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ABSTRACT: We develop innovative analytical expressions for the mean wind and potential temperature flux profiles in convective
boundary layers (CBLs). CBLs are frequently observed during daytime as the Earth’s surface is warmed by solar radiation. Therefore, their
modeling is relevant for weather forecasting, climate modeling, and wind energy applications. For CBLs in the convective-roll dominated
regime, the mean velocity and potential temperature in the bulk region of the mixed layer are approximately uniform. We propose an
analytical expression for the normalized potential temperature flux profile as a function of height, using a perturbation method approach
in which we employ the horizontally homogeneous and quasi-stationary characteristics of the surface and inversion layers. The velocity
profile in the mixed layer and the entrainment zone is constructed based on insights obtained from the proposed potential temperature flux
profile and the convective logarithmic friction law. Combining this with the well-known Monin-Obukhov similarity theory allows us to
capture the velocity profile over the entire boundary layer height. The proposed profiles agree excellently with large-eddy simulation results
over the range of −𝐿/𝑧0 ∈ [3.6× 102, 0.7× 105 ], where 𝐿 is the Obukhov length and 𝑧0 is the roughness length.

1. Introduction
Convective boundary layers (CBLs) are frequently ob-

served during daytime as the Earth’s surface is warmed by
solar radiation (Stull 1988). Due to their frequent occur-
rence, the fundamental understanding of CBLs is highly
relevant to agriculture, architectural design, aviation, cli-
mate modeling, weather prediction, and wind energy ap-
plications, to name a few. The modern scientific literature
on CBLs goes back over 100 years. Initially, the focus was
on low-altitude measurements, and with the introduction of
more advanced measurement techniques, the focus gradu-
ally shifted upwards. However, only after the introduction
of large eddy simulations (LES) in the early seventies, it
has become widely accepted that thermodynamic indica-
tors are most suitable to identify the different CBL regions
(LeMone et al. 2019). However, obtaining analytical pro-
files that describe the wind and potential temperature flux
in the entire CBL has remained challenging due to the
different flow physics in the various CBL regions.

The CBL can be subdivided into three layers (excluding
the roughness sublayer), i.e. the surface layer, the mixed
layer, and the entrainment zone (see figure 1). The sur-
face layer is characterized by a superadiabatic potential
temperature gradient and a strong wind shear, which is
usually described by the Monin-Obukhov similarity the-
ory (MOST, Monin and Obukhov 1954). According to
the MOST the non-dimensional wind speed and potential
temperature gradient profiles are universal functions of the
dimensionless height 𝑧/𝐿, where 𝑧 is the height above the
surface and 𝐿 is the surface Obukhov length (Obukhov
1946; Monin and Obukhov 1954). Many studies have
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pointed out that the MOST does not explain all important
surface-layer statistics under convective conditions (Panof-
sky et al. 1977; Khanna and Brasseur 1997; Johansson
et al. 2001; McNaughton et al. 2007; Salesky and Ander-
son 2020; Cheng et al. 2021) or very stable conditions
(Mahrt et al. 1998; Cheng et al. 2005). In particular, the
normalized wind gradient 𝜙𝑚 = (𝜅𝑧/𝑢∗) (𝜕𝑈/𝜕𝑧) depends
both on 𝑧/𝐿 and 𝑧𝑖/𝐿 (Khanna and Brasseur 1997; Johans-
son et al. 2001), where 𝑧𝑖 is the height of the inversion layer
(see figure 1). Nevertheless, MOST is still widely used in
numerical weather prediction and climate models (Salesky
and Anderson 2020), and thus will be used in the theo-
retical analysis and numerical simulations of this study.
MOST applies only to the surface layer, and for it to be ap-
plicable, the absolute value of the Obukhov length 𝐿 must
be smaller than the height of the surface layer. Therefore
we only consider the CBL with −𝑧𝑖/𝐿 ≫ 1. In particu-
lar, we focus on the convective-roll dominant regime with
−𝑧𝑖/𝐿 ≳ 10 (Salesky et al. 2017). Furthermore, we focus
on dry and cloud-free CBLs to avoid complications due
to physical processes like evaporation, precipitation, and
cloud formation.

The mixed layer is characterized by intense vertical mix-
ing caused by warm air thermals rising from the ground.
Within the mixed layer, the magnitude of the mean veloc-
ity is much larger than the variations in the mean velocity.
Thus, for applications where the mean velocity gradient
is unimportant, the wind speed and potential temperature
can be regarded as uniform (Kaimal et al. 1976; Salesky
et al. 2017). This insight is incorporated in various CBL
models (Lilly 1968; Deardorff 1973; Stull 1976; Deardorff
1979; Tennekes and Driedonks 1981; Garratt et al. 1982).
The entrainment zone is characterized by entrainment of
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Fig. 1. Profiles of the potential temperature Θ, wind speed𝑈mag, and potential temperature flux 𝑞 in the CBL.

The vertical lines with double arrows indicate different length scales in the CBL, namely, from left to right, the

Obukhov length 𝐿, the lowest height where the potential temperature flux first reaches zero, ℎ1, the inversion

layer height at which the potential temperature flux reaches its minimum value, 𝑧𝑖 , and the height where the

potential temperature flux first recovers zero, ℎ2. The background color indicates the magnitude of the potential

temperature flux 𝑞(𝑧) for case 2, see Table 1.
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Fig. 1. Profiles of the potential temperature Θ, wind speed 𝑈mag, and potential temperature flux 𝑞 in the CBL. The vertical lines with double
arrows indicate different length scales in the CBL, namely, from left to right, the Obukhov length 𝐿, the lowest height where the potential temperature
flux first reaches zero, ℎ1, the inversion layer height at which the potential temperature flux reaches its minimum value, 𝑧𝑖 , and the height where the
potential temperature flux first recovers zero, ℎ2. The background color indicates the magnitude of the potential temperature flux 𝑞 (𝑧) for case 2,
see Table 1.

air from the free atmosphere. Deardorff et al. (1980) found
in laboratory experiments that the ratio of the entrainment
zone thickness to the depth of the mixing layer decreases
asymptotically with increasing Richardson number 𝑅𝑖 as
follows (ℎ2 − ℎ1)/ℎ1 = 0.21+1.31/𝑅𝑖 (see figure 1 for the
definitions of ℎ1 and ℎ2). This ratio is essential for develop-
ing entrainment models and has been studied extensively
(Lilly 1968; Sullivan et al. 1998; Zilitinkevich et al. 2012;
Haghshenas and Mellado 2019). The potential temper-
ature flux profile decreases linearly with height and be-
comes negative in the entrainment zone. The entrainment
flux ratio Π𝑚, which is defined as the ratio of the poten-
tial temperature flux at the inversion layer height to its
value at the ground, turns out to be nearly constant, i.e.
Π𝑚 ≈ −0.2 (Stull 1976; Sorbjan 1996; Conzemius and Fe-
dorovich 2006; Sun and Wang 2008; LeMone et al. 2019).
Note that the inversion layer is the upper region of the
entrainment zone in which the potential temperature flux
increases steeply from its minimum value at 𝑧 = 𝑧𝑖 to zero
at 𝑧 = ℎ2 (see figure 1).

The geostrophic wind (𝑈𝑔,𝑉𝑔) and the friction ve-
locity 𝑢∗ are usually connected through the well-known
geostrophic drag law, which was initially derived for
neutral boundary layers (Rossby and Montgomery 1935;
Blackadar and Tennekes 1968; Tennekes and Lumley 1972)
and later extended to include buoyancy effects (Zilitinke-
vich 1969). To include the effect of unsteadiness, Zilitinke-
vich and Deardorff (1974) and Arya (1975) proposed to re-
place the Ekman depth 𝑢∗/| 𝑓 | in the geostrophic draw law,
where 𝑓 is the Coriolis parameter, with the time-dependent
inversion layer height 𝑧𝑖 . However, significant disparities
were observed between the geostrophic drag law for CBLs
and measurement data (Zilitinkevich 1975). Garratt et al.
(1982) derived a relationship for the velocity defects in the
mixed layer using a three-layer CBL model, which accounts
for the effects of entrainment, baroclinity, advection, and
local acceleration. In their formulation, the velocity defects
are defined as the differences between the mixed-layer av-
eraged winds and the geostrophic winds. They proposed
a geostrophic drag law to relate the geostrophic winds and

the friction velocity based on the assumption that the mean
velocity at the top of the surface layer is equal to that in the
mixed layer. In addition, an empirical stability function
𝜓𝑚, which may be inaccurate for large values of −𝑧/𝐿, is
employed.

Recently, Tong and Ding (2020) analytically derived
the convective logarithmic friction law from first princi-
ples. They identified three scaling layers for the CBL with
−𝑧𝑖/𝐿 ≫ 1: the outer layer, the inner-outer layer, and the
inner-inner layer. The characteristic length scales for these
three layers are the inversion layer height 𝑧𝑖 , the Obukhov
length 𝐿, and the roughness length 𝑧0, respectively. The
mixed-layer mean velocity scale 𝑈𝑚 and the geostrophic
wind component 𝑉𝑔 are the characteristic streamwise and
spanwise velocity scales in the outer layer. The difference
between the horizontally and temporally averaged veloc-
ity 𝑈 (𝑧) and 𝑈𝑚 is the mixed-layer velocity-defect law,
which has a velocity scale of 𝑢2∗/𝑤∗ ≪ 𝑈𝑚 with 𝑤∗ the
convective velocity. This indicates that𝑈𝑚 is very close to
the mean velocity 𝑈 (𝑧) in the mixed layer. For the inner-
outer layer they derived the surface-layer velocity-defect
law, which states that the velocity defect 𝑈 −𝑈𝑚 scales
with 𝑢∗. The convective logarithmic friction law is derived
from matching the law of the wall in the inner-inner layer
with the velocity-defect law in the surface-layer. This ex-
act leading-order result relates the friction velocity (𝑢∗)
to the mixed-layer velocity scale (𝑈𝑚). The difference
between 𝑈𝑔 and 𝑈𝑚 scales as (𝑢2∗𝑤𝑒)/( 𝑓 𝑧𝑖)2, where 𝑤𝑒

is the entrainment velocity and 𝑉𝑔 scales as −𝑢2∗/( 𝑓 𝑧𝑖).
Thus, up to non-dimensional coefficients, one can relate
the geostrophic velocities (𝑈𝑔,𝑉𝑔) to 𝑢∗. As Tong and
Ding (2020) do not consider the effects of the entrainment
zone the velocity profiles are only valid for 𝑧/𝑧𝑖 < 0.4.

Various time-dependent models have been developed to
explicitly account for entrainment processes at the top of
CBLs (Troen and Mahrt 1986; Noh et al. 2003; Hong et al.
2006). For example, the counter-gradient transport method
(Holtslag and Moeng 1991) and the eddy-diffusivity mass-
flux approach (Siebesma et al. 2007; Li et al. 2021) are
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widely used in coarse-resolution climate models. In gen-
eral, the potential temperature is time-dependent (Lilly
1968) and the entrainment velocity can affect the mean
wind speed in the mixed layer (Tong and Ding 2020).
However, the velocity and potential temperature flux pro-
files are quasi-stationary, and therefore similarity theory
can be employed to obtain analytical expressions for these
profiles shapes (Zilitinkevich and Deardorff 1974; Arya
1975; Zilitinkevich et al. 1992).

In this study, we focus on the the derivation of analytical
expressions for the mean velocity and potential tempera-
ture flux profiles in cloud-free CBLs. We use a perturba-
tion method approach to construct an analytical expression
for the normalized potential temperature flux profile as
a function of height, taking into account the characteris-
tics of both the surface layer and the capping inversion
layer. The depth of the entrainment zone is connected to
the convective logarithmic friction law to obtain analytical
expressions for the velocity profile in the mixed layer and
the entrainment zone. As remarked previously, the surface
layer is still described by the MOST.

The organization of the paper is as follows. In Section 2
we obtain analytical expression for the potential tempera-
ture flux and wind profiles. In Section 3 we validate the
proposed profiles against LES. The conclusions are given
in Section 4.

2. Theory
a. Potential temperature flux profile

The potential temperature flux profile provides a precise
and convenient demarcation between the mixed layer and
the entrainment zone of the CBL (Deardorff 1979; Dear-
dorff et al. 1980). Figure 1 shows a definition of the various
length scales in the CBL. Previous studies (Kaimal et al.
1976; Deardorff et al. 1980; Moeng and Sullivan 1994;
Noh et al. 2003; Garcia and Mellado 2014; Haghshenas and
Mellado 2019) showed that the potential temperature flux
(including both the turbulent part and the diffusive part)
in CBLs decreases linearly from its maximum value at the
surface to a minimum value at 𝑧 = 𝑧𝑖 , and then increases
steeply to zero in a narrow region 𝑧𝑖 ≤ 𝑧 ≤ ℎ2 at the top of
the boundary layer (figure 1). For typical CBLs the condi-
tion |d𝑧𝑖/d𝑡 | ≪ 𝑤∗ holds, which implies that the boundary
layer is quasi-stationary (Nieuwstadt et al. 2016, Section
7.6). Besides, the potential temperature flux 𝑞 is fixed at the
surface, and its value at the inversion layer height is nearly
a constant fraction of the value at the ground 𝑞𝑤 . There-
fore, the normalized potential temperature flux 𝑞(𝑧, 𝑡)/𝑞𝑤
only depends on the similarity variable 𝜉 = 𝑧/ℎ2 (𝑡), i.e.

𝑞(𝑧, 𝑡)/𝑞𝑤 = Π(𝜉), (1)

where the form of Π remains to be determined. Using
the potential temperature equation, we derive below an

ordinary differential equation (ODE) for the determination
of Π. However, it is important to emphasize that this does
not meanΠ is independent of time as the similarity variable
𝜉 = 𝑧/ℎ2 (𝑡) is still time-dependent.

Under the assumption of horizontal homogeneity, the
potential temperature equation reduces to

𝜕Θ
𝜕𝑡

= −𝜕𝑞

𝜕𝑧
= −𝑞𝑤

ℎ2
Π′, (2)

where Π′ = 𝜕Π/𝜕𝜉. In the mixed layer the potential tem-
perature Θ is almost spatially uniform and hence the left-
hand side of Eq. (2) is independent of 𝑧. Therefore, the
governing equation of the potential temperature flux in the
mixed layer can be approximated as

−Π′ = 𝑐Π , (3)

where 𝑐Π is the gradient of the normalized potential tem-
perature flux in the mixed layer (see figure 1). In the
mixed layer, it is well-known that the eddy-diffusivity
approach cannot adequately describe the potential tem-
perature flux as the gradient of the potential temperature
nearly vanishes (Wyngaard 2010). In contrast, in the inver-
sion layer the potential temperature gradient is dominant
such that the potential temperature flux can be approx-
imated by 𝑞 = −𝜈𝜃𝜕Θ/𝜕𝑧. Here 𝜈𝜃 ∝ |𝑤𝑒 | (ℎ2 − 𝑧𝑖) is
the eddy diffusivity and 𝑤𝑒 = d𝑧𝑖/d𝑡 is the entrainment
velocity. That the ratio ℎ2/𝑧𝑖 is approximately constant
implies that 𝜕𝜉/𝜕𝑡 = −(𝑧/ℎ2

2) (ℎ2/𝑧𝑖) (d𝑧𝑖/d𝑡) ≈ −𝑤𝑒/𝑧𝑖 .
From the zero-order jump model d𝑧2

𝑖 /d𝑡 is independent of
time (Nieuwstadt et al. 2016, Section 7.6), such that 𝜈𝜃
is approximately constant. Then, by taking the vertical
derivative of Eq. (2), we obtain that

𝜖Π′′ −Π′ = 0, (4)

where 𝜖 is a small dimensionless parameter,

𝜖 ≡ 𝑐
ℎ2 − 𝑧𝑖
ℎ2

≪ 1, (5)

with 𝑐 = (𝜈𝜃 𝑧𝑖)/[−𝑤𝑒ℎ2 (ℎ2 − 𝑧𝑖)] = 1/2 being an empir-
ical constant that is determined by comparing the model
profiles to the simulation results. This indicates that the
parameter 𝜖 represents the half thickness of the inversion
layer normalized by the boundary layer depth (see figure 1).
To get the potential temperature flux profile in the entire
boundary layer, we combine Eqs. (3) and (4), which leads
to the following second-order ODE for the potential tem-
perature flux,

𝜖Π′′ −Π′ = 𝑐Π , Π(0) = 1, Π(1) = 0. (6)
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The solution of Eq. (6) reads

Π = 1− 𝑐Π𝜉 + (𝑐Π −1) 𝑒
𝜉/𝜖 −1
𝑒1/𝜖 −1

, 0 ≤ 𝜉 ≤ 1. (7)

Since 𝜖 ≪ 1, the value of Π in the bulk of the mixed layer
can be approximated as

Π ≈ 1− 𝑐Π𝜉. (8)

Similarly, since Π = 0 at 𝜉 = ℎ1/ℎ2, the slope 𝑐Π reduces
to

𝑐Π = ℎ2/ℎ1 > 1. (9)

Therefore, the ratio of the entrainment zone thickness to
the mixing layer depth is

𝑅 ≡ (ℎ2 − ℎ1)/ℎ1 = 𝑐Π −1 > 0. (10)

Deardorff et al. (1980) found in laboratory experiments
that the value of 𝑅 is between 0.2 and 0.4. Furthermore,
the entrainment flux ratio Π𝑚, i.e. the minimum value of
Π, can be approximated as

Π𝑚 ≈ 1− 𝑐Π (1−2𝜖) ≈ −(𝑅−2𝜖). (11)

Stull (1976) and Sorbjan (1996) found that −0.3 ≤ Π𝑚 ≤
−0.1. This results is consistent with the LES results of
Sullivan and Patton (2011) with Π𝑚 ≈ −0.2, the empirical
results of Lenschow (1974) with Π𝑚 = −0.1, and the direct
numerical simulation results of Garcia and Mellado (2014)
with Π𝑚 ≈ −0.12.

We note that the perturbation method approach to model
the potential temperature flux profile was recently intro-
duced by Liu et al. (2021b) for conventionally neutral
atmospheric boundary layers where the surface potential
temperature flux is always zero. However, it should be
noted that in the CBLs under consideration, the surface is
heated and thermal plumes are generated at the ground,
resulting in significantly different turbulence generation
mechanisms. The applicability of the perturbation method
approach to model the strong inversion layer relies on its
ability to capture the strong gradients in the inversion layer.
Here we used the second-order ODE defined by Eq. (6) to
model the potential temperature flux profile as our a pos-
teriori tests confirm that this is sufficient to capture the
inversion layer accurately. Higher-order terms could be
incorporated, but this is not considered here to keep the ob-
tained profiles relatively simple. An important observation
is that the perturbation method approach is consistent with
the finding of Garcia and Mellado (2014). They showed
that the vertical structure of the entrainment zone is best
described by two overlapping sublayers characterized by
different length scales, namely the mean penetration depth
of an overshooting thermal for the upper sublayer and the

thickness of the CBL for the lower sublayer. Similarly,
the second-order ODE, i.e. Eq. (6), indicates that there
are two distinct length scales for the description of the en-
trainment zone (figure 1): one is the upper sublayer with
𝑧𝑖 ≤ 𝑧 ≤ ℎ2, where the gradient of potential temperature
flux is proportional to −(𝑞𝑤Π𝑚)/(2𝜖ℎ2), and the other is
the lower sublayer with ℎ1 ≤ 𝑧 ≤ 𝑧𝑖 , where the gradient of
potential temperature flux is proportional to (𝑞𝑤Π𝑚)/𝑧𝑖 .
Since 𝜖 ≪ 1 the potential temperature flux varies much
steeper in the upper sublayer than in the lower sublayer.

b. Wind profile

We consider MOST to describe the wind speed profile in
the surface layer (Monin and Obukhov 1954). In surface-
layer coordinates, it states that the non-dimensional stream-
wise velocity gradient can be written as

𝜅𝑧

𝑢∗
d𝑈
d𝑧

= 𝜙𝑚

( 𝑧
𝐿

)
, (12)

where 𝜙𝑚 is the dimensionless stability correction function
and 𝐿 = −𝑢3∗/(𝜅𝛽𝑞𝑤) is the Obukhov length with 𝛽 the
buoyancy parameter. By integrating Eq. (12), one can
obtain the explicit formula for the streamwise velocity 𝑈,

𝜅𝑈

𝑢∗
= ln

(
𝑧

𝑧0

)
−𝜓𝑚

( 𝑧
𝐿

)
. (13)

Here 𝜅 = 0.4 is the von Kármán constant, 𝑧0 is the roughness
length, and

𝜓𝑚 =
∫ 𝑧/𝐿

𝑧0/𝐿

1−𝜙𝑚 (𝜁)
𝜁

d𝜁 (14)

is the stability correction function for the momentum. We
use the well-known Businger-Dyer expression (Paulson
1970; Businger et al. 1971; Dyer 1974; Brutsaert 1982)

𝜓𝑚 = ln
(1+ 𝑥2) (1+ 𝑥)2

8
−2arctan𝑥 + 𝜋

2
, (15)

with 𝑥 = (1− 16𝑧/𝐿)1/4 to model the stability correction
function, but we note that other parameterizations exist
(Katul et al. 2011). Note that 𝜓𝑚 = 0 for 𝑥 = 1 (or 𝐿 =∞),
which reduces Eq. (13) to the classical logarithmic law for
neutral boundary layers.

To model the wind profile 𝑈 in the mixed layer and
entrainment zone, we again employ a second-order ODE.
In general, the detailed wind profile evolves when stability
changes. However, the variations of the mean velocity are
small compared to the magnitude of the mean velocity in
the mixed layer when the stability parameter −𝑧𝑖/𝐿 ≳ 10
(e.g. Salesky et al. 2017), which covers the range of stability
conditions considered in this study. Thus, we can assume
that the ODE is dominated by the 𝑈′ = 0 term in most of
the domain. Recently, Tong and Ding (2020) derived the



Published by Journal of the Atmospheric Sciences

5

convective logarithmic friction law from first principles,
which connects the mixed-layer mean velocity scale 𝑈𝑚

and the friction velocity 𝑢∗ in the convective-roll dominant
regime (−𝑧𝑖/𝐿 ≫ 1) as follows,

𝑈𝑚

𝑢∗
=

1
𝜅

ln
(
− 𝐿

𝑧0

)
−𝐶, (16)

where 𝐶 = 1 is an empirical constant determined from our
LES database (see below).

From the potential temperature flux profile modeling we
learned that the ODE should have a second-order derivative
term 𝜖𝑈′′ to model the entrainment zone near the top of the
boundary layer. The top boundary condition is given by
the geostrophic wind component 𝑈𝑔. The lower boundary
condition is given by equaling Eqs. (13) and (16), namely
𝑈 (𝜉0) =𝑈𝑚, since Tong and Ding (2020) showed that𝑈𝑚 is
very close to𝑈 (𝑧) in the mixed layer. Here 𝜉0 represents the
height of the top of surface layer, which can be determined
using Eqs. (13) and (16),

ln
(
− ℎ2
𝐿
𝜉0

)
−𝜓𝑚

(
ℎ2
𝐿
𝜉0

)
= −𝜅𝐶 ⇒ 𝜉0 = 𝜉0

(
ℎ2
𝐿

)
.

(17)
Because 𝜖 ≪ 1, the solution obtained from 𝑈 (𝜉0) =𝑈𝑚 is
almost the same as from 𝑈 (0) =𝑈𝑚, while the expression
of the latter is much simpler. Therefore, we model the
profile of the streamwise velocity 𝑈 in the mixed layer and
the entrainment zone as:

𝜖𝑈′′ −𝑈′ = 0, 𝑈 (0) =𝑈𝑚, 𝑈 (1) =𝑈𝑔 . (18)

The solution of Eq. (18) is

𝑈 =𝑈𝑚 + (𝑈𝑔 −𝑈𝑚) 𝑒
𝜉/𝜖 −1
𝑒1/𝜖 −1

. (19)

We note that Eq. (19) is only valid in the mixed layer and
entrainment zone as the wind speed in the surface layer is
still modeled using the MOST. By combining Eqs. (13) and
(19) and recalling that Eq. (13) increases monotonically as
𝑧 increases, we obtain the following analytic description of
the streamwise velocity profile 𝑈 (𝑧) for the entire CBL,

𝑈 =


𝑢∗
𝜅

[
ln
(
𝑧

𝑧0

)
−𝜓𝑚

( 𝑧
𝐿

)]
, 𝜉 ≤ 𝜉0,

𝑈𝑚 + (𝑈𝑔 −𝑈𝑚) 𝑒
𝜉/𝜖 −1
𝑒1/𝜖 −1

, 𝜉0 < 𝜉 ≤ 1,
(20)

where 𝜉0 is given by Eq. (17). As remarked in Section 1
the surface layer profile contains two length scales, i.e.
𝑧0 for the inner-inner layer and the Obukhov length 𝐿 for
the inner-outer layer. Similarly, the velocity profile for
the mixed layer and entrainment zone contains two length
scales, i.e. 𝑧𝑖 to describe the mixed layer and ℎ2− 𝑧𝑖 = 2𝜖ℎ2
to describe the upper sublayer of the entrainment zone.

This confirms the view presented by Tong and Ding (2020)
that the entrainment zone has a different scaling than the
surface and mixed layers, and can therefore be considered
as another inner layer in the overall CBL problem. We note
that the proposed analytical profile is empirical, similar to
the MOST, and that the parameter 𝜖 parameterizes the
effect of various physical processes. We further note that
𝑈𝑚 and 𝑢∗ are related as given by Eq. (16), and that the
difference 𝑈𝑔 −𝑈𝑚 scales as (𝑢2∗𝑤𝑒)/( 𝑓 𝑧𝑖)2 (Tong and
Ding 2020). Thus, Eq. (20) is predictive if the entrainment
velocity 𝑤𝑒 is given as an input parameter. To determine
the value of 𝑤𝑒, one may need to revisit the entrainment
processes at the top of CBLs (e.g. Garcia and Mellado
2014). In addition, the velocity predicted by Eq. (20) is
continuous throughout the boundary layer and applicable
for the considered ranges (see figure 5 below). However,
its first derivative is discontinuous at the patching location
𝜉 = 𝜉0. This is a typical character of low-order models
(Garratt et al. 1982). To capture the smooth transition, a
high-order model is needed (Tong and Ding 2020). We
leave these for future work.

To model the wind profile 𝑉 in the the mixed layer
and entrainment zone, we use a similar ODE as Eq. (18).
The top boundary condition is given by the geostrophic
wind component 𝑉𝑔. As the spanwise velocity 𝑉 is small
compared to the streamwise velocity 𝑈 in the mixed layer
(Tong and Ding 2020), the lower boundary condition is
given by𝑉 (𝜉0) =𝑉 (0) = 0. Therefore, we model the profile
of the spanwise velocity 𝑉 in the entire boundary layer
using

𝜖𝑉 ′′ −𝑉 ′ = 0, 𝑉 (0) = 0, 𝑉 (1) =𝑉𝑔 . (21)

The solution of Eq. (21) is

𝑉 =𝑉𝑔
𝑒 𝜉/𝜖 −1
𝑒1/𝜖 −1

. (22)

Since 𝑉𝑔 scales as −𝑢2∗/( 𝑓 𝑧𝑖) (e.g. Wyngaard 2010; Tong
and Ding 2020), the geostrophic wind component 𝑉𝑔 can
be connected to 𝑢∗, up to a non-dimensional coefficient
−𝑉𝑔 𝑓 𝑧𝑖/𝑢2∗ = 0.66, which is determined from our LES
database (see Table 1).

3. Numerical validation
a. Numerical method and computational setup

We use LES to simulate the CBL flow over an infinite
flat surface with homogeneous roughness. We integrate
the spatially-filtered Navier-Stokes equations and the fil-
tered transport equation for the potential temperature (Al-
bertson 1996; Albertson and Parlange 1999; Gadde et al.
2021; Liu et al. 2021a,b; Liu and Stevens 2021). Molecu-
lar viscosity is neglected as the Reynolds number in the
atmospheric boundary layer flow is very high, and we
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use the advanced Lagrangian-averaging scale-dependent
model to parameterize the sub-grid scale shear stress and
potential temperature flux (Bou-Zeid et al. 2005; Stoll and
Porté-Agel 2008). We note that the Lagrangian-averaging
scale-dependent model has been extensively validated and
widely used in the literature (Bou-Zeid et al. 2005; Stoll
and Porté-Agel 2008; Calaf et al. 2010; Wu and Porté-Agel
2011; Zhang et al. 2019; Gadde et al. 2021).

Our code is an updated version of the one used by Al-
bertson and Parlange (1999). The grid points are uniformly
distributed, and the computational planes for horizontal
and vertical velocities are staggered in the vertical direc-
tion. The first vertical velocity grid plane is located at
the ground. The first gridpoint for the horizontal veloc-
ity components and the potential temperature is located at
half a grid distance above the ground. We use a second-
order finite difference method in the vertical direction and
a pseudo-spectral discretization in the horizontal direc-
tions. Time integration is performed using the second-
order Adams-Bashforth method. The projection method
is used to enforce the divergence-free condition. At the
top boundary, we impose a constant potential tempera-
ture lapse rate, zero vertical velocity, and zero shear stress
boundary condition. At the bottom boundary, we employ
the classical wall stress and potential temperature flux for-
mulations based on the MOST (Moeng 1984; Bou-Zeid
et al. 2005; Stoll and Porté-Agel 2008; Gadde et al. 2021).

We perform eleven LES to verify the validity of the de-
rived wind speed and potential temperature flux profiles for
CBLs. The computational domain is 5km× 5km× 2km
and the grid resolution is 256× 256× 256. Due to large
computational expense, only several external parameters
are varied in the simulations. The flow is driven by the
geostrophic wind of 𝐺 =

√︃
𝑈2
𝑔 +𝑉2

𝑔 = 10 m/s, the buoyancy
parameter is 𝛽 = 0.0325m/(s2 ·K), and the Coriolis pa-
rameter is 𝑓 = 1× 10−4 rad/s (Moeng and Sullivan 1994;
Abkar and Moin 2017; Gadde et al. 2021). To ensure
the CBLs are in the convective-roll dominant regime with
−𝑧𝑖/𝐿 ≳ 10, the surface potential temperature flux is set
to 𝑞𝑤 = 0.12 ∼ 0.24K ·m/s. Note that the convective log-
arithmic friction law (Eq. (16)) is derived very recently by
Tong and Ding (2020) and tested only in a relatively narrow
range of −𝐿/𝑧0, namely −𝐿/𝑧0 ∈ [2.5×102,1.5×103]. To
evaluate the performance of this law in much wider range,
i.e. −𝐿/𝑧0 ∈ [3.6× 102,0.7× 105], the roughness length
is varied between 𝑧0 = 0.0002 m and 𝑧0 = 0.16 m, where
the lower bound of 𝑧0 is set to a representative value of
the sea surface (Wieringa et al. 2001). The vertical poten-
tial temperature gradient is varied between Γ = 1 K/km and
Γ = 9 K/km to capture the relevant range observed in atmo-
spheric measurements (Sorbjan 1996). The velocity field
is initialized with the geostrophic wind 𝐺 = 10 m/s. The
initial potential temperature is 300 K up to 937 m and in-
creases with 8 K in the next 126 m above. Above 1063 m the

constant vertical derivative of the potential temperature Γ is
specified. The simulations are run for about 25 large-eddy
turnover times 𝑇 = 𝑧𝑖/𝑤∗, where 𝑤∗ = (𝛽𝑞𝑤𝑧𝑖)1/3 is the
convective velocity scale, and the statistics are computed
from the time interval of 12𝑇 to 25𝑇 when the bound-
ary layer is quasi-stationary (Ding and Tong 2021). We
note that inertial oscillation develops as the flow is ini-
tialized with a profile in geostrophic equilibrium (Schröter
et al. 2013). However, it should have only negligible ef-
fect on the simulated statistics since the typical large-eddy
turnover time 𝑇 ≈ 10 mins is two order smaller than the
natural inertial periodicity 2𝜋/ 𝑓 ≈ 17.5 h.

A summary of all simulated cases is presented in Ta-
ble 1. Note that the cases in Table 1 are arranged such that
the value of −𝐿/𝑧0 increases monotonically. Furthermore,
we note that case 2 has been validated against atmospheric
observations, and the simulation results obtained using dif-
ferent sub-grid scale models and grid resolutions is very
similar (Gadde et al. 2021). To show the simulated results
are independent of the computational domain size, we have
performed an additional simulation for case 2 in a larger
computational domain (12km× 6km× 2km) on a mesh
with 600×300×240 nodes such that the grid spacings are
nearly identical. Figure 2 shows the simulated wind speed
and potential temperature flux profiles for case 2. The
good agreement between the results obtained with differ-
ent computational domain size confirms that the simulated
results are independent of the computational domain size.

b. Validation of analytical profiles

Figure 3 shows that with increasing height the nor-
malized potential temperature flux profile 𝑞/𝑞𝑤 first de-
creases linearly from unity at the surface to a minimum
at 𝑧𝑖/ℎ2 = 1−2𝜖 , before it rapidly increases to zero in the
inversion layer (1−2𝜖 ≤ 𝑧/ℎ2 ≤ 1). The normalized thick-
ness of the inversion layer, which is parameterized by 𝜖 ,
is expected to depend on the Richardson number (Dear-
dorff et al. 1980), potential temperature gradient (Sorbjan
1996), and wind shear (Conzemius and Fedorovich 2006).
However, we find that for the parameter range under con-
sideration, the variation in the normalized thickness of the
inversion layer is limited (see Table 1). Therefore, we use
a fixed representative value 𝜖 = 0.044 to model the poten-
tial temperature flux profile, and the figure confirms that
this ensures that the potential temperature flux profile ob-
tained from the model agrees excellently with all available
simulation data, which validates the chosen approach. To
further confirm the validity of the potential temperature
flux profile, we also compare our results in figure 3 with
previous LES from Mason (1989), Sorbjan (1996), and
Abkar and Moin (2017), the direct numerical simulations
data by Garcia and Mellado (2014), and the empirical mod-
els by Lenschow (1974) and Noh et al. (2003). Clearly, the
model predictions agree well with these previous studies.
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Table 1. Summary of all simulated cases. Here Γ = 𝜕Θ/𝜕𝑧 is the vertical derivative of the mean potential temperature in the free atmosphere,
𝑞𝑤 is the surface potential temperature flux, 𝑧0 is the roughness length, 𝑢∗ is the friction velocity,𝑈𝑚 is the wind speed in the mixed layer, 𝐿 is the
Obukhov length, 𝑧𝑖 is the inversion layer height, |𝑉𝑔 | is the magnitude of the spanwise geostrophic wind, 𝜖 and 𝑐Π are dimensionless parameters
calculated by Eqs. (5) and (9), respectively, and 𝑅𝑖 = 𝛽ΔΘ𝑧𝑖/𝑤2∗ is the Richardson number, where ΔΘ =Θ(ℎ2 ) −Θ(ℎ1 ) is the potential temperature
difference across the entrainment zone and 𝑤∗ = (𝛽𝑞𝑤 𝑧𝑖 )1/3 is the convective velocity.

Case Γ (K/km) 𝑞𝑤 (K·m/s) 𝑧0 (m) 𝑢∗ (m/s) 𝑈𝑚 (m/s) |𝑉𝑔 | (m/s) 𝜖 𝑐Π 𝑅𝑖 −𝑧𝑖/𝐿 −𝐿/𝑧0

1 9 0.24 0.16 0.562 7.60 2.00 0.044 1.32 56.1 19.2 3.6× 102

2 3 0.24 0.16 0.563 7.59 1.87 0.052 1.34 51.0 19.1 3.6× 102

3 1 0.24 0.16 0.562 7.59 1.84 0.055 1.34 47.9 19.2 3.6× 102

4 3 0.12 0.16 0.533 7.70 2.20 0.046 1.34 94.2 11.0 0.6× 103

5 3 0.24 0.016 0.463 8.44 1.17 0.050 1.33 51.0 34.5 2.0× 103

6 3 0.20 0.02 0.468 8.36 1.32 0.046 1.31 59.6 27.5 2.0× 103

7 3 0.12 0.016 0.444 8.45 1.43 0.038 1.31 91.5 19.0 3.5× 103

8 3 0.20 0.002 0.392 8.93 0.86 0.033 1.28 55.5 47.3 1.2× 104

9 3 0.24 0.0016 0.389 8.94 0.75 0.044 1.30 50.4 58.3 1.2× 104

10 3 0.12 0.0016 0.375 8.94 0.88 0.036 1.30 93.9 31.6 2.1× 104

11 3 0.20 0.0002 0.334 9.24 0.57 0.041 1.30 58.6 75.8 0.7× 105

Table 1. Summary of all simulated cases. Here Γ = 𝜕Θ/𝜕𝑧 is the vertical derivative of the mean potential
temperature in the free atmosphere, 𝑞𝑤 is the surface potential temperature flux, 𝑧0 is the roughness length, 𝑢∗ is

the friction velocity, 𝑈𝑚 is the wind speed in the mixed layer, 𝐿 is the Obukhov length, 𝑧𝑖 is the inversion layer

height, |𝑉𝑔 | is the magnitude of the spanwise geostrophic wind, 𝜖 and 𝑐Π are dimensionless parameters calculated
by Eqs. (5) and (9), respectively, and 𝑅𝑖 = 𝛽ΔΘ𝑧𝑖/𝑤2∗ is the Richardson number, where ΔΘ = Θ(ℎ2) −Θ(ℎ1) is
the potential temperature difference across the entrainment zone and 𝑤∗ = (𝛽𝑞𝑤𝑧𝑖)1/3 is the convective velocity.
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Case Γ (K/km) 𝑞𝑤 (K·m/s) 𝑧0 (m) 𝑢∗ (m/s) 𝑈𝑚 (m/s) |𝑉𝑔 | (m/s) 𝜖 𝑐Π 𝑅𝑖 −𝑧𝑖/𝐿 −𝐿/𝑧0
1 9 0.24 0.16 0.562 7.60 2.00 0.044 1.32 56.1 19.2 3.6×102

2 3 0.24 0.16 0.563 7.59 1.87 0.052 1.34 51.0 19.1 3.6×102

3 1 0.24 0.16 0.562 7.59 1.84 0.055 1.34 47.9 19.2 3.6×102

4 3 0.12 0.16 0.533 7.70 2.20 0.046 1.34 94.2 11.0 0.6×103

5 3 0.24 0.016 0.463 8.44 1.17 0.050 1.33 51.0 34.5 2.0×103

6 3 0.20 0.02 0.468 8.36 1.32 0.046 1.31 59.6 27.5 2.0×103

7 3 0.12 0.016 0.444 8.45 1.43 0.038 1.31 91.5 19.0 3.5×103

8 3 0.20 0.002 0.392 8.93 0.86 0.033 1.28 55.5 47.3 1.2×104

9 3 0.24 0.0016 0.389 8.94 0.75 0.044 1.30 50.4 58.3 1.2×104

10 3 0.12 0.0016 0.375 8.94 0.88 0.036 1.30 93.9 31.6 2.1×104

11 3 0.20 0.0002 0.334 9.24 0.57 0.041 1.30 58.6 75.8 0.7×105
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Fig. 2. The comparison of simulated (a) normalized wind speed
√
𝑈2 +𝑉2/𝐺 and (b) normalized potential

temperature flux 𝑞/𝑞𝑤 profiles for case 2 (see Table 1) with different computational domain sizes.
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b. Validation of analytical profiles325

Figure 3 shows that with increasing height the normalized potential temperature flux profile326

𝑞/𝑞𝑤 first decreases linearly from unity at the surface to a minimum at 𝑧𝑖/ℎ2 = 1− 2𝜖 , before it327

15
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2 (see Table 1) with different computational domain sizes.

Fig. 3. Vertical profile of normalized potential temperature flux 𝑞/𝑞𝑤 . Circles: LES data (Table 1); up-triangle:
LES data of Mason (1989); down-triangle: LES data of Sorbjan (1996); square: direct numerical simulations

data of Garcia and Mellado (2014); diamond: LES data of Abkar and Moin (2017); red line: prediction given by

Lenschow (1974); blue line: prediction given by Noh et al. (2003); black line: prediction given by Eq. (7) with

𝜖 = 0.044 and 𝑐Π = 1.32. The figure shows that the proposed model captures the simulation trends very well.
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(Deardorff et al. 1980), potential temperature gradient (Sorbjan 1996), and wind shear (Conzemius330
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variation in the normalized thickness of the inversion layer is limited (see Table 1). Therefore,332

we use a fixed representative value 𝜖 = 0.044 to model the potential temperature flux profile, and333

the figure confirms that this ensures that the potential temperature flux profile obtained from the334

model agrees excellently with all available simulation data, which validates the chosen approach.335

To further confirm the validity of the potential temperature flux profile, we also compare our results336

in figure 3 with previous LES from Mason (1989), Sorbjan (1996), and Abkar and Moin (2017),337

the direct numerical simulations data by Garcia and Mellado (2014), and the empirical models338
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previous studies.340

In figure 4(a) we compare the wind speed in the bulk of the mixed layer (0.4 ≤ 𝑧/ℎ2 ≤ 0.6) against346

the normalized Obukhov length −𝐿/𝑧0 with results from Tong and Ding (2020). The figure shows347

that our simulations convincingly confirm the validity of the convective logarithmic friction law348
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Fig. 3. Vertical profile of normalized potential temperature flux 𝑞/𝑞𝑤 . Circles: LES data (Table 1); up-triangle: LES data of Mason (1989);
down-triangle: LES data of Sorbjan (1996); square: direct numerical simulations data of Garcia and Mellado (2014); diamond: LES data of Abkar
and Moin (2017); red line: prediction given by Lenschow (1974); blue line: prediction given by Noh et al. (2003); black line: prediction given by
Eq. (7) with 𝜖 = 0.044 and 𝑐Π = 1.32. The figure shows that the proposed model captures the simulation trends very well.
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(𝑎) (𝑏)

Fig. 4. The dependence of (a) the normalized mixed-layer mean velocity scale 𝑈𝑚/𝑢∗ and (b) the ratio of
the predicted and simulated mixed-layer mean velocity scale𝑈pred𝑚 /𝑈LES𝑚 against the normalized Obukhov length

−𝐿/𝑧0. Circles: LES data (Table 1); squares: LES data of Tong and Ding (2020); solid line: prediction given by
Eq. (16) with 𝐶 = 1 determined using a fit to the present simulation data.
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for the wind speed (Eq. (16) with 𝐶 = 1) over a much wider range of −𝐿/𝑧0 ∈ [3.6×102,0.7×105]349

than previously considered (−𝐿/𝑧0 ∈ [2.5× 102,1.5× 103]). To further confirm the convective350

logarithmic friction law, figure 4(b) shows the ratio of the predicted and simulated mixed-layer351

mean velocity scale𝑈pred𝑚 /𝑈LES𝑚 against the normalized Obukhov length −𝐿/𝑧0. The figure shows352

that the predicted value is within 5% of the simulation result for all considered cases.353

In figure 5we compare the vertical profile of themean streamwise velocity𝑈 for four typical cases358

with different surface potential temperature flux and roughness length with the simulation results.359

The filled symbols are the present LES data, the dashed line is the theoretical prediction given by360

the MOST, and the solid line is the prediction given by Eq. (20) with 𝜖 = 0.044. The figure shows361

that the MOST accurately captures the surface layer’s wind profile (lowest 20% of the boundary362

layer). However, in the mixed layer, the prediction of theMOST deviates significantly from the LES363

data. In particular, the discrepancy from the MOST increases as the surface potential temperature364

flux 𝑞𝑤 decreases (figure 5b,c) or the roughness length 𝑧0 increases (figure 5a,d). Therefore, MOST365

is seldom used to specify wind profiles outside of the surface layer. Figure 5 shows that the366

proposed wind profile given by Eq. (20) accurately captures the velocity profile throughout the367

entire boundary layer. This excellent agreement confirms the validity of our proposed wind profile368

of Eq. (20) for atmospheric boundary layers in the range of studied parameters.369
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Fig. 4. The dependence of (a) the normalized mixed-layer mean velocity scale𝑈𝑚/𝑢∗ and (b) the ratio of the predicted and simulated mixed-layer
mean velocity scale𝑈pred

𝑚 /𝑈LES
𝑚 against the normalized Obukhov length −𝐿/𝑧0. Circles: LES data (Table 1); squares: LES data of Tong and Ding

(2020); solid line: prediction given by Eq. (16) with 𝐶 = 1 determined using a fit to the present simulation data.
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Fig. 5. Vertical profile of the mean streamwise velocity 𝑈. Filled circles: LES data (Table 1); dashed line:

prediction given by the MOST; solid line: prediction given by Eq. (20) with 𝜖 = 0.044. The prediction by the

MOST is plotted outside the surface layer region to demonstrate the difference with the new profile.
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Figure 6 shows the corresponding profiles of the mean spanwise velocity 𝑉 . The filled symbols373

are the present LES data and the solid line is the prediction given byEq. (22)with 𝜖 = 0.044. Overall,374

the agreement between the proposed wind profile given by Eq. (22) and the LES data is reasonably375

good in the entire boundary layer. This agreement confirms the validity of our proposed wind376

profile of Eq. (22) for CBLs in the range of studied parameters (i.e. −𝐿/𝑧0 ∈ [3.6×102,0.7×105]).377

We note that the figure confirms that the spanwise velocity 𝑉 is much smaller than the streamwise378

velocity 𝑈. The figure also indicates that the magnitude of the geostrophic wind component |𝑉𝑔 |379

increases as the surface potential temperature flux 𝑞𝑤 decreases (figure 6b,c) or the roughness380

length 𝑧0 increases (figure 6a,d).381
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Fig. 5. Vertical profile of the mean streamwise velocity 𝑈. Filled circles: LES data (Table 1); dashed line: prediction given by the MOST;
solid line: prediction given by Eq. (20) with 𝜖 = 0.044. The prediction by the MOST is plotted outside the surface layer region to demonstrate the
difference with the new profile.

In figure 4(a) we compare the wind speed in the bulk of
the mixed layer (0.4 ≤ 𝑧/ℎ2 ≤ 0.6) against the normalized
Obukhov length −𝐿/𝑧0 with results from Tong and Ding
(2020). The figure shows that our simulations convinc-
ingly confirm the validity of the convective logarithmic
friction law for the wind speed (Eq. (16) with 𝐶 = 1) over
a much wider range of −𝐿/𝑧0 ∈ [3.6×102,0.7×105] than
previously considered (−𝐿/𝑧0 ∈ [2.5×102,1.5×103]). To
further confirm the convective logarithmic friction law,

figure 4(b) shows the ratio of the predicted and simulated
mixed-layer mean velocity scale 𝑈

pred
𝑚 /𝑈LES

𝑚 against the
normalized Obukhov length −𝐿/𝑧0. The figure shows that
the predicted value is within 5% of the simulation result
for all considered cases.

In figure 5 we compare the vertical profile of the mean
streamwise velocity 𝑈 for four typical cases with different
surface potential temperature flux and roughness length
with the simulation results. The filled symbols are the
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Fig. 6. Vertical profile of the mean spanwise velocity 𝑉 . Filled circles: LES data (Table 1); solid line:

prediction given by Eq. (22) with 𝜖 = 0.044.
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4. Conclusions384

This work uses a perturbation method approach in conjuncture with the convective logarithmic385

friction law and theMonin-Obukhov similarity theory to develop analytical expressions of the wind386

and potential temperature flux profiles in convective atmospheric boundary layers. The validity of387

the proposed wind (given by Eqs. (20) and (22)) and potential temperature flux profiles (given by388

Eq. (7)) has been confirmed by their excellent agreement with large-eddy simulations results for389

atmospheric boundary layers in the convective-roll dominant regime with −𝑧𝑖/𝐿 ≳ 10, where 𝐿 is390

the Obukhov length and 𝑧𝑖 the inversion layer height. Furthermore, our simulations confirm that the391

convective logarithmic friction law of Eq. (16), which was originally proposed by Tong and Ding392

(2020) for the mixed-layer mean velocity scale, is valid for an extensive range of −𝐿/𝑧0, namely393

−𝐿/𝑧0 ∈ [3.6×102,0.7×105], where 𝑧0 is the surface roughness length. Since accurate capturing394
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Fig. 6. Vertical profile of the mean spanwise velocity 𝑉 . Filled circles: LES data (Table 1); solid line: prediction given by Eq. (22) with 𝜖 = 0.044.

present LES data, the dashed line is the theoretical predic-
tion given by the MOST, and the solid line is the prediction
given by Eq. (20) with 𝜖 = 0.044. The figure shows that the
MOST accurately captures the surface layer’s wind profile
(lowest 20% of the boundary layer). However, in the mixed
layer, the prediction of the MOST deviates significantly
from the LES data. In particular, the discrepancy from the
MOST increases as the surface potential temperature flux
𝑞𝑤 decreases (figure 5b,c) or the roughness length 𝑧0 in-
creases (figure 5a,d). Therefore, MOST is seldom used to
specify wind profiles outside of the surface layer. Figure 5
shows that the proposed wind profile given by Eq. (20)
accurately captures the velocity profile throughout the en-
tire boundary layer. This excellent agreement confirms the
validity of our proposed wind profile of Eq. (20) for atmo-
spheric boundary layers in the range of studied parameters.

Figure 6 shows the corresponding profiles of the mean
spanwise velocity 𝑉 . The filled symbols are the present
LES data and the solid line is the prediction given by
Eq. (22) with 𝜖 = 0.044. Overall, the agreement between
the proposed wind profile given by Eq. (22) and the LES
data is reasonably good in the entire boundary layer. This
agreement confirms the validity of our proposed wind pro-
file of Eq. (22) for CBLs in the range of studied parameters
(i.e. −𝐿/𝑧0 ∈ [3.6×102,0.7×105]). We note that the fig-
ure confirms that the spanwise velocity 𝑉 is much smaller
than the streamwise velocity 𝑈. The figure also indicates

that the magnitude of the geostrophic wind component |𝑉𝑔 |
increases as the surface potential temperature flux 𝑞𝑤 de-
creases (figure 6b,c) or the roughness length 𝑧0 increases
(figure 6a,d).

4. Conclusions
This work uses a perturbation method approach in con-

juncture with the convective logarithmic friction law and
the Monin-Obukhov similarity theory to develop analyti-
cal expressions of the wind and potential temperature flux
profiles in convective atmospheric boundary layers. The
validity of the proposed wind (given by Eqs. (20) and (22))
and potential temperature flux profiles (given by Eq. (7))
has been confirmed by their excellent agreement with large-
eddy simulations results for atmospheric boundary layers
in the convective-roll dominant regime with −𝑧𝑖/𝐿 ≳ 10,
where 𝐿 is the Obukhov length and 𝑧𝑖 the inversion layer
height. Furthermore, our simulations confirm that the
convective logarithmic friction law of Eq. (16), which
was originally proposed by Tong and Ding (2020) for the
mixed-layer mean velocity scale, is valid for an extensive
range of −𝐿/𝑧0, namely −𝐿/𝑧0 ∈ [3.6× 102,0.7× 105],
where 𝑧0 is the surface roughness length. Since accurate
capturing the coupling between meso and microscale pro-
cesses is a long-standing challenge in numerical weather
predictions (Wyngaard 2004; Larsén et al. 2018; Veers
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et al. 2019), the proposed analytical profiles may be rele-
vant for climate modeling and weather forecasting to better
understand the effect of convective atmospheric boundary
layers on, for example, wind farms. Possible future work
will involve investigating models to predict the entrainment
velocity at the top of CBLs and developing a high-order
model that can capture the transition between the entrain-
ment zone and free atmosphere. The latter may require a
formal asymptotic series expansion of the governing equa-
tions, allowing for the separation into a time-dependent
and steady-state problem at different orders.
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