
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Master's Essays (1922 - ) Dissertations, Theses, and Professional 
Projects 

Spring 1966 

Equivalence Classes of Fundamental Sequences of Rational Equivalence Classes of Fundamental Sequences of Rational 

Numbers Numbers 

M. Marlene Greatens 
Marquette University 

Follow this and additional works at: https://epublications.marquette.edu/essays 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Greatens, M. Marlene, "Equivalence Classes of Fundamental Sequences of Rational Numbers" (1966). 
Master's Essays (1922 - ). 946. 
https://epublications.marquette.edu/essays/946 

https://epublications.marquette.edu/
https://epublications.marquette.edu/essays
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/essays?utm_source=epublications.marquette.edu%2Fessays%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=epublications.marquette.edu%2Fessays%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/essays/946?utm_source=epublications.marquette.edu%2Fessays%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages


Date : February 11, 1966 

'JI ' 

TO: Dsan of the Graduate School 

FROM: Department of Mathematics 

essay entitled 
E uivalence classes of fundamental sequences 

of Rational Numbers 

in partial fulfillment of the requirements for the 

I hereby accept a..l'ld approve this essay. 

Signed: 
Department Chab,nroi 





EQUIVALENCE CLASSES OF FUNDAMENTAL SEQUENCES 

OF 

RATIONAL NUMBERS 

by 

Sister M. Marlene Greatens o.s.F., B.A. 

An Essay Submitted to the Graduate Faculty of the 

Mathematics Department, Marquette University in 

Partial Fulfillment of the Requirements for 

the Degree of Master of Science in Mathematics 

Milwaukee, Wisconsin 

May, 1966 



INTRODUCTION 

Several methods have been devised for obtaining 

the real numbers from rational numbers. The purpose of 

this paper is to demonstrate how a complete, ordered field 

can be established through equivalence classes of fundamen

tal sequences of rational numbers. It is the method used 

by G. Cantor for constructing the real number system. 

There are sequences of rational numbers which con

verge to a limit but whose limit is not a rational number. 

Such sequences provide a method for obtaining the real 

numbers. The equivalence classes of fundamental sequences 

of rational numbers form a field which contains a subfield 

isomorphic to the field of rational numbers. This field 

of equivalence classes is actually the real number system. 

It is a complete, ordered field since every fundamental 

sequence in the field has a limit in the field. This is 

essentially what this paper establishes. 

An example here will clarify the discussion. Sup

pose we take the square root of two by the usual algorithm ' 

and carry the extraction to a large number of decimal places. 

The successive approximations to this square root yields the 

sequence of numbers, 1, 1.4, 1.41, 1.412, •••• The resultant 

is a convergent sequence of numbers, all of which are ra

tional. Each is a closer approximation to the so-called 
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irrational number, fl. The square root of two, then, is a 

real number which has been obtained from a sequence of ra

tional numbers. This sequence has no limit among the ration

als but does have limit in the reals. 

The first chapter presents basic definitions and 

theorems needed to discuss equivalence classes and fundamen

tal sequences. Chapter two outlines the field properties 

and shows that the equivalence classes of fundamental sequen

ces form a field. In chapter three an ordered field is es

tablished from the set of equivalence classes of fundamental 

sequences of rational numbers. Finally, chapter four shows 

that the ordered field of equivalence classes of fundamental 

sequences of rational numbers possesses completeness. 



CHAPTER I 

EQUIVALENCE CLASSES AND FUNDAMENTAL SEQUENCES 

PART I 

Since this discussion is concerned particularly 

with equivalence classes, we begin by defining an equiva

lence classes, we begin by defining an equivalence rela

tion. 

DEFINITION 1.1. A relation,~, on Sis a subset of S X s. 

For a,b £ S, we write a~ b if (a,b) is a member of the 

subset,~. 

DEFINITION 1.2. A relation is an equivalence relation 

for a set S if, for every a,b,c £ S: 

(1) a ~ a; 

(2) if a~ b, then b ~ a; and 

(3) if a~ band b ~ c, then a~ c. 

The following important theorem is an immediate 

consequence of these definitions. 

THEOREM 1.1. Let~ be an equivalence relation on a sets. 
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For a,b £ s, let Sa= {x £six~ a} and Sb= {x £six~ b}. 

Then (i) Sa= Sb if and only if b ~ a, and 

(ii) if Safi Sb;~, then Sa= Sb. 

Proof: (i) Since~ is an equivalence relation, a~ a. 

If b £ S, b ~ a and hence a~ b 
a 

so that a£ Sb. Suppose x £ Sb. Then x ~band b ~aim

plies x ~ a. Thus Sb c Sa. Suppose y £ Sa• Then y ~ a 

and a~ b implies y ~ b. Then y £ Sb and Sa C Sb. There

fore, Sa= Sb if a~ b. 

(ii) If San Sb ~ qi, then there exists c £ S such 

that C £ Sa and C £ Sb. Then C ~ a and C ~ b. C ~aim

plies a~ c so that a~ band Sa= Sb. 

DEFINITION 1.3. 
n 

Let S =US·. . 1 l. 
If Sin Sj = 4> for i ; j, 

1.= . 

then this set of subsets, {Si}, is called a partition of s. 

By Theorem 1.1 an equivalence relation defines a partition. 

Each Sa, Sb, as defined in Theorem 1.1, is called an equiv

alence class. 

THEOREM 1.2. A partition P of a set S defines an equiva

lence relation in the following way: a~ b if and only if 

there is a set R £ P such that a£ Rand b £ R. 

Proof: (1) ~ is reflexive since a£ R implies a~ a. 

(2) ~ is symmetric for, if a~ b then there exists 

R £ P such that if a,b £ R, we have b ~ a. 
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(3) . ~ is transitive for, if m ~ n and n ~ p then 

there exists R £ P such that m,n £Rand there exists Q £ P 

such that n,p £ Q. Since Pis a partition and n £ Q ~ R, 

Q = R implies m,p £Rand m ~ p. 

The following will serve as an example of an equiv

alence relation. We define an equivalence relation on S 

where the members of Sare pairs of positive integers. 

Let (a,b) ~ (c,d) if and only if a+ d = b + c. 

This is an equivalence relation since it can easily be 

shown that the reflexive, symmetric, and transitive prop

erties hold. (a,b) ~ (a,b) since a+ b = b + a in the set 

of integers. If (a,b) ~ (c,d), then (c,d) ~ (a,b) for if 

a+ d = b + c, then clearly c + b = d + a. Suppose, next, 

that (a,b) ~ (c,d) and (c,d) ~ (e,f). Then a+ d = b + c 

and c + f = d + e. This implies that (a+ d) + (c + f)= 

(b + c) + (d + e) and a+ f = b + e. Therefore, (a,b) ~ 

(e,f). 

It is possible to define addition and multiplication 

on this set so that the system becomes a ring. That is, let 

D = s X S = { ( a , b) I a, b £ S } • Let [a, b] = { ( a ' , b' ) £ D I 
(a',b') ~ (a,b)} and let I be the set of all equivalence 

classes, [a,b]. Let the operations be defined in the follow

ing way: 

+ : [a,b] + [c,d] = [a + c, b + d] 

• : [a,b] • [c,d] = [ac + bd, ad + be]. 

Then {I;+, •} is a commutative ring with identity. 
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PART II 

Since this discussion is concerned with equivalence 

classes of fundamental sequences of rational numbers, it is 

necessary now to insert a few remarks on sequences and, in 

particular, fundamental sequences. 

DEFINITION 1.4. A sequence of rational numbers is a mapping 

from the set of positive integers into the set of rational 

numbers. 

DEFINITION 1.5. A sequence, {rn}, of rational numbers is 

fundamental, or Cauchy, if, for every rational number E > O, 

there exists a positive integer N such that if n,m > N, then 

We shall define a relation for the set of Cauchy 

sequences of rational numbers, and then show that this is, 

in fact, an equivalence relation. 

DEFINITION 1.6. Let {rn} and {sn} be fundamental sequences. 

Let~ denote the relation such that {rn} ~ {sn} if, for 

every rational number E > O, there is an integer N such 

that if n > N, then Ir - s I < E. n n 

LEMMA 1.1. Suppose that {rn} has limit r. If {sn} is a 

fundamental sequence, then the following two statements are 

equivalent: 

(1) {rn} ~ {sn} 

(2) {sn} has limit r. 
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Proof: Suppose e > o. 

(1) = > (2). Suppose {r } 'v · {s } • Then there is an M
1 n n 

such that if n > M1 , then Ir - rnl < e/2 and an M2 such that 

if n > M2 , lrn - snl < e/2. Now let M = max (M1 ,M2). Then 

we have 

Ir - snl ~ Ir - rnl + lrn - snl 

< e/2 + e/2 =e if n > M. 

It follows that r is the limit of {sn}. 

(2) = > (1). If {sn} has limit r, there exists an N
1 

such 

that if n > N1 , Ir - snl < e/2. Also, since {rnl has limit 

r, there exists N
2 

such that if n > N
2

, 

Let N = max (N
1

,N
2
). Then if n > N, 

lrn - snl = I (rn -r) + (r - sn) I 

~ Ir - rnl + Ir - snl 

< e/2 + e/2 = e. 

Ir - r I < e/2. 
n 

LEMMA 1.2. The relation,"', of Definition 1.6 is an 

equivalence relation. 

Proof: ( 1) {rn} f'\, {r } since for every £ > o, and for 
n 

all n, lrn - rnl = 0 < £. 

(2) Suppose {rn} f'\, {sn}. For each e > o, there 

exists N > 0 such that lrn - snl < e and Is - r I <e , if n n 

n > N. This implies {sn} f'\, {r } • 
n 

(3) Suppose {rn} f'\, {s} and {s } f'\, {t } . Then, n n n 

if £ > o, there is an M > 0 such that ltn - s I < e/2 
n 

and lsn - t I < e/2 if n > M. It follows that Ir - t I~ n n n 

lrn - s I +Is - t I < e/2 + e/2 = £. Hence, {r } f'\, {t } . 
n n n n n 



CHAPTER II 

THE FIELD PROPERTIES 

PART I 

Since we wish to discuss fundamental sequences of 

rational numbers, we shall assume that the rational number 

system is given as an ordered field. Below we list the 

properties of an ordered field. 

DEFINITION 2.1. The statement that Fis a field means 

that the following statements are true. 

1. There are binary operations, "+",and"•", on 

F which are called addition and multiplication respectively. 

2. For a, b, c e: F, 

(a) (a + b) + c = a + (b + c) ; 

(b) a+ b = b + a; 

(c) For every a,b e: F there is an x e: F such 

that a+ X = b; 

(d) a (be) = (ab) c 

(e) a(b + c) =ab+ ac, (b + c)a = ba + ca; 

(f) There is an element, say e, in F such 

that for every a e: F, a + e = e + a + a and e•a = e; 

(g) If a e: F, a "I- O, and be: F, there is an 

x e: F such that ax = b; 
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(h) ab= ba; 

(i) F has at least two elements; 

(j) There is an element, e £ F, such that for 

every a£ F, ae =ea= a. 

DEFINITION 2.2. The statement that the field Fis an 

ordered field means that the following statements are true. 

(1) There is a relation defined on F, called greater 

than, and denoted">" such that: 

(a) for every a,b £ F, a f b, either a> b 

orb> a; 

(b) if a> b, then it is not true that b > a; 

(c) if a> band b > c, then a> c. 

(2) If a> 0 and b > O, then ab> 0 and a+ b > O. 

We note without proof that the rational number sys

tem R has no proper ordered subfield1 and every ordered 

field contains a subfield isomorphic with the ordered field 

of rational numbers. This means that if Fis an ordered 

field which contains a proper ordered subfield F1 , Fi is 

isomorphic with the ordered field of rational numbers. 

f (x 1 ) + f (y1) = f (x1 + Y1); 

f (x 1 ) • f (y1) = f (x1y1 ); and if 

x 1 > y 1 , then f(x 1 ) > f(y 1). 

1casper Goffman, Real Functions (New York: Holt, 
Rinehart, and Winston, l96~p. 29. 



R is unique in regard to this. It is the only system ex

hibiting this special property. 

PART II 
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In order to provide a suitable definition for the 

sum and product of two equivalence classes, we establish 

the following lemmas. The equivalence classes are referred 

to as P, a, T, etc. 

LEMMA 2.1. Suppose that {rn} and {sn} are fundamental 

sequences of rational numbers. Then {rn + sn} is a fun

damental sequence. 

Proof: Let£> o. Since {rn} is a fundamental sequence, 

there is an N1 such that if n,m > N1 , then lrn - rml < £/2~ 

and there exists N2 such that if n,m > N2 , then lsn - sml 

< £/2. Let N = max (N1 ,N2). Then 

Ir - r I + n m 

lsn - sml 

< £/2 + £/2 = £• 

Hence, {rn + sn} is a fundamental sequence. 

LEMMA 2.2. If {rn} is a fundamental sequence of rational 

numbers, there is a rational number M >Osuch that Ir I 
n 

< _M for every positive integer n. 

Proof: Choose N such that for every n > N, lrn - rNI < 1. 

Let M = max Clr1 1, !r2 I , ••• , lrNI> + 1. Then for every 

n < N, lrnl < M. For n ~ N, lrnl < lrNI + 1 < M. 



LEMMA 2.3. If {rn} and {sn} are fundamental sequences of 

rational numbers, then {rnsn} is a fundamental sequence. 
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Proof: Let E > o. There exist rational numbers M
1

, M2 

such that lrnl < M
1 

and lsnl < M
2 

for every n. Also, there 

is an N1 such that for n,m > N1 , Ir - r I < E and an N
2 n m 2M 

2 

Let N = such that for n,m > N2 , Is - s I < E • 
n m 2Ml 

If n,m > N, 

Ir s - rs I n n mm 

= lrnsn - rnsm + rnsm - rmsml 

< lrnsn - rnsml + lrnsm - rmsml 

~ lrnl • lsn -sml + lsml • lrn - rml 

< Ml. lsn - sml + M2 • lrn - rml 

< + M • E 2 2M2 

= E/2 + E/2 = E. 

Hence, there is an N such that if n,m > N, we have 

sequence. 

We are now able to establish the following theorem. 

THEOREM 2.1. If {rn} ~ {r~} and {sn} ~ {sn'}, where 

{r }, {r '}, {s } and {s '} are fundamental sequences of 
n n n n 

rational numbers, then {rn + sn} ~ {rn' + sn'}, and 

{rs} ~{r's'}. 
n n n n 

Proof: For E > o, there exists an N
1 

such that if n > N1 , 

I rn - rn'I < £12 and an N2 such that if n > N2 , I sn - sn'I 

< E/2. Take N = max(N1 ,N2). Then, if n > N, I (rn + sn) -

(rn' + sn')I ~ lrn - rn'I + I sn - sn'I < E/2 + E/2 = E. 
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Hence, {rn + s } ~ {r '+ s '}. 
n n n 

To show {rs } ~{r's'} , let£> O. There exists 
n n n n 

M1 > O, M2 > O, M3 > O, and M4 > 0 - such that lrnl < M
1

, 

lrn'I < M2 , lsnl < M
3 

and lsn'I < M4 for every n. Let M = 

max(M1 ,M2 ,M3 ,M4). We have {rn} ~{rn'}and {sn} ~{sn'} 

and, therefore, there exists N1 such that if n > N1 , lrn - rn'I 

< £ and an N2 so that if n > N2 , l sn - sn'l < £. 
2M lli 

Let N = max(N1 ,N2). Then for n > N, 

lrnsn - rn'sn'l = lrnsn - rn'sn + rn'sn - rn'sn'I 

< lrns - r's I +lrn's - rn's 'I n n n n n 

~ lsnl•lrn - rn'I + lrn'I• lsn - sn'I 

< M • £ + M • £ = £/2 + £/2 = £. 
2M 2M 

Hence, for every£> o, there is an N such that if n > N, 

Ir s - r's 'I n n n n < £; so {rs}~ {r's'}. 
n n n n 

DEFINITION 2.3. If p and o are equivalence classes of fun

damental sequences of rational numbers, their~, p + o, 

is the set to which {rn + sn} belongs and their product, po, 

is the set to which {rnsn} belongs where {rn} is any element 

of p and {s} is any element of o. 
n 

Before proving that the set of equivalence classes 

of fundamental sequences of rational numbers is a field, we 

establish four lemmas. 

LEMMA 2.4. If {rn} and {sn} are fundamental sequences of 

rational numbers, then {sn - rn} is a fundamental sequence. 
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THEOREM 2.2. The set of equivalence classes of fundamental 

sequences of rational numbers, along with the operations de

fined in Definition 2.3, is a field. 

Proof: * Let F be the set of equivalence classes of funda-

mental sequences of rational numbers. To show that p* is a 

field we show that the properties listed in Definition 2.1 

are satisfied. Suppose that p, o, T are the equivalence 

classes of p*. Suppose also that {rn} E: p, {Sn} E: o, and 

{tn} E: T • 

(a) {r + 
n 

(s + t ) } 
n n is a member of p + (o + t) 

and is equal to {(rn + sn) + tn} and hence is also a member 

of ( p+o ) + T • Therefore, p +(o + t) = (p + o) + T • This 

follows from Theorem 1.1. 

(b) {r + s} = {s + r} and hence is a member of n n n n 

both p + o and o + p. Therefore, p +lo= o + p. 

(c) Let xn = rn - sn for n = 1,2,3, •••• Then 

{sn + xn} = {rn}. If xis the equivalence class to which 

{xn} belongs, then o + x = p. 

(d) {r (st)}= {(rs )t} and is a member of n n n n n n 

p(ot) and (po)t. This implies p(ot) = (po)t. 

(e) {r (s + t)} ={rs +rt}. Again,bY ·Theorem 
n n n n n n n 

1.1, this implies p(o + t) =po+ pt. Also, 

{(r + s )t} ={rt +st} implies (p + o)t =pt+ ot. n n n n n n n 



CHAPTER III 

THE ORDER RELATION 

We now impose order on this field and show that we 

have an ordered field. 

LEMMA 3.1. If {rn} and {sn } are fundamental sequences of . 

rational numbers, then either (1) {rn} ~ {sn}; or (2) there 

exists k > 0 and an N, such that for n > N, rn > sn + k or 

Proof: Suppose {rn} is not equivalent to {sn}. Then there 

is a k >Osuch that for every positive integer, i, there is 

a j > i so that lrj - sjl > 2k. Since {r} and {s} are 
n n 

fundamental sequences, there is an N1 such that if n,m > N1 , 

lrn - rm l < k/2. There is an N2 such that if n,m > N2 , 

lsn - smj < k/2. Choose N ~ max(N1 ,N2 ) so that l rN - sN I > 2k. 

Then it follows that rN > sN or sN > rN. Without loss of 

generality, suppose rN > sN. It follows that rN > sN + 2k . 

Also, for every n > N, lrN - rnl < k/2 and lsN - snl < k/2. 

Hence rn > rN - k/2 > sN + 2k - k/2 = sN + 3k/2. Since SN> 

Sn - k/2 we have SN+ 3k/2 > sn - k/2 + 3k/2. This implies 

sN + 3k/2 >Sn+ k and so rn > sn + k. Therefore, if sN > rN 

and n > N, we have sn > rn + k. 

LEMMA 3.2. If {rn}, {rn} , {Sn} and {Sn'} are fundamental 

sequences of rational numbers with {rn} ~ {rn'} and {sn} ~ 

{Sn'}, the same relationship holds between {rn'} and {sn' } , 

as exists between {rn} and {sn}· 



Proof: 

implies {rn'} ~ {sn'}. 

Suppose now that {rn} is not equivalent to {sn}. 

Suppose, also, without loss of generality that there is a 

k > 0 and an N1 such that if n > N1 , rn > sn + k. Because 

of the equivalence relation there exist integers N2 and N3 

such that if n > N2 , then lrn - rn'I < k/3 and if n > N3 

then lsn - sn'I < k/3. This implies that for every n > N2, 

rn' > rn - k/3 and for n > N3 , sn > sn' - k/3. Let N = 

max(N1,N2,N3). For every n > N, we have rn' > rn - k/3 > sn 

+ k - k/3 > sn + k - k/3 - k/3 = sn + k/3. Hence, r ' > s ' n n 

+ k/3 so that there is an 1 > 0 (1 = k/3) and an N such that 

for every n > N, rn' > sn' + 1. This completes the proof. 

We now define the order relation between the 

equivalence classes. 

DEFINITION 3.1. Suppose that p and o are equivalence classes 

of fundamental sequences of rational numbers. The statement 

that p > o means that if {rn} £ p and {sn} £ o, then there 

exists k >Osuch that if N is a positive integer, there is 

an integer n > N such that rn > sn + k. 

THEOREM 3.1. If P, o, • are equivalence classes of fundamen

tal sequences of rational numbers, then 

(1) for every p and · o, p ~ o, either p > 0 , or 

0 > p; 

(2) if p > o, then it is not true that O > p; 

18 



(3) if p > o and o > T , then p > T . 

The first two assertions of the theorem follow 

immediately from these lemmas and the definition. We now 

show that the transitive property is also true. 

Suppose {rn} £ p, {sn} £ o, and {tn} £ T. If 

p > o, there exist k > O and an N1 such that if n > N1 , 

rn > sn + k. If o > T and 1 > O, there exists an N2 such 

that if n > N2 , sn > tn + 1. Thus there exists m > O 

(m = 1 + k) and an N (N = max(N1 ,N2 )) such that rn > tn + m 

whenever n > N. Hence, p > T. 

This completes the proof of the theorem. It leads 

to the following important proposition. 

THEOREM 3.2. The equivalence classes of fundamental se

quences of rational numbers form an ordered field. 

Proof: Suppose that p > e and o > e. Select {rn} £ p 

and {sn} £ o. There exist rational numbers k
1 

> 0 and 

k 2 > O and integers N1 and N2 so that if n > N1 , rn > k, 

and if n > N2 , sn > k 2 • If N = max(N1 ,N2 ), then for n > N 

rn + sn > k 1 + k 2 > 0 and rnsn > k 1k 2 > o. This implies 

that p + o > e and po> e. 

We have shown that the set of all equivalence 

classes of fundamental sequences of rational numbers form 

an ordered field. We are aware that the rational number 

system itself is an ordered field. In investigating that 

field, we noted that every ordered field has a subfield 

19 



the sequence 1, 1, 1, •••• Hence, for every rational 

number, r, there exists exactly one equivalence class,p , 

which has the constant sequence, {r, r, r, ••• }. 

Suppose now that pis an equivalence class and 

that the sequence {rn} is a member of p and {rn} has 

limit r, a rational number. Then the sequence {r, r, r, ••• } 

is a member of p; sop is in F1 * and the isomorphism maps 

into r. Hence, every sequence that has a rational sequen

tial limit is a member of some equivalence class in F1 *. 

* This characterizes the members of F1 • 

21 



CHAPTER IV 

COMPLETENESS 

In investigating the field of rational numbers, 

we find that it does not possess completeness: that is, 

not every fundamental sequence has a limit in the ra

tional number system. The following question natu

rally arises. Does this ordered field of fundamental 

sequences of rational numbers have the completeness 

property? 

The purpose of this paper is to show that the 

field of all equivalence classes is complete. To do 

this, we use the notion of a fundamental sequence of 

fundamental sequences. We define it and then explain 

the notation. 

DEFINITION 4.1. A sequence {r1,n}, 1r2,n}, ••• , 

{rm,n}, ••• , of fundamental sequences is called a fun

damental sequence of fundamental sequences if, for 

every£> O, there is an N such that if k, 1 > N, 

then there is a v(k, 1) such that ifµ> v(k,l) then 



NOTATION: For E > O, there is an-~ such that for every 

k,l > N the sequences rk,1, rk, 2 , rk, 3 , ••• , rk,n ••• , and 

r 1 ,1, r 1 , 2 , ••• , rt,n' ••• are related in the following 

way. There is a positive integer v(k,l), which may be 

different for other choices of k and 1, such that for 

everyµ> v(k,l), Irk,µ - r 1 ,µI < e. 

It is in the equivalence classes that the com

pleteness property is satisfied. The following lemma 

allows us to define a fundamental sequence of equiva

lence classes. 

LEMMA 4.1. Suppose {sk} and {r1 } are sequences of fun

damental sequences of rational numbers and sk~ rk for 

each k. Then if {r1 ,n}, {r2 ,n}, ••• is fundamental, 

then {sk} is also a fundamental sequence of fundamental 

sequences of rational numbers. 

Proof: Suppose E > o. There is an N such that if k,l 

> N, then there is a v(k,l) such that ifµ> v(k,l), 

then Irk,µ - r 1 ,µI < e/3. But, for every m, there is 

a v(m) such that ifµ> v(m) then lrm,µ - sm,µ I < e/3. 

For every pair k,l of positive integers with k,l > N, 

let µ (k,1) = max(v(k,l), v(k), v(l)). For every µ > 

µ(k,l) where k,l > N we have 

lsk - Sa ,.I~ lsk - rk I+ Irk - r. I ,µ ~,~ - ,µ ,µ ,µ ~,µ 

+ lr1,µ - st,µ I 
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< E/3 + E/3 + E/3 = E. 

It follows that {s1 ,n}, {s2 ,n}, ••• is a funda

mental sequence of fundamental sequences of rational 

numbers. 

DEFINITION 4.2. The sequence Pi, p2 , ••• of equivalence 

classes of fundamental sequences of rational numbers is 

fundamental if every sequence {r1,n}, {r2 ,n}, ••• is fun

damental, where {rm,n} E pm' m = 1,2, •••• 

DEFINITION 4.3. If {rl,n}, {r2 ,n}, ••• is a fundamental 

sequence of fundamental sequences of rational numbers, 

a fundamental sequence {rn} is its limit if, for every 

E > 0, there is an N such that for every k > N, there 

is a v(k) such that if n > v(k) then lrn - rk,nl < E. 

We can proceed now to the most basic part of 

this discussion. We prove the following theorem. 

THEOREM 4.1. Every fundamental sequence of fundamental 

sequences of rational numbers has a limit. 

Proof: Suppose that {r1,n}, {r2 ,n}, ••• , {rm,n}, ••• 

is a fundamental sequence of fundamental sequences of 

rational numbers. + ••• 

- be a convergent series of· positive rational terms. 

(1) There are integers m1 and n1 

(a) if n > n1 , then lrm n 
1, 1 

such that 

- r I < El m1 ,n 
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and 

(b) if m > m1 , then there is a v
1 

(m,m
1

) 

such that if v > v1 (m,m
1

) then 

Ir - r I m v m " 1, , V 

(2) There are integers k 2 and 12 such that 

25 

(a) if 1 > 1 2 , then Irk t - rk 1 1 < 1/4£ 2 2, 2 2' 
and 

(b) if k > k 2 , then there is a Jv(k,k
2

) such 

that if v > v(k,k2), then 

Ir - rk I k,v 2 ,v 

Select m2 > max (k2 ,m1 ) • Select n 2 > - ·i ; 

max(l2 ,n
1

,v1 (m2 ,m
1

),v(m2 ,k2)). 

Then 

(i) 

< £1 + £1 = 2 £1; 

(ii) if n > n 2 , then n > k 2 , n > 1 2 , and n > v(m
2
,k

2
), 

so 

< £ • 
2' 
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(iii) for each m >m
2 

let v
2

(m,m
2

) = 

max(v(m,k2 ) ,v(m2 ,k2)). 

If m > m2 and v > v2 (m,m2) , then m >k2 , 

m2 > k 2 , v > v(m,k 2) and v > v(m2 ,k2) so 

Ir - r I m,v m2,v 

We can continue in a similar manner for each 

integer. The following argument completes the induction 

procedure. 

(p) Suppose that pis an integer greater 

than 2. Suppose also that for each integer 

q = 1,2 , ••• , p - 1, there are numbers m and 
q 

n such that the following statements are true: 
q 

( q - i) I rm - rm I < 2 £ . for i = q - 1; 
q , nq . ; i, n i i 

(q - ii) £ • 
q' 

and 

(q - iii) for each m > m, there is a number q 

vq (m,mq) such that if v > vq(m,mq), then 

lrm v - rm vi < £q• q , 

There are integers kq and 

(a) if 1 > lq , then 

and 

1 such that 
q 

Irk i - rk ii < 1/4£ ; 
q' q q' q 



Then 
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(b} if k >k, then there is a v(k,k} such 
q q 

that if v > v(k,k }, then 
q . 

Irk - rk vi < 1/4£ • ,v q' q 

There are integers k and 1 such that 
p p 

(a} if 1 > 1, then Irk 1 - rk .e.l < 1/4£ ; 
p p' p p' p 

and 

(b} k > k, then there is a v(k,k} such 
p p 

that if v > v(k,kp}' then 

Irk v - rk vi < 1/ 4 £ • 
, p' p 

Select n > max{l ,n ,v (m ,m ), 
p p q q p q 

( i} I rm n - rm n I 
q' q p' p 

{ ii) 

~I r m ,n - rm nl 
q' p 

+ Ir n - r I m m ,n q' p p p q q 

< £ + £ = 2£ • q q q' 

if n > n, then n > k, n > 1 and 
p p p 

n > v (m , k ) , 
p p 

so lrm n - rm nl ~ lrm n 
p' p p' p' q 

+ Irk n 
p' p 

Irk .e. -
P' p 

- rk n I + 
p' q 



that if 

(iii) for each m > mp, let vp(m,mp) = 

max(v(m,kp) ,v(mp,kp)). 

If m >m and v > v (m,m ), p p p 

mp> kp, v > v(m,kp) and v 

lrm - rm I 
,v P'v 

<l/4 E + l/4E < E • 
p p p 

then m > k, p 

> v(mP,kp) so 

Let E > o. There is a positive integer p such 

k > P, j > 0 then Ek+ Ek+l + • • • + Ek+j-1 < E/2; 

thus, for every k > p and j > 0 we have 

lrm - rm I < lrm - rm I = k'~ 
n 

k'nk k+j'nk+j k+l' k+l + 

lrm - rm n I + ••• + 
k+l'nk+l k+2' k+2 

< 2Ek + 2Ek+l + ••• + 2Ek+j-l < E • 

Hence, · {rm } 
P'nP is a fundamental sequence. 

Again take E > o. There is a p such that for 

j > o, p+j 
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I: Ek< E/4 . 
k=p 

Let m > m. p Consider the fundamen-

tal sequence rm, rm, •••• There is an N such that if 
1 2 

µ I V > N then lrm - rm I < E/4. There is aµ> N such 
Iµ IV 

that lrm µ - rm I < 
' p'nP Ep• For every v > max(p,N) we have 



.. 
lrm n - rm,vl < 

p' p 

< e/4 + 2e/4 + e/4 =E• 
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+ 

This means that the fundamental sequence of fundamental 

sequences has a limit and the limit is itself a fundamental 

sequence. 

This proof is complemented by the following theorem. 

THEOREM 4.2. If {r1 ,n}, {r2,n}, ••• is a fundamental se

quence of fundamental sequences and if {r1 ,n} ~ {s1 ,J, 
{r2 ,n} ~ · {s 2 ,n}, ••• , then {s1 ,n}, {s 2 ,n}, . ••• is a funda

mental sequence of fundamental sequences and if {rn} and 

{s} are their limits, then {r} ~ {s }. n n n 

Proof: From Lemma 4.1 we know that {s1,n}, {s 2 ,n}, ••• is 

necessarily a fundamental sequence. It remains only to 

show that their respective limits are equivalent. This 

follows from the definitions of equivalence relation and 

the limit of a fundamental sequence. 

Let e > o. There exists N1 such that if m > N1 

there is a v(m) such that if n > v(m) then lrm,n - rnl < e/3. 

There exists N2 such that if m > N
2 

there is a v(m) such that 

if n > v(m) then lsm,n - snl < e/3. For every m there is a 

v(m) such that if n > v(m) then lrm,n - sm,nl < e/3. For 

every m let N = max(N1 ,N2 ,v(m)). Then for n,m > N, we have 



lrn - snl = lrn - rm,n + rm,n - sm,n + sm,n - snl 

~lrm,n - rnl + lrm,n - sm,nl + lsm,n - sn l 

~ £/3 + £/3 + £/3 = £. 

Hence, {rn} ~ {sn}. This completes the proof. 

Suppose now that P1, P2, ••• is a sequence of 

equivalence classes of fundamental sequences. Suppose 

also that we select two sequences {r1,n}, {r2,n}, ••• 

and {s1 ,n}, {s 2 ,n}, ••• such that {sk,n} £ pk and 
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{rk,n} £ pk for each integer k. It follows from Theorem 4.1 

and Theorem 4.2 that these two sequences have limits which 

are equivalent fundamental sequences and which belong to 

some equivalence class p. It follows then that every fun

damental sequence of equivalence classes has a limit in the 

sense of the following definition. 

DEFINITION 4.4. • • • is a fundamental 

sequence of equivalence classes, the limit is the equivalence 

class to which {rnl belongs, where {rn} is the limit of 

{rl,n}, {r2,n}, ••• and {rl,n} £ P1, {r2,n} £ P2, ••• , 



CONCLUSION 

We have thus displayed Cantor's method for ob

taining the real numbers from the rationals. Further 

discussion would show that the real numbers are a field, 

and that the real number system is complete. Essentially, 

this is what has been accomplished with the equivalence 

classes of rational numbers which give rise to the real 

numbers. The following theorem summarizes the notion of 

completeness of the real numbers. 

THEOREM 5.1. Suppose that p 1 , p 2 , ••• is a sequence of 

equivalence classes. The following two statements are 

equivalent. 

(i) If a is an equivalence class, a> a, then 

there is an integer, N, such that if n > N and m > N, 

then - a< Pm - Pn < a. 

(ii) There is an equivalence class, p, such 

that if a> e, then there is an integer N such that if 

n > N, then - a< p - Pn < a . 

Proof: We prove this by showing that the statements 

(i) and (ii) are equivalent to Definitions 4.2 and 4.3 

respectively. 

Definition 4.2 implies (i). 

Let {rm,1.1) E Pm and {rn,µ) E Pn • P1, p 2 , ••• 
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is a fundamental sequence of equivalence classes means that 

{r 11 } is fundamental form= 1,2,3, ••• and {r } is funda-m,.. n,µ 

mental for n = 1,2,3, •••• {r - r } is a member of m,µ n,µ 

p - p • m n 

LEMMA 5.1. If o > e, then there is a rational number E > 0 

such that if TE is the equivalence class containing 

{ E , E , E , • • • } , then e < T 
E 

< o. 

Proof: Suppose not. If k is a positive integer, let T. 
1/k 

denote the equivalence class containing {1/k, 1/k, ••• }. By· 

assumption e < o < T1/ 2k < Tl/k for each k. If k is an in

teger, then there is a member, {sn}, of o and an integer N 

such that lsn - ol < 1/k for each n > N. Hence {sn} has 

limit O and o = e, contrary to hypothesis. 

Suppose now that o > e and Eis a positive rational 

number such that T < o. There exists an N such that if 
E 

m,n > N, then there is a v(m,n) such that ifµ> v(k,l), 

then lrm - rn I < E. Then if T > e is the equivalence ,µ ,µ E 

class to which {t,t , t, ••• } belongs, we have - o < - T < 
E 

(i) implies Definition 4.2. 

Suppose E > o. Then there exists an equivalence class, 

o, containing {t,t,t, ••• }. There is an integer N such that 

if m,n > N, then - o < pm - Pn < o. Let {rm,µ} E Pm and 

{rn,µ} E Pn• It follows that the sequence {rm,µ - rn,µ} 
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belongs to -the equivalence class pm - Pn• Then we have from 

Definition 3.1 that for some N > 0 Ir - r I <£if m,µ n,µ 

M > N. This implies that {r1 ,n}' {r2 ,n}, ••• is a fundamental 

sequence of fundamental sequences. 

A similar argument can be used to show that (ii) implies 

Definition 4.3, and Definition 4.3 implies (ii). This proves 

the theorem. 

As stated previously, our particular interest was in the 

technique itself, especially since most authors of elementary 

analysis texts emphasize the Dedekind method. It is interest

ing to see that the two approaches are essentially equivalent. 

In fact, the Dedekind cuts form an ordered field isomorphic 

with the field of equivalence classes of fundamental sequences 

of rational numbers. 
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