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Abstract. Street patterns are planar street layouts in a given urban area, which
serveas tools for researchers and urban planners to comprehend the structureof
urban environments. Nonetheless, the task of mapping street patterns for exten-
sive inter-city studies remainsdaunting due to the lack of consistency in manual
identification methods. With recent technological advancementsand dataacces-
sibility, new avenues have opened for data-driven techniques in mapping street
patterns. This study proposes an innovative framework that employs open data
platforms and data processing methods, including network science and super-
vised machine learning, to map street patterns in cities across the globe effort-
lessly. Case studieswere applied to six cities worldwide and made two key ob-
servations from the resulting maps. Firstly, the spatial distribution of street pat-
ternsmirrors theurban spatial structurewithin acity. Secondly, the innatediffer-
ences between cities become apparent. This study is confident that the novel
methodology not only unveils theurban spatial structureacrossdiversecitiesbut
can also beemployed to investigatetheconnection between urbanbuilt formand
urban activities.

Keywords: Street Pattern, Urban Spatial Structure, UrbanMorphology, Ma-
chineLearning.

1 Introduction

The study of urban morphology is crucial to understanding the built environment [1],
[2] in increasingly complex cities, and the street is a critical element of morphological
inspection. Streets are also a very complex subject to study as countless factors are
involved in how astreet performsand isperceived by people [3], [4]. To ease thestud-
ying process, streets are simplified as a network layout with street junctions as nodes
and streets as edges. Street patterns summarising the types of street network layouts
were also introduced to further help scholars and planners understand and design
streets. Lately, new opportunities have arisen for identifying and mapping street pat-
ternswith the introduction of new dataand quantitativemethods. Thenew method has
great potential to enhance theability for large-scale urban studieswith street patterns.
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This research exemplifies thestreet pattern asan instrument to reveal theurban spatial
structure in multiplecitieswith quantitativemethods.
Themotivation for this study comes from two aspects: the extensive application of

street patternurbanstudieswhilelacking scalability and transferability; thequantitative
representation of street network providesnew tools for potential solutions for the con-
straintsmentioned above that havenot been explored. Existing literaturehassuggested
that, ingeneral, thespatial distributionof street patternscould reflect thedifferent urban
functionsof the citiesand thedifferent stagesof urban development due to changes in
urbanmobility and planning ethos[5], [6]. Street patternswerefirst introduced to study
themorphological differencesbetween thecitiesbased on their visual distinctions. Ste-
phen Marshall[4] introduced the ABCD types of street patterns, which associated the
morphological propertieswith functionality and visual appearances. Thesearethemore
general street patternswhich arewidely applicable to different typesof studies [7], [8].
However, the large-scalestudy iscomplex because it isdifficult to identify thesestreet
patterns in a consistent manner. More recently, scholars also identified more categori-
sations of street patterns for specific purposes of study, like street patterns based on
connectivity for transportation studies [9]–[12]. These specialised street patterns are
more easily identifiable in large-scale studies but are also subject to limited fields of
study. Hence, theexistingmethods tomap street patternsareconstantly constrained by
theproblemof transferability and consistency. Street patternsareeither constrained by
the limited casestudy scaleor limited applicability in different study fields. With tech-
nological advancement, access and calculation of street network data and metrics be-
comes increasingly available, such asOSMnx and NetworkX making analysing street
networks intuitive. Chen [8] used the lasted deep leaning tomap thestreet morphology
by their visual identity. Such amethod allows for themass identification of street pat-
ternsacrosslargeanddifferent study areas. However, themoreconventional supervised
machine learning method was left unexplored with the advantage of using the abun-
dancemetrics to explore thedifferent characteristicsof street networks.
To allow for ageneralised global morphological study with expandability, thisstudy

exploresasupervisedmachinelearningapproach, namely random forest, to identify the
street pattern based on variousmetrics. The potential use case will be exemplified by
mapping the street patterns to show the urban spatial structure. The casestudy is con-
ducted in six major cities in Asia, Europe, andNorthAmerica. Each casestudy city has
gone through urbanisation, transferring from avernacular to acosmopolitanmegacity.

2 Methodology

The primary research objective of this research is to reveal the urban spatial structure
in multiple cities by mapping the street pattern with a random forest classifier. To
achievethis, thisstudy hasproposedanew quantitativemethod to ensuretransferability
across different cities and consistency in identifying street patterns. There are three
main components. First, street networks are extracted from a single source of Open-
StreetMap; second, all metrics were calculated quantitatively via NetworkX and OS-
Mnx. Lastly, a random forest classifier was eventually applied to identify the street
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patterns. To ensure the consistency and optimisation of the study unit, this study
adopted theStreet-based Local Area (SLA) as the primary study unit [13]. Four types
of street patterns were adopted from existing studies for mapping: Gridiron, organic,
hybrid and cul-de-sacs. Themapping of the four street patterns across the six cities is
eventually analysed and compared to show theurban spatial structure.

2.1 Casestudy area and quantitativemetr ics

Six citiesareselected as thecasestudy. Since they havedifferent sizesand administra-
tivedivisions, thisstudy unifies thecasestudy area in asquarewith a25kmside length.
SLA is the primary study unit compared to a grid or administrative boundary in past
research. ThisisbecauseSLAsaremoreoptimised for studying streets[13] andensures
universal applicability between different cities. Street network data areextracted from
OpenStreet Map, an open dataplatform. Theseensureauniversal datasource. By rep-
resenting streetsasnetworks, several street morphological metricsarecomputed to cap-
ture the physical characteristics of the streets. The computation is implemented using
network analysistoolssuchasNetwork andOSMnx [14]. Thisstudy eliminatedmetrics
with high correlations to ensure a better classification result. The result is 1054 SLAs
across six cities with 13 metrics. The explanation of the metrics is shown below in
Table1.

Table 1. List of Metrics.

Street Length Calculate thegraph'saverageedge length.
Diameter It is theshortest distancebetween the twomost distant nodes in thenetwork
Circuity Circuity is thesum of edge lengthsdivided by thesumof straight-linedistances

between edgeendpoints.
Or ientation En-
tropy

Orientation entropy is theentropy of itsedges' bidirectional bearingsacross
evenly spaced bins.

k_avg graph'saveragenodedegree (in-degreeand out-degree)
Self-loop Calculate thepercentageof edges that areself-loops in agraph.
L-junction Theproportion of nodeswith two streetsconnected
T-junction Theproportion of nodeswith threestreetsconnected
X-junction Theproportion of nodeswith four streetsconnected
DegreePearson Compute thedegreeassortativity of agraph. Assortativity measures thesimilar-

ity of connections in thegraph with respect to thenodedegree.
Transitivity The transitivity or clustering coefficient of anetwork isameasureof the ten-

dency of thenodesto cluster together.
Averagecluster -
ing

Theclustering coefficient (Watts-Strogatz) isameasureof how complete the
neighbourhood of anode is. Here, it is theaverageclustering coefficient over
all of thenodes in thenetwork.

Global reaching
centrality

theproportion of thegraph is reachable from thenode'sneighbours.

Global Efficiency theaveragemultiplicative inverseof the shortest path distanceof all pairsof
nodes
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2.2 Typesof Street Patternsand Random Forest Classification

Existing studies have proposed various street patterns based on the different purposes
of the study. This study adopted themost common street patterns: Gridiron, Organic,
Hybrid and Cul-de-sacs [10], [15]. Gridiron is a typical street pattern with uniform di-
rections, straight streets, and right-angled X-shaped crossroads. Theorganic street pat-
tern is contrary to thegridiron, thestreet is curly with variousdirections, and thestreet
junction also hasadiverseappearance. Hybrid street patterns fall between thegridiron
and organic. Lastly, cul-de-sacs aremost recognisable for their dead-endsand circular
streets. 300 SLAsare randomly picked and manually identified for their street pattern.
They are used for training and testing the random forest model. A standard random
forest classification procedure iscarried out, and theresulting classifier has thehighest
accuracy of 64%when using six features. Asapreliminary exploration of using super-
vised learning to identify street patterns, this research deemsit adequate for thecurrent
study.

Fig. 1. The four street patterns

3 Resultsand Discussion

The random forest classifier indicates that the fivemost crucial attributesare: Circuity
(14.4%), X-junction (12.2%), Street length (10.1%), DegreePearson (9.8%), and ori-
entation entropy (8%), collectively accounting for 55% of theclassification outcome's
explanation. Table2 presents theaveragevaluesof thesemetrics for each street pat-
tern. Themajority of thesevaluescorrespond to thegeneral descriptionsof thepat-
terns, with gridiron and organic typesat oppositeendsof thespectrum and thehybrid
situated in between. Thecul-de-sac style standsout with thehighest circuity, street
length, and the lowest X-junction and DegreePearson values. Most of thesecharac-
teristicscan beeasily discerned through visual observation, which is likely due to the
original training dataset beingmanually identified based on thepatterns' visual dis-
tinctions.
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Table2. Theaveragevalue for TOP5 features.

Gridiron Organic Hybrid Cul-de-sacs

Circuity 1.023 1.071 1.063 1.098

X-junction (%) 38.4 13.5 18.8 12.0

Street Length (m) 119.3 82.8 115.5 131.7

DegreePearson 0.343 0.104 0.160 0.047

Orientation Entropy 2.803 3.349 3.132 3.265

Several observations can bemadewith respect to urban spatial structureafter mapping
thestreet patterns. Generally, most citiesshow aring structurewith two to three layers
of street patterns. A core is present in the centre of the case study area, which can be
considered thehistorical urbanarea. Dependingon thecity, thecore ismainly occupied
by either gridiron or organic types of street patterns. Surrounding the urban core is the
second layer; it results from urban expansion and is considered the extension of the
urban core. Street network in this layer generally formsat adifferent timeperiod com-
pared to theurban core, which breaksaway from theconventional pattern and appears
to behybrid. Lastly, theoutermost layer at thecity'speriphery mostly showsaCul-de-
sacs pattern. They are considered suburban areas. Hence, the urban spatial structure
revealed by thestreet pattern not only showsurban functions through theurban-subur-
ban division but also reflects thedifferent stagesof urban development.
Themapping of street patterns also shows the urban structural differences between

cities. First, asmentioned earlier, somecities show three layersof ring structurewhile
othersonly have two. Houston and London are typical citieswith three layersof urban
spatial structurewhereanurbancore, urbanextensionand suburbandivisionareclearly
identifiable. The gridiron inner core in Houston and the organic inner core in London
reflect the difference in the planning and urban development in North American and
traditional Europeancities.On thecontrary, ChengduandAmsterdamshow atwo-layer
urban spatial structurewhere theurban core isnot recognisable from thestreet pattern.
In addition, the street pattern mapping also, to somedegree, reflects thepolycentricity
[16], [17] of the cities. For example, the study area in the Amsterdam region clearly
shows a polycentric urban spatial structure with multiple urban core present. This is
probably due to the fact thestudy areahascovered surrounding cities likeHaleem and
Zaandam, which the street pattern is able to capture. While cities like Chengdu and
Houston appear to bemoremonocentric.
The proposed method and the street patterns mapping show promising results and

prove their potential in the urban morphological study. A further application in more
citiescan help to study thespatial distribution of street patternsand urban spatial struc-
tureat a larger scale. Theproposed study unit, SLA, also performswell in capturing the
street networks' character. Still, some limitations need to be addressed. First, due to
timeconstraints, thestreet patterncategorisationadopted in thisstudy isstill toogeneral
and vague for amore refined study. Themanual identification in the training set also
lacks cross-referencing. Second, among the fourteenmetrics, only six weresignificant
in the classifier, meaning some information was lost. This either means thesemetrics
are less relevant in thedefinition of street pattern or the street pattern categorisation is
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ineffective in capturing the character of the street network. Lastly, we would like to
point out the inherent limitation of using streets pattern in urban morphology. Streets
are one of the many urban elements present in the built environment. Hence, streets
alone are insufficient for a holistic urban study and present an opportunity for a study
involvingmultipleurban elementssuch asbuildings.
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Fig. 2. Themapping of street patterns in six casestudy cities.
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4 Conclusion

Through theproposed framework, this paper hasexemplified how thequantitativeap-
proach could identify street patterns, and in turn, it reveals the urban spatial structure
for cross-comparison between different cities. In short, this article first proposed that
network andmachinelearningmethodshaveshownpromising resultsin studying street
patterns. Second, this research provides a new perspective for viewing urban spatial
structure and presents opportunities for further research. Their distribution roughly
showsa ring structurewhich reflects thehistorical core, new urban extension, and sub-
urban/rural division of urban spatial structure. In addition, the different street patterns
presented in different citieswith different percentagesand their spatial distribution in-
dicate the inherent differences and characters in cities. This research provides a new
perspective for viewing urban spatial structure and presents opportunities for further
research. However, the limitation of asingleurbanmorphological element, such as the
street network, to reflect the urban spatial structure needs to be further addressed to
generatemore fruitful results.
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