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A B S T R A C T

Image segmentation is a fundamental step in object-based image analysis and other workflows. However,
high-efficiency remains a challenge, especially for the analysis of large-scale Earth observation images. In
recent years, considerable effort has been paid to designing merging criteria, automatic scale selection, and
object-specific optimisation. These segmentation methods usually rely on the region-adjacency graph (RAG)
model and the nearest neighbour graph (NNG) model, which provide acceptable merging performance. Low
efficiency occurs due to many redundant edge weight updates in the RAG model. In this study, we propose a
generic dynamic pruning framework to improve the efficiency of existing region-merging-based segmentation
algorithms, opening the door for large-scale applications in remote sensing. The proposed pruning framework
includes intra-object and inter-object pruning modules for the RAG model. Inter-object pruning divides the
RAG model into multiple sub-RAG models to reduce the redundant edge weight updates between adjacent
objects. Intra-object pruning iteratively divides the sub-RAG into smaller RAGs. In our experimental analysis,
we employ the proposed pruning framework with six region-merging segmentation methods and validate the
effectiveness on four 10–20M pixel images and a 100M pixel data set. The pruning framework improves the
performance of various segmentation algorithms by reducing computational complexity while maintaining
segmentation accuracy. We observed a significant improvement in efficiency, with various achieving super-
linear speed-up while maintaining the stability of segmentation accuracy. In single-core mode, the computation
time of tested algorithms is enhanced by two to ten times on the four test images. In the multicore mode,
speed-up increased up to 40 times with eight CPU cores. The computational cost was reduced by 36.15% to
95.77% in the number of weight updates, which is independent of hardware characteristics. On the large-scale
image, two modes achieved speed-ups of 36.07 and 102.74, respectively.
1. Introduction

The rapid advances in remote sensing technology have led to in-
creased numbers of very high resolution (VHR) remote sensing im-
ageries, allowing for precise geometrical analysis and semantic in-
terpretation of objects at fine scales (Liu and Abd-Elrahman, 2018;
Zhao et al., 2021, 2022). Object-based image analysis (OBIA) has been
proven reliable for VHR image analysis thanks to its capability to utilise
geometric and spatial contextual features while also reducing the salt-
and-pepper noise often introduced by pixel-based methods (Blaschke,
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2010; Van den Bergh et al., 2012; Lv et al., 2019). Consequently,
OBIA has a wide range of applications, including land cover mapping,
ecological wetland surveying, and crop type identification (Zhang et al.,
2018b; Orynbaikyzy et al., 2019; Bhatnagar et al., 2021; Lv et al.,
2021). Accurate image segmentation effectively solves the difficulty
posed by intra-object heterogeneity, serving as a preconditional step
in OBIA methods.

Traditional segmentation methods are developed based on models
such as mean-shift (Ming et al., 2015), watershed (Shafarenko et al.,
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1997), region merging (Hossain and Chen, 2019), and Markov Random
Field (Zhang et al., 2017). Among these studies, the region merging
method has been widely used for generating segments via different
threshold settings. Built upon these studies, numerous improved seg-
mentation algorithms have been developed by estimating the optimal
scale parameter, designing merging rules, or automating the determi-
nation of object scale (Hossain and Chen, 2019; Zhang et al., 2020).
Although the research focus has largely shifted towards deep learning
models in the last decade, traditional image processing and analysis
like region-merging algorithms can still play an important role in
several remote sensing and computer vision applications. Deep learning
models are popular for addressing several image analysis tasks, such
as semantic segmentation, instance segmentation, object detection,
and so on. However, they typically require large amounts of labelled
data and training of such models comes at significant computational
costs. Conversely, region-merging methods can process large images
quickly without relying on massive training data. Most region-merging
segmentation methods are in fact completely unsupervised, while the
recently introduced DeepMerge algorithm exploits the advantage of
deep learning for learning the similarity between adjacent segments
considering labelled pairs of segments, i.e., a form of weak supervision.
As a part of the overall image processing workflow, region merging
methods output image segments (or super-pixels), an essential step
of the object-based image analysis workflow to finally produce a se-
mantic segmentation. Super-pixel segmentation can be combined with
convolutional networks or other deep learning methods to perform
semantic segmentation and semi-supervised segmentation (Lv et al.,
2023; Martins et al., 2020; Zhang et al., 2018b; Tong et al., 2018; Chen
et al., 2023). In such cases, a quick and reliable segmentation can assist
deep learning to achieve better performance (Zhang et al., 2018b; Lv
et al., 2018). Therefore, research on region-merging methods is still
relevant in the deep learning era, in particular for applications where
limited training data is available and the processing time is critical.

One critical challenge in segmentation is computational efficiency,
especially in processing large-scale remote-sensing images. For exam-
ple, it takes at least 9 million steps (50 min processing time on the
tested computer) to update weights in segmenting an image of 100M
pixels (Lv et al., 2023). Hierarchical Stepwise Optimisation (HSWO)
iteratively optimises pixel-wised image segmentation and merges pixels
using the region adjacent graph (RAG) model (Beaulieu and Goldberg,
1989), which forms a prototype for region-merging-based optimisation
methods. The nearest neighbour graph (NNG) was developed to record
the cycles created by the lowest-weight edges from node edges so that
the least weighted edge can be found in a rapid manner (Haris et al.,
1998). To speed up the processing efficiency, efforts have been made
to create segmentation models suitable for multithreading or parallel
data processing. Algorithm parallelism differentiates algorithms into
independently runnable modules and executes them on multicore CPUs,
while data parallelism achieves parallel acceleration by processing data
in chunks (Wassenberg et al., 2009; Hu et al., 2018).

The merging criterion and the merging order in region-merging
procedures are the two main elements that affect the efficiency of
region-merging-based segmentation. Scholars have adopted a variety
of merging features, including segment area, mean band values, spec-
tral homogeneity, compactness, and shape features (Chopra et al.,
2005; Paris and Durand, 2007; Liu et al., 2012; Zhang et al., 2013;
Drăguţ et al., 2014). A deep learning-based region-merging was re-
cently proposed to combine deep learning, handcrafted features, and
segmentation for high-accuracy segmentation with less than 0.2% of
sample data (Lv et al., 2023). Besides, various merging criteria have
been handcrafted to reduce weight updating computation complexity.
However, the segmentation accuracy is often inversely proportional to
the complexity of the merging criterion design. The global best merging
strategy (Beaulieu and Goldberg, 1989), the best local-merging strat-
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egy (Baatz, 2000), and the local mutual-best merging strategy (Castilla
et al., 2008) are the three mostly used merging strategies, with vary-
ing segmentation efficiencies (Zhang et al., 2019). These handcrafted
merging criteria, however, are limited by a tradeoff between segmenta-
tion precision and segmentation efficiency. In addition, after the NNG
method, most methods that aim to increase computational efficiency
are generally designed for special cases with poor generalisability.

To address the aforementioned challenges, we propose a generic
dynamic pruning framework to systematically improve the efficiency of
remote sensing image segmentation algorithms. Pruning is an effective
tool in many data analysis fields such deep learning (Liu et al., 2021;
Lin et al., 2022), machine-learning (Gelfand et al., 1989; Salembier
and Foucher, 2016; Tochon et al., 2015), top-down image segmentation
methods (Wassenberg et al., 2009), searching algorithms (Harabor and
Grastien, 2011), compressing models (Vo et al., 2009), and so on.
Pruning is utilised to reduce the size of models (Liu et al., 2021;
Lin et al., 2022; Vo et al., 2009), improve the efficiency (Liu et al.,
2021; Lin et al., 2022; Wassenberg et al., 2009), optimise classification
models (Gelfand et al., 1989; Salembier and Foucher, 2016; Harabor
and Grastien, 2011). In spired by the pruning and divide-and-conquer
strategy, we designed the pruning framework for the image segmen-
tation. To the best of our knowledge, we are the first to apply it
in region-merging methods, which are typically bottom-up methods.
In our preliminary study, we found that the frequent update of edge
weights is one of the main factors affecting segmentation efficiency.
Thus, reducing the number of edge weight updates is the main objective
of the proposed framework. The basic principle is to reduce the number
of weight updates by pruning the RAG model, thus significantly improv-
ing the segmentation efficiency while maintaining the segmentation
accuracy. As a result of pruning, a RAG will be partitioned into many
sub-models, allowing the method to be executed on multicore devices.
The distribution of individual sub-RAGs over many CPU cores enhances
the algorithm’s performance.

We implemented the pruning framework for six region-merging-
based segmentation methods and validated the performance on four
test sites. We utilised the F value (Zhang et al., 2015) and qualita-
tive assessment to validate the effectiveness of the proposed frame-
work to preserve the original segmentation accuracy, and we used
the speed-up indicator to evaluate the enhanced computational effi-
ciency of segmentation algorithms. The proposed pruning framework
contains intra-object and inter-object pruning modules with two main
contributions:

• Generic dynamic pruning framework for bottom-up segmentation
methods, whose scales rely on the similarity (or discrepancy)
between segments. The proposed framework improves segmen-
tation efficiency without sacrificing segmentation accuracy. For
the single-core mode, the computational time of each tested
algorithm is enhanced by two to ten times, and the speed-up in
the multicore mode can increase up to 40 times with eight CPU
cores. On the large-scale image, the single- and multicore modes
achieve speed-ups of 36.07 and 102.74, respectively.

• A improvement of the performance of different segmentation
algorithms by reducing time complexity while maintaining space
complexity, a measure of the memory size temporarily used by
the algorithm. The proposed framework can partition a RAG
model into sub-RAG models and allows computation on mul-
tiple cores, thus fully exploiting the performance of multicore
machines.

2. Methodology

The workflow of the proposed dynamic-pruning framework for
remote sensing image segmentation is presented in Fig. 1. Fig. 1(a)
depicts the processing of conventional region-merging-based segmen-
tation methods, where remote sensing images are first partitioned into
primitive segments as initial segmentation via a standard segmentation
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Fig. 1. The workflow of a typical segmentation and pruning framework. (a) Conventional workflow of segmentation methods; (b) Workflow of the proposed segmentation framework
using inter-object and intra-object pruning.
Fig. 2. The concept of the RAG model. (a) the primitive segments; (b) the
non-directional graph corresponding to the primitive segments in (a).

method. Traditionally, a RAG-NNG model, usually with low efficiency,
can be built based on primitive segments to output optimised segmenta-
tion based on the handcrafted merging criteria. The proposed dynamic
pruning depicted in Fig. 1(b) improves the segmentation efficiency, as
it serves as a replacement for the inefficient RAG-NNG model in typi-
cal region-merging processing modes. The proposed dynamic pruning
process contains several major steps (Fig. 1(c)), including constructing
global-RAG, pruning, generating local-RAG, and reconstructing RAG,
where ×L means that the module has to be applied L times iteratively.
We describe the principles of the RAG and NNG models and the steps
of the proposed method in the following sections.

2.1. The rationale of the RAG-NNG model

RAG is a graph data structure used to record segments and their
spatial relationships. Fig. 2 depicts the RAG model for a sample over-
segmentation case with seven primitive segments. An un-directional
graph G=(V, E) can be constructed considering the seven segments as
nodes and the connections between them as twelve edges (Fig. 2(b)).
Nodes are represented by 𝑣𝑖 (i=0,1, . . . ,7), and edges are symbolised by
𝑒𝑗 (j=a,b, . . . ,l).

The weight of each edge denotes the similarity between nodes
at both ends. Thus, the region-merging-based segmentation methods
can be implemented by merging the most similar segment pairs via
searching for the least weighted edge iteratively. After each merge, the
weights of the edges connected to the new node need to be updated. For
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example, assuming 𝑒𝑎 is the least weighted edge in the graph, 𝑣1 and
𝑣4 are the most similar segments to be merged. The weights of edges
𝑒𝑏, 𝑒𝑐 , 𝑒𝑑 , and 𝑒𝑙 connected to the new node must be updated. Such
a protocol causes two inefficiency issues. One is the time complexity
of searching the least weighted edge, which demands extensive com-
putation resources in a large graph. Given a set of edges with size 𝑛
and a total number of m regions to be merged, the time complexity of
the least weighted edge search using existing methods is 𝑂(𝑛 × 𝑚𝑙𝑜𝑔𝑛),
where the first term is the cost to construct the graph, while the
second term is the cost to maintain the priority queue (Wu, 1993).
The region merging with this time complexity usually fails to meet the
high-efficiency requirements of many image-segmentation tasks. The
other issue is the unnecessary weight update of some edges, which also
leads to additional computational demand. Haris et al. (1998) proposed
the NNG model to address the least weighted edge search issue. Fig. 3
presents the construction of the NNG model.

The NNG is a directed graph where the edge with the lowest weight
among the edges connected to a node define the node’s direction edge.
For instance, assuming 𝑒𝑐 is the least weighted edge among the edges
connected to 𝑣3 the edge direction of 𝑣3 is 𝑒𝑐 from 𝑣3 to 𝑣4 (Fig. 3(a)).
Each node has only one edge direction. Edge directions of each node
can be defined by the lowest-weight edge connection (Zhang et al.,
2014). As we can see in Fig. 3(b), in the data structure composed of
nodes connected by their directional edges, only one cycle eventually
remains in one NNG model such as node cluster of 𝑣1, 𝑣3, 𝑣4 and the
other cluster of 𝑣2, 𝑣5, 𝑣6, 𝑣7. Therefore, the weights of the cycles are
the weights of related edges. The data structures depicted in Fig. 3(b)
result in two cycles stored in a minimum priority queue by the weights
of the cycle (Haris et al., 1998; Zhang et al., 2014). According to the
generation principle of cycles, the least weighted edge in the RAG
must be stored in these cycles. Hence, the size of the edge set to be
searched is reduced from an initial twelve edges to only two edges
(Fig. 3(c)). After searching for the least weighted edge, a new node
𝑣1,4 is merged from the corresponding nodes 𝑣1 and 𝑣4. By updating
the weights of edges connected to 𝑣1,4, and calculating the direction of
𝑣1,4, a new cycle is extracted and pushed into the minimum priority
queue. Although the NNG model addresses the least weighted edge
search issue, the unnecessary weight updating remains an issue which
will be addressed in the following sections.
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Fig. 3. Comparing NNG and RAG models. (a) the RAG model; (b) the construction process of NNG from RAG; (c) the NNG model.
Fig. 4. Ideal state examples of RAG models. (a) a linear RAG model; (b) a RAG model
with cycles; (c) a complex RAG model with two hypothetical objects (object 1 contains
nodes 𝑣1, 𝑣2, 𝑣4, 𝑣5 and object 2 contains nodes 𝑣3, 𝑣6, 𝑣7, 𝑣8, and 𝑣9). The orange
lines mean that the nodes at their ends owe to different objects and thus should not
be merged. On the contrary, the black lines indicate the end nodes belong to the same
object, and should thus be merged. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

2.2. Computational complexity of the RAG model

The complexity of the RAG models varies depending on the data
types, segmentation algorithms, and parameter settings; nevertheless,
their inefficiency is due to frequent updating of the edge weights. We
chose three examples of the RAG models to analyse and discuss their
computational complexity (Fig. 4).

The sample RAG model in Fig. 4 (a) contains five nodes and four
edges. The graph on the left of Fig. 4(b) consists of four nodes and
four edges that create a ring. On the right of Fig. 4(b), each node is
connected with others in the ring. The two RAG models in Fig. 4(c)
are combinations of basic graphs from Fig. 4(a) and (b), demonstrating
high structural complexity.

The standard RAG model includes inter-object weight update and
intra-object weight update redundancies. The inter-object weight up-
dates refer to the weight updates between adjacent segment pairs form-
ing different objects in the final segmentation results. These weights are
often higher than the user-defined threshold, and participate in weight
updates in the standard RAG model, but unnecessary. The intra-object
weight updates refer to that the weight updates between segment pairs
composing the same object in the final segmentation. These weights are
usually lower than the threshold, but their updates are too frequent to
be merged efficiently.

Assuming that nodes connected by black edges are to be merged
into one object, the graph in Figs. 4(a), 4(b) left, and 4(b) right will
16
Fig. 5. Example merging steps in RAG models. The nodes in the circle are candidate
nodes to be merged. The weights of dash lines require weight updating after each
merging. (a) is the merging process of Fig. 4(a) requiring three weight updates. (b) is
the merging process of Fig. 4(b), require three weight updates.

be merged into the same object, respectively. The graphs shown in
Fig. 4(c) will be merged into two objects (one object contains nodes
𝑣1, 𝑣2, 𝑣4, 𝑣5, and the other contains nodes 𝑣3, 𝑣6, 𝑣7, 𝑣8, and 𝑣9).
The steps of initialising weight for each edge correspond to the edge
number in the RAG model. Updating steps represent the number of
weight updates required within the merged segments. Excess steps are
the number of unnecessary weight updates between merged segments.
In Fig. 4(c), notably, the weight update of orange edges is excessive.
Different merging orders result in varying merging efficiencies. The
merging process in Fig. 4(a) and (b) is exhibited in Fig. 5(a) and (b),
respectively. We can conclude that the updating steps of the RAG mode
in Fig. 4(a) are three (Fig. 5(a)). Similarly, both the left and right
updating steps in Fig. 4(b) are three (Fig. 5(b)).

The RAG on the left in Fig. 4(c) is formed of Figs. 4(a) and 4(b)
left, whereas the RAG on the right in Fig. 4(c) is composed of Figs. 4(a)
and 4(b) right. Thus, the merging steps of RAGs on the left and right
in Fig. 4(c) are both six. However, the unnecessary steps of edge
weight updating are quite different in RAGs. The unnecessary steps in
Figs. 4(a) and 4(b) are zero. The orange edges in the RAGs in Fig. 4(c)
are connected by two objects, indicating that the weight updating of
these edges is unnecessary and redundant. Table 1 shows the details
regarding the initial steps, updating steps, unnecessary steps, and total
steps of edge weight updates in Fig. 4. We notice that the unnecessary
steps account for a large ratio of the total steps (12/30 and 16/32). In
other words, the inter-object weight updates are responsible for the low
computational efficiency of the RAG model.

On the other hand, intra-object weight update also reduces the
efficiency of the RAG model. For example, an object in the sample
segmentation is a data structure consisting of a complete binary tree,
whose leaf nodes are initial segments (Hu et al., 2017; Zhang et al.,
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Fig. 6. Process of inter-object pruning. (a) the RAG model and the yellow circles mean two objects; (b) inter-object pruning; (c) the NNG model. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Statistics about weight updates in scenarios that are reported in Fig. 4.

RAG Initial steps Updating steps Unnecessary steps Total steps

Fig. 4(a) 4 3 0 7
Fig. 4(b) left 4 3 0 7
Fig. 4(b) right 6 3 0 9
Fig. 4(c) left 12 6 12 30
Fig. 4(c) right 20 6 12 30

2020). Under ideal conditions, the optimal weight updating frequency
is only once each merge (for constructing a complete binary tree).
Supposing that n denotes the node number and l denotes the leaf node
number, the merging steps is (𝑛 − 𝑙). However, given the complex
spatial topological relationships between segments, such a condition
is impractical. Thus, the weight updates in the object composed of
multiple segments would contain many redundancies. For an object,
the more segments it has, the more serious the problem is. In other
words, the intra-object weight updates are also responsible for the low
computational efficiency of the RAG model.

To address the two issues, we proposed a dynamic-pruning frame-
work, which includes inter-object pruning and intra-object pruning
modules, to optimise the standard RAG model. The following sections
introduce the pruning framework in detail.

2.3. Inter-object pruning

The rationale of inter-object pruning is to prune the edge connecting
two segments whose weight (the similarity between two neighbour
segments) exceeds a user-defined threshold. When the global RAG
model is updated, the edge weight frequently increases following user-
defined region-merging criteria. Therefore, following the initialisation
of the RAG model, the update of the weights higher than the defined
scale becomes redundant. We prune the edges with weights higher than
the defined scale. Fig. 6 exhibits the concept of inter-object pruning.
Fig. 6(a) shows a global RAG model the same as Fig. 2. Assuming that
the RAG is finally merged into two segments (indicated by the nodes
in orange circles) and the weights of edge 𝑒𝑑 , 𝑒𝑓 , 𝑒𝑘, and 𝑒𝑙 are larger
than the scale, we prune these edges in Fig. 6(b) without future weight
updates. In the final step, we construct the local RAG models on the
resulting subgraph respectively (Fig. 6(c)). As a result of the inter-object
pruning, the updating times in Fig. 6(a) significantly reduce.

The local RAGs in Fig. 4(c) are divided into two local RAGs after
pruning the orange edges. The updating excess times related to the
global RAG drop from twelve and sixteen to zero. The theoretical
merging efficiency increases by 40% and 50%, respectively. However,
the RAG in the actual situation is more complex than the ideal state.
For instance, the weights of edges connecting to the new node 𝑣5,6
merged by 𝑣5 and 𝑣6 must be updated. The edge weights between 𝑣2
and 𝑣5,6 or 𝑣7 and 𝑣5,6 may be greater than the scale. In addition,
the edge weight between 𝑣 and 𝑣 can also become a lower value,
17

3 5,6
Fig. 7. The division of local RAGs using breadth-first search. The six colours in nodes
demonstrate six sub-RAGs. The dash lines mean the related edges are pruned by
intra-object pruning.

despite its pruning. Thus, the initial inter-object pruning sometimes
fails to produce the optimal merging outputs. We will reconstruct a
global RAG model composed of the local RAG models based on known
spatial relationships to improve the inter-object pruning performance.
Then, we iterate the pruning steps described above for the new global
RAG model. Such a design improves the merging efficiency and ensures
optimal merging results.

2.4. Intra-object pruning

The actual steps of weight updates are substantially more than the
theoretical minimum in an object according to Section 2.2. After inter-
object pruning for a global RAG, the local RAGs have potential to
become objects in the final segmentation. For example, a large local
RAG may finally become one large object. The object contains many
initial segments, thus lots of redundant edge weight updates occur in
the merging process. Therefore, these large RAGs hinder significantly
the merging efficiency. We therefore design an intra-object pruning to
reduce the redundant weight updates of edges, i.e., the optimisation of
the local RAG. Let us note that the greater the compactness of an object,
the shorter its perimeter, e.g., the perimeter of the circle is the shortest
among the objects with the same area. A shorter perimeter means fewer
connections to other objects. According to this principle, we are going
to divide large RAGs into small RAGs with high compactness and the
same size. We utilise the breadth-first search (BFS) algorithm (Zhang
et al., 2018a) to divide the large local-RAG into more equal-size RAGs.
In this way, computing resources can be evenly allocated to each local
RAG, and in the next iteration, because of the reduced number of
connections, the number of weight updates to rebuild the global RAG
is smaller. The BFS searches over the local-RAG until the count of
searched nodes reaches a user-defined threshold. These nodes are used
to construct a new local-RAG, and the next round of BFS can start on the
unsearched nodes until all nodes are searched. Fig. 7 shows the division
of a local RAG with six clusters of equal size. Thus, the local native RAG
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Fig. 8. Four testing sites with very high-resolution images of T1 (a), T2 (b), T3 (c), and T4 (d) shown with red, green, and blue bands. The regions with green outlines are
reference objects. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
is divided into six new local RAGs, resulting in the six segments in the
native RAG after this iteration. The six segments are further constructed
in one local RAG in the next iteration.

In the intra-object pruning, lots of edges with weights lower than
the user-defined threshold are pruned. However, the nodes at the
ends of these edges can have high similarity to be merged. Therefore,
both intra- and inter-object pruning require re-constructing RAG and
iterate the pruning process. In addition, a global RAG is divided into
even local RAGs via inter-object pruning and intra-object pruning, thus
demonstrating the possibility to parallelise the algorithm for multicore
implementation. The Pseudo-1 codes of the framework are reported
below:

The inputs include the primitive segments 𝑆0, the scale parameter,
the number of iteration L, the number of cores 𝑇 , and the searching
size of BFS. First, a global-RAG can be constructed based on the 𝑆0 using
RAG constructing function Construct-RAG(*). Scale-series are defined by
input scale, and are applied in each iteration. The global-RAG is divided
into multiple local-RAGs via Inter-object-pruning(*) function at the
begin-scale, where some large local-RAGs continue to be separated using
intra-object pruning (BFS(*) function). We distribute the local-RAGs
evenly over 𝑇 worker cores based on Multi-cores(*) function. Further,
we can obtain the optimal merging results using the local-RAGs by
conducting Merging(*) function. We then reconstruct global-RAG based
on the local-RAGs by Re-construct-RAG (*) function and iterate the
above processing until the iteration times meet the required parameter
18
𝐿. The spatial complexities of the RAG model before and after the
addition of pruning remain 𝑆(𝑛+𝑘), where 𝑛 is the number of nodes and
𝑘 is the number of edges. The time complexity after pruning becomes
𝑂(𝑛− 𝑟+𝑚log𝑛), where 𝑟 is the redundancy of weight updating related
to the segmentation algorithms.

2.5. Tested methods

We apply the proposed dynamic-pruning to prune six existing seg-
mentation methods based on region merging to exhibit its robustness
and efficiency. They involve unsupervised segmentation, supervised
segmentation, standard methods, deep learning, and various merging
criteria. The hierarchical step-wise optimisation (HSWO) method is
an earlier region-merging based optimisation method and is widely
applied in remote sensing images (Beaulieu and Goldberg, 1989). Best
merging region-growing segmentation (HSeg) first integrates nonad-
jacent geo-objects aggregation via bottom-up strategy (Tilton et al.,
2012). The Boundary-Constrained Multi-Scale Segmentation (BCMS)
method utilises the edge penalty to improve the segmentation per-
formance (Zhang et al., 2013). Fast hierarchical segmentation (FHS)
adopts a linear nearest neighbour graph and adaptive edge strength
(Zhang et al., 2014) method, employs a local spectral angle thresh-
old for region-merging (Yang et al., 2017). The deep region merging
(DeepMerge) method integrates a deep learning model and region-
merging based segmentation on a large scale dataset of high spatial
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Algorithm 1: Pruning framework
input : Primitive segments S0, scale, iteration times L, core

number T, size of the BFS
output: The optimisation result 𝑆𝐿 based on the

region-merging

1 global-RAG ← Construct-RAG(S0);
2 scale-series←[scale0,scale1,...,scale𝑘] where k ← L-1, scale0 <=

scale1 <=...<= scale𝑘 = scale;
3 i←0;
4 while i<L do
5 begin-scale←scale-series[i];
6 local-RAGs←Inter-object-pruning(global-RAG,begin-scale);
7 new-local-RAGs←[];
8 j←0;
9 node-count←Count(local-RAGs);
10 while j<L do
11 size←Count(local-RAGs[j]);
12 if size>node-count then
13 sub-RAGs←BFS(local-RAGs[j],size);
14 new-local-RAGs.Add(sub-RAGs);
15 else
16 new-local-RAGs.Add(local-RAGs[j]);
17 j=j+1;
18 local-RAGs←Multi-cores(new-local-RAGs,T );
19 𝑆𝑖+1,local-RAGs←Merging(local-RAGs,scale);
20 global-RAG←Re-construct-RAG(local-RAGs);
21 i=i+1;
22 final;
23 return 𝑆𝐿;

resolution remote sensing images (Lv et al., 2023). The aforemen-
tioned methods are selected as competing methods to test our proposed
dynamic-pruning framework. The details involving merging criteria
and description of these methods can be found in Table 2.

MC is the edge weight between two adjacent segments. 𝑎1 and
2 are the areas in pixels of the segment pair, and 𝑢1 and 𝑢2 are

the mean spectral values of the pair (Beaulieu and Goldberg, 1989).
𝑏 is the number of bands. 𝑣1𝑖 and 𝑣2𝑖 are the mean value of 𝑖th
band (Tilton et al., 2012). 𝐶𝐶𝑜𝑚𝑝 is the change of compactness. 𝐸𝑆
is the edge strength and 𝐶𝑆𝑡𝑑 is the change of homogeneity defined
by standard deviations 𝑆𝑡𝑑1, 𝑆𝑡𝑑2 and areas 𝑎1 and 𝑎2 of two regions.
𝑆𝑡𝑑 is the standard deviation of the hypothetical merged region (Zhang
et al., 2013). 𝐿1 and 𝐿2 are the perimeters of two regions, and 𝐿 is
the perimeter of the hypothetical merged region. 𝜀 is a user-defined
parameter adjusting the strength of edge penalty (Zhang et al., 2014).
𝐻𝐼 is the relative value of the initialised area weight of the segment.
𝑠1𝑠2 is the angle of the segment pair, the same as HSWO. 𝑃 (𝑥, 𝑦) is
the pixel value in the segments’ location (𝑥, 𝑦). 𝑠𝑡𝑑𝑣 is the standard
deviation of the segments (Yang et al., 2017). 𝑓𝑙 and 𝑓𝑟 represent the
feature vector in the two segments, and 𝑖 indicates the 𝑖th feature item
from the vector (Lv et al., 2023).

The parameter updating, such as area, perimeter, mean value, and
standard deviation value after merging two regions, are also important
factors that affect segmentation efficiency. The parameters in the newly
merged region updated directly based on the native pixels can cause
low efficiency in the whole merging process. Therefore, we exhibit the
efficient parameter updating methods based on the native parameters
before merging in the following equations:

𝑎 = 𝑎1 + 𝑎2 (1)
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𝐿 = 𝐿1 + 𝐿2 − 2𝑙 (2)
𝑢 = 1
𝑎1 + 𝑎2

(

𝑎1𝑢1 + 𝑎2𝑢2
)

(3)

𝑆𝑡𝑑 =

√

√

√

√

√

𝑎1𝑆𝑡𝑑21 + 𝑎2𝑆𝑡𝑑22
𝑎1 + 𝑎2

+
𝑎1𝑎2

(

𝑢1 − 𝑢2
)2

(

𝑎1 + 𝑎2
)2

(4)

𝑓𝑖 =
1

𝑀 +𝑁
(

𝑀𝑓 𝑙
𝑖 +𝑁𝑓 𝑟

𝑖
)

(5)

𝐸𝑆 = 1
𝑙1 + 𝑙2

(

𝑙1𝐸𝑆1 + 𝑙2𝐸𝑆2
)

(6)

where 𝑎, 𝐿, 𝑢, 𝑆𝑡𝑑, and 𝑓𝑖 are the area, perimeter, mean value, standard
deviation value, and features of the merged region, respectively. 𝑙 is the
length of the intersected edge between two regions. 𝑀 and 𝑁 are the
number of feature vectors in two regions, respectively. 𝐸𝑆1 and 𝐸𝑆2
re the edge strength between two regions and the third region. 𝐸𝑆 is
he edge strength between the merged region and the third region, in
hich 𝑙1 and 𝑙2 are the edge length between the third and the first two

egions, respectively.

.6. Performance metrics

To validate the segmentation performance with pruning and no
runing, we choose to employ the F values (Zhang et al., 2015), used
n the superpixel segmentation estimation, which is presented in the
ollowing. S is the set of polygon segmentation results containing M
egments {𝑆1, 𝑆2, . . . , 𝑆𝑀}, and R is the set of polygons containing N
eference geo-objects {𝑅1, 𝑅2, . . . , 𝑅𝑁}. |∗| function outputs the area of

a segment. 𝑅𝑖,𝑚𝑎𝑥 denotes the largest area reference geo-object related
to the segment 𝑆𝑖, and 𝑆𝑖,𝑚𝑎𝑥 denotes the largest area segment related
to the reference geo-object 𝑅𝑖. 𝑅𝑖𝑗 denotes the set of segments related
to 𝑅𝑖. 𝑆𝑖 ∩ 𝑅𝑖,𝑚𝑎𝑥 is the intersection of 𝑆𝑖 and 𝑅𝑖,𝑚𝑎𝑥. 𝛼 is often set as
0.5.

|𝑆| =
𝑀
∑

𝑖=1

|

|

𝑆𝑖
|

|

(7)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑀
∑

𝑖=1

|

|

|

𝑆𝑖
⋂

𝑅𝑖,max
|

|

|

∕ |𝑆| (8)

|𝑅| =
𝑁
∑

𝑖=1

|

|

|

𝑅
𝑖
|

|

|

(9)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑁
∑

𝑖=1

|

|

|

𝑅𝑖
⋂

𝑆𝑖,max
|

|

|

∕ |𝑅| (10)

F = 1
𝛼 1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + (1 − 𝛼) 1

𝑟𝑒𝑐𝑎𝑙𝑙

(11)

To validate the performance of the proposed dynamic-pruning al-
gorithm, we chose to employ the speed-up factor, often applied in the
field of parallel processing, to quantify the efficiency improvement of
segmentation methods before and after the addition of the proposed
pruning framework (BalkanskiF et al., 2019). The speed-up factor is
defined as follows:

𝑆𝑝 =
𝑇0
𝑇𝑝

(12)

where 𝑇0 is the runtime of the native algorithm without pruning, and
𝑇𝑃 is the runtime of the segmentation methods using the dynamic-
pruning framework. 𝑃 is the number of the running cores. 𝑆𝑃 is the
modified speed-up factor, with a higher value indicating the higher
efficiency of the dynamic-pruning framework. When 𝑆𝑃 is equal to
𝑃 , 𝑆𝑃 becomes linear speed-up. If 𝑆𝑃 is larger than 𝑃 , it is called
super-linear speed-up. Super-linear speed-up rarely occurs during the
improvement of the algorithm efficiency. In addition, the count of
weight update (merging steps plus excess steps in Section 2.6) except
for initialising weight steps is applied to measure the computational
volume of the segmentation methods. The code of the proposed pruning
framework is available at https://pan.baidu.com/s/1YlCV7gLWyJNxc-
dK05dAgA?pwd=1234 (extraction code: 1234).

https://pan.baidu.com/s/1YlCV7gLWyJNxc-dK05dAgA?pwd=1234
https://pan.baidu.com/s/1YlCV7gLWyJNxc-dK05dAgA?pwd=1234
https://pan.baidu.com/s/1YlCV7gLWyJNxc-dK05dAgA?pwd=1234


ISPRS Journal of Photogrammetry and Remote Sensing 202 (2023) 13–29X. Lv et al.
Table 2
Merging criteria of the tested methods.

Methods Merging criteria Citations

HSWO 𝑀𝐶 = 𝑎1𝑎2∕(𝑎1 + 𝑎2)
(

𝑢1 − 𝑢2
)2 Beaulieu and Goldberg (1989)

HSeg 𝑀𝐶 = arccos
(

∑𝑏
𝑖=1 𝑣1𝑖𝑣2𝑖∕

(

‖

‖

‖

∑𝑏
𝑖=1 𝑣1𝑖

‖

‖

‖2
‖

‖

‖

∑𝑏
𝑖=1 𝑣2𝑖

‖

‖

‖2

))

Tilton et al. (2012)
BCMS 𝑀𝐶 =

(

𝑎1 + 𝑎2
)

(𝐶𝑆𝑡𝑑 + 𝐶𝐶𝑜𝑚𝑝)𝐸𝑆
𝐶𝑆𝑡𝑑 = 𝑆𝑡𝑑 −

(

𝑎1𝑆𝑡𝑑1 + 𝑎2𝑆𝑡𝑑2
)

∕
(

𝑎1 + 𝑎2
)

𝐶𝐶𝑜𝑚𝑝 = 𝐿∕
√

𝑎 −
(

𝑎1𝐿1∕
√

𝑎1 + 𝑎2𝐿2∕
√

𝑎2
)

∕
(

𝑎1 + 𝑎2
)

Zhang et al. (2013)

FHS 𝑀𝐶 =
(

𝑎1 + 𝑎2
)

⋅ 𝐶𝑆𝑡𝑑 ⋅ exp(−𝜀∕𝐸𝑆 ) Zhang et al. (2014)

Local-SA 𝑀𝐶 = 1∕𝐻𝐼 ⋅ 𝜃𝑠1𝑠2 𝑠𝑡𝑑𝑣
𝑥,𝑦∈(𝑠1,𝑠2)

(

1
𝑏

𝑏
∑

𝑖=0
𝑃 𝑖
(𝑥,𝑦)

)

Yang et al. (2017)

DeepMerge 𝑀𝐶 = ‖

‖

𝑓 𝑙
𝑖 − 𝑓 𝑟

𝑖
‖

‖2 Lv et al. (2023)
Fig. 9. The study area for large-scale test with 100M pixels and 0.55 m resolution.
3. Study area and experimental results

The pruning segmentations are tested to validate the effectiveness
and robustness of the proposed dynamic-pruning framework. In partic-
ular, quantitative metrics and visual analysis are used to validate the
performance and efficiency of the six segmentation methods before and
after adding the dynamic-pruning framework.

3.1. Study area

The segmentation methods for pruning have been proven to be
effective and robust in various remote sensing images from different
satellite sensors with medium resolution (Beaulieu and Goldberg, 1989;
Tilton et al., 2012; Zhang et al., 2013; Chen et al., 2015; Yang et al.,
2017). To make the experiment more challenging for the proposed
dynamic-pruning and other competing algorithms, we chose to use
very high resolutions images. Four Google Earth images (Yu and Gong,
20
2012) with diverse landscapes in Phoenix City, Arizona, U.S., are
selected as test sites, resulting in RAG models with widely varying
internal structures (Fig. 8). The four images, named T1 (Fig. 8(a)), T2
(Fig. 8(b)), T3 (Fig. 8(c)), and T4 (Fig. 8(d)) are composed of red,
green, and blue bands with 0.55-meter resolution and encoded as 8-
bit integral values. The sizes of T1, T2, T3, and T4 are 16.6M, 11.0M,
19.8M, and 8.0M pixels, respectively. The dominant land covers in
T1 are continuous bare soils, residential sites, and roads, with small
patches of vegetation in the rural zone. The landscapes in T2 cover
residential houses with various textures, asphalt roads, and vegetation
in the urban zone. The land covers in T3 reflect factory buildings
of different sizes and textures, residential buildings, and roads. The
dominant land cover categories in T4 are factory buildings, as it mainly
covers an industrial zone.

The green polygons in the four images are manually digitised as
reference geo-objects. We manually digitised the reference geo-objects
according to the dominant categories that contain roads, residential
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Fig. 10. The scatter points of segmentation results with- and without pruning. The black dashed line denotes the 1:1 reference line. The two points in the black rectangles are
two extreme cases, which are the results of HSeg in S3 and FHS in S3, respectively.
houses, vegetation, water areas, factory buildings, bare soils, and side
roads in each image. The number of digitised reference objects in T1,
T2, T3, and T4 is 89, 305, 270, and 108, respectively.

Multi-resolution segmentation (MRS), as an effective standard seg-
mentation method, is applied to initialise the primitive segments. To
generate suitable over-segmentation results, the scale parameter of MRS
is set to 25, and the shape and compactness are set to 0.5. The RAG
in T1 contains 43,707 nodes (primitive segments) and 128,798 edges
(connections between neighbour segments). The RAG constructed in T2
involves 42,030 nodes and 122,096 edges. The RAG initialised in T3 is
composed of 76,061 nodes and 222,215 edges. The initial RAG used in
T4 consists of 29,802 nodes and 87,117 edges.

To test the performance of the pruning framework, we compared the
six pruning methods on a large image with 100M pixels and 0.55 m res-
olution. The image contains various objects such as residential houses,
factory buildings, large-area bare soils, vegetations, and continuous
roads, demonstrating the high complexity of the image. Fig. 9 shows
the details of the image for very large-scale test.

3.2. Segmentation accuracy

To reveal the capability of the proposed dynamic pruning in main-
taining segmentation accuracy, we compared the segmentation results
of six existing region-merging-based segmentation methods (mentioned
in Section 2.5) at three scales from quantitative and qualitative per-
spectives. The scale parameters of segmentation methods vary under
different merging criteria, shown in Table 3. S1, S2, and S3, denoting
three different scales, are determined by trial-and-error or author rec-
ommendation. The proposed Dynamic-pruning is implemented using
C# programming language and tested on a desktop computer with
Windows 10 OS, an intel i7-10700 CPU (2.9 GHz, 8 Cores), and 32 GB
RAM.
21
Table 3
Scale parameters of each method in this study.

Method S1 S2 S3 Citations

HSWO 8,700 67,745 195,317 Beaulieu and Goldberg (1989)
HSeg 0.2 0.5 0.7 Tilton et al. (2012)
BCMS 2,990 5,768 9,620 Zhang et al. (2013)
FHS 50 600 1210 Chen et al. (2015)
Local-SA 1.0000 1.5161 2.3374 Yang et al. (2017)
DeepMerge 0.3 0.5 0.7 Lv et al. (2023)

Table 4
Comparison of average 𝐹 values of segmentation results in study areas.

Method S1 S1+pruning S2 S2+pruning S3 S3+pruning

HSWO 0.437 0.442 0.529 0.533 0.582 0.575
HSeg 0.648 0.633 0.809 0.806 0.699 0.794
BCMS 0.462 0.449 0.561 0.557 0.627 0.623
FHS 0.820 0.851 0.863 0.866 0.630 0.812
Local-SA 0.624 0.628 0.682 0.691 0.708 0.706
DeepMerge 0.932 0.931 0.928 0.945 0.925 0.925

Within three scales, we obtained six segmentation results (pruning
and no pruning) for each method. Table 4 presents the average 𝐹
values of the six segmentation results of each method on study areas.
‘‘Pruning’’ denotes the application of dynamic pruning. From Table 4,
we notice that the proposed dynamic pruning has achieved similar
performance with no-pruning in the study areas. The segmentation
accuracy fluctuates with and without pruning, but a little.

According to the above quantitative measures, we notice that the
average 𝐹 values improved by 0.0029 on average for algorithms that
exhibit improved performance after adding the proposed dynamic prun-
ing ignoring the two extreme cases shown in Fig. 10. We observe
that the addition of dynamic pruning leads to a positive impact on
performance for some algorithms. The standard deviation of the 𝐹
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Fig. 11. The local comparison of segmentation results with and without dynamic-pruning in T1.
value changing is 0.0303, demonstrating the ability of the proposed dy-
namic pruning to maintain the segmentation accuracy. Fig. 10 presents
scatter plots of 𝐹 values with- and without pruning in four testing
areas, i.e., T1, T2, T3, and T4. We observe that most scatter points are
distributed around the reference line, suggesting the high stability of
the segmentation accuracy of the algorithm after adding the proposed
dynamic pruning strategy.

We further compared segmentation results with and without
dynamic-pruning in a qualitative manner. We selected four local areas
in each test image to exhibit the segmentation details. Figs. 11, 12,
13, and 14 present the local segmentation details with and without
dynamic-pruning in T1, T2, T3, and T4, respectively. We observe that
the segmentation results after adding the dynamic-pruning strategy are
similar to the ones without dynamic pruning, with some exceptions
emphasised by red circles in the four figures. In some cases, the
involvement of dynamic pruning enhances the segmentation accuracy.

3.3. Computational speed-up

The segmentation time (in seconds) of each method in three dif-
ferent scales in T1, T2, T3, and T4 are shown in Fig. 15. We notice
22
that the proposed dynamic pruning greatly improves the segmentation
efficiency of all methods, on all scales, in all tested images. We observe
different levels of improvement in segmentation methods with pruning.
The average 𝑆𝑝s of DeepMerge with dynamic pruning are 7.25, 3.88,
and 7.97, achieving the highest 𝑆𝑝 in T1, T2, and T4 (the first, the
second, and the last rows in Fig. 15). In T3, the FHS achieves the
highest 𝑆𝑝 with 12.31 in S3. However, it achieves the lowest 𝑆𝑝 with
1.36 in T4. The 𝑆𝑝 values range from 1.36 to 12.31 in the single-core
mode, demonstrating that the proposed dynamic-pruning can greatly
improve the efficiency of image segmentation while maintaining the
segmentation accuracy. The proposed dynamic-pruning is proven to
maintain the accuracy of segmentation methods with pruning, with a
significant improvement in running efficiency.

Both the algorithm and the hardware determine the segmentation
time. In order to assess the efficiency gain irrespectively of hardware
characteristics, we counted the number of weight updates during the
merging process with and without pruning. Fig. 16 shows the statistics
about the number of weight updates, which are substantially decreased
by the proposed dynamic pruning framework. The main reason for the
efficiency enhancement is the significant reduction in the number of
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Fig. 12. The local comparison of segmentation results with and without dynamic-pruning in T2.
weight updates in the merging process. The reduction of weight updates
of all results in Fig. 16 shows the same trend as in Fig. 15.

4. Discussion

The experimental results are encouraging, as our method preserves
the segmentation accuracy and highly improves segmentation effi-
ciency. It can be observed that the pruning method can result in
accuracy fluctuations (Fig. 10). This is because the pruning operator
can change the region-merging order. In the last iteration of the pruning
framework, the global RAG is divided into sub-RAGs, possibly resulting
in some adjacent segments with similarity smaller than the scale pa-
rameter to be located on different sub-RAGs, thus stopping the merging
process. If the hypothetically-merged segment is under-segmented, the
accuracy will improve because of the cancellation of the merging step
by the pruning operator. On the contrary, the accuracy will drop if
the hypothetically-merged segment belongs to one object or is over-
segmented. Under-segmentation is serious on the large scales, e.g., S3.
The pruning operator can stop merging some neighbouring primitives
23
into under-segmented segments, resulting in a large accuracy distance
between before and after the pruning, especially in the two extreme
cases: HSeg and FHS on S3 shown in red dashed rectangles in Fig. 10.
However, the standard deviation of the 𝐹 value changing is 0.0303,
demonstrating the ability of the proposed dynamic pruning to maintain
the segmentation accuracy. Therefore, it will rarely affect subsequent
analysis steps. The results demonstrate the effectiveness of the proposed
dynamic-pruning framework for region-merging based segmentation
methods. The results indicate that the proposed framework has great
potential for taking advantage of multicore computers. Based on the ra-
tionales of dynamic pruning and region-merging-based methods, three
factors affect the segmentation efficiency with dynamic-pruning: (1) the
scale parameters of segmentation methods, (2) the number of CPU cores
during algorithm execution, and (3) the iteration times of dynamic-
pruning frameworks. In this section, we discuss in detail these three
crucial factors.

The scale parameter directly affects the efficiency of segmentation
methods under pruning. Assuming that only the one merging step
was conducted, the provided scale parameter requirement is satisfied
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Fig. 13. The local comparison of segmentation results with and without dynamic-pruning in T3.
(with a very low scale parameter). In this case, the pruning framework
becomes redundant. Fortunately, in real-world scenarios, the number of
segments to be merged is usually large, and these segments are often
distributed across the whole image. Thus, the importance of dynamic-
pruning can be well-demonstrated. We present the 𝑆𝑝 boxplots based
on three scales in Fig. 17.

The boxplots in Fig. 17(a) and (b) demonstrate that the segmen-
tation speed-ups of the six pruned segmentation algorithms are very
stable on three different scales. Nonetheless, FHS in T3 and DeepMerge
in T4 in Fig. 17(c) and (d) exhibit substantial volatility due to the large
geo-objects in their segmentation results on fine scales. However, the
minimum 𝑆𝑝 of both methods reaches 2.0. Overall, scale parameters
have a trivial impact on segmentation efficiency. The segmentation
efficiency of some specific methods fluctuates wildly in certain testing
images.

The proposed data parallel strategy yields identical segmentation
results. However, there are significant differences in efficiency between
24
the two modes. We compared the 𝑆𝑝 values of dynamic-pruning utilis-
ing 1 to 8 CPU cores. Fig. 18 exhibits the 𝑆𝑝 values of dynamic-pruning
in the multicore mode. The first, second, and third columns in the
figure denote the 𝑆𝑝 results on scales S1, S2, and S3, respectively. Since
the DeepMerge with dynamic pruning achieves significantly higher
𝑆𝑝 values than other methods, we put the 𝑆𝑝 values of DeepMerge
in the fourth column in the figure. The results in Fig. 18 above the
dotted line are all super-linear speed-up values. We notice that more
than half of the cases in the testing results fall into the category of
super-linear speed-up, which is rare to occur in many parallel speeding
domains. The 𝑆𝑝 trend of all methods increases dramatically with the
increase in the number of utilised CPU cores, and this trend gradually
slows down and remains stable at a certain number of CPU cores. The
number of CPU cores where a steady state is reached is often method-
dependent. From Fig. 18, when the number of CPU cores is three, the
𝑆𝑝 values of BCMS become stable. The pruning strategy performs best
for DeepMerge, where almost all cases achieve super-linear speed-up,
as shown in the last column in Fig. 18. The 𝑆 is also sensitive to the
𝑝
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Fig. 14. The local comparison of segmentation results with and without dynamic-pruning in T4.
study areas. Almost all cases in T3 (the third row in Fig. 18) achieve
super-linear speed-up.

The merging criteria partially cause the differences in 𝑆𝑝 values.
Given that the merging criteria of HSWO are simple, the segmentation
algorithm presents high efficiency (Figs. 15 and 16), resulting in the
low potential for obtaining high 𝑆𝑝 values with dynamic-pruning. Based
on the spectral angles, HSeg and Local-SA show a noticeable efficiency
improvement. DeepMerge owns the most complex merging criteria,
involving spatial Euclidean distance between two one-dimensional vec-
tors with 100 values, causing the lowest efficiency without pruning. We
notice that the highest 𝑆𝑝 values are obtained by DeepMerge, which
uses the most complex merging criteria compared to all other selected
algorithms. The segmentation results of DeepMerge reach the highest
𝐹 values, demonstrating the ability to correctly segment both small
and large objects while requiring many steps of weight updates in
the merging process. DeepMerge has, therefore, low efficiency without
pruning. With pruning, many redundant weight updates are avoided,
resulting in higher efficiency gains compared to other methods. In
25
addition, the number of iterations 𝐿 is also merging criteria-dependent.
We found that 𝐿=3 is sufficient for the segmentation methods in
this study, whereas one iteration is enough for Local-SA. The starting
scale at each iteration also affects the segmentation efficiency. The
beginning scale at the last iteration is a user-selected scale parameter.
We recommend 30% of the scale parameter used in the first iteration
and 40% in the second iteration.

The pruning results on the large-scale test area are shown in Table 5.
The 𝑆𝑝 values on single- and multicore modes are higher than in the
four test images, demonstrating that the larger the image, the greater
the efficiency gain of pruning. The highest 𝑆𝑝 values in single- and mul-
ticore modes are 36.07 and 102.74, respectively, achieved by HSWO.
The 𝑆𝑝 values also indicate a large improvement in the segmentation
efficiency of other methods. The pruning framework achieves high
efficiency and high robustness with all six methods. Larger images
result in higher efficiency gains because they contain large objects, such
as bare soils and factory buildings in Table 5 , which require many
weight updates to be merged, resulting in low segmentation efficiency.
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Fig. 15. Segmentation time of tested methods on three scales in the tested images. The 𝑋- and 𝑌 - axis are scales and processing time, respectively. Four rows are related to the
four tested images (T1, T2, T3, and T4). Blue bars represent the segmentation time with no pruning, and orange bar with pruning. Green numbers are the 𝑆𝑝 related to each
scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Steps of weight updates of the tested methods on three scales in the tested images. The 𝑋- and 𝑌 - axis are scales and number of weight updates. The layout of methods
and scales is the same as in Fig. 15.
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Fig. 17. The impact of scales on the segmentation efficiency in single-core mode. The boxplot of speed-ups in (a) T1; (b) in T2; (c) T3; and (d) T4. The boxplots are based on
the three scale results. The height of the boxplot can reflect the degree of change in the 𝑆𝑝 of the three scales. The yellow line in the boxplots is the average 𝑆𝑝 value of three
scales. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 5
The pruning results on the large-scale test data.

Method No pruning (s) 1-core+pruning (s) 8-cores+pruning (s) 𝑆𝑝 in 1-core 𝑆𝑝 in 8-cores Cost (steps) Cost+pruing (steps)

HSWO 1,854.48 51.42 18.05 36.07 102.74 3,257,005 947,950
HSeg 2,553.07 122.79 29.43 20.79 86.75 4,225,712 1,091,663
BCMS 2,925.81 308.54 96.59 9.48 30.29 7,041,757 2,231,039
FHS 2,991.43 152.85 62.17 19.57 48.12 2,181,987 1,282,490
Local-SA 2,047.88 91.14 37.96 22.47 53.95 2,656,107 1,521,081
DeepMerge 3,035.4 105.80 33.30 28.69 91.15 9,010,402 1,046,585
The pruning framework solves the problem caused by these objects and
dramatically decreases the number of weight updates. Therefore, large
images often mean higher efficiency improvement than small images.

5. Conclusion

In this study, we proposed a dynamic-pruning framework to im-
prove segmentation efficiency on remote sensing images. Specifically,
a general acceleration framework was designed for the RAG model
to improve segmentation efficiency based on intra-object pruning and
inter-object pruning, where the handcrafted framework prunes the
edges in the RAG-NNG to reduce redundant weight updates. Utilising
the user-defined scale parameters, the framework prunes the scale-
related edges in the RAG model to generate many local RAGs and
further prunes BFS partitioned edges in the local RAGs. We employed
the proposed dynamic-pruning framework on six region-merging-based
segmentation methods and tested them on four remote sensing images
and one large-scale image. The results of four images and one large-
scale image demonstrate that the larger the image, the greater the
efficiency gain of pruning. In addition, the data structure of local-
RAGs can release the accelerating potential of multicore computers.
27
The proposed dynamic-pruning framework has the potential to re-
vamp image segmentation by significantly improving the efficiency
of region-merging-based methods. In future work, we will design a
pixel-based bottom-up segmentation method using the pruning frame-
work and deeply optimise the pruning framework to achieve further
improvement in efficiency.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work was supported in part by the Foundation of Anhui
Province Key Laboratory of Physical Geographic Environment, P.R.
China (Grant No. 2022PGE012) and China Scholarship Council.



ISPRS Journal of Photogrammetry and Remote Sensing 202 (2023) 13–29X. Lv et al.
Fig. 18. The 𝑆𝑝 values of six methods under Dynamic-pruning in the study areas. The first, second, and third columns in the figure denote the 𝑆𝑝 results on scales S1, S2, and
S3, respectively. The fourth column shows the results of DeepMerge. The block dotted line denotes the 1:1 reference line, i.e., a proportional function with a slope of one.
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