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Abstract—This study examines one of the open prob-
lems yet to solve in photoacoustic tomography: How to
prepare photoacoustic signals to ensure interpretation
as projection data? The main part of this difficulty
is related to the setting of the linear photoacoustic
transport model. Notably errors are due to the discrep-
ancy between the mathematical reconstruction and the
physical realization: Tomographic image reconstruction
from projections require a linear acquisition system.
However in practice, the physical reality presents dif-
ferent non-linear phenomena. In account of this incom-
patibility, it was our purpose to provide some advance-
ment in signal processing for dealing the projection
issue while considering different perspectives in the
interpretation of the transport model to be applied in
a broader manner. Numerical examples are analyzed
in detail and unveil the foundations for photoacoustic
signal processing methodologies focused on the task of
tomographic image reconstruction from projections.

Index Terms—Signal processing techniques for
acoustic inverse problems; remote sensing methods,
acoustic tomography; ultrasonographic imaging.

PACS numbers: 43.60.Pt; 43.60.Rw; 87.63.dh.

I. Introduction

In the last decade the development of photoacoustic
imaging methods has increased, particularly because
it is a promising tool for early non-invasive and non-
ionizing detection of breast cancer. Photoacoustic images
uniquely combine electromagnetic (EM) and ultrasonic
(US) information about (biological) objects, e.g. human
breast tissue. The operation principle specifies that
the object be exposed to infrared radiation with laser
pulses, thereby inducing the photoacoustic effect: The
absorption of light, while dissipating in a non-radiative
manner, produces mechanical disturbances expressed as
changes in the pressure distribution. This distribution
is confined in time and space and is expressed as a
mechanical impulse that is recorded by specific detectors
[1] outside the region of interest. Once photoacoustic data
is captured, the required projection information therein,
in correspondence to the transport model, is deduced
via signal processing techniques. Certainly, the common
usage of a homogeneous plane wave transport model for
photoacoustic applications, as outlined by Wang et al. in

[13], is over-simplified for most biomedical applications.
This is in view of assumptions on homogeneous media
and negligible influence of viscosity and diffusion. In
fact, these assumptions breakdown when imaging real
biological tissue such as breasts and corrections have to
be incorporated into the model. For instance, posterior
sound velocity corrections have to be involved in image
processing algorithms, as shown in [7]. Consequently, we
need a better analytical description of the photoacoustic
transport to reconstruct high-quality images and take
effective advantage of the US resolution and EM contrast
present in this imaging modality. Notwithstanding, for
computed tomography (CT) it is technically unavoidable
to approximate registered signals as linear projection
data; in accordance with the selected transport model.

This manuscript proposes a method that takes into
account viscous and scattering media properties for a
linear transport model. Departing from these considera-
tions, our contribution which is partitioned as follows: In
section II we describe image reconstruction as an inverse
source problem with the aim of identifying the role of
the linear transport operator and recall the necessary
boundary conditions. Then, in section III we present a
new classification of the different linear wave forms with
diffraction patterns; these will bring us closer to a more
realistic transport description, whenever in practice more
precise model conditions can be set up a priori. The main
section of this study is dedicated to the photoacoustic
signal processing methodologies that outline the key part
to combine mathematical reconstruction and physical re-
alization. Based on the understanding that reconstruction
principles are governed by the same rules that are followed
in the US-CT and photon detection from projections,
in section V we review the CT strategies designed for
modalities with diffraction. The literature in the field
of photoacoustic methods mainly utilize backprojection
strategies; despite, there are several other tomographic
methods; whence reconstruction can be done using many
different algorithms. Next we analyze several of these
methods, with the aim of determining possibly more effi-
cient reconstruction techniques for photoacoustic imaging.
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II. Inverse source problem

The photoacoustic image reconstruction can be consid-
ered as an inverse source problem in the sense that the
initial pressure distribution f(x) = ψ(x, 0) acts as the
source; this is provided by electromagnetic absorption,
where ψ : Rn � R+ 7! R and n � 3 is the spatial
dimension. The propagation of this pressure distribution
in a linear model allows a description as a homogeneous
wave equation in terms of a linear differential operator L
of second order with (temporal gradient) initial conditions,

Lψ(x, t) = 0 (1)

ψ(x, 0) = f(x) (2)

∂tψ(x, 0) = 0. (3)

This is applied to photoacoustic imaging, under the as-
sumption that there exists a trace of the forward problem
(1-3) that is in correspondence with the ultrasonic sensor
registering at the boundary of the observed region Ω,

ψ(x, t) = g(t), 8x 2 ∂Ω. (4)

Given the photoacoustic signal g(t) as a damped wave
in a possibly inhomogeneous environment, one can make
inferences on the constituent terms of the wave equation.
The simplest and most used description in accordance with
[13] is given by the operator d’Alembert � acting on the
pressure distribution ψ(x, t); variable in space and time,

L1ψ(x, t) := (∂2t − c2r2)ψ(x, t) =: �ψ(x, t), (5)

where ∂2t represents the second temporal derivative. Ac-
cordingly r2 is the Laplace operator and c2 is a measure
of the sound speed. On applying the principle of Duhamel,
the inverse problem in (1-3), to derive the image data f(x),
appears as its equivalent version in terms of the following
inhomogeneous wave equation (see [10]),

Lψ(x, t) = f(x)∂tδ(t), (6)

∂tψ(x, 0) = 0, (7)

ψ(x, t−) = 0, 8t− < 0. (8)

Here, δ represents the temporal delta function related to
the illumination. For a physically homogeneous medium,
the forward solution of the above problem expressed by
the operator � in dimension n turns out to be specified in
terms of the spherical Radon transform

ψ(x, t) = g(t) � R�[f ](t). (9)

Since the spherical Radon transform has its known inverse
operator, analyzed in [5], the inverse problem gets solved.
The image data can be reconstructed numerically if suffi-
ciently measurements of the homogeneously illuminated
object of interest are taken. Notwithstanding, in prac-
tice the inverse problem is ill-conditioned. A physically
acceptable, approximate, solution can only be obtained,
when a priori information is taken into account, satisfying
additional constrains, considering instrumental aspects of
the acquisition system, as described in [2].

III. Generalization of the transport model

For miscellaneous biomedical applications of photoa-
coustic imaging it is of interest to achieve a more appropri-
ate linear model of the underlying transport than what the
operator � fulfills; which can include for example viscous
and/or scattering media properties. In order to maintain a
second order linear model for tomographic reconstructions
we present the following extensions:

L1 := �, (10)

L2 := � + hv,ri, (11)

L3 := � + d, (12)

L4 := � + hv,ri+ d. (13)

The literature focused on the photoacoustic transport
problem exhibits that the first instance (10) for plane
waves and frequently appears in systems assumed as
physically homogeneous. The Boltzmann operator1 (11)
involves a constant v, allowing wave attenuation as a
first approximation to the presence of viscosity in the
referred system. The Helmholtz operator (12) in turn
involves a constant d, accepting wave augmentation as a
first approximation for the presence of linear diffusion in
the system under study. Both additional contributions are
present in the fourth operator2, related to the Heaviside
telegraph equation (13). The latter model symbolizes the
most general second order linear photoacoustic transport
and is analyzed for the purpose of image reconstruction in
[12]. Although, the choice of the above operators will not
alter the signal processing routines below, it will somewhat
vary the reconstruction conditions.

IV. Photoacoustic signal processing

Photoacoustic signals can be captured by ultrasonic
detectors as a time sequence of voltage variations. Figure 1
shows a one-dimensional scan of a sample with two small
inhomogeneities over the interval [0, t1], t1 = 72 µs, at a
sample frequency of 80 MHz.

Fig. 1: D: Raw data captured by an US detector.

1To the best of our knowledge, physical models for photoacoustic
and photothermal applications by the presence of continuous condi-
tions present only one of two terms, vx o vt:

� + 〈vx,∇〉
cont.
≡ � + vt∂t.

2Possibly there is an equivalence relation:

� + 〈vx,∇〉+ d
cont.
≡ � + vt∂t + d.
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In order to improve the low signal-to-noise ratio (SNR)
of the photoacoustic raw data is necessary to make some
preprocessing. It is already known that the dominant
initial peak is related to the voltage source and the direct
impact of momentum on the sensor [4]. Since there is little
contribution to the photoacoustic information of the region
of interest within the time interval [0, t0], t0 = 2.0 µs
this part was ignored for further processing. Linear trends
in the carrier signal were also removed and normalized
with respect to atmospheric pressure p0 � 2.0mV. For
this case study auto-correlation was considered as a useful
global technique to improve the SNR; see the result of
preprocessing in Figure 2.

Fig. 2: D0: Calibration by suppressing the influence of the
instrumentation device and auto-correlation.

The photoacoustic image data are provided by the
detector response and become readily accessible for
reconstruction after using a global signal processing
techniques; miscellaneous are described next:

1) Calculating the envelope function env(t) as in [11],

env(D0) = jD0 � iH(D0)j, (14)

with respect to the normalized data D0 = jD � p0j
and the Hilbert transformH, applied to the test data
in Figure 3.

2) Calculating the statistical measure of the amplitude
variation of the photoacoustic pressure, indicated by
the effective sound pressure eff(t), which is equal to
the root mean square (RMS) of the normalized signal
D0,

eff(D0) =

√∑bv/2c
t+=�bv/2cD

2
0(t+ t+)

v
, (15)

where the size of the reference window v, considered
when calculating RMS, is set to 21 in the numerical
example presented in Figure 4.

3) Rectification of the measured signal [3]: Half wave as
well as full wave rectification may be chosen to point
out the absolute pressure distribution, see Figure 5.

Fig. 3: D+
0 = env(D0): Normalized envelope function.

Fig. 4: D+
0 = eff(D0): Normalized effective pressure.

Fig. 5: D+
0 : Normalized half wave rectification.

After successfully applying one of the above filtering
methodology, the processed data D+

0 was further enhanced
by thresholding in relation to the estimated value of the
SNR. The signal was additionally cleared by convolution
with the ideal impulse function, particularly with regard
to secondary sampling to carry out the requested image
resolution. When all mentioned signal processing is per-
formed, a set that approximates the data g is supplied for
finally solving the inverse problem.
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V. Tomographic image reconstruction

The fundamentals of computerized tomography are
based on the reconstruction from projections. Given
the photoacoustic data, the geometry settings for the
tomographic reconstruction algorithm have to be in
accordance with the projection concept within the
photoacoustic model. Consequently, the transport model
is restricted to a linear system. Yet, the physical reality
may not fulfill the linearity condition. Hence, digital
processing routines would be needed to linearize the data
for reconstruction purposes.

Once processing true projection data, computerized to-
mography offers a multitude of reconstruction algorithms.
All tomographic methods for images reconstruction can be
classified into two groups according to [6]:

(A) Transform-based methods and
(B) Series expansion methods.

These groups particularly differ in the mathematical model
of their specification. Transform-based methods are very
efficient and fast in operating time. Besides, for linear
projections, these algorithms are exact if the system is
noise-free. The most intuitive and less complex algorithm
is the backprojection routine. Unfortunately, small errors
have severe influence on reconstruction results: multiple
artifacts in the reconstructed image make a digital biopsy
impossible. On the other hand, series expansion methods,
mainly typified by ART, also produce exact solutions
for the absence of noise. These methods consume more
computational resources, but are not restricted to linear
models. Corrections to the projection approach can be
considered iteratively.

In the following subsections, we show results of imple-
mentations of representative algorithms of both families
for photoacoustic methods. An adequate phantom for the
case study was made of agar where inhomogeneities have
been introduced. These local inhomogeneities of different
concentrations allow interpretations as tumor propaga-
tions. The colorized schema in Figure 6 illustrates the
geometric parameters of the experimental setup with a
passive element as a primary US source, carried out by
[7]. The intention of this figure is also to provide a clearer
idea of how the photoacoustic signals are interpreted.

A. Photoacoustic backprojection

Backprojection algorithms are very important tech-
niques for tomographic image reconstruction. The method-
ology can be considered as the direct numerical application
of the inversion formula for the (spherical) Radon trans-
form. Thus, we discretized in (9) the given photoacoustic
signal g received by the detector array to the vector g
and interpret that as the integral of the US waves along
the aperture, R�f = g over L2(Ω), where f represents a

Fig. 6: Phantom, sensor and signal interpretation: high
pressure amplitude refers to mayor pressure distribution.

discrete estimate of the image vector. With the aim to get
a good approximation, we apply the signal processing as
mentioned in section IV and compare their strategies. The
reconstruction is performed via iteration over all detector
positions and carry out photoacoustic backprojection, very
similar to the program for X-rays in [6], but on spherical
geometries. The visible cone of each detector element is
estimated by the a half-angle of 15� in consideration of
[8]. The result with effective pressure signal processing, is
shown in Figure 7 for the image resolution of 200 � 200
pixels. Considerably, the presence of artifacts due to few
and erroneous projection data. Justified by the difference
between the phantom and test results that, we conclude for
backprojection reconstructions from a series of few scans,
it is particularly important to implement more accurate or
rather corrected signal processing for photoacoustic data.

Fig. 7: Examplary photoacoustic backprojection.
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B. Photoacoustic ART

ART represents a class of iterative algorithms, not only
for image reconstruction from a series of projections, but
for solving universal linear systems, and is also known as
the Kaczmarz method. In the retrieval of an approximate,
physically acceptable solution of the inverse problem ART
principally represents a good strategy to attack the ill-
posedness of the model. The following notation is consis-
tent with F. Natterer [9], except for changes of letters to
be consistent with the previous declaration. Let Ajf = gj
be a system with Aj : H ! Hj bounded linear operators
of Hilbert space H in the Hilbert space Hj , respective to
every projection j = 1, , ..., p. We resume the model to

A =

A1

...
Ap

 , g =

g1...
gp

 , Af = g.

The orthogonal projection Pj in H on the affine subspace
Ajf = gj is given by Pjf = f + A�j (AjA

�
j )�1(gj � Ajf).

The Kaczmarz procedure with relaxation w (no relaxation
if w = 1) to solve Af = g is

fk+1 = Pwfk, (16)

with Pw = Pw
p ...P

w
1 , Pw

j = (1�w)I+wPj . The following
describes a step explicitly: set fk,0 = fk to compute fk,j

for j = 1, ..., p of according to

fk,j = fk,j�1 + ωA�j (AjA
�
j )�1(gj �Ajf

k,j�1) (17)

= fk,j�1 + w
gj �Ajf

k,j�1

kAjk2
At

j , (18)

for all j = 1, ..., p, and ultimately, we get fk+1 = fk,p.

The ultimate advantage of ART is its versatility. The
method of series expansion is suitable for all scanning
geometry and also for problems with incomplete data.
ART for 0 < w < 2 converges to a general solution or
to the minimum norm solution of Af = g, if the linear
system is consistent, see [9]. It should be perceived that
kPwfkk < 1. Unfortunately, we examine that the actual
photoacoustic equation system is ill-posed.

VI. Discussion, conclusions and future work

The problem of how to prepare photoacoustic signals
to ensure by signal processing interpretation as projection
data for tomographic reconstruction was examined. The
contemplated digital methodologies unveil foundations for
further improvements on image reconstructions. Still, the
discrepancy between mathematical conditions and the
physical realization is not balanced so far. Certainly, a
proper treatment of photoacoustic signals requires more
a sophisticated processing. All presented routines are very
versatile tools for many different digital treatments; yet
many promising denoising strategies for US signals are left
to implement (e.g. wavelet analysis).

For the algorithmic task on image reconstruction (from
few projections) we still have to stabilize the conver-
gence on our ART reconstruction results, that suffer the
ill-posedness of the problem structure. A mathematical
acceptable solution of minimal norm will not solve the
reconstruction task in the physical sense. Further regu-
larization techniques (e.g. Tikhonov-Phillips) or similar
approximation methods supposably will produce better
results, as recommended by [9] for CT in general.
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