 100% 
Total 3277 1081 1093 5451 4166 76.4%  
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3.2. Data augmentation 

The maximum length of the input text sequence in the deep learning 
method is usually fixed. If the length of the input text sequence exceeds 
the max length, then it is truncated, while if it is shorter, it is padded up 
to the max length using zero values. In this paper, the max length of 
input text sequence has been set to 300 characters. To adequately learn 
the data features, we augmented the training and validation data set of 
Wuhan study area by adjusting the orientation of satellite images and 
the sequence of the POI data contents. Fig. 3 shows a sample of a 
building's captured satellite image, and its augmented result. 

Among the 5451 selected building samples, 54.5% have more than 
one corresponding POI data and we have gathered each building's POI 
data in two different turns. We next adjusted the sequence of the POI 
data contents to augment the data set. Each downloaded POI data has a 
unique ID, which we used to adjust their sequence. We combined the 

captured satellite images without orientation change like Fig. 3 (b) with 
POI contents (P1, P2 … Pn), ordered according to increasing size, and the 
captured satellite images with orientation change like Fig. 3 (c) with the 
reversely ordered POI contents (Pn … P2, P1). The POI content for 
buildings without POI data was set to “Null”. 

3.3. Data set uncertainty 

The use categories of buildings are manually labelled based upon the 
information as reflected by RS and POI. The first uncertainty is associate 
with the ability of the two modalities to sufficiently reflect the actual use 
of the building. We did field checking work to evaluate this uncertainty 
by comparing the labels given according to the two modalities with the 
in-situ results. The second uncertainty concerns human errors in 
manually labelling the training samples. We assessed this uncertainty 
component of Wuhan by randomly sampling 10% of the data set and 

Fig. 3. Examples of the augmented image data sets. (a) Building's outline and its centre point. (b) Captured satellite image. (c) Captured satellite image rotated 900 to 
the right. 

Fig. 4. Samples for data set uncertainty checking of Wuhan. (a) Field checking. (b) Relabeling samples.  
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relabelling them based upon the two modalities, followed by comparing 
the relabelled result with their original labels. 

For buildings with multiple use labels, we used the multi-label 
evaluation method for the first type of uncertainty, using the Accuracy 
(A, Eq. (1)) and F1 score (F1, Eq. (2)). We represented the field audit 
label as Yi, and the assigned label as Zi. The second type of uncertainty 
was evaluated by randomly selecting and relabelling building samples 
and calculating the correspondence between the relabelled results and 
the original results. Fig. 4 shows the field checking and relabelling 
samples for the first and second types of uncertainty evaluation. 

A =
1
n
∑n

i=1

|Yi ∩ Zi|

|Yi ∪ Zi|
(1)  

F1 =
1
n

∑n

i=1

2|Yi ∩ Zi|

|Yi| + |Zi|
(2)  

where n is the total number of field checking samples. 
To evaluate the uncertainty of classification results, 20% of the 

samples of Wuhan have been selected as test data. For other research 
areas, we randomly selected and manually labelled 1332, 1040, and 
1411 samples respectively as test data for the Zhengzhou, Xiamen, and 
Beijing study area. The detailed number of different category and the 
POI containing ratio is shown in Table 3. 

3.4. Transformer based multimodal deep learning model 

The proposed method involves two types of modalities containing 
both image and textual features, respectively. Self-attention-based ar-
chitectures, in particular Transformers (Vaswani et al., 2017), have 
become the model of choice in natural language processing (NLP), as 
they have better performance in terms of both accuracy and efficiency 
(Chen et al., 2018a; Vaswani et al., 2017). 

Convolutional Neural Networks (CNNs) have been the preferred ar-
chitecture in computer vision tasks for a long time. The typical archi-
tectures are LeNet-5 (Lecun et al., 1998), AlexNet (Krizhevsky et al., 
2012), VGG (Karen and Andrew, 2014; Szegedy et al., 2015), Google-
LeNet (Szegedy et al., 2015), ResNet (He et al., 2016), ResNeXt (Xie 
et al., 2017), DenseNet (Huang et al., 2017), SENet (Hu et al., 2018). 
Inspired by the successes of Transformers in NLP, Dosovitskiy et al. 
(2020) applied a standard Transformer directly to image classification, 
with the fewest possible modifications; splitting an image into patches 
and providing the sequence of linear embeddings of these patches as an 
input to a Transformer. When models are trained on larger datasets, they 
attained excellent results equal to or better than CNN (Bhojanapalli 
et al., 2021; Dosovitskiy et al., 2020). 

Several studies on vision-language representation learning focus on 
modelling the interactions between image and text features with 
Transformer based multimodal encoders (Huang et al., 2021; Lu et al., 
2020; Su et al., 2020; Zhang et al., 2021b). Therefore, Transformer is an 
excellent choice for textual and image feature extraction and fusion. The 
Supervised Multimodal Bitransformers (MMBT) (Kiela et al., 2019) 

model was proposed in 2020, performing better than state of the art 
methods. The MMBT model is built based on the Bidirectional Encoder 
Representation from Transformers (BERT) model (Jacob Devlin et al., 
2019), which only utilises the encoder representation of Transformers. 

Unlike BERT, the MMBT model includes a new module to extract 
image features and fuse these with textual features as the input of the 
model. It can employ self-attention over both modalities simultaneously, 
providing earlier and more fine-grained multimodal fusion. The MMBT 
model proposed by Kiela et al. (2019) used ResNet (He et al., 2016) to 
capture image features. In this research, we have replaced Resnet with 
DenseNet (Huang et al., 2017). Because the identity shortcut of ResNet 
stabilises its training but limits its representation capacity, while Den-
seNet has a higher capacity with multi-layer feature concatenation, 
although it requires high GPU memory and more training time (Zhang 
et al., 2021a). 

Fig. 5 shows the architecture of the revised MMBT model. As shown 
in Fig. 5, the pretrained BERT and DenseNet are used as the backbone to 
extract textual features and image feature, and these two networks will 
then be finetuned in the proposed network. For each building, according 
to the Json file, its POI data's text content will be input into network. The 
pre-trained WordPiece tokeniser used in BERT was used to split a word 
into subwords and characters, and the pre-trained BERT vocabulary was 
used to transpose tokens from tokens to token sequences. The pre- 
trained BERT model is “bert-base-chinese” which was trained on the 
Chinese version of Wikipedia. Then token sequences were transposed to 
token embedding through the pre-trained token embedding layer. 

For each building, its corresponding RS image is input into model, 
according to its image patch's name and folder. Then the pre-trained 
DenseNet (trained on ImageNet) is used to extract image features, 
capturing the output features after the final pooling operation. Next, 
these features are transposed to vectors with the same dimension as text 
token embeddings. Segmentation embeddings are used to distinguish 
text token embedding and image embedding by assigning different 
segment embeddings to them. 0-indexed positional coding is used for 
each segment to record token positions, i.e., start counting from 0 for 
each segment. Token, segmentation, and position embeddings were then 
fused and are input into the Transformer encoder for the classification 
task. 

3.5. Classification result evaluation 

For the multi-class classification task, two F1 scores are commonly 
used as accuracy evaluation indexes, i.e. the Macro F1 score (MAFS) and 
the Micro F1 score (MIFS) (Santos et al., 2011). Compared to MAFS, MIFS 
considers the uneven number of samples of the different classes, which is 
more suitable for our research. In fine tuning the MMBT model, we used 
validation data set to evaluate model performance and adjust 
parameters. 

For each class, precision (Pi) and recall (Ri) were obtained according 
to Eqs. (3) and (4), respectively. The F1 score (F1 i) is obtained as the 
geometric mean of precision and recall (Eq. (5)) and the MAFS following 
Eq. (6), being the average of each category's F1 score. 

Table 3 
Number of labelled samples at the Zhengzhou, Xiamen, and Beijing study areas.   

Category R B A I RBA BA RB RA Total 

Zhengzhou Number 435 162 98 232 50 43 281 31 1332 
Samples with POI (%) 65.5 85.2 61.2 5 100 95.3 97.5 93.5 66.7 

Xiamen Number 154 270 15 7 67 32 488 7 1040 
Samples with POI (%) 17.5 78.5 73.3 0 100 100 99.2 100 80.8 

Beijing Number 304 283 151 192 104 81 216 83 1411 
Samples with POI (%) 18.1 89 78.8 10.9 100 100 98.6 97.6 65.4  
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Pi = TPi/(TPi +FPi) (3)  

Ri = TPi/(TPi +FNi) (4)  

F1 i = (2Pi⋅Ri)/(Pi +Ri) (5)  

MAFS =

(
∑n

i=1
F1 i

)/

n (6) 

TPi :true positives; FPi: false positives; FNi: false negatives; n: the 
number of class types. 

For obtaining the MIFS we used the average precision (AP, Eq. (7)) 
and average recall (AR, Eq. (8)) of all samples with different classes, 
resulting in Eq. (9). 

AP =
∑n

i=1
TPi

/(
∑n

i=1
TPi +

∑n

i=1
FPi

)

(7)  

AR =
∑n

i=1
TPi

/(
∑n

i=1
TPi +

∑n

i=1
FNi

)

(8)  

MIFS = (2⋅AP⋅AR)/(AP+AR) (9)  

4. Experimental analysis and results 

4.1. Building use classification based upon two modalities (Wuhan study 
area) 

For the two types of uncertainty evaluation of the Wuhan data set, 
after the field audit, the accuracy of our generated data set equals 
88.5%, and the F1 score 91.9%, indicating RS and POI can effectively 
reflect actual building use. For the 10% relabelled samples, 96.2% are 
correctly labelled, resulting in the correctness of the generated data set 
equal to 96.15%, reflecting dataset of Wuhan is reliable. 

We used the AdamW optimiser to train the revised MMBT with a 
learning rate of 0.00003 and the batch size of 16. The default training 
epoch for MMBT is equal to 3, which in this research was set to 8 to 
ensure not miss the optimal trained model. Other hyper-parameters 
have been set according to default values. The training progress of 
using two modalities for classification is shown in Fig. 6. We used 
validation data set to evaluate model performance during training, and 

Fig. 5. Illustration of the revised MMBT model.  

Fig. 6. Training progress when using two modalities for building use classification. (a) Loss value at different iteration. (b) F1 score of validation data at 
different iteration. 
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the model selection was based on the MIFS value on the validation set, i. 
e., that the model with the highest MIFS score after the 2450 iterations 
and in the sixth epoch has been selected. 

The F1 -score and the confusion matrix of the buildings use classifi-
cation results based on two modalities when using samples shown in 
Table 2 are shown in Table 4 and Fig. 7. Three quarters single-use cat-
egory's accuracy above 60% were obtained, while a quarter for mixed- 
use. For instance, the sample number of “A”, “BA”, and “RBA” are 
similar, while their accuracy gradually decreases. Categories with a 
larger number of samples also have a higher accuracy than others, for 
example, categories of “R”, “B”, and “RB” have more samples than the 
other categories, and their accuracies are also much higher than these. 
Misclassified categories also partly reflect their true labels. For example, 
38% “RBA” has been misclassified into “RB” and 15% “RBA” to “B”. 
Also, 28% “BA” have been classified into “B”, 6% “RB” have been 

classified into “R” and 9% “RB” into “B”. Hence, also misclassified 
building mixed-use labels reflect part of buildings' uses. 

4.2. Contribution of different data sources 

We compared the building use classification results on the test data 
of Table 2 using both modalities against that based upon one modality 
only. We used a pretrained Transformer to classify POI data. For the 
classification of RS images, we used Transformer to classify image fea-
tures extracted from pretrained DenseNet. The samples used for the 
experiments based on “RS&POI” are identical to those based on RS 
alone, while the samples used for POI only experiments are fewer due to 
the presence of POI data in only 76.4% of the samples, as indicated in 
Table 2. As shown in Table 5, the MIFS based on two modalities, POI, 
and RS reached 80.9%, 76.4%, and 53.9%, respectively, and MAFS 

Table 4 
Building use classification results of Wuhan based upon two modalities using samples of Table 2.  

Data set R B A I RBA BA RB RA MIFS MAFS 

F1-score 0.930 0.738 0.723 0.486 0.321 0.515 0.788 0.483 0.809 0.623  

Fig. 7. Confusion matrix when using two modalities for classification based on MMBT model. We divided the number of each cell's samples by the total number of its 
corresponding row. 

Table 5 
F1 scores of different categories and their overall results trained by different data sources using samples of Table 2 based on the Transformer network.  

Data set R B A I RBA BA RB RA MIFS MAFS 

RS&POI 0.930 0.738 0.723 0.486 0.321 0.515 0.788 0.483 0.809 0.623 
POI 0.915 0.711 0.704 0 0.37 0.418 0.761 0.529 0.764 0.551 
RS 0.690 0.578 0.100 0.412 0.108 0 0.255 0 0.539 0.267  
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values equal to 62.3%, 55.1%, and 26.7%, respectively. The confusion 
matrices of results based on POI only and RS only are reported in ap-
pendix. The ablation experiments show that POI data contributes more 
to detailed land use information than RS images. 

Except for the categories of “RBA”, and “RA” where using only POI 
data yields higher results compared to using two modalities, the 
remaining five categories demonstrate improved F1 scores when both 
modalities are integrated. Table 2 shows that all samples in the “RBA” 
and “RA” categories contain POI data, and that the F1 scores based solely 
on RS are notably low. This suggests a high reliance on POI data for 
determining these categories, while the inclusion of RS data introduces 
more noise than useful information. For the “I” category, RS imagery 
plays a crucial role since using POI data alone cannot accurately identify 
this category due to its limited presence. Table 2 shows that only 11.5% 
or 10 samples contain POI data. By incorporating RS data, the F1 score 
for the “I” category increases by 18%, indicating the valuable informa-
tion conveyed by the absence of POI data. A similar pattern is observed 
in the “BA” category also. This indicates that integrating RS and POI data 
effectively enhances building use classification. 

4.3. Building use classification of the Zhengzhou, Xiamen, and Beijing 
study area 

We analyzed the generalisation of the proposed method by applying 
the model trained in Wuhan to the Zhengzhou, Xiamen, and Beijing 
study area. We used the model trained in Wuhan based upon two 

modalities to classify buildings in these three cities using two modalities. 
We evaluated the classification results by comparing the classification 
results with the manually labelled reference data. 

Table 6 presents the F1 score for the classification result of four study 
areas. The MIFS for Zhengzhou equals 60.6%, for Xiamen 67.2%, and for 
Beijing 56.6%. The corresponding MAFS values are equal to 54.7% for 
Zhengzhou, 54.0% for Xiamen, and 52.5% for Beijing. Overall, the 
classification results for these three cities are lower as compared to 
Wuhan. In Wuhan, using both modalities, categories such as “R”, “B”, 
“A”, “BA”, and “RB” achieve F1 scores above 50%, with 60% of them 
representing single-use buildings. Similarly, for Zhengzhou, the cate-
gories “R”, “B”, “I”, “BA”, and “RA” have F1 scores above 50%, with 60% 
of them being single-use buildings. For Xiamen, categories “R”, “B”, “I”, 
and “RB” have F1 scores above 50%, with 75% of them representing 
single-use buildings. In Beijing, categories “R”, “B”, “A”, “RBA”, and 
“RB” achieve F1 scores above 50%, with 60% of them being single-use 
buildings. This indicates that classifying single-use categories is gener-
ally easier than mixed-use categories. Fig. 8 displays the confusion 
matrix, while the classification maps can be found in Fig. 14-16 in the 
Appendix. 

When transferring the trained model to a new domain, the accuracy 
usually decreases since different areas have different characteristics. 
This can be observed in the MIFS, MAFS and F1 score of categories such 
as “R”, “B”, “A”, and “RB” in the three transferred cities as shown in 
Table 6. In this research, significant improvements have been achieved 
for the F1 scores of the “RBA” categories for Zhengzhou, Xiamen, and 

Table 6 
F1 -score of four cities' building use classification results.  

Study area R B A I RBA BA RB RA MIFS MAFS 

Wuhan 0.930 0.738 0.723 0.486 0.321 0.515 0.788 0.483 0.809 0.623 
Zhengzhou 0.737 0.557 0.547 0.498 0.370 0.550 0.537 0.576 0.606 0.547 
Xiamen 0.714 0.539 0.435 0.833 0.413 0.298 0.775 0.316 0.672 0.540 
Beijing 0.724 0.546 0.565 0.409 0.502 0.424 0.533 0.494 0.566 0.525  

Fig. 8. The confusion matrix of three cities based on two modalities. (a) Result of Zhengzhou. (b) Result of Xiamen. (c) Result of Beijing.  

Table 7 
Truncation ratio of different categories in four cities.  

Study area R B A I RBA BA RB RA 

Wuhan (Test data set) 0.008 0.231 0.044 0 0.615 0.528 0.377 0.063 
Zhengzhou 0 0.198 0.031 0 0.46 0.349 0.181 0.032 
Xiamen 0 0.215 0 0 0.597 0.563 0.309 0 
Beijing 0.003 0.117 0.04 0 0.308 0.438 0.093 0.073  
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Fig. 9. Detailed building use classification result of Zhengzhou, (a) around a university, (b) around a industrial area, (c) around a living community, (d) around a 
commercial area. On the left is the RS image, in the middle is the classification result, and on the right is the reference label. 
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Beijing, the “RA” category for Zhengzhou, and the “I” category for 
Xiamen. 

Due to the fixed text length required by the model, the input text is 
truncated if it exceeds the specified length. The truncation ratios for 
different categories in different cities have been calculated and are 
presented in Table 7. Categories like “RBA” and “BA” have relatively 
high truncation ratios. Analyzing the confusion matrices depicted in 
Fig. 7 and Fig. 8 for the four cities, it can be observed that, the function 

“A” has not been correctly identified, resulting in misclassifications into 
categories “B” or “RB”. This misidentification rate equals 54% in Wuhan, 
45% in Zhengzhou, 48% in Xiamen, and 6% in Beijing. Generally, higher 
truncation ratios correspond to higher rates of misidentification, while 
lower truncation ratios correspond to lower rates of misidentification. 

Another reason influencing the F1 score of “RBA” category in Wuhan 
is that 23% of the samples with the function “R” have not been correctly 
identified. For the “BA” category, 28% of the samples in Wuhan with 

Fig. 9. (continued). 

Fig. 10. Detailed building use classification result of Xiamen and Beijing. (a) Classification result of Xiamen (b) Classification result of Beijing. On the left is the RS 
image, in the middle is the classification result, and on the right is the reference label. 
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“BA” category have been misclassified as “B” without the correct iden-
tification of the function “A”. In Zhengzhou, Xiamen, and Beijing, the 
proportions are equal to 12%, 22%, and 10%, respectively. These 
reduction ratios are 52.8%, 34.9%, 56.3%, and 43.8%, indicating that 
the reduction ratio can significantly impact the identification of building 
use. 

The truncation ratio of “RA” is low, indicating less influence on the 
identification of “RA”. Among the confusion matrices of the four cities, 
19% of the samples have been classified as “A”, without identifying the 
“R” function. In Zhengzhou, this proportion equals 0%. This suggests 
that identifying the “R” function in the mixed-use “RA” buildings is more 
challenging in Wuhan as compared to Zhengzhou. Xiamen, being a 
tourist city situated on an island, has fewer industrial buildings 
compared to the other research areas. In our test dataset, we only have 7 
samples of the “I” category from Xiamen. These samples exhibit more 
pronounced industrial characteristics as compared to other cities, but 
the limited sample size might introduce sampling bias. This could 
explain why Xiamen has a higher F1 score for the “I” category when 
compared to other cities. 

Fig. 9 shows the detailed classification of Zhengzhou, confirming 
that most buildings are correctly classified. For instance, Fig. 9(a) shows 
objects around a university. We note that buildings used for education 
have been correctly classified into categories “A”, and “BA”. Four 
buildings in the living communities are of mixed-use “RB” but have been 
classified as “B”, which is only partly correct. In contrast, Fig. 9(b) shows 
the objects in an industrial area. Here, approximately 50% of the 

buildings classified as “I” have been misclassified as “R”. Fig. 9(c) il-
lustrates a typical living community in China, featuring four gates. The 
buildings located outside the community serve residential functions 
along with other uses. According to the classification results, the pre- 
trained model failed to predict the residential function for 13.6% of 
the buildings, and 24.4% of the buildings were incorrectly labelled as 
“B”. Additionally, buildings categorized as “RBA” were misclassified as 
“RB”. In Fig. 9(d), the classification results for a multiple-use area are 
presented. The category “RB” is prone to being misclassified as “B”. 
Furthermore, several buildings were mistakenly labelled as “A”. The 
yellow rectangle in Fig. 9(d) represents a primary school, and in the 
vicinity of these buildings, there are education-related businesses with 
names containing education-related words. Consequently, these build-
ings were mistakenly labelled as “A”. 

Fig. 10 depicts a portion of the detailed building use classification 
results for the Xiamen and Beijing research areas. In the case of Xiamen, 
the majority of the buildings has been accurately classified. Still, two 
samples categorized as “RBA” have been misclassified as “RB”, and five 
buildings labelled as “BA” have been misclassified as “B” without 
identifying their function as “A”. Additionally, 15 buildings categorized 
as “B” have been classified as “RB”, implying the presence of a non- 
existent function “R”. For Beijing, the majority of buildings has also 
been correctly classified, while eight buildings categorized as “A” have 
been misclassified as “R”, two buildings labelled as “B” have been mis-
classified as “RB”, two as “BA” instead of “RBA”, and one as “A” instead 
of “RA”, thereby assigning an incorrect function “R”. 

Table 9 
The statistics of F1 score before and after decision fusion.  

Dataset R B A I RBA BA RB RA MIFS MAFS 

LSTM(POI) 0.902 0.679 0.517 0 0.264 0.314 0.756 0.4 0.738 0.479 
VGG16(RS) 0.571 0.521 0.192 0 0 0.164 0.340 0 0.454 0.224 
DF of LSTM and VGG16 (λ ¼ 0.85) 0.904 0.682 0.517 0 0.275 0.310 0.761 0.4 0.741 0.481 
FF of our method 0.914 0.751 0.767 0 0.321 0.514 0.793 0.483 0.787 0.568 

DF: decision fusion; FF: feature fusion. 

Table 8 
Number of buildings that contains both POI data and satellite image.  

Category R B A I RBA BA RB RA Total 

Training 766 581 92 6 107 120 785 31 2488 
Validation 240 206 37 2 31 30 259 13 818 
Testing 281 201 37 2 26 36 262 16 861  

Fig. 11. The results of state-of-the-art decision fusion method and proposed feature fusion method. (a) The MAFS of decision fusion and feature fusion based 
methods. (b) The MIFS of decision fusion and feature fusion based methods. 
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4.4. Comparative experiments 

We have compared the proposed method with a state-of-the-art 
building use classification method: a decision-based multimodal deep 
learning method (Häberle et al., 2022). This comparative method uses a 
bi-directional long short-term memory network (LSTM) (Graves et al., 
2005) to classify text information, and generated the probability of each 
category for each data set in the vector form. VGG16 (Simonyan and 
Zisserman, 2014) was used to classify each image, and generate its 
corresponding category probability vector. The decision method using 
the two data sets is shown in Eq. (10), where Pt indicates the category 
probability vector for the text data, Pi is the category probability vector 
for the image data, and λ is the weight given to text information. 

fb = argmax[λ*Pt +(1 − λ)*Pi ] (10) 

Table 8 shows the samples that contain two modalities. We used the 
training data in Table 8 to train the LSTM model, and the training data in 
Table 2 which contain more image samples to train the VGG16 network. 
For these two networks, we used the same test data as shown in Table 8 
to evaluate their performance. The decision fusion results are shown in 
Table 9 and Fig. 11. 

From these experiments we see that: 1) Decision fusion represented 
by the comparative method has not effectively improved the building 
detailed use classification results. Compared to LSTM and VGG16 based 
decision fusion, our proposed feature fusion improved the MIFS by 6.2% 
and 3.0% respectively. 2) For classification based on single modality, the 
MIFS of the POI classification is substantially higher than that of RS. For 
the decision fusion experiments, the highest MAFS and MIFS occur when 
assigning POI classification results a weight of 0.85 and results based on 
RS images 0.15. Therefore, POI data contribute more to buildings' ac-
curate use classification. 3) Using decision fusion, the contribution of RS 
images for building classification is limited and has not effectively 
improved the classification of POI. 

4.5. Comparison between feature fusion and decision fusion strategy 

We used the decision fusion strategy shown as Eq. (10) to fuse the 
classification results of POI data and aerial images classified by the 
Transformer network. The same network was used in decision fusion 
and feature fusion experiments. Results are shown in Table 10 and 
Fig. 12. 

The MIFS and MAFS of the decision fusion are almost the same as 
that only using POI, which means in this decision fusion progress, 
adding RS classification results have not improved the overall results. 
The results of the proposed feature fusion method show that using 
feature fusion led to better classification accuracy, which shows that the 
relationship between different modality features can help improve 
classification results. 

As compared to the decision fusion result in Table 9, Transformer 
performs better than LSTM in each category when dealing with POI data. 
When classifying RS images, the Transformer model demonstrates better 
performance in categories such as “R”, “B”, and “RBA”, whereas the 
VGG16 model excels in categories like “A”, “BA”, and “RB”. As shown in 
Table 2, samples with POI data in categories “R”, “B” and “RB” are more 
than that in the other categories, and the F1 score of “R” and “B” are 
higher than the other categories, irrespective of the use of VGG16 or 
Transformer. Hence, the MIFS of the Transformer model is 3.4% higher 
than that of VGG16, while the MAFS of VGG16 is 1.4% higher than that 
of the Transformer model. Considering the performance on different 
modalities, we conclude that the Transformer network outperforms 
alternative deep learning architectures and is highly effective for 
buildings use classification. 

5. Discussion 

5.1. The comparison between revised MMBT and the original MMBT 

We conducted a performance comparison between our revised 
network and the original MMBT network. Both models were trained 
using the dataset presented in Table 2, utilizing two modalities. For 

Table 10 
The statistics of F1 score before and after decision fusion.  

Dataset R B A I RBA BA RB RA MIFS MAFS 

Transformer (POI) 0,915 0,711 0,704 0 0,37 0,418 0,761 0,529 0.764 0.551 
Transformer (RS) 0,604 0.622 0.074 0 0.111 0 0.266 0 0.488 0.210 
DF of Transformer (λ ¼ 0.6) 0.906 0.725 0.725 0 0.385 0.431 0.762 0.529 0.764 0.551 
FF of Transformer 0.914 0.751 0.767 0 0.321 0.514 0.793 0.483 0.787 0.568 

DF: decision fusion; FF: feature fusion. 

Fig. 12. The results of decision fusion strategy and feature fusion strategy. (a) The MAFS of decision fusion and feature fusion based methods. (b) The MIFS of 
decision fusion and feature fusion based methods. 
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feature extraction, DenseNet and ResNet152 were employed as the 
backbones for MMBT models. The training progress of the original 
MMBT model can be observed in Fig. 17, which is included in the 
Appendix. 

Table 11 presents the comparison results. The original network ex-
hibits better performance in the categories of “B”, “BA”, and “RA”, while 
performing worse in the remaining five categories, particularly in “I” 
and “A”. However, when considering the overall results represented by 
MIFS and MAFS, it is evident that our revised MMBT model generally 
outperforms the original one. 

5.2. The matching problem between POI and building footprints 

The performance of data-driven models is highly dependent on the 
quality and composition of the input data. The POI data plays a signif-
icant role in building use classification. In order to optimize the 
matching process between POI and building footprints, we experi-
mented with different search radii and selected the radius with the 
highest F1 score as the optimal search radius. The training progress for 
each radius is illustrated in Figs. 18 to 21 in the Appendix. 

Table 12 presents the classification results obtained using different 
search radii. It was observed that the category “RA” achieved the 
optimal F1 score when using 0 m and 2.5 m as the search radius, 
although these radii failed to recognize the “I” category. The “B” cate-
gory attained the highest F1 score when using search radii of 2.5 m, 5 m, 
and 7.5 m. For the categories “RBA” and “BA”, the optimal F1 score was 
achieved with a search radius of 2.5 m. The categories “R”, “A”, “I”, and 
“RB” obtained their highest F1 scores with a search radius of 5 m. In 
general, 62.5% of the categories achieved their optimal F1 score with a 5 
m search radius, and this radius also yielded the highest MIFS and MAFS. 
Consequently, we recommend using a search radius of 5 m when 
matching POI with building footprints in China. 

6. Conclusion 

In this work, we proposed a new multimodal transformer-based deep 
learning method based upon feature fusion for building use classifica-
tion. Based upon our research, we found that by integrating POI and RS 
data, we can extract detailed mixed-use information. Our proposed 
method outperforms the state-of-the-art methods in terms of 
performance. 

We draw five conclusions. 1) POI and RS images effectively reflect 

the building's detailed use information, including mixed-use. 2) 
Compared to RS images, POI data reflect more functional information, 
while combining two modalities provides more information than using a 
single modality. 3) The proposed feature fusion strategy performs better 
than the state-of-the-art decision fusion method, and it increases the 
classification accuracy. 4) Single use categories usually have a higher 
accuracy than mixed-use categories. 5) Based upon the four case studies 
we hypothesise that the proposed method has a good generation ability 
for other major Chinese cities. 

The performance of our deep learning method heavily relies on the 
number of training samples. The accuracy is varying among different 
categories, for example, classification results of “RBA”, “RA”, “I”, and 
“BA” with less samples are inferior to those with sufficient samples. 
Different application scenarios may have varying requirements for data 
accuracy. It is crucial to consider the uncertainty associated with the 
generated classification results before utilizing them. In our future 
research, we will enlarge our data set and add new types of data sources 
such as street view images to improve the building use classification 
result. We will then also explore use of our method in different parts of 
the world and will explore urban structures and unequal access to 
services. 
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Table 11 
Building use classification result of original and revised MMBT model.  

MMBT R B A I RBA BA RB RA MIFS MAFS 

Revised 0.93 0.74 0.72 0.49 0.32 0.52 0.79 0.48 0.809 0.623 
Original 0.92 0.78 0.65 0.00 0.30 0.53 0.78 0.51 0,806 0,558 
Compare ¡0.01 +0.04 ¡0.07 ¡0.49 ¡0.02 +0.01 ¡0.01 +0.03 ¡0.03 ¡0.065  

Table 12 
Building use classification result using different search radius to match POI data with buildings.  

Search radius R B A I RBA BA RB RA MIFS MAFS 

0 m 0.88 0.72 0.6 0 0.29 0.55 0.77 0.55 0.783 0.544 
2.5 m 0.92 0.74 0.57 0 0.38 0.58 0.77 0.55 0.797 0.563 
5 m 0.93 0.74 0.72 0.49 0.32 0.52 0.79 0.48 0.81 0.62 
7.5 m 0.91 0.74 0.67 0.36 0.26 0.49 0.77 0.48 0.786 0.587 
10 m 0.9 0.73 0.66 0.42 0.31 0.35 0.74 0.35 0.769 0.559  
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Appendix A. Fig.13-Fig.21

Fig. 13. Confusion matrix when using RS and POI data for the classification based on MMBT model. (a) Result only using RS. (b) Result only using POI.   

Fig. 14. Building use classification of Zhengzhou.   
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Fig. 15. Building use classification of Xiamen.   

Fig. 16. Building use classification of Beijing.   
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Fig. 17. The training progress of using original MMBT model for building use classification based on two modalities. (a) Loss value at different iteration. (b) F1 score 
of validation data at different iteration.  

Fig. 18. Building use classification result using 0 m search radius to match POI data with buildings. (a) Loss value at different iteration. (b) F1 score of validation data 
at different iteration.  

Fig. 19. Building use classification result using 2.5 m search radius to match POI data with buildings. (a) Loss value at different iteration. (b) F1 score of validation 
data at different iteration.  
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Appendix B. The Land use classification system used in this research  

Table 13 
The land use classification system used in this research.  

Category code Categories Description 

Coarse 
classes 

Medium 
classes 

Detailed 
classes 

R  Residential Land Residence and its corresponding service facility. 
R1 Residential land one Land with complete facilities and good environment, mainly covered by low-rise houses. 
R2 Residential land two Land with complete facilities, good environment, mainly covered by multi-, medium-, and high- 

rise residential land. 
R3 Residential land three Land lacking facilities and with a poor environment, and mainly covered by simple houses that 

need to be renovated, including dilapidated houses, shanty towns, and temporary housing. 
B  Business-related and commercial 

service facilities land 
Land for commercial, business, entertainment, and sports facilities, excluding land for service 
facilities in residential land. 

B1 Commercial land Commercial, catering, hotel, and other service industry land. 
B2 Business land Comprehensive office land for finance, insurance, art, media, R&D and design, technical services, 

etc. 
B3 Land for entertainment and sports 

facilities 
Land for entertainment, sports, and other facilities. 

B4 Land for public facilities and 
business outlets 

Land for retail fuel, gas, telecommunications, postal, and other public facilities business outlets. 

I  Industrial land Land used for production workshops, warehouses, and ancillary facilities of industrial and 
mining enterprises, including land for special railways, wharves and ancillary roads, parking lots, 
etc., excluding land for open-pit mines. 

I1 Industrial land 1 Industrial land that basically has no interference, pollution, and safety hazards to the residential 
and public environment, including industrial land that focuses on industrial research and 
development, pilot trials, and small-scale production. 

I2 Industrial land 2 Industrial land that has certain interference, pollution, and safety hazards to the residential and 
public environment 

(continued on next page) 

Fig. 20. Building use classification result using 7.5 m search radius to match POI data with buildings. (a) Loss value at different iteration. (b) F1 score of validation 
data at different iteration.  

Fig. 21. Building use classification result using 10 m search radius to match POI data with buildings. (a) Loss value at different iteration. (b) F1 score of validation 
data at different iteration.  
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Table 13 (continued ) 

Category code Categories Description 

Coarse 
classes 

Medium 
classes 

Detailed 
classes 

I3 Industrial land 3 Industrial land that with serious interference, pollution, and safety hazards to the residential and 
public environment. 

W  Logistics and warehousing land Land for material storage, transit, distribution, etc., including land for affiliated roads, parking 
lots, and trucking company fleet stations 

W1 Logistics and warehousing land 1 Logistics and storage land that is basically free of interference, pollution, and safety hazards to 
the residential and public environment. 

W2 Logistics and warehousing land 2 Logistics and storage land that has certain interference, pollution, and safety hazards to the 
residential and public environment 

W3 Logistics and storage of dangerous 
goods 

Special logistics and storage land for dangerous goods such as flammable, explosive, and highly 
toxic. 

A  Land for public management and 
public service facilities 

Land for administrative, cultural, educational, sports, health, and other institutions and facilities, 
excluding land for service facilities in residential land. 

A1 Land for administrative office Land for administrative office and related facilities such as political party and government 
agencies, social organisations, institutions, etc. 

A2 Land for cultural facilities Land for public cultural event facilities such as libraries and exhibitions. 
A3 Educational land Land for colleges and universities, secondary professional schools, middle schools, primary 

schools, and their auxiliary facilities, including land for students living in a separate area built for 
schools. 

A4 Sports land Land for stadium and sports training bases, excluding land for sports facilities dedicated to 
schools and other institutions. 

A5 Land for medical and health Land for medical treatment, health care, sanitation, epidemic prevention, rehabilitation, and first 
aid facilities. 

A6 Social welfare land Facilities and ancillary facilities land for providing welfare and charity services to the society. 
A7 Land for historical sites and 

cultural relics 
Ancient sites, ancient tombs, ancient buildings, cave temples, representative modern buildings, 
revolutionary memorial buildings, and other lands with conservation value. Excluding historic 
sites and cultural relics that have been used for other purposes. 

A8 Research land Land for scientific research institutions and their ancillary facilities. 
U Utility land Land for supply, environment, safety, and other facilities  

U1 Supply facility land Land for water supply, power supply, gas supply, and heating facilities 
U2 Land for environmental facilities Land for rainwater, sewage, solid waste treatment, and other environmental protection facilities 

and their auxiliary facilities. 
U3 Land for safety facilities Public facilities and ancillary facilities land for such as fire fighting and flood control to protect 

city safety. 
U4 Land for funeral facilities Land for funeral parlor, crematoriums, ashes depository, and cemetery. 

G Green space and square land Public open spaces such as parks, green spaces, and squares.  
G1 Parks and green space green space opening to the public, with recreation as the main function, and also with the 

functions of ecology, beautification, and disaster prevention. 
G2 Protective green space Green space with sanitation, isolation, and safety protection functions. 
G3 Square land Urban public event venue with functions of recreation, commemoration, assembly, and hedge as 

the main function. 
S Land for roads and transportation 

facilities 
Land used for urban roads, transportation facilities, etc., excluding residential land, industrial 
land, and other internal roads, parking lots, etc.  

S1 Urban road land Land for expressway, main road, secondary road, and branch road, including land at its 
intersection. 

S2 Urban rail transit land The above-ground part of the line and site land of the urban rail transit in an independent section 
S3 Land for the transportation hub Land for railway passenger and freight station, long-distance passenger terminal, passenger port 

terminal, bus hub, and its affiliated facilities land. 
S4 Land for traffic station Land for traffic service facilities, excluding land for the traffic command center and traffic police.  

References 

Akroyd, J., Harper, Z., Soutar, D., Farazi, F., Bhave, A., Mosbach, S., Kraft, M., 2022. 
Universal digital twin: land use. Data-Centr. Eng. 3, e3. 

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C.L., Parikh, D., 2015. VQA: 
visual question answering. In: 2015 IEEE International Conference on Computer 
Vision (ICCV), pp. 2425–2433. 

Bao, H., Ming, D., Guo, Y., Zhang, K., Zhou, K., Du, S., 2020. DFCNN-based semantic 
recognition of urban functional zones by integrating remote sensing data and POI 
data. Remote Sens. 12. 

Barlacchi, G., Lepri, B., Moschitti, A., 2021. Land use classification with point of interests 
and structural patterns. IEEE Trans. Knowl. Data Eng. 33, 3258–3269. 

Bergado, J.R., Persello, C., Stein, A., 2020. Land use classification using deep multitask 
networks. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, pp. 17–21. XLIII-B3-2020.  

Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., Veit, A., 2021. 
Understanding Robustness of Transformers for Image Classification eprint arXiv: 
2103.14586.  

Cao, R., Zhu, J., Tu, W., Li, Q., Cao, J., Liu, B., Zhang, Q., Qiu, G., 2018. Integrating aerial 
and street view images for urban land use classification. Remote Sens. 10. 

CAUPD, C.A.O.U.P.D., 2018. Code for Classification of Urban and Rural Land Use and 
Planning Standards of Development Land. Ministry of Housing and Urban-Rural 
Development of the People’s republic of China, Beijing.  

Chen, M.X., Firat, O., Bapna, A., Johnson, M., Macherey, W., Foster, G., Jones, L., 
Parmar, N., Schuster, M., Chen, Z., 2018a. The best of both worlds: combining recent 
Advances in neural machine translation. In: Proceedings of the 56th Annual Meeting 
of the Association for Computational Linguistics (Volume 1: Long Papers). 

Chen, W., Huang, H., Dong, J., Zhang, Y., Tian, Y., Yang, Z., 2018b. Social functional 
mapping of urban green space using remote sensing and social sensing data. ISPRS J. 
Photogramm. Remote Sens. 146, 436–452. 

Chen, Y., Song, Y., Li, C., 2020. Where do people tweet? The relationship of the built 
environment to tweeting in Chicago. Sustain. Cities Soc. 52. 

Chen, B., Tu, Y., Song, Y., Theobald, D.M., Zhang, T., Ren, Z., Li, X., Yang, J., Wang, J., 
Wang, X., Gong, P., Bai, Y., Xu, B., 2021a. Mapping essential urban land use 
categories with open big data: results for five metropolitan areas in the United States 
of America. ISPRS J. Photogramm. Remote Sens. 178, 203–218. 

Chen, B., Xu, B., Gong, P., 2021b. Mapping essential urban land use categories (EULUC) 
using geospatial big data: progress, challenges, and opportunities. Big Earth Data 
1–32. 

Deng, Y., Chen, R., Yang, J., Li, Y., Jiang, H., Liao, W., Sun, M., 2022. Identify urban 
building functions with multisource data: a case study in Guangzhou, China. Int. J. 
Geogr. Inf. Sci. 36, 2060–2085. 

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., 
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N., 2020. 
An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR. 

W. Zhou et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0005
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0005
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0010
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0010
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0010
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0015
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0015
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0015
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0020
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0020
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0025
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0025
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0025
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0030
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0030
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0030
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0035
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0035
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0040
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0040
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0040
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0045
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0045
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0045
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0045
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0050
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0050
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0050
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0055
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0055
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0060
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0060
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0060
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0060
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0065
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0065
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0065
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0070
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0070
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0070
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0075
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0075
http://refhub.elsevier.com/S0034-4257(23)00318-8/rf0075


Remote Sensing of Environment 297 (2023) 113767

20

Feng, Y., Huang, Z., Wang, Y., Wan, L., Liu, Y., Zhang, Y., Shan, X., 2021. An SOE-based 
learning framework using multisource big data for identifying urban functional 
zones. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 7336–7348. 

Galletti, C., Myint, S., 2014. Land-use mapping in a mixed urban-agricultural arid 
landscape using object-based image analysis: A case study from Maricopa, Arizona. 
Remote Sens. 6, 6089–6110. 

Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., Chen, J., Chen, X., Fang, L., Feng, S., 
Feng, Y., Gong, Y., Gu, H., Huang, H., Huang, X., Jiao, H., Kang, Y., Lei, G., Li, A., 
Li, X., Li, X., Li, Y., Li, Z., Li, Z., Liu, C., Liu, C., Liu, M., Liu, S., Mao, W., Miao, C., 
Ni, H., Pan, Q., Qi, S., Ren, Z., Shan, Z., Shen, S., Shi, M., Song, Y., Su, M., Ping 
Suen, H., Sun, B., Sun, F., Sun, J., Sun, L., Sun, W., Tian, T., Tong, X., Tseng, Y., 
Tu, Y., Wang, H., Wang, L., Wang, X., Wang, Z., Wu, T., Xie, Y., Yang, J., Yang, J., 
Yuan, M., Yue, W., Zeng, H., Zhang, K., Zhang, N., Zhang, T., Zhang, Y., Zhao, F., 
Zheng, Y., Zhou, Q., Clinton, N., Zhu, Z., Xu, B., 2020. Mapping essential urban land 
use categories in China (EULUC-China): preliminary results for 2018. Sci. Bull. 65, 
182–187. 

Graves, A., Fernández, S., Schmidhuber, J., 2005. Bidirectional LSTM networks for 
improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja, E., 
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Häberle, M., Werner, M., Zhu, X.X., 2019. Building type classification from social media 
texts via geo-spatial textmining. In: IGARSS 2019–2019 IEEE International 
Geoscience and Remote Sensing Symposium, pp. 10047–10050. 
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