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In many embedded systems, for instance, in the automotive, avionic, or robotics domain, critical function-
alities are implemented via chains of communicating recurrent tasks. To ensure safety and correctness of
such systems, guarantees on the reaction time, that is, the delay between a cause (e.g., an external activity or
reading of a sensor) and the corresponding effect, must be provided.

Current approaches focus on the maximum reaction time, considering the worst-case system behavior.
However, in many scenarios, probabilistic guarantees on the reaction time are sufficient. That is, it is sufficient
to provide a guarantee that the reaction does not exceed a certain threshold with (at least) a certain probability.

This work provides such probabilistic guarantees on the reaction time, considering two types of random-
ness: response time randomness and failure probabilities. To the best of our knowledge, this is the first work
that defines and analyzes probabilistic reaction time for cause-effect chains based on sporadic tasks.
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1 INTRODUCTION

In industrial systems, functionalities are usually described by a sequence of tasks, e.g., the first
task reads the sensor value, the second task processes the sensor value, and the third task produces
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Fig. 1. Data propagation path and maximum reaction time for a cause-effect chain E = (τ1 → τ2 → τ3). If
the second job of τ2 fails, higher reaction time can be observed.

an output based on the sensor’s reading. Such a sequence of tasks is called a cause-effect chain.
To ensure correctness of the functionality, end-to-end timing guarantees must be provided. One
typical measure is the maximum reaction time, also called the maximum button to action delay. It
denotes the length of the longest time interval starting from the occurrence of an external cause
to the earliest time at which this external cause is fully processed. Figure 1 illustrates the data path
for an external activity right after the start of the first job of τ1 at time 1. The data is processed by
the second job of τ1, the second job of τ2 and the sixth job of τ3 until it is fully processed at time
26. The maximum reaction time of that example is 26 − 1 = 25.

For scenarios in which the data propagation is not certain, e.g., communication over a network,
worst-case guarantees may be pessimistic or even unachievable. For such cases probabilistic guar-
antees should be considered. In particular, in this work we consider two types of randomness:

Response Time Randomness. Considering the worst-case response time of every job may be
very pessimistic. Especially, a very large but unlikely response time might lead to very high
maximum reaction time, although the observed reaction time is much lower. For example, when
considering Figure 1, if the second job of task τ2 would finish with high probability before 20,
then the data could be processed by the fifth job of τ3 and the reaction time would be 21 − 1 = 20
time units with high probability. Therefore, we consider response-time randomness resulting
from execution-time randomness.

Failure Probabilities. Especially for network communication, a job may fail to read, process, or
transmit the data. In such cases the reaction time includes the waiting time until a job reads, pro-
cesses, and transmits the data successfully. If we assume that each job has a certain failure prob-
ability > 0, then the maximum reaction time is unbounded and only probabilistic guarantees can
be provided. Figure 1 demonstrates that the reaction time is increased if the second job of τ2 fails
to propagate data. Please note that the failure of the data propagation does not lead to a failure of
the whole system.

End-to-End Analysis with QoS Guarantees. When such data propagation of a cause-effect chain
is distributed, the quality of service (QoS) requirements for data propagation must be ensured to
provide end-to-end latency guarantees. Hamann et al. [23, Figure 1] illustrate one example with
an E2E latency requirement from sensors to actuators. They show that “As a consequence of the
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deployment the E2E latency requirement is broken down to different resource specific QoS requirements
such as execution time and memory bandwidth requirements for the embedded compute and minimum
transmission rates and failure rates for the communication network.” Examples of such systems are
Vehicle-to-X applications and Industrial Internet of Things (IIoTs) [23].

The end-to-end latency analyses of cause-effect chains can be traced back to Feiertag et al. [15] in
2009. Dürr et al. [14] defined immediate forward and backward job chains to capture the semantics
and derived analytical upper bounds. Günzel et al. [20, 21] further derive a compositional property
named Cutting-Theorem and leverage it to address globally asynchronized distributed systems.

However, the state of the art of end-to-end latency analyses of cause-effect chains have been
limited to worst-case guarantees. There is no result with probabilistic guarantees on the end-to-
end latency if the execution time, response time, or success of computation/communication can
be modeled as a random variable. Including probabilistic information may seem an obvious and
simple step to extend the existing end-to-end analysis. However, some seemingly simple extension
may be non-trivial. One concrete example is the extension of the critical instant theorem to estab-
lish the schedulability test of sporadic real-time tasks [32]. In 2013, the critical instant theorem was
extended to a probabilistic scenario [34] where the execution times of the jobs of tasks are indepen-
dent and identically distributed (i.i.d.) random variables; a result that has been widely used in the
literature (details on the literature can be found in the survey by Davis and Cucu-Grosjean [12]).
Unfortunately, the result has been refuted [9] in 2022.

Contribution: In this work, we analyze the probabilistic reaction time under the uncertainties
of execution time and failure probabilities. As discussed above, this is the first paper dedicated
to this industrial-oriented subject, providing analytical bounds beyond the worst-case guarantees.
Section 2 details the system model. This work assumes independent and identically distributed
(i.i.d.) random variables which we discuss in Section 3.

• In Section 4 we define the probabilistic reaction time of a cause-effect chain. To the best of
our knowledge, we are the first to consider it in this way.
• In Sections 5 and 6 we analyze the probabilistic reaction time under logical execution time

(LET) and implicit communication, respectively.
• In Section 7 we discuss how to compute the analytical bound efficiently.
• The evaluation in Section 8 demonstrates the impact of the probabilistic behavior on the

probabilistic reaction time guarantees.

Related work is reviewed in Section 9. We conclude and discuss future work in Section 10.

2 SYSTEM MODEL

In this work, we consider sporadic tasks τ with minimal and maximal inter-arrival time Tmin
τ and

Tmax
τ , respectively. The set of all tasks is denoted as T. It holds 0 < Tmin

τ ≤ Tmax
τ for all τ ∈ T. Please

note that periodic cases (where Tmin
τ = Tmax

τ ) are covered as well. Tasks release jobs recurrently
according to their minimal and maximal inter-arrival time. More specifically, the set of jobs is
denoted as T × Z and the releases of two subsequent jobs (τ , j ) and (τ , j + 1) are at leastTmin

τ time
units and at most Tmax

τ time units apart. A release pattern is a map R : T × Z → R that satisfies
R (τ , j ) +Tmin

τ ≤ R (τ , j + 1) ≤ R (τ , j ) +Tmax
τ for all τ ∈ T and j ∈ Z. We denote by Hom(T × Z,R)

the set of all maps from T × Z to R.1 Then the set of all possible release patterns is denoted by
Rel ⊆ Hom(T × Z,R).2

1Hom (short for HomSet ) is a typical way to denote the morphisms in the category of sets, which is the set of all maps.
2In this definition we ensure that there is always data in the system by considering Z many jobs of each task. The more
typical approach (R ∈ Hom(T × N, R)) is covered by our definition as discussed in Appendix A.
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We assume partitioned time-division multiple access (TDMA) scheduling. More specifically,
each task τ is assigned to a processor Pτ . On each processor P , TDMA scheduling is applied: Dur-
ing each TDMA cycle period of lengthT c

P
, each task on P is assigned a slot of lengthQτ

P
where jobs

of τ can be executed. The slot occurs at a fixed position during each cycle period and is reserved
only for the particular task.

Under each release pattern R ∈ Hom(T × Z,R), different schedules S are allowed depending
on the execution time of each job. For the schedule S, a job (τ , j ) starts when it is first executed,
denoted by sS (τ , j ), and a job finishes at the last time that it is executed, denoted by f S (τ , j ). The
response time of a job is the time from release until the finishing time, i.e., f S (τ , j ) − R (τ , j ). We
assume that the response time is upper bounded by the minimum inter-arrival time, i.e., f S (τ , j )−
R (τ , j ) ≤ Tmin

τ . Therefore, the system is backlog free.
To achieve such an upper bound, it must be ensured that each job of τ has sufficient time to

finish executing for a worst-case arrival; that is, arriving directly after an assigned TDMA slot. If
a job of task τ executes for C ∈ R time units, then it takes at most � C

Qτ
Pτ

� cycle periods until the

job is finished, and the response time of that job is upper bounded by � C
Qτ

Pτ

� · (T c
Pτ
− Qτ

Pτ
) + C .

Therefore, if the execution time of job (τ , j ) is upper bounded by C j
τ , then

R j
τ :=

⎡⎢⎢⎢⎢⎢
C j

τ

Qτ
Pτ

⎤⎥⎥⎥⎥⎥ · (T
c
Pτ
−Qτ

Pτ
) +C j

τ (1)

is an upper bound on the response time of job (τ , j ). We assume that (C j
τ )j ∈Z are independent and

identically distributed (i.i.d.) random variables (some discussion on this assumption is provided in
Section 3). Hence, the random variables (R j

τ )j ∈Z are i.i.d. as well. We assume that the probability
distribution ofCτ := C0

τ is predefined. Therefore, the distribution of Rτ := R0
τ is predefined as well.

A cause-effect chain E describes a certain functionality that involves multiple tasks. It is modeled
as a sequence of tasks E = (τ1, . . . ,τ |E | ), where |E | denotes the length of E and τi ∈ T for all
i = 1, . . . , |E |. We assume that τi � τi′ for all i � i ′.

The communication is modeled by read- and write-events to a shared resource. In particular,
the communication between two subsequent tasks (τi ,τi+1) in the cause-effect chain is performed
through one dedicated shared resource. Each job (τi , j ) of τi writes to the shared resource at its
write-event we(τi , j ) and each job (τi+1, j

′) of τi+1 reads from the shared resource at its read-event
re(τi+1, j

′). The data on the shared resource is overwritten, i.e., at each point in time only the latest
data is accessible. In this work, we consider two different communication policies:

• Implicit communication: The read-event and write-event of each job occurs at its start
and finish, respectively, i.e., re(τi , j ) = s

S (τi , j ) and we(τi , j ) = f S (τi , j ).
• Logical Execution Time (LET): Recently, the Logical Execution Time (LET) [26] model has

been adopted by the automotive industry as a communication mechanism to reduce jitter
and improve timing determinism. Under LET, each task τi is equipped with a certain relative
deadline Dτi

> 0. The read- and write-events occur at the release and absolute deadline of
each job, i.e., re(τi , j ) = R (τi , j ) and we(τi , j ) = R (τi , j ) + Dτi

.

We assume that the data propagation is not always successful. More specifically, with a certain
probability the job fails to read, write, or process the data and additional time to wait for the next
job arrival has to be considered. Each task τi is equipped with a failure probability fτi

∈ [0, 1). This
means that each job (τi , j ) of τi fails to propagate data with a probability of up to fτi

. We assume
that this upper bound fτi

is independent of the behavior of previous jobs. As a result, the number
of jobs that it takes until the data propagation is successful, denoted as a random variable Sτi

, is
geometrically distributed with P(Sτi

= k ) = ( fτi
)k−1 · (1 − fτi

).
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Table 1. Notation in This Work

Variable Definition
T task set
τ ∈ T a task
(τ , j ) the j-th job of task τ in a release pattern
R (τ , j ) release time of job (τ , j )
Tmin

τ minimal inter-arrival time of any two consecutive jobs of task τ
Tmax

τ maximal inter-arrival time of any two consecutive jobs of task τ
S a schedule
sS (τ , j ), f S (τ , j ) starting and finishing time of (τ , j ) in schedule S, respectively
R j

τ a random variable which describes an upper bound on the response
time of job (τ , j ), assumed to be i.i.d.

E the input cause-effect chain
re(τi , j ) time of read-event of a job (τi , j )
we(τi , j ) time of write-event of a job (τi , j )
fτi

failure probability of task τi , assumed to be i.i.d.
X � Y dominance relation: probability distribution of random variable X is

upper bounded by probability distribution of random variable Y

For the purpose of over-approximation, we define a dominance relation of random variables X
and Y as follows: If the probability distribution of the random variable X is upper bounded by the
probability distribution of Y (in the sense that P(X > x ) ≤ P(Y > x ) for all x ∈ R) we writeX � Y .

Table 1 summarizes the notation used in this paper.

3 INDEPENDENCE ASSUMPTIONS

Throughout this work, we assume that all random variables are mutually independent, an assump-
tion which we plan on removing in the future. Yet, similar to the domain of probabilistic response-
time analysis, where most results consider independence (details can be found in the survey by
Davis and Cucu-Grosjean [12]), we deem this assumption necessary for introducing the problem
and providing an initial result future work can be built on. In addition, our results can be applied
in certain scenarios which we specify subsequently.

We make the following two independence assumptions:

(1) The failure probability is the same for each job of a task and is independent of the behavior
of other jobs (of the same and of different tasks).

(2) The upper-bound on the probabilistic response time distribution is the same for each job of
a task and is independent of the behavior of other jobs (of the same and of different tasks).

The former is achieved if jobs are affected by faults that are i.i.d.. This property aligns, for instance,
with the common model of Single Event Upsets [25, 31, 41] to deal with transient faults, where
the probability of observing a transient fault is modeled by a stationary probability. If this is not
applicable, an over-approximation can be achieved by providing an i.i.d. distribution that upper-
bounds the failure probability for each job of a given task.

For the latter, we first consider the i.i.d. assumption for jobs. In practice, execution times are de-
pendent on, for instance, input parameters, cache states, and pipeline states. However, the concept
of over-approximating dependent execution-time distributions with probabilistic WCET distribu-
tions [10] for “every valid scenario of operation” (see [12] [Definition 2]) allows it to be to “used
to characterise the behaviour of any randomly selected job of the task” [12] and consequently
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Fig. 2. Data propagation for the cause-effect chain E = (τ1 → τ2 → · · · → τ |E | ).

“enables probabilistic independence to be assumed” [12]. We omit further discussion and point the
reader to the survey by Davis and Cucu-Grosjean [12] for details. We note, however, that such over-
approximation may reduce the gain provided by a probabilistic analysis compared to an analysis
based on WCETs. Nevertheless, the probabilistic analysis is never worse than the analysis based
on WCET as long as no further approximation is necessary, since always considering the WCET
is a trivial upper bound on distribution of execution times.

Under time-division multiple access (TDMA), the execution of a job may be preempted by other
tasks if its slot has been exhausted. If the context switch overhead is negligible, the assumption of
i.i.d. holds. Otherwise, the context switch overhead has to be considered. If the context switch over-
head of a job is dependent upon the execution of the other tasks on the same processor, we have to
consider their interplay and this destroys the i.i.d. assumption. Such interplay and dependence can
be avoided by either partitioning the cache or including an upper bound on the cache-preemption
delay in the analysis. In both approaches, the upper bound on the execution time distribution of
a job of a task is independent from the jobs of the other tasks. Under TDMA, given a fixed time
interval length, the maximum number of preemption can be derived and a safe upper bound can
be added to avoid dependencies on other tasks. Similarly, when pipeline stalls may be an issue, the
execution time analysis has to include such context switch overheads.

If jobs of all tasks can be considered independent, the independence of the response-time upper
bound can achieved by TDMA scheduling under the assumption that no backlog is allowed; that
is, the WCRT of τ is less than Tmin

τ for all τ ∈ T. In this case, the number of TDMA cycle periods
needed for a given workloadC is known and i.i.d. since the underlying execution time distribution
is i.i.d.. Hence, assuming the worst-case aligned leads to Equation (1) as an upper bound in the
probabilistic case.

Under LET, since there is no impact of the response time randomness because the read- and
write-events are independent of the execution behavior, we note that the only source of random-
ness for the analysis is the failure probability. Under implicit communication, both sources of
randomness play roles and the analysis should consider both of them.

4 PROBABILISTIC REACTION TIME

The maximum reaction time (MRT) covers the longest time interval from an external event until
this external event is processed. Figure 2 illustrates the data propagation for the cause-effect chain
E = (τ1 → τ2 → · · · → τ |E | ). Günzel et al. [21] have shown that immediate forward augmented
job chains can be used to define this metric precisely. First we adjust their definition to handle
data propagation failures, and second we enable probabilistic behavior. As in [21], we assume that
sampling of external data occurs at the read-event of each job of the first task τ1.

4.1 Data Propagation Failures

In this section, we assume that the schedule S is fixed. We denote by F ⊂ T × Z the set of failed
jobs. The data path starting from an external activity at time z ∈ R can be constructed as follows:
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Fig. 3. Schedule with many failures. The immediate forward augmented job chain fc(S,F , z) for the cause-
effect chain E = (τ1 → τ2 → τ3) and z = 6 is illustrated.

• Let (τ1, ξ1) be the first job with re(τ1, ξ1) ≥ z. This job can potentially sample and read the
data from z.
• Let (τ1, ζ1) be the first job with ζ1 ≥ ξ1 which is not in F . This is the job that actually

(successfully) samples, processes, and writes data.

Afterwards we continue the construction iteratively.

• Let (τi+1, ξi+1) be the earliest job with re(τi+1, ξi+1) ≥ we(τi , ζi ). This job can potentially
sample and read the data from (τ1, ξ1).
• Let (τi+1, ζi+1) be the first job with ζi+1 ≥ ξi+1 which is not in F . This is the job that actually

(successfully) reads, processes, and writes data.

The data is fully processed at the write-event of (τ |E |, ζ |E | ), denoted as z ′ = we(τ |E |, ζ |E | ).
An immediate forward augmented job chain covers that data path as follows.

Definition 4.1 (Immediate Forward Augmented Job Chain). Let z ∈ R. The immediate forward
augmented job chain at z is

fc(S,F , z) = (z, (ξ1, ζ1), . . . , (ξ |E |, ζ |E | ), z
′) (2)

with ξ |E | , ζ |E | , and z ′ as constructed above.

The reaction time for z is defined as the length of the immediate forward augmented job chain
�(fc(S,F , z)) = z ′ −z. In Figure 3 the construction of an immediate forward augmented job chain
is illustrated for a schedule S of three tasks, where every second job fails. The chain fc(S,F , 6)
has a length of �(fc(S,F , 6)) = 38 − 6 = 32 in this example.

Note that fc(S,F , z) cannot be fully constructed if there exists τi such that all jobs (τi ,η) with
η ≥ ξi fail. However, this case has a probability of

∏∞
η=ξi

fτi
= 0 and is thus not further considered.

The maximum reaction time (MRT) is defined based on immediate forward augmented job
chains.

Definition 4.2 (Maximum Reaction Time). For a given cause-effect chain E and a given set of
failed jobs F , the maximum reaction time is defined as the maximal length of any immediate
forward augmented job chain under any schedule, i.e.,

MRT(F ) := sup
S

sup
z∈R
�(fc(S,F , z)) (3)
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If F = ∅, then the definition of MRT coincides with the definition given in [21], except that in
their definition only the critical z (directly after the read-event of the previous job) are considered.

4.2 Probabilistic Behavior

Instead of taking the supremum over all schedules in Equation (3), in this section we account for
the probabilistic behavior from the response time guarantees and from the communication failures.
We first define the sample space:

Ω =
{
(R j

τ )(τ , j )∈T×Z ∈ RT×Z
}
×
{
F ∈ 2T×Z

}
(4)

where (R j
τ )(τ , j )∈T×Z denotes the response time upper bounds of each job and F denotes the set

of failed jobs. For notational brevity, the set of response time upper bounds (R j
τ )(τ , j )∈T×Z is also

denoted asU .
The probabilistic reaction time is defined as a random variable over that sample space.

Definition 4.3 (Probabilistic Reaction Time). For a given release patternR and an external activity
at time z, the probabilistic reaction time is defined by:

PRT(R, z) : Ω → R (5)

(U ,F ) → sup
S respecting U and R

�(fc(S,F , z)) (6)

For those random variables, the probability distribution P(PRT(R, z) ≤ x ) and the expected
value E(PRT(R, z)) are discussed in Section 5 for LET and in Section 6 for implicit communication.
Of particular interest are the probabilistic guarantees that can be given independent of the release
pattern R and the external activity z.

Definition 4.4 (Probabilistic Reaction Time Guarantee). The probabilistic reaction time guarantee
of the cause-effect chain E is defined by:

PRTG : R→ [0, 1] (7)

x → inf
R

inf
z∈R
P(PRT(R, z) ≤ x ) (8)

The function PRTG is monotonically increasing and PRTG(x ) is the probability that PRT(R, z) ≤
x for any R and z. For example if PRTG(100) = 0.9 then there is a 90% guarantee that the proba-
bilistic reaction time is at most 100 time units.

The probabilistic reaction time guarantee correlates with the maximum reaction time in the
following way: If fτ = 0 (and consequently F = ∅), then MRT(F ) is the first point in time at
which PRTG reaches 1.

5 ANALYSIS UNDER LET

In this section, we first fix the release pattern R to provide an upper bound for �(fc(S,F , z)) under
LET. Afterwards, we utilize that upper bound to analyze the probabilistic reaction time and the
probabilistic reaction time guarantee.

For fixed release pattern R, and considering S, F , and z from fc(S,F , z), we recursively con-
struct upper bounds (to be specified in Equation (9)) for the immediate forward chain as follows:

• w̄0 := z
• For i = 1, . . . , |E |:

– (τi , ξ̄i ) is the first job released at or after w̄i−1 under pattern R.
– ζ̄i = ξ̄i + NSi (ξ̄i ) − 1
– r̄i := NSi (ξ̄i ) ·Tmax

τi
+ w̄i−1

– w̄i := r̄i + Dτi

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 143. Publication date: September 2023.
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where NSi (ξ̄i ) is the number of jobs of τi until the first successful job beginning at (τi , ξ̄i ) according
to F . We can bound the length of this chain as follows:

Lemma 5.1. Let fc(S,F , z) = (z, (ξ1, ζ1), . . . , (ξ |E |, ζ |E | ), z
′) be an immediate forward augmented

job chain, and let R be a release pattern such that S is compatible3 with R. Then, for all i = 1, . . . , |E |:

ξi ≤ ξ̄i , ζi ≤ ζ̄i ,R (τi , ζi ) ≤ r̄i , and we(τi , ζi ) ≤ w̄i . (9)

In particular,

�(fc(S,F , z)) ≤ w̄ |E | − z =
|E |∑

i=1

NSi (ξ̄i )Tmax
τi
+ Dτi

. (10)

Proof. We start by proving Equation (9) by induction over i .
Induction start (i=1): The job (τ1, ξ1) is the first job with read-event at or after z. The job (τ1, ξ̄1)

is released at or after w̄0 = z. Therefore, its read-event is at or after z, and ξ̄1 ≥ ξ1 holds.
(τ1, ζ1) is the first successful job at or after job (τ1, ξ1). The job (τ1, ζ̄1) = (τ1, ξ̄1 +NS1 (ξ̄1) − 1) is

a successful job at or after (τ1, ξ̄1), and therefore also at or after (τ1, ξ1). This means that ζ̄1 ≥ ζ1.
The job (τ1, ζ̄1) is released at most NS1 (ξ̄1) ·Tmax

τ1
time units after z = w̄0. Therefore, R (τ1, ζ1) ≤

NS1 (ξ̄1) ·Tmax
τ1
+ w̄0 = r̄1.

We have proven that the job (τ1, ζ1) is released no later than at r̄1. Therefore, its write-event is
no later than at r̄1 + Dτ1 . Hence, we(τ1, ζ1) ≤ r̄1 + Dτ1 = w̄1. This concludes the induction start.

Induction step (i−1 → i): The job (τi , ξi ) is the first job with read-event at or after we(τi−1, ζi−1).
(τi , ξ̄i ) is released at or after w̄i−1, and therefore its read-event is at or after w̄i−1 as well. Since
w̄i−1 ≥ we(τi−1, ζi−1) by induction, we obtain ξ̄i ≥ ξi .

(τi , ζi ) is the first successful job at or after job (τi , ξi ). The job (τi , ζ̄i ) = (τi , ξ̄i + NSi (ξ̄i ) − 1) is
a successful job at or after (τi , ξ̄i ), and therefore also at or after (τi , ξi ). This means that ζ̄i ≥ ζi .

The job (τi , ζ̄i ) is released at most NSi (ξ̄i ) · Tmax
τi

time units after w̄i−1. Therefore, R (τi , ζi ) ≤
NSi (ξ̄i ) ·Tmax

τi
+ w̄i−1 = r̄i .

We have proven that the job (τi , ζi ) is released no later than at r̄i . Therefore, its write-event is
no later than at r̄i + Dτi

. Hence, we(τi , ζi ) ≤ r̄i + Dτi
= w̄i . This concludes the induction step and

proves Equation (9).
Now we prove Equation (10). We have

�(fc(S,F , z)) = z ′ − z = we(τ |E |, ζ |E | ) − z ≤ w̄ |E | − w̄0 =

|E |∑

i=1

w̄i − w̄i−1. (11)

Moreover, w̄i − w̄i−1 = NSi (ξ̄i )Tmax
τi
+ Dτi

by definition. This proves Equation (10). �

A bound on the probabilistic reaction time follows directly.

Lemma 5.2. For given R, z,U and F , the probabilistic reaction time is upper bounded by

PRT(R, z) (U ,F ) ≤
|E |∑

i=1

NSi (ξ̄i )Tmax
τi
+ Dτi

. (12)

Proof. Follows from previous lemma. The upper bound is unrelated to the schedule. Only ran-
dom variables are NSi (ξ̄i ) which only depend on R, z, and F . �

3Compatible means that the schedule S can be achieved from jobs released according to the release pattern R.
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The result in Lemma 5.2 also covers the deterministic case. Specifically, the analysis is identical
to the known deterministic results if the failure probability is 0 and the response-time distribution
is upper-bounded by the WCRT.

Note 5.3. If there are no failures, i.e, fτi
= 0 for all i , then Sτi

= 1 and NSi (ξ̄i ) = 1. Hence, the
upper bound on the probabilistic reaction time from Lemma 5.2 simplifies to

PRT(R, z) (U ,F ) ≤
|E |∑

i=1

Tmax
τi
+ Dτi

(13)

which is the state of the art for sporadic tasks under LET, given by Hamann et al. [22].

Up to this point no independence was utilized because we only analyzed the random variables
on certain samples of Ω. However, we use it in the following theorem to investigate the proba-
bility. More specifically, we replace the random variable NSi (ξ̄i ) from Lemma 5.2 by Sτi

due to
independence.

Theorem 5.4. The probability distribution of the random variable PRT(R, z) is upper bounded by

the probability distribution of the random variable
∑ |E |

i=1 Sτi
·Tmax

τi
+ Dτi

. That is,

PRT(R, z) �
|E |∑

i=1

Sτi
·Tmax

τi
+ Dτi

(14)

in the sense that P(PRT(R, z) > x ) ≤ P(
∑ |E |

i=1 Sτi
·Tmax

τi
+ Dτi

> x ) for all x ∈ R.

Proof. By Lemma 5.2, for given R, z,U and F , the upper bound on the probabilistic reaction
time guarantee is irrelevant fromU and F . Therefore,

P(PRT(R, z) > x ) = P({(U ,F ) | PRT(R, z) (U ,F ) > x }) (15)

≤ P �	

|E |∑

i=1

NSi (ξ̄i )Tmax
τi
+ Dτi

> x�� (16)

for all x ∈ R. In the remainder of the proof we show that

P
�	


|E |∑

i=1

NSi (ξ̄i )Tmax
τi
+ Dτi

> x�� = P
�	


|E |∑

i=1

Sτi
·Tmax

τi
+ Dτi

> x�� (17)

for all x ∈ R. We know that the random variable NSj (ξ̄ j ) has the same probability distribution as Sτj

for all j = 1, . . . , |E |. Therefore, NSj (ξ̄ j )T
max
τj

and Sτj
Tmax

τj
have the same probability distribution as

well, and P(NSj (ξ̄ j )T
max
τj
> x ) = P(Sτj

Tmax
τj
> x ) for all x ∈ R and j = 1, . . . , |E |. Since NSj (ξ̄ j )T

max
τj

and Sτj
Tmax

τj
are independent of

∑
i<j Sτi

Tmax
τi
+
∑

i>j NSi (ξ̄i )Tmax
τi

, we obtain

P
�	



j−1∑

i=1

Sτi
·Tmax

τi
+

|E |∑

i=j

NSi (ξ̄i )Tmax
τi
> x�� = P

�	



j∑

i=1

Sτi
·Tmax

τi
+

|E |∑

i=j+1

NSi (ξ̄i )Tmax
τi
> x�� (18)

for all j = 1, . . . , |E | and all x ∈ R. This results in P(
∑ |E |

i=1 NSi (ξ̄i )Tmax
τi

> x ) = P(
∑ |E |

i=1 Sτi
·

Tmax
τi
> x ) for all x ∈ R. By adding

∑ |E |
i=1 Dτi

, we obtain Equation (17). �

The upper bound on the probability distribution of PRT(R, z) is used to bound the expected
probabilistic reaction time E(PRT(R, z)) and the probabilistic reaction time guarantee PRTG.
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Corollary 5.5. Since Sτi
is geometrically distributed with failure probability fτi

, the expected
value of the probabilistic reaction time is upper bounded by

E(PRT(R, z)) ≤
|E |∑

i=1

1

1 − fτi

·Tmax
τi
+ Dτi

. (19)

Proof. This follows from Theorem 5.4, the additivity of the expected value, and E(Sτi
) = 1

1−fτi

for the geometrically distributed random variable Sτi
. �

Corollary 5.6. The probabilistic reaction time guarantee is bounded by

PRTG(x ) ≥ P �	

|E |∑

i=1

Sτi
·Tmax

τi
+ Dτi

≤ x�� (20)

Proof. By Definition 4.4, PRTG(x ) = infR infz∈R P(PRT(R, z) ≤ x ). Moreover, P(PRT(R, z) ≤
x ) ≥ P(

∑ |E |
i=1 Sτi

·Tmax
τi
+Dτi

≤ x ) by Theorem 5.4. Since P(
∑ |E |

i=1 Sτi
·Tmax

τi
+Dτi

≤ x ) is independent
of R and z, the infima can be dropped. �

We discuss in Section 7 how to compute the safe bound on PRTG efficiently.

6 ANALYSIS UNDER IMPLICIT COMMUNICATION

The strategy for this section is similar to the one of Section 5: First we fix the release pattern R to
provide an upper bound for �(fc(S,F , z)), and afterwards we utilize that upper bound to analyze
the probabilistic reaction time and the probabilistic reaction time guarantee. However, now we
consider the implicit communication semantic, i.e., read-event is at the start of each job and write-
event is at the finish of each job.

The proofs of the provided results are similar to the proofs in Section 5. Thus, we omit them here
to improve the reading flow. However, for completeness, we provide the proofs in Appendix B.

For fixed release pattern R, and considering S, F , and z from fc(S,F , z), we recursively con-
struct upper bounds (to be specified in Equation (21)) for the immediate forward chain as follows:

• w̄0 := z
• For i = 1, . . . , |E |:

– (τi , ξ̄i ) is the first job released at or after w̄i−1 under pattern R.
– ζ̄i = ξ̄i + NSi (ξ̄i ) − 1
– r̄i := NSi (ξ̄i ) ·Tmax

τi
+ w̄i−1

– w̄i := r̄i + R
ζ̄i

τi

where NSi (ξ̄i ) is a random variable for the number of jobs of τi until the first successful job begin-
ning at (τi , ξ̄i ) according to F . By definition, NSi (ξ̄i ) is a positive integer that includes one success-
ful job and potentially several failed jobs of τi . We can bound the length of this chain as follows:

Lemma 6.1. Let fc(S,F , z) = (z, (ξ1, ζ1), . . . , (ξ |E |, ζ |E | ), z
′) be an immediate forward augmented

job chain, and let R be a release pattern such that S is compatible with R. Then, for all i = 1, . . . , |E |:
ξi ≤ ξ̄i , ζi ≤ ζ̄i ,R (τi , ζi ) ≤ r̄i , and we(τi , ζi ) ≤ w̄i (21)

In particular,

�(fc(S,F , z)) ≤ w̄ |E | − z =
|E |∑

i=1

NSi (ξ̄i ) ·Tmax
τi
+ R

ζ̄i

τi
. (22)

A bound for the probabilistic reaction time follows directly.
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Lemma 6.2. For given R, z,U and F , the probabilistic reaction time is upper bounded by

PRT(R, z) (U ,F ) ≤
|E |∑

i=1

NSi (ξ̄i ) ·Tmax
τi
+ R

ζ̄i

τi
. (23)

This result also covers the deterministic case where the failure probability is 0 and the response-
time distribution is upper-bounded by the WCRT.

Note 6.3. If there are no failures, i.e, fτi
= 0 for all i , then Sτi

= 1 and NSi (ξ̄i ) = 1. If further Rτi
is

no random variable but a fixed value (e.g., the WCRT), then R
ζ̄i

τi
= Rτi

. In that case, the upper bound
on the probabilistic reaction time from Lemma 6.2 simplifies to

PRT(R, z) (U ,F ) ≤
|E |∑

i=1

Tmax
τi
+ Rτi

(24)

which is the bound from Davare et al. [11] for sporadic tasks under implicit communication.

Up to this point no independence was utilized because we only analyzed the random variables
on certain samples of Ω. However, we use it in the following theorem to investigate the probability.

More specifically, the independence allows us to replace the random variables NSi (ξ̄i ) and R
ζ̄i

τi
by

Sτi
and Rτi

, respectively.

Theorem 6.4. The probability distribution of the random variable PRT(R, z) is upper bounded by

the probability distribution of the random variable
∑ |E |

i=1 Sτi
·Tmax

τi
+ Rτi

. That is,

PRT(R, z) �
|E |∑

i=1

Sτi
·Tmax

τi
+ Rτi

(25)

in the sense that P(PRT(R, z) > x ) ≤ P(
∑ |E |

i=1 Sτi
·Tmax

τi
+ Rτi

> x ) for all x ∈ R.

This upper bound on the probability distribution of PRT(R, z) is used to bound the expected
probabilistic reaction time E(PRT(R, z)) and the probabilistic reaction time guarantee PRTG(x ).

Corollary 6.5. Since Sτi
is geometrically distributed with failure probability fτi

, the expected
value of the probabilistic reaction time is upper bounded by

E(PRT(R, z)) ≤
|E |∑

i=1

1

1 − fτi

·Tmax
τi
+ E(Rτi

). (26)

Corollary 6.6. The probabilistic reaction time guarantee is bounded by

PRTG(x ) ≥ P �	

|E |∑

i=1

Sτi
·Tmax

τi
+ Rτi

≤ x�� (27)

We discuss in Section 7 how to compute the safe bound on PRTG efficiently.

7 COMPUTATION

For efficient computation of the probabilistic reaction time guarantees presented in Corollaries 5.6
and 6.6, we adopt the idea by Chen and Chen [8] and apply the Chernoff bound to obtain a mini-
mization problem over moment generating functions.

The Chernoff bound for a random variable X and a real number x can be formulated as

P(X ≥ x ) ≤ inf
t>0

MX (t ) · e−tx (28)

where MX (t ) := E(etX ) is the moment generating function of X .
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By applying the Chernoff bound to the lower bounds provided in Corollaries 5.6 and 6.6, we
obtain the following lower bounds for PRTG.

Lemma 7.1. For x ∈ R, the following bounds hold:

PRTG ≥
⎧⎪⎪⎨⎪⎪⎩

1 − inf t>0 e−tx ·∏ |E |i=1 MSτi
(Tmax

τi
t ) · eDτi

t under LET

1 − inf t>0 e−tx ·∏ |E |i=1 MSτi
(Tmax

τi
t ) ·MRτi

(t ) under impl. comm.
(29)

Proof. By Corollaries 5.6 and 6.6,

PRTG(x ) ≥ P(X ≤ x ) (30)

withX =
∑ |E |

i=1 Sτi
·Tmax

τi
+Dτi

if tasks communicate according to LET, andX =
∑ |E |

i=1 Sτi
·Tmax

τi
+Rτi

under implicit communication. Using the Chernoff-bound, we obtain

PRTG(x ) ≥ P(X ≤ x ) ≥ 1 − P(X ≥ x ) ≥ 1 − inf
t>0

MX (t ) · e−tx . (31)

Applying the following rules for the moment generating function yields Equation (29):

• MY+Z (t ) = MY (t ) ·MZ (t )
• MT ·Y (t ) = MY (T · t )
• MK (t ) = eK ·t

for all random variables Y ,Z , all factors T ∈ R, and all constants K ∈ R. �

Note 7.2. The moment generating function of Sτi
(geometrically distributed) and Rτi

(discrete) is
as follows:

MSτi
(Tmax

τi
t ) =

(1 − fτi
)eT max

τi
t

1 − fτi
eT max

τi
t

for all t <
− ln( fτi

)

Tmax
τi

(32)

MRτi
(t ) =

∑

v

etv · P(Rτi
= v ) (33)

In this formula, v are the possible outcomes of the discrete random variable Rτi
.

Since the moment generating function is log-convex, the infima from Equation (29) can be effi-
ciently computed. As suggested by Chen et al. [7], we use golden section search to calculate it.

8 EVALUATION

Since this is the first work considering failure probabilities and response time randomness for
cause-effect chain based on sporadic tasks, comparison to the other existing approaches is not
possible unless there is no randomness at all. In that specific case without any randomness, when
everything is deterministic (i.e., by investigating the worst-case under TDMA), then our result
in Lemma 5.2 for LET (Lemma 6.2 for implicit communication, respectively) is identical to the
state of the art as noted in Note 5.3 (Note 6.3, respectively). We further note that the analysis
of implicit communication under fixed-priority preemptive scheduling by Dürr et al. [14] and
Günzel et al. [21] cannot be applied for TMDA.

We demonstrate the impact of the probabilistic behavior on the probabilistic reaction time guar-
antees (PRTG) from Definition 4.4.

The evaluation section is organized as follows:

• Section 8.1 specifies the benchmark used to generate task sets and cause-effect chains.
• Section 8.2 demonstrates the impact of probabilistic behavior for LET and for implicit

communication.
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More specifically, we examine the safe bounds on the probabilistic reaction time guarantees of
cause-effect chains stated in Corollaries 5.6 (denoted asLLET ) and 6.6 (denoted asLimpl). The x-axis
is normalized with the state-of-the-art for non-probabilistic behavior:

MRT =
|E |∑

i=1

Tmax
τi
+ Dτi

under LET, i.e., Hamann et al. [22] (34)

MRT =
|E |∑

i=1

Tmax
τi
+ Rτi

under implicit communication, i.e., Davare et al. [11] (35)

That is, the function value at x = 1.0 is the probabilistic guarantee that the reaction time is at most
the non-probabilistic bound (i.e., comparison to the state of the art for deterministic bounds), and
the function value at x = 2.0 is the probabilistic guarantee that the reaction time is at most 2 times
the non-probabilistic bound.

8.1 Task Set and Cause-Effect Chain Generation

In this section we detail the generation process of sporadic task sets and corresponding cause-
effect chains for the evaluation. We used the free real world automotive benchmarks provided by
Kramer et al. [28] in WATERS 2015 to generate periodic tasks and corresponding cause-effect
chains. Afterwards, we translated the periodic tasks to sporadic tasks and injected probabilistic
behavior.

We generated periodic task sets based on the parameters in Tables III, IV, and V in [28]. In
particular, for each generated task τ the following steps are carried out:

(1) A task periodTτ is drawn at random from the set {1, 2, 5, 10, 20, 50, 100, 200, 1000} according
to the share stated in [28, Table III].4

(2) The average-case execution time (ACET) of each task is generated according to a Weibull
distribution based on the values in [28, Table IV].

(3) For the worst-case execution time (WCET), the ACET is multiplied with a factor drawn at
random from the interval [fmin , fmax ] in [28, Table V].

For each task set, we first generated 30000 tasks and then used the subset-sum approximation
algorithm until the total utilization was within 1 percentage point of the targeted utilization of
70%. Each task set contains 82 tasks on average. We consider task sets distributed on 3 processors
by generating one task set for each processor and combining them afterwards.

We generated cause-effect chains based on Section IV-E in [28]. Each cause-effect chain consists
of 2 to 15 tasks. The cause-effect chain for a task set T was generated as follows:

(1) The number of involved activation patterns P is drawn randomly from {1, 2, 3} according
to [28, Table VI].

(2) P different periods were drawn at random from the set of periods in T.
(3) For each period, we drew 2 to 5 tasks at random without replacement in T according to [28,

Table VII].

If there were not enough tasks with the required period in T, then the cause-effect chain and the
task set were discarded. We repeated the procedure until 1000 task sets and cause-effect chains for
each experiment were successfully generated.

4The sum of probabilities in [28, Table III] is only 85% because the remaining 15% is for angle-synchronous tasks. Therefore,
we divided all given share values by 0.85.
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The tasks were made sporadic, by setting Tmin
τ = Tτ and Tmax

τ = 2Tτ . We used a TDMA-based
scheduler to schedule the sporadic tasks. In particular, during each cycle with period T c := 0.1,
each task is assigned a certain slot with size Qτ := 1.2 · Cτ

T min
τ

· 0.1. The slot is always at the same

position of the cycle, which means that during any time interval of length k ·T c ,k ∈ N, task τ can
execute for k ·Qτ time units and the WCRT of task τ is upper bounded by Rτ = � Cτ

Qτ � · (T c−Qτ )+Cτ .
Probabilities were injected as follows:

Failure probabilities: The failure probability fτ for each task is drawn uniformly at random from
a certain interval. We distinguish the following configurations:

• Low failure probability: fτ ∈ [0, 0.001]
• Medium failure probability: fτ ∈ [0.001, 0.01]
• High failure probability: fτ ∈ [0.01, 0.1]

Response time randomness: We assume that the response time is smaller than the WCRT in
90% of cases. We distinguish different cases for how small the response time becomes:

• Slightly shorter response time: 0.8 · Rτ in 90% of cases
• Moderately shorter response time: 0.5 · Rτ in 90% of cases
• Immensely shorter response time: 0.2 · Rτ in 90% of cases

8.2 Evaluation Results

We evaluated the upper bound on the probabilistic reaction time guarantee. In the following figures,
the red lines depicts median, the blue dashed lines depict upper and lower quartile, and the dotted
gray lines depict all values.

We first investigate the impact of failure probabilities under LET. As there is no impact of the
response time randomness because the read- and write-events are independent of the execution
behavior under LET, the only source of randomness if the failure probability. In this case, if the fail-
ure probability is 0%, our result is identical to the state of the art as noted in Note 5.3. Let MRTLET

be the maximum reaction time without any failures in Equation (34). The impact of different fail-
ure probabilities under LET is illustrated in Figure 4. We note that the state of the art cannot deal
with any of these scenarios at all. As long as the failure probability is strictly more than 0%, the
probabilistic reaction time guarantee to be no more than mrtLET is 0%. As expected, the higher
the failure probability, the lower are the probabilistic reaction time guarantees provided by our
analysis. For the median case, there is a 99% guarantee that the PRT is no more than:

• 1.20 ·MRTLET (with low failure probability)
• 1.30 ·MRTLET (with medium failure probability)
• 1.62 ·MRTLET (with high failure probability)

Our result shows that the failure probability has a direct impact on the probabilistic guarantee of
the reaction time under LET but can be bounded directly. As long as the failure probability is small,
a good probabilistic reaction time guarantee can still be provided.

The impact of different failure probabilities and the impact of the worst-case response time
probabilities under implicit communication is illustrated in Figure 5. In this case, if the failure
probability is 0% and there is no randomness of execution times, our result is identical to the state
of the art as noted in Note 6.3. Let MRTimplicit be the maximum reaction time without any failures
in Equation (35). We also note that the state of the art cannot deal with any of these scenarios at all.
When the failure probability is more than 0%, the probabilistic reaction time guarantee to be strictly
less thanmrtimplicit can be more than 0%. For example, Figures 5(g) and 5(h) show that the proba-
bility that the reaction time is strictly less thanmrtimplicit is almost 99% and 90% for the scenarios
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Fig. 4. Safe bound LLET on the probabilistic reaction time guarantee under LET. Red line depicts median,
blue dashed lines depict upper and lower quartile, and dotted gray lines depict all values.

Fig. 5. Safe bound Limpl on the probabilistic reaction time guarantee under implicit communication. Red
line depicts median, blue dashed lines depict upper and lower quartile, and dotted gray lines depict all values.
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with immensely shorter response times under low failure probability, respectively. We observe
that with shorter response times the probabilistic reaction time guarantee increases. Similar to the
LET scenarios, with higher failure probability, the probabilistic reaction time guarantee decreases.

9 RELATED WORK

To validate the end-to-end latency of cause-effect chains, several timing analyses have been pro-
posed in the literature [3–5, 11, 14, 15, 17, 19–21, 27, 35, 37], which analyze how the data is produced
and consumed among the job of the multiple tasks in the cause-effect chain. Two end-to-end timing
semantics, i.e., the maximum reaction time and the maximum data age, are widely considered. For
sporadic tasks, which are assumed in this work, Dürr et al. [14] derive analytical upper bounds on
these two timing semantics. Günzel et al. [20, 21] further derive a compositional property named
Cutting-Theorem and leverage it to address globally asynchronized distributed systems. However,
none of these results considers randomness in the data propagation while this work considers
randomness and focuses on the probabilistic reaction time specifically.

On the other hand, probabilistic timing analysis also has been widely explored [9, 12] and
probabilistic response time analyses [6, 13, 18, 33, 34, 38] as well as quantification of deadline
misses [8, 39, 40] have been provided. In this work, the probabilistic (worst-case) response time is
utilized in the analysis, inspired by the analysis based on the Chernoff bound by Chen and Chen [8].

Several probabilistic analyses have been derived for end-to-end latencies in the context of queu-
ing networks, i.e., packages that travel through several nodes. Andrews [2] analyzes the probability
that a packet violates its delay bound when each server schedules packets with EDF. In the same
context, Fidler [16] establishes probabilistic network calculus with moment generating functions to
derive performance bounds. Similarly, Scharbarg et al. [36] focus on delay over links and switches
using stochastic network calculus. However, the probability of failures is not considered in the
communication and the analyzed probability is about the bursts of packet arrivals.

With a closer context to this work, Lee et al. [29] analyze the end-to-end latency of cause-effect
chains for periodic task systems under fully partitioned EDF scheduling. They assume that the
periods of cause-effect chain are sorted in non-decreasing order. In this work, we do not restrict
to any specific scheduling algorithms, except that jobs of the same task are executed in first-in-
first-out (FIFO) ordering and consider sporadic task systems. A survey on industrial practice in
real-time systems that was provided by Akesson et al. [1] in 2020 shows that sporadic activation
with minimum inter-arrival time for tasks is one common industry practice. Specifically, sporadic
tasks were part of 47% of the investigated systems. Hence, it is highly relevant to consider the
end-to-end latency of cause-effect chains for the sporadic task systems [14, 20, 21] and to further
take into account the randomness, i.e., response time randomness and failure probabilities, for
embedded systems subjected to uncertainty [24, 30].

10 CONCLUSION AND FUTURE WORK

We provide probabilistic guarantees on the reaction time of cause-effect chains communicating via
implicit communication or using the Logical Execution Time (LET) paradigm. In particular, two
types of randomness are considered: response time randomness and failure probabilities. To the
best of our knowledge, this is the first analysis for probabilistic reaction time of cause-effect chains
based on sporadic tasks.

Our analysis assumes a time-division multiple access (TDMA) scheduler without backlog to
achieve that the response times of single jobs are independent from other jobs of the same and of
different tasks. In fact, any scheduling algorithm can be used as long as the independence of the
random variables can be achieved. Specifically, our analysis for LET is applicable for any sched-
uling algorithm (since there is no impact of the response time randomness because the read- and
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write-events are independent of the execution behavior), as long as the failure probability is
i.i.d.. However, when the response times of the jobs are dependent on each other, our analysis
cannot be directly applied and further considerations to safely bound the probabilistic reaction
time are needed. For example, under preemptive priority-based scheduling, the response time of
a lower-priority job is highly dependent on the execution times (as well as the response times) of
the higher-priority jobs. Even under the assumption of i.i.d. execution times of the jobs, analyzing
the probabilistic response time guarantees is also a non-trivial problem, as recently presented by
Chen et al. [9].

In future work, we plan to analyze probabilistic end-to-end guarantees applicable to the proba-
bilistic response time bounds for preemptive priority-based scheduling [9]. Moreover, we intend
to examine different release pattern; specifically, we plan to (1) consider randomness in the release
pattern, and (2) exploit the temporal determinism caused by periodic release patterns.

APPENDICES

A CASE WITH MINIMAL JOB RELEASES

In our system model in Section 2 we define a release pattern R as a map from T×Z to Rwith some
additional properties on the amount of time between the releases, i.e., R ∈ Rel ⊆ Hom(T × Z,R).
However, in typical periodic or sporadic systems the set of releases is bounded from the left side,
i.e., there is a first job release of each task. That means that usual release patterns R′ are defined
as maps from T × N to R, i.e.,

R′ ∈ Rel′ := Rel|T×N ⊆ Hom(T × N,R). (36)

In this section we show that R ∈ Rel′ is a more restrictive case and therefore our bounds on
probabilistic reaction time and probabilistic reaction time guarantee from Sections 5 and 6 still
hold. We start by defining PRT and PRTG.

The definition of PRT remains basically unchanged.

Definition A.1 (Probabilistic Reaction Time for Rel′). For a given release pattern R′ ∈ Rel′ and
an external activity at time z, the probabilistic reaction time is a random variable defined by

PRT′(R′, z) : Ω′ → R (37)

(U′,F ′) → sup
S′ respecting U′ and R′

�(fc(S′,F ′, z)) (38)

with sample space Ω′ = Ω |RT×N×2T×N
.

We note that PRT′(R′, z) can also be seen as a random variable on the sample space Ω with
PRT′(R′, z) (U ,F ) := PRT′(R′, z) (U|RT×N ,F |2T×N ). Moreover, every R′ ∈ Rel′ can be represented
as R|T×N for an R ∈ Rel. We denote R|T×N, Ω |RT×N×2T×N

,U|RT×N and F |2T×N for the sake of brevity
as R|N, Ω |N,U|N and F |N, respectively.

For the PRTG, we make the same assumption as done in [11, 14, 27] for the maximum reaction
time, that is only external activities at z ≥ Φ(R′,E) := max{R′(τ , 1) | τ ∈ E} are considered.

Definition A.2 (Probabilistic Reaction Time Guarantee for Rel′). The probabilistic reaction time
guarantee for a cause-effect chain E is defined by:

PRTG′ : R→ [0, 1] (39)

x → inf
R′∈Rel′

inf
z≥Φ(R′,E )

P(PRT′(R′, z) ≤ x ) (40)

The following lemma shows that our upper bounds on PRT from Theorems 5.4 and 6.4 still hold
under release patterns in Rel′.
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Lemma A.3. For all R ∈ Rel and (U ,F ) ∈ Ω,

PRT′(R|N, z) (U|N,F |N) ≤ PRT(R, z) (U ,F ) (41)

for all z ≥ Φ(R|N,E).

Proof. Let S′ be a schedule of T×N respectingU|N and R|N. We define a schedule S of T×Z
that coincides with S′ on T×N and that schedules all other jobs (τ ,p),p ≤ 0 with execution time
of 0. In that schedule S, all jobs (τ ,p),p ≤ 0,τ ∈ E have their read-event before Φ(R|N,E) and
are not considered in the construction of immediate forward job chains with external activity at
z ≥ Φ(R|N,E), i.e., fc(S,F , z) = fc(S′,F |N, z) for all z ≥ Φ(R|N,E). We obtain that

�(fc(S′,F |N, z)) = �(fc(S,F , z)) ≤ sup
S respecting U and R

�(fc(S,F , z)) (42)

and after applying the supremum over S′:
sup

S′ respecting U |N and R |N
�(fc(S′,F |N, z)) ≤ sup

S respecting U and R
�(fc(S,F , z)) (43)

This proves that PRT′(R|N, z) (U|N,F |N) ≤ PRT(R, z) (U ,F ) for all z ≥ Φ(R|N,E). �

Next, we consider PRTG. In particular, the following lemma shows that our lower bounds on
PRTG from Corollaries 5.6 and 6.6 still hold under release patterns in Rel′.

Lemma A.4. The probabilistic reaction time guarantee under Rel′ is lower bounded by the proba-
bilistic reaction time guarantee under Rel, i.e.,

PRTG′(x ) ≥ PRTG(x ) (44)

for all x ∈ R.

Proof. Consider any R′ ∈ Rel′ and z ≥ Φ(R′,E). We choose R ∈ Rel such that R|N = R
′. Then,

by Lemma A.3, PRT′(R′, z) (U|N,F |N) ≤ PRT(R, z) (U ,F ). This implies that:

P(PRT′(R′, z) ≤ x ) = P
({

(U ,F ) ��� PRT′(R′, z) (U|N,F |N) ≤ x
})

(45)

≥ P({(U ,F ) | PRT(R, z) (U ,F ) ≤ x }) (46)

= P(PRT(R, z) ≤ x ) (47)

≥ inf
R∈Rel

inf
z∈R
P(PRT(R, z) ≤ x ) (48)

Therefore, we conclude that PRTG′ = infR′∈Rel′ infz≥Φ(R′,E ) P(PRT(R′, z) ≤ x ) ≥
infR∈Rel infz∈R P(PRT(R, z) ≤ x ) = PRTG. �

B PROOFS FOR IMPLICIT COMMUNICATION (SECTION 6)

For completeness, we provide the proofs for the analysis under implicit communication in
Section 6.

Proof (Lemma 6.1). The proof is analogous to the proof of Lemma 5.1 for LET, except that the
write-event of (τi , ζi ) is upper bounded by

we(τi , ζi ) ≤ we(τi , ζ̄i ) ≤ R (τi , ζ̄i ) + R
ζ̄
τi
≤ r̄i + R

ζ̄
τi
, (49)

instead of r̄i + Dτi
. �

Proof (Lemma 6.2). Follows from previous lemma. The upper bound is unrelated to schedule.

Only random variables are NSi (ξ̄i ) and R
ζ̄i

τi
which only depend on R, z, F andU . �
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Proof (Theorem 6.4). This proof is similar to the proof of Theorem 5.4. By Lemma 6.2, for given
R, z,U and F , the upper bound on the probabilistic reaction time guarantee is irrelevant fromU
and F . Therefore,

P(PRT(R, z) > x ) = P({(U ,F ) | PRT(R, z) (U ,F ) > x }) (50)

≤ P �	

|E |∑

i=1

NSi (ξ̄i ) ·Tmax
τi
+ R

ζ̄i

τi
> x�� (51)

for all x ∈ R. As in the proof of Theorem 5.4, we obtain

P
�	


|E |∑

i=1

NSi (ξ̄τi
)Tmax

τi
> x�� = P

�	


|E |∑

i=1

Sτi
Tmax

τi
> x�� (52)

for all x ∈ R. Then, similarly, we can proof that

P
�	


|E |∑

i=1

R
ζ̄i

τi
> x�� = P

�	


|E |∑

i=1

Rτi
> x�� (53)

for all x ∈ R, by utilizing that R
ζ̄j

τj
and Rτj

have the same probability distribution for all

j ∈ {1, . . . , |E |} and that they are independent of
∑

i<j Rτi
+
∑

i>j R
ζ̄i

τi
. Combining Equations (52)

and (53), we obtain

P
�	


|E |∑

i=1

NSi (ξ̄τi
)Tmax

τi
+

|E |∑

i=1

R
ζ̄i

τi
> x�� = P

�	


|E |∑

i=1

Sτi
Tmax

τi
+

|E |∑

i=1

R
ζ̄i

τi
> x�� (54)

= P
�	


|E |∑

i=1

Sτi
Tmax

τi
+

|E |∑

i=1

Rτi
> x�� (55)

for all x ∈ R. �

Proof (Corollary 6.5). This follows from Theorem 6.4, the additivity of the expected value,
and E(Sτi

) = 1
1−fτi

for the geometrically distributed random variable Sτi
. �

Proof (Corollary 6.6). By Definition 4.4, PRTG(x ) = infR infz∈R P(PRT(R, z) ≤ x ). Moreover,
P(PRT(R, z) ≤ x ) ≥ P(

∑ |E |
i=1 Sτi

·Tmax
τi
+Rτi

≤ x ) by Theorem 6.4. Since P(
∑ |E |

i=1 Sτi
·Tmax

τi
+Rτi

≤ x )
is independent of R and z, the infima can be dropped. �
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