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Abstract

A Diophantine m-tuple with property D(¢) is a set of m integers such that the product of any two
integers plus ¢ results in a perfect square. This thesis establishes that a particular family of D(4) pairs
of Pell numbers can be extended to a D(4) triple by exactly one Pell number. A similar result has
been found for the Diophantine triples of Fibonacci numbers, a discussion of which is included in the
first chapter of this thesis. This chapter finishes with a statement of the main result of my thesis, and
the subsequent chapters discuss several topics in number theory which were used to prove the main
result in chapter 5. Specifically, results about continued fractions, Pell-type equations, and linear forms
in logarithms were used. These topics are the subjects of chapters 2, 3 and 4, which contain some
history and discussions of the important results. The conclusion of this thesis discusses some possible

generalizations.

Key words and phrases: Linear forms in logarithms; Diophantine triples; Pellian equations; Pell num-

bers.
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1 Introduction

1.1 The Property of Diophantus

It has been noticed by Diophantus of Alexandria that the set {%, %, %, %} has the property that
taking the product of any two numbers and adding one results in a rational square. Sets of integers

have been found with similar properties. For example, consider the set {1, 3,8} and observe:
1x34+1=2% 1x8+1=3?% 3x8+1=5%

The set {1,3,8} is an example of what’s called a Diophantine triple with property D (1). More
generally, a Diophantine m-tuple with property D (¢) is a set {aj,as, ..., an }, usually consisting of
integers, such that a;a; + ¢ is a perfect square for any 7 # j. The first set of four integers with this
property was found by Fermat, who noticed that {1,3,8,120} is a D (1)-quadruple. It was proved by
Baker and Davenport in [1] that 120 is the only integer that can extend {1, 3,8} to a D (1)-quadruple.
Their work uses results about lower bounds for linear forms in logarithms, which are also used to solve
the main problem of my thesis in chapter 5. A discussion about linear forms in logarithms is included
in chapter 4. Their paper is also the first appearance of a method called Baker-Davenport reduction,

which is commonly used when studying Diophantine m-tuples.

1.2 The Fibonacci Sequence

It is well-known that Diophantine triples can be constructed from the Fibonacci sequence. The Fi-

bonacci sequence is defined as
Fn+1:Fn+Fn717 FO:07F1:1~

The sequence has been frequently studied in recent years in the context of Diophantine triples. It
satisfies the well-known Catalan’s identity:

F?—F, ,Fop,=(-1)"""F%

T

A simple family of D (1)-triples can be constructed by performing the following substitutions into
Catalan’s identity:

(n,r)=02n+1,1) = FopFonyo + FE=F3 4

(n,r) =(2n+3,1) = FyypoFopia+ FE=F3 4

(n,r)=(2n+2,2) = FopFopia+ F} =F3

Since Fy = Fy = 1, this shows that {Fy,, Fonto, Fonya} is a D (1)-triple. It is possible to construct

families of D (¢) triples for values of £ > 1. The Fibonacci sequence can be solved to obtain the



1+v5 1-/5

formula for the nth term F;, = ‘p;:gn , where ¢ = “522 and ¢ = ==5*2. This is called Binet’s Formula.
Define the sequence L,, := ¢™ 4+ @™ (this sequence is known as the Lucas Numbers), and observe that
L,F, = (" +¢") - ‘p::gn = “’2;:5” = F5,. Similar to before, we can perform substitutions into

Catalan’s identity. There will be an additional step of multiplying two of the equations by L? and
applying the identity L, F,. = F5,.

2 _ 2 ; o 2 2 _ 1727172
FQnF2n+2r + Fr = F2n+7' rrlulthly first t‘;vo LT.FQnFQnJ’_QT + F27' = LT'FQn—H'
9 9 equations by Lj 2 2 2 1792
FontorFontar + Fr=F5, 45, Ly FontorFonyar + 15 = L5, 15,

2 _ 2 2 _ 2
FonFontar + F2r = F2n+2r FonFonyar + F2r = F2n+2r

This shows that {FQn,L%F2n+2r,F2n+4T} isa D (Ffr)—triple. Taking r = 2,3 gives the D (9)-triple
{Fsn,9F5n 44, Fonts} and the D (64)-triple {Fb,,16F5, 6, Font12}, respectively. The cases of r =
2,3 were studied in [4], where the authors were concerned with whether it is possible to extend
{L%F2n+2T,FQn+4T} toa D (Ffr)—triple by another Fibonacci number. In the case of r = 2, they
showed for n > 1 that the only Fibonacci number which can extend {L%F2n+2r, F2n+4r} to a D (9)-

triple is Fy,. In the case of r = 3, they proved the same result under the assumption that 3|n.

1.3 Binary Recurrence Relations

While the Fibonacci sequence has been commonly studied in the context of Diophantine triples, it is

possible to construct Diophantine triples using any binary recurrence relation of the form
Sn+1:&'Sn+b~Sn_1, SQZO, 51750, a27é—4b.

Just like the Fibonacci sequence, this more general recurrence can be solved for the nt" term to obtain

the Binet-like formula S,, = S; “=2" where o, @& are distinct roots of the polynomial A2 — aX — b. I

a—a
prove this fact below.

~n

Theorem 1.1. S, = §; =4

ax—«

Proof. The recurrence relation can be expressed using matrices:
S, | fo 1] [sn o 1] [sp
Sni1 b a|| S, b al |5

. . 0 1] . . . _
The characteristic polynomial of X ] is A2 — a\ — b. Since a? # —4b, the eigenvalues o, & are
a

Sn+1

apply recursively l Sn
‘—__)

I~ Lo 1 1 : 0 1
distinct. The corresponding eigenvectors are ( ) and (_), respectively. Therefore, L ] has the
@ @ a



following diagonalization:

0o 1 1 1 1| |a O] |-a 1
b a a—a|la al |0 al|a -1
With this, we perform matrix multiplication to see that see that
Sn 1 1 1| |a™ 0 —a 1 0y S a” —a”
Sn+1 Ta-ala a 0o a" a =11 \95 T a—al\gvl—gn?

And so we have the formula for S,: S, = §; &—=a" O

a—o

Using this formula, it is possible to prove a variant of Catalan’s identity:
S2 Sy Spir = (—b)""S2
Define the sequence C,, := a™ + a”, so that C,S,, = S3,. Combining these two facts, we find that

OESZHS%-&-% + bS%r = 035§n+r
C352n+2r52n+4r + bsgr = C353n+3r

82n52n+47’ + bsgr = S§n+2r

and we therefore notice that {Sgn, C?San 2, Sgn+4r} isa D (bS%T)—triple.

1.4 The Pell Sequence

The problem of my thesis is similar to what was done in [4] and [11], where my work pertains to the
Pell sequence as opposed to the Fibonacci sequence. The Pell numbers are historically noteworthy for
being involved in the approximations of /2 by rational numbers. They were known as early as 130
C.E. by Theon of Smyrna [6], who used the term “side and diameter numbers” to describe the integer
solutions to the equation

-2 =41, z,yel

This equation is a particular case of Pell’s equation, which is discussed in a later chapter in more
detail. There is a straightforward procedure to solve this equation for relatively small z and y. We
can simply substitute values of y one-by-one into the expression 2y% 4 1, and take note of whether or

not the resulting number is a square. If it is a square, then that particular pair (z,y) is a solution. By



this process we can find the first few solutions:

n 1 2 3 4 5 6 7 3
x, 1 3 7 17 41 99 239 577
1 2 5

Yn 1229 70 169 408

The sequence y,, is called the Pell sequence. It seems to follow the recurrence relation y,+1 = 2yp+yYn—1,

and the sequence x,, appears to follow z,, = ¥, +yn_1. Note that if (x,,,,) is a solution to 2% —2y? =

2
+1, then (%) -2 = iy%. Since the right-hand side approaches zero as the denominators grow

2
larger, we find that lim (‘Z) = 2. This means that solutions to 22 — 2y?> = 41 can be used to

n—oo n
produce a rational approximation % of v/2, and the approximations become more accurate as the size

of the denominator increases.

Indeed, it can be verified that the Pell sequence, defined as
Pn+1:2Pn+Pn—17 =0, P=1

can be used to generate solutions (z,y) = (P,_1 + P,, P,) to the equation 22 — 2y? = +1. This fact
was mentioned by Theon of Smyrna, although he did not provide a proof, but rather verified the first

few cases. The proof I will give requires the Catalan-like identity:
P? =Py 1Poyr + (-1

Since irrational numbers were contentious at this point in history, I would like to give a proof without

reference to irrational numbers. First, using a similar recursive process to theorem 1.1, we can establish

(o)) () e (5 )-(02) (0)

From these, we obtain the following matrix formula for the Pell-numbers:

Poy P\ [0 1)
P, P.y1) \1 2

The Catalan-like identity results from taking the determinant of both sides. Now, we substitute



(2,9) = (Pa_1 + Pn, P,) into the expression 2% — 2y

(Pn71+Pn)2—2P3 = P3,1+2Pnpn71_Pfr%
= P,Py,_2+2P,P, 1 — P2+ (-1)" e by the Catalan - like identity
= Py(Pp2+2Py 1) — P2+ (-1)"
= P2-P24+(-1)" e by definition of Pell numbers
= (="

Thus it has been established that (P,_1 + P,, P,) is a solution to x? — 2y? = 41. This means that
numbers of the form P"%jp" give rational approximations of /2, with the approximations becoming
more accurate as we go deeper into the sequence.

Now I will state the problem which I have been asked to solve. From section 1.3, we can see that
{Pan,4Pop+2, Panta} is a D (4)-triple. The main problem of this thesis is to show that that the only
Pell number which can extend the set {4Ps, 42, Panta} to a D (4)-triple is Pa,. That is, I prove the

following theorem.
Theorem 1.2. The set {Py,4Pop 2, Panta} is a D (4)-triple if and only if k = 2n.
The plan of attack to prove this result is as follows:

e Set up a Pellian equation for the triple { Py, 4Py t2, Panta} and use a lemma from [4] to classify

the full solution set.

e Use bounds on linear forms in logarithms to narrow down the possible solutions to a finite list.

e Use results about continued fractions, as well as a method called Baker-Davenport reduction, to

reduce the number of solutions to a more computationally manageable size.

e Test the remaining possibilities one-by-one.

The solution to this problem uses results about continued fractions, pellian equations, and linear forms
in logarithms. As such, the next three chapters discuss the important background theory and results

about these topics.



2 Continued Fractions

2.1 Huygens’ Planetarium

In 1680, the Dutch mathematician Christiaan Huygens had set out to construct a planetarium to model
the solar system using interconnected gears [12]. He had encountered the problem of determining the
number of teeth he ought to use in his interconnected gears, so that the planets in his model reflected
the orbital periods of the planets in the solar system.

Using data on the orbital periods of the planets derived from Johannes Kepler, he was able to
determine that it takes Mercury 12055313950 years to rotate once around the sun — that is, for every 105190
rotations Mercury completes around the sun, the Earth rotates around the sun 25335 times. Thus,
in an ideal model, he would have one gear with 25335 teeth, and the other with 105190 teeth. For
practical reasons, it was not possible for him to have gears with such large numbers of teeth. As such,

he was confronted with another problem of approximating the ratio 12055313950 with a number sufficiently

close to it, but with the numerator and denominator not exceeding a certain size.

To address this problem, Huygens was able to come up with the following representation of 12055313950:

25335 1

- 1
105190 — , 1

6+ I
1+ i
14
1
24 1
14 T
1+
1
I+ ———g—
T =7
T+ ——

1+1
2

The next section explains how to calculate such a representation. By truncating this expression

after 5 divisions, he obtained the number

1 33

I T 137
At ——

6+——
1
I+ —

14+ =
+2

which is remarkably close to 120553139507 and with a much smaller numerator and denominator. The error



of the approximation is

——=|=0. 2602173...
105190 137 0.00002602173

‘ 25335 33

With this result, Mercury could be modelled in the planetarium using one gear with 33 teeth, and

25335
105190

fraction. The fact that truncating the continued fraction after a certain number of terms results in

12055313950 is not a coincidence. Continued fractions can be used to generate

another with 137 teeth. The representation Huygens found for is now known as a continued

a close approximation of
rational approximations for real numbers, while having restrictions on the size of the denominator.

Huygens’ work on the planetarium is the first to demonstrate this application.

2.2 Representation of Real Numbers by Continued Fractions

A finite simple continued fraction is an expression of the form

1
ap +

R
Gt T
L

Qnp

It is possible to represent any rational number by a finite continued fraction with integer ag, a1, ..., an,
using a method which parallels the Euclidean algorithm. To do this for a reduced fraction 2 > 0, we

q
can perform computations according to the following recurrence relation:

Tk Tk Tk42
= \‘ J + ) To =P, "1 =¢(.
Tk+1 Tk+1 Tk+1

Since the 7y are strictly decreasing, we will eventually find that r, = 0. If we denote a; = L Lic J,

Tk+1
then by noting that T’;ﬂ: L = le/rm’ a series of substitutions reveals that
To T2 1
7:a0+7:a0+7r3:...:a0+—1
1 1 ay + — S
ro a1+-' 1
—

Qp—2

It is obvious that a finite continued fraction is rational, so this establishes that a number is rational if
and only if it can be represented by a finite simple continued fraction.

The process described above for finding a continued fraction representation of a rational number
can be generalized to irrational real numbers as well. For a positive real number « define the recurrence

relation

apr1 = (g — lax]) ™, ag = a.



One can rearrange this to see that o = |ag| + a:ﬂ. Therefore,
1 1 1
a = lao] + (a0 — [ao]) = lao] + — = [ao) + ——— = [ao] + T
1 lon] + — o) + ————
2 o] + —

If we denote ar = |ay ], then it appears as though we can represent « by the infinite continued fraction

1
o =ag+ 1 , Ao, 01,02, ... €Z+

w7
CL2—|—

1
az + —

Here the ag, a1, as,... are called partial quotients. As with all infinite processes, there still remains
the question of convergence. It is a fundamental fact in the theory of continued fractions that every
continued fraction with positive integer partial quotients converges to an irrational real number, and
that every irrational real number can be represented in a unique way as an infinite continued fraction
whose partial quotients are positive integers, except for the first partial quotient which may be any
integer. (See Theorem 1.2.13 in [2]).

2.3 Some Definitions and Basic Results

The theory of continued fractions is used in each of the upcoming chapters. For further discussion,

the introduction of some common terminology is in order.

Definition 2.1 (Infinite Simple Continued Fraction). Let ag,aq,as,... be real numbers. Define the

expression
1
C =ao + 1
ay +
a2 —+

1

1
az + —
This is called an infinite simple continued fraction, and is denoted more compactly by [ag, a1, a2, as, ...].

o The number a; is called the jth partial quotient of (.



e The following expression, which we denote by [ag, a1, ag, ...a,] is called the nth convergent of (:

1
[aO,al,QZ,...an] = a0_|_ 1

a1 + i
az +

1
o+ Ap—1 —|— _—
Qnp

o A continued fraction with a repeating block of partial quotients is called a periodic continued

fraction, and is denoted by

° [ao, a1,02,...0k, Qk41, k12, ...ak+gj

e where [ag,a1,as,...a;] are the initial block of partial quotients, which is followed by the block
[@kt1, Qpt2, -..apre] of partial quotients which repeats indefinitely. Here the length of the repeating
block, ¢, is called the period of .

The convergents of a continued fraction are given by the following recurrence relations:

Theorem 2.1. Let % = lag, a1, ag, ...,ax|. Then forn >0,
DPn = QuPpn—1 +DPn—2 and qn = anQn-1+ qn_2

where it’s defined that p_o :=0, p_1:=1, q_2:=1, q_1 :=0.
The convergents satisfy the following identity which is frequently useful:

Theorem 2.2. Forn >0,
gnPn—2 — PnQn—1 = (_1)71
Quadratic irrational numbers can be characterized in terms of periodic continued fractions.

Theorem 2.3. A real number « is a quadratic irrational if and only if its simple continued fraction

representation is eventually periodic.

Theorem 2.4. If d € Z" is not a perfect square, then
\/E = [am A1y eeeyAp—1, 2@0]

where ag = {\/&J , and ap_1 = a1,0ap_2 = ag, ... are positive integers.

These theorems are theorem 1.3.8 and 1.3.9 in [2]. The latter theorem is useful in solving Pell’s
equation, which is discussed in the next chapter.

The upcoming lemmas 2.5 and 2.6 are used to prove lemma 2.11, which is used in section 5.4. They
are also used to prove theorem 2.7, which establishes that successive convergents are closer rational

approximations of an irrational number.



Lemma 2.5. If a; € Z* for each i € N, then ag < |ag, a1, as,...] < ap+ 1.

Proof. It’s evident that [ag, a1, a2,...] = ap + [al,azl,%,,__] > ag. Now suppose, to the contrary, that the
second inequality doesn’t hold. Then
1 1
[ao,a1,a2,...]:ao+72ao+1 = 12[(11,(12,(13,...] = 1>2a14+ ——— > a1
[a17a27a37...} [ag,a3,a4,.4.]
which is absurd. O
Lemma 2.6. Let a = [ag, a1, ag,...] for integers ag, a1, az, .... Define x; = [a;, ai41,...]. Then
k
(1)
Gk (Thr1qr + qr—1)
Proof. By theorem 2.1 we have
Tk41Pk + Dk—1
a=lag, @1, ..., A, Tg1] = ———————
Th4+1qk + k-1
Pairing this result with theorem 1.2,
k
g Pk _ PE10k — Qk-1Pk (—1)
G qk (Try1qk + ar—1)  qk (Tha1qk + qr-1)
O

2.4 Approximation of Irrational Real Numbers using Rational Numbers

We have seen that an irrational real number « can be represented by a convergent infinite continued
fraction. Fach successive convergent is closer approximations of c. This is a corollary of the following

theorem:

Theorem 2.7. Let a be an irrational number and let % denote convergents of its simple continued

fraction. Then
Pn+1
dn+1

Pn
o — —

n

o —

dn > qn+1

Proof. By lemma 2.6,

a— —|=————— where x41 = |0k+1,Ak+2, Ak+3, -

qk
qk Tk+1qk + Qk—1

Pk 1
\ ]

By lemma 2.5, we know that

A1 < Tpy1 < apy1 + 1.

10



From this and theorem 2.1, it follows that

®  Tpi1Qk T Qk—1 2 Qk4+1Gk T Qk—1 = Q41

o Tpriqr + Q-1 = (Tpt1 — Gkt1) Gk + Ght1 < Gk + Grt1

Therefore )

qk + Qk+1

P
oa— 28

dk

1
<

< Qk <
qk+1

Note also the inequality g + qx+1 < Gk + Gk+2qk+1 = qr+2. Therefore,

1 1
< < < Gk
Qk+2 Gk T Qk+1

Pk+1
k41

Pk
o — 2k
gk

o —

Ak+1

O

An important application of continued fractions is to approximate irrational real numbers by ratio-
nal numbers, with restrictions on the size of the denominator. If z—" is a convergent of a real number
a, then % is closer to « than any other rational number with lesser or equal denominator. That is to

say that

Pn
o — —

qn

<|a—=| forany P’ /qd # pn/qn where 0 < ¢’ < q,.

In this sense, convergents of continued fractions are said to give the best approximations of c. This is

a corollary of the following theorem.

Theorem 2.8. Let a > 0 be a real number. I %, n > 2 is a convergent of «, then

|lgnee = pn| < [ga — p|
for any p/q which is not a convergent of «, where 0 < q < qy,.
Proof. If ¢ = qy, then it means p # p,. Note that

— D, 1
_lp=pal o1 g

An dn

’Ppn
q dn

N 1 1
P ’ -

a——| <
dn qndn+1 ZQn

Where the second inequality is true since g,4+1 > 2 for n > 2. Therefore,

a—pl <

an

2¢n o 2qn

1 1 1 .
B <‘p p

a-l

Multiplying the inequality by ¢ = ¢, gives |gna — pn| < |ga — p|.

11



Now suppose 0 < ¢ < g,. Consider the linear system

Gn® + Gn-1Y = ¢q
Pn® + Pn—1Y =D

By theorem 2.2 we know that

q n—1
det ( " " ) = gnPn—1 — qn—1Pn = (_1)n
n  Pn—1

This means that the system solvable for integer values of z and y. Note that z and y are nonzero. If
one of them was 0, it would make g a convergent of a. Since ¢,x + ¢n—1y = q and 0 < ¢ < @y, it
means z and y are of opposite signs. By lemma 2.6, we also know that ¢,a — p, and ¢,_1a — p,_1

are of opposite signs. Therefore,

lgae — p| = |gn — pul 2| + -1 — Pr—1||y| > lgn—10 — Pn—1| > |gna — py|

The converse of this theorem is also true.

Theorem 2.9. If |¢'a —p'| < |qga — p| for all p/q # p'/q with 1 < q < ¢, then % is a convergent of

the continued fraction of «.

Proof. Suppose, to the contrary, that % is not a convergent of a. For any ¢’ > 1 there are convergents

qr—1 and g such that g,_; < ¢’ < q. In the proof of the previous theorem, we have established in

this case that |gx—100 — pr—1| < |¢'a — p’|. Since qx—1 < ¢’, this means f;—: can not satisfy the premise

of the theorem. Thus, 2—: is a convergent. O

The next theorem is a criterion due to Legendre, and is used in section 5.4. It gives a condition for

when a rational number is a convergent of a continued fraction representation of an irrational number.

< ﬁ. Then

Lemma 2.10. Let o be an irrational number. Let p,q € Z with ¢ > 1 such that ‘oz - %
% is a convergent of a.

Proof. Suppose ‘a — g’ < ﬁ. Let f]i: %+ % satisfy |¢'a — p'| < |qa —p| = q‘a— g‘ < %. Then

1 1

2¢°

ap‘+
q

<
= /

r /
1 lrg qpl_‘p P
2qq

qq’ qq’

q ¢

Rearranging this inequality reveals that ¢ < ¢’. By the previous theorem, this implies that % is a

convergent of a. O

12



The next result is used 5.4 and gives bounds for how well a convergent approximates an irrational

number in terms of the subsequent partial quotient in its continued fraction representation.

Lemma 2.11. Let x be an irrational number, let Z—: be the kth convergent of its continued fraction

representation, and let ai11 be its (k + 1)8t partial quotient. The following inequality holds:

1
qi (ax+1 +2)

1

2
qr0k+1

_ Pk
gk

<

<o

Proof. By lemma 2.6,

1
= where i1 = [ag41, Ckt2, Q43 -]
Gk (Thr1qr + qr—1)

‘ Dk
o
qk

By lemma 2.5, we know that apy1 < g1 < ary1 + 1. Since gx—1 < g, it follows that

1 1 1 1

> > -
Gk (@rr1qe + qe-1) ~ qr ((@k1 + 1) g +qe—1) ~ qr ((ak+1 + 1) g +qx)  q7 (aks1 +2)

We can also see that

1 1 1
< < 5
G (Tra1qr + qe—1)  qr (Aps1Gr + Q1) qRaks

gk

‘ Dk

13



3 Pellian Equations

3.1 Pell’s Equation

Let d be a positive integer which is not a perfect square. The Diophantine equation z? — dy? = 1
is called Pell’s equation. As this is a Diophantine equation, we are interested in its integer solutions.
A solution (zg,yo) in which zy and yo have their smallest positive values is called the fundamental
solution. Note that it is in fact enough to say that xgp is minimized, as this will imply that yq is

minimized also. To see this, suppose that
v —dyf =1, a5—dys =1, 0<umz <y

Then
L=af —dyi <a3 —dyf =25 —dy; +d (y3 —yi) = 1+d (y3 — yi)

If we assume y; and yo are positive, this implies that yo > y;. We could similarly show that the
minimal xq is uniquely determined by the minimal yq.
The fundamental solution to Pell’s equation can be found with the use of continued fractions, as

described by the next theorem:

Theorem 3.1. Let n be the period of the continued fraction of Vd. Then the fundamental solution to
Pell’s equation is
(Pk—1, qr—1) if k is even
(1’03 yO) - ) )
(p2k—1,q2k—1) if k is odd

Where % is the kth convergent of /d.

The proof of this result uses the fact that v/d has a periodic continued fraction representation.
More information on solving Pell’s equation using continued fractions can be found in [6].
The general solution to Pell’s equation can be expressed in terms of the fundamental solution, in

accordance with the following result, which is theorem 104 in [10].

Theorem 3.2. Pell’s equation has infinitely many solutions. Moreover, all of the solutions with

positive x and y are of the form
xn+yn\/E: (ﬂfoero\/g) , n=0,1,2,3,..

Where (zo,yo) is the fundamental solution.
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3.2 Generalized Pell’s Equation

There is also the generalized Pell’s equation, which is the Diophantine equation
w—dv®’=N, Nez'

We are interested in classifying the entire solution set of this equation. To do so, we will use the related
Pell’s equation 2 — dy? = 1. If ' + v/V/d is a particular solution to u? — dv? = N, and zg + yo\V/d is

the fundamental solution to 22 — dy? = 1, then for any integer n,

u+vVd = (u’ + v’\/ﬁ) (:vo + yo\/@n

is also a solution to u? — dv? = N. The set {u +ovd = <u’ + v’\/a) (xo + yo\/@ 'n € Z} forms
what is called a class of solutions of u? — dv? = N. The generalized Pell’s equation may have multiple

classes of solutions. For example, consider the equation
u? — 5y% = 20

It can be checked that u; + le/& =5++/5 and us + ’Ug\/g = 10 + 4+/5 are solutions to this equation.
For these two solutions to be in the same class, there would need to be an integer n such that
_ n n__ 10445 _ 3 1
10+4v5 = (5+5) (9+4V5)" = (9+4V5)" =100 8 1 15
But the coefficients from expanding (9 + 4\/5)n would be integers, so these two solutions cannot be
of the same class. This particular example can be generalized to classify whether two solutions are of

the same class. Note that for two solutions u 4+ vv/d and «’ + v'v/d to be of the same class, there must

be an integer n such that

r i (V) (o) R = ()

u+v\/3 —
u’—&-v/\/a

n
be of the same class since expanding (3:0 + yo\/&) results in integer coefficients. If s and ¢ are both

s+dv/t. If s and t are not both integers, then the two solutions cannot

It is possible to write

n
integers, then s+ dv/t is a solution to the Pell’s equation 22 — dy? = 1, so s +tvd = (aco + yox/(j) for
n
some n € Z. Therefore u + d\/v = (u’ + v’ﬁ) (:co + yo\/g) , meaning the solutions are of the same
class.
Although a generalized Pell’s equation can have multiple solution classes, it can be shown that

there are finitely many. In [10], Nagell defines the fundamental solution of a particular class as the
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solution (ug,vg) with the smallest nonnegative v occurring in that class. This restriction also implies
|u| is the smallest in the class. Section 58 of [10] establishes bounds which narrow down the possible
fundamental solutions to a finite list. Since there are finitely many fundamental solutions, and each
class is entirely determined by one of its solutions, it means there are finitely many classes of solutions

to a generalized Pell’s equation.

3.3 Lemma on Pellian Equations

The following result gives a general solution to a certain class of Pellian equations. It is a generalization
of a result from [11], and is proven and applied in [4]. This lemma will be of use in chapter 5 of this

thesis.

Lemma 3.3. Let {a,b,c} be a D (ZQ) -triple — that s, there exist positive integers r,s,t such that
ab+ 12 =72 ac+1?2=5% and be+12=+

Suppose that a < b < a (4 + l%) If one of the following conditions holds:

)o1=2
it) l is an odd prime and l|ab, or
iii) 12|la or I2|b

Then all solutions of the equation
at* —bs® =1 (a — b)

are of the form

tva+svVb = (il\/EJrl\/B) (%) velt
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4 Linear Forms in Logarithms

4.1 Hilbert’s Seventh Problem

In the year 1900, David Hilbert published a list of 23 unsolved problems which he believed would
have a major impact on mathematics. Among those problems, the seventh problem inquired on the
transcendence of o® where o # 0,1 is algebraic and j is an algebraic irrational. This problem was

solved by Gelfond and Schneider in 1935, where they obtained the following result:

If a and B are nonzero algebraic numbers with log o and log B linearly independent over

Q, then loga and log B are linearly independent over the algebraic numbers.

The answer to Hilbert’s seventh problem is a consequence of this result. Let « # 0,1 be algebraic
and B € Q be irrational. Suppose that o is algebraic. This would make log (aﬁ ) and log « linearly

dependent over the algebraic numbers:
log (o) — Bloga =0

By Gelfond and Schneider’s theorem, this would imply that log (aﬁ ) and log «v are linearly dependent

over Q - that is, there is a rational number b such that
log (aﬂ) —bloga =0

After rearranging we find that 8 = b, which contradicts the irrationality of 8. Thus, it must be the
case that of is transcendental.
In 1966, Baker was able to generalize the theorem of Gelfond and Schneider to an arbitrary number

of logarithms:

If ay, 9, ..., are nonzero algebraic numbers with logaq, ...,log a., linearly independent over Q,

then (1 log oy + B log as + ... + By, log iy, # 0 for any algebraic numbers By, ..., Bm not all zero.

Furthermore, Baker was interested in resolving the question of how far away from zero a linear com-
bination of logarithms of algebraic numbers is. He was successful, and the results had far-reaching

applications to other areas of number theory.

4.2 Theorems of Matveev and Laurent

Definition 4.1. (Linear Form in Logarithms) Let ay, s, ...,y and Bo, B1, Ba, ..., Bn, be complex alge-

braic numbers. A linear form in logarithms is an expression of the form

A= o+ prloga; + Balogas + ... + B, log oy,
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Where log denotes any determination of the logarithm.

Since Baker’s work, there have been several results which give lower bounds for linear forms in
logarithms. By using these lower bounds, linear forms in logarithms have applications in solving

Diophantine equations. A typical strategy is as follows:
e Rewrite the Diophantine equation into an exponential equation with variables in the exponents.
e Associate the exponential equation to a linear form in logarithms, A.
e Using standard algebraic manipulations, find an upper bound for A .
e Using results about linear forms in logarithms, obtain a lower bound for A .
e Compare the upper and lower bounds to narrow down the possible solutions to a finite list.

e Reduce the size of this list to a more manageable size using various methods such as Baker-

Davenport reduction.
e Test the remaining possible solutions one-by-one.

For examples of applications, see [2].
Two results for lower bounds are stated below. The first is due to Matveev, and the second is
due to Laurent. Both of these theorems require the definition of absolute logarithmic height, which is

defined as follows:

Definition 4.2. (absolute logarithmic height) Let v be an algebraic number with minimal polynomial

. d y . . .
over 7, is a 11 (a? — 7(3)), where v ) ~D gre the conjugates of v, including . Define
=1

d
h(y) = é loga + Zlogmax (17 ‘y(j)D

j=1
The following theorem due to Matveev is from [9].

Theorem 4.1. Let A be a linear form in logarithms of multiplicatively independent, totally real alge-
braic numbers ai,qs, ...,y with nonzero rational integer coefficients by, ba,...,bn. Let h(a;) denote
the absolute logarithmic height of aj. Let D be the degree of Q (a1, e, ...,an) as a field extension over
Q. Define the numbers A; and E so that

A; > max{Dh(a;),|loge;l}, 1<j<N and E:max{l,max{|bj|%;ISjSN}}

Then
log |A| > —C (N) CoW,D*Q

18



where

C(N) = 251 (N +2) 2N +3) (de (N + 1) G = log (e*4¥+TN?5 D2 log (D))

W() :10g<15€EDlOg(6D)) QZAl A2 AN
The following theorem on linear forms in two logarithms is due to Laurent [7].

Theorem 4.2. Let v1 > 1 and v > 1 be two real multiplicatively independent algebraic numbers,
b1,be € Z not both 0, and A = by log v — by log~yy. Let

D =1Q(y1,7) : Q.

Let

llogvi| 1 . T 2]
hi > h(vi), = =1,2 b > —+ —
= max{ ). =5 fori Dhy T Dhy

Then log |A] > —17.9 - D* (max {log b’ +0.38, 30, 1})*h, hs.

4.3 Baker-Davenport Reduction

After applying the previous two theorems, the bounds may still be too large to practically check the
remaining possibilities. The following result due to Dujella [3] is a variation of a method first used by
Baker and Davenport in [1] to reduce the bounds to a more manageable size. It is part (a) of lemma
5 in [3].

Remark. Dujella’s original lemma in [3] had the requirement that ¢ > 6. His lemma had two parts,
and this requirement is only necessary for part (b) of his lemma, which is not needed in this thesis.
As such, I have omitted this requirement in the theorem below. I have included a proof to show that

there is no need to assume that ¢ > 6M.

Lemma 4.3. Assume k and p are real numbers and M is a positive integer. Let p/q be the convergent

of the continued fraction expansion of k such that ¢ > 1, and let

e = |lugll — M - ||xq||

where || - || denotes the distance to the nearest integer. If € > 0, then there is no solution to the
inequality

0<jk—k+u<AB™
In integers j and k with

log (Aq/¢) )
i< M
log B ==
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Proof. Since p/q is a convergent of k, theorem 2.9 implies that
[rall = kg — pl.-

Suppose 0 < j < M and that 0 < jx — k + u < AB77. Applying the reverse triangle inequality, we

find that
q(jr —k+p) = pg+jp —kq+ j (kg — p)

= (pgq + jp — kq) % j ||kl
> |pg — (kq = jp)| = 7 llxq]|
> [lpgll — M [|xq]|

=€

The above inequality implies that ¢ < ¢AB~7, which further implies that

log (Aqg/¢)
log B

O

This reduction process can be straightforwardly implemented in Maple™. A code for doing so is

found in section 5.5.
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5 On the Extendibility of a D(4)-Pair of Pell Numbers

5.1 The D(4)-triple

The Pell numbers are defined by the recurrence relation
P, =2P, 1+ P,_o with initial conditions Py, =10, P; = 1.

The n'* term is given by

- L n B . n
b ()" ()
Herein we will denote a := 14 /2, which gives the following representations:

kK k__lk —k
szia ?é and Pk:—a (=1)7a
a—a 2v/2

Where @ = 1 — v/2. The Pell numbers satisfy an analogue of Catalan’s identity:

PP, Py, = (—1)"""P?

T

The Pell numbers also satisfy the following bounds in terms of a:
Lemma 5.1. a2+ 1< P, < o™ ! forn > 2. The first inequality is strict for n > 2.

Proof. For P, < o™~ !, start with P, = %, multiply top and bottom by o™ and use (a@)"”

n ~n 2n n 2n n 2n
Lo o () e () el
n a—a an+1+an—1 a2n_|_a2n—2 a2n_|_1

n—1

(5.1)

(—1)"

For a® 2 +1 < P,, equality holds when n = 2. For n > 2, use induction. The inequality is strict when

n =3 and n = 4. For some k > 4, assume that a*~2 + 1 < P, and that o* 3 +1 < P,_;. Then

Poy1 —1=2P,+ Py —1>2(P,— 1)+ (Peo1 — 1) > 20" 240" 3 = 207 +a ) a1 =af !

The following theorem, first stated in Chapter 1, is the main result of this chapter:

Theorem 5.2. The set {Papi4,4Pon10, Pi} is a D (4)-triple if and only if k = 2n.

O

It can be shown using Catalan’s identity that {Pani4,4Pant2, Pan} is a D (4)-triple, so it re-

mains to show that k& = 2n is the only solution which makes {Pay,t4,4Pon 2, Pc} a D (4)-triple. If
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{Pan+4,4Papn 12, P;} is a D (4)-triple, then for some integers X and Y we have
PopiaPp+4=X? and 4Py, 2P, +4=Y?
We can eliminate Py to obtain the Pellian equation
4Pppi2X? — PopyaY? = 4 (4Popy2 — Popia)

We now apply lemma 3.3 with the quantities a = 4Ps,42, b = Payqq and | = 2. Since 4Ps,40 <
Poy44 < 20Py, 49, this equation has general solution

Y/ Pongsa +2X\/Popgo = (2\/P2n+4 + 4\/P2n+2) (P2n+3 + P2n+2P2n+4> velZt (5.2)

Define the sequences Vj, U; by

J
Vi + Ui/ PopyoPongs i= (P2n+3 + \/P2n+2P2n+4) (5.3)
This results in

Y/ Popys +2X\/Popyo = (2\/P2n+4 + 4\/P2n+2) (Vg + Uj+/ P2n+2P2n+4>

= (2V; £ 4Pon12U;) \/ Ponya + (2U;j Popga = 4Vj) \/ Popto
Y 2X

Which gives the expressions for X; and Yj:

X =X; =42V 4+ U;Pypys and Y =Y; = £4P5, ,U; + 2V; (5.4)
Thus,
PopyaPy+4=X> = (£2V; + UjPansa)”  rcarvange for P, Dh = 1‘2’2: + PanaU5 £ 40,V
APy 2P +4 = Y2 = (+4Py, 1oU; +2V;)? P = =t 4 4Py1oU? £ 4TV,

By eliminating the first term on the right-hand side in both of the above equations for Py, we get

1 4 _ [ Pon 16Pop 2 1 4 /.
(PZ"+2 B P2"+4) P = (Pznii B P2:+J4rz) Uj + <:l:P2n+2 T P2n+4> 4U;V;
Dividing both sides by (P;H — P23+4) gives the equation
Py = (Ponta + 4Pony2) U7 +4U;V; (5.5)
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We call the resulting expression C;—L:
CF 1= AU, V; + (Panga + 4P2py0) U

The goal is to find the values of j such that C’ji results in a Pell number — that is, to find a pair of
integers (j, k) such that P, = Cji. Note that when j = 1 we have:

C{ = —4Popi3+ Popya +4Poy 40
= Ponyo — 2Popi1 — 4Pont3 + Ponta + 3Pont2 + 2Pop 1
= Ponyo — 2Popt1 — 2Poni3 + 4Popy2 + 2Pon 4
= Popio —2P541 — 2P 43+ 2Poy 43
= P,

and also Popy6 < C{" < Py, 47, which follows from:

Cl = 4Py i3+ Popia + 4P2p 40
= Papi6 +4P2nt3 — (Pante — Panta) + 4Pony2
= Pont6 +4P2n+3 — 2Poni5 + 4P2n 42
= Popto +2Popy3+4 (P2 — Pongs)
= Pont6 + 10P2n43
< Poni + 3Ponss + TPonss
= Ponye + 3Pon+s5 + Ponya
=2Popt6 + Ponts

- P2n+7

So Cy is the already-known solution of k = 2n and C}~ cannot be a Pell number.

From equation (5.2) we can obtain recursive forms for X; and Y;:

Yiriv/ Ponya +2X5010/ Panga = (YJ V Ponya +2X54/ P2n+2) (P2n+3 +V P2n+2p2n+4>

= (Y Popys +2XPopi2) \/ Popga + (YiPoppa + 2X Popi3) / Popto
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Which means 2X;11 = 2X;Pan13 + Y Pap14. Therefore,

Xi

1
J+1 XjPonis+ 5YiPapya

(£2V) + Pon4aUj) Panys + (£2P2n42U; + Vj) Ponta e by (5.4)
12V Pony3 + PongaPon3U; £ 2Pon 19 PonpaU; + ViPonya

= (£2Pn43 + Popga) Vi + (Pong3 £ 2Pay42) PopiaU;

£V, + PoppalU;

XF e by (5.4)

\%

So we have that in_H > in and X;- > X; > 0. We are interested in solutions (j,k) that satisfy
Popia P +4 = (in)2. When j = 1 we have PopiqPo, +4 = (Xl_)z. For any solution (j, k) with
i>1,

Pop 4P +4= (in)2 > (Xf)2 = PopyaPoy +4

which implies that P, > P»,. Based on this, we conclude that any solution different from (j,k) =
(1,2n) would have j > 2 and k > 2n. Define 8, := Pypq3 + /P33 —1. Then B! = Pypg —

\/ P2, 43 — 1, so from (5.3),

e
5 = UiV P2 Ponia = B3,

So C’ji can be rewritten as

B 2 4 3% _ 9
o P S e/ Y - NP N i e
’ \/7P2n+zp2n+4 (Pones H4Pons) S P
_ 4 (Panta +4Pop o) B _ +6,% (Panta + 4Pony2) B _ Penga + 4Py
\/P2n+2p2n+4 4Pon12Ponta VP2 Ponga 4Pon 2 Ponya 2Pony2Ponta
_ ( Poptq + 4P2n+2) 2j  Panga + 4Py ( ¥l + Popya + 4P2n+2> 5%
P2n+2P2n+4 4Py 2Pty " 2Pony2Ponya VPant2Poyi4 4Py 2Py "
vE vt
+1 Popia+4P2n 2 . .
Define ;- : so that the problem may be expressed as finding j > 2 and

\/P2,L+2P2n+4 4Pant2Pana
k > 2n which satisfy the equation

Py, AP, _ k_ &k
MJﬂﬁﬁ*Qﬂ:u where a =14 V2. (5.6)

oo
Tn ﬁg,j - n Mn
2P 42Ponta 2v/2
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5.2 A Linear Form in Three Logarithms

From (5.6) we find that

(5.7)

1 o 1 ‘ (P2n+4+4P2n+2 ak ) - %Tﬁ;?j
Tn

N 2PyioPonis  2v2) 4EpR

Observe that the left-hand side above is 1—e™*, where A is the following linear form in three logarithms:
A :=2jlog B, — kloga + log (Qﬁvf)

It will be established in 5.6 that A is positive. We will be able to get an upper bound for the left-hand

side of equation (5.7), which will give us an upper bound for A using the following lemma.
Lemma 5.3. For 0 <z < %, the inequality 2 (1 — e™%) > x is true.
Proof. Using the Taylor series of the logarithm, we have

[ee]
X Qf X
log(l—*>_§ ET 5 2k+1 =

[\

M\H

q;
—~

[\

I

8

~

which is equivalent to 2 (1 — e™%) > . O

Using theorem 4.1, we will be able to get a lower bound for A. Once we have an upper and lower

bound for A, we will be able to compare these two bounds to obtain the following bound for n and j:

Proposition 5.4. If equation (5.5) has a positive integer solution (j,k) with j > 1, then

§ < 1.9241 x 10'? (4n + 7)log (395 (4n + 7))

—A

To get an upper bound for 1 — e™#, we will start by finding bounds on yF. Using the identity

2
y?+42® (1 1
j: —|— 27,2 _(yi2z) we have

" VPants 2y P2

Lemma 5.5. 7T satisfy the following:

0.020810 "% < 7 < 0.02095~2""2 and 2.863950 2" % <y < 2.36514a7 "2
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Proof. We have

1 1
i
m == +
" VPomts  2y/Popyo
1 1
==+

+
\/(a2”+4 — a~2n-1) / (2¢/2) 2\/(042”+2 —a772) /(2v/2)

1 1
= 2%/4q "1 (i + )
ayV1l—a 48 = 2\/1 - q—4n—1

From the Taylor series of (1 — x)71/2, for 0 < < 1 we have

1+1 < it lay 3y <142 !
2 S Tz 2t et T 2\1—z
So
1 14 1 _4n—8 < 1 < 1 1+ q—4n—8
« 2a avl—a4-8 « 2(1 — a4n=8)
Hence,
0.41421356 < L < ! < 1 1+ L < 0.414218846
| oS avi—a s 2o 1) <7
Similarly,

05< (14 La-tm1) < ! R P < 0.50021665
. - e —_— < = S E——t .
2 2 1 — a4 "2 2(1— a—4n—14)

We then obtain bounds for / ’yni

, 1 1
0.085781154 < 273/4q" 1\ [y = — + < 0.08600309
7 04\/1 —q4n-8 2\/1 — o 4n—4
1 1
0.91421356 < 273/l /4 =

+ < 0.914435496
a1l —a=4=8  2¢/1—q-4n—4
So we get the following bounds:

0.02081a~2""2 < v~ < 0.0209302""2 and 2.36395a 2""% < 4 < 2.36514a "2

With this we can show that A is positive and obtain an upper bound for it.

Lemma 5.6. 0 < A < 404683,%7 for j > 2.
Proof. First, we show that A > 0. A = log2v2yX%a~"* > 0 if and only if 2¢/2yF5%a~* > 1. For
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an argument by contradiction, suppose this is not the case. This implies that

, k 2.2 —2j —2j
YEpE < 2~ and \,( <OnZ o Pnl (5.8)
2\/5 (07 Y Yn
This gives
1 14 1 2
Papt2 < 1 2Psp 42 + Pznﬂ) e because Poy1q < TPop40
— 14 (PonyatdPongo
T 11 \ 2P2py2Pangta
~k . . & )
= 1 a5 T B+ (’Yfﬁ?ﬂ - 20\‘7@)) e by equation (5.6)
_9i | &

< 7 (WY +35 o by (5.8)
< 1 iBJQj‘F%T\/E e since a* <a~F
< %55”( T o by (5.8)

Which we apply below, along with the bounds on fy:—{ from lemma 5.5:

P§n+2Pgn+4 = (P%s— l)j e by Catalan’s identity
< BY
< %PQR_;'_Q ( T+ 87%) e by the previous result
< Poio (3.0204*2"*2 + 7.61042””) e by lemma 5.5
< Papy2-20.65 (7(1271,“;\%72%3)

20.65P2n+2P2n+3 o by (51)
< 20.65P2,42Pon14

Which implies that
20.65 > PJ, ! Pj Ly > Py~ Py =12-170,

which is a contradiction. We now establish the upper bound for A, first by finding the upper bound

A q_of 1
for 1 e =1 2\/§W

Va
0 < 1 - 2w e since A >0

- ﬁl w7 ?ﬁiﬂgﬁf - 20\‘7@) - ’Y,y‘ﬁﬁﬁ”ﬁ by equation (5.7)
= ﬁlﬂﬁ? %;;%Lg:i’iz 2\/1§ak e since (aa)" = (=1)F
< B;‘;}ﬁ 2P2i+2 + 2\/§izn,+1) e since Popio < Poyiy
- ijx0.020181a—2n—2 21325;4r2 +2ﬂ;2n+1) e by lemma 5.5

2023
< e
< 3
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Note that 1 —e™™ < % implies that z < In2, so by lemma 5.3 we must have A < 2 (1 - e‘A) <

4046327 . O

We will now work towards using theorem 4.1 to get a lower bound for A. To apply this theorem,
we will take (a1, a9,a3) = (ﬂn,a72\/§vf). We will need to find the degree D of Q (a1, a9, a3) as a
field extension over Q, and to establish that «q, as, a3 are multiplicatively independent — that is, for
p,q,7 € Z, that ol adal =1 if and only if p = ¢ = r = 0. In order to do this, we will need to establish

the following result:
Lemma 5.7. Py, 12P5,14 is neither a square nor 2 times a square.

Proof. The fact that Pas,49Ps,14 is not a square follows simply from Catalan’s identity:
PopioPonia = P35 5—1

As we know that consecutive integers will not both be squares. For the sake of contradiction, suppose

that PopyoPonta = 2Y2 for some integer Y. Catalan’s identity gives:
X? -2Y?=1 where X = P,,,3 for some n € Z* (5.9)

We find the fundamental solution (X, Y’) = (3,2), and with this obtain the general solution X; +Y;V2 =
(3 + 2\/§)J, Jj € Z*. With this we can obtain the general solution for X;:

eliminate Y

X4+YV2= (3+2\/§)j
X-YV2= (3—2ﬁ)j

(3+2\/§)j+(372\/§)—j

X = 5

Noting that 3 + 2v/2 = o2, we have X; = M Thus we have

o fo 2 Q2323

X;=Pyy3 = 5 = 22

Following from this result, we obtain the inequalities:

a2n 2o m2n=2  -1,2n48 (203,

2 - 2

1 ony3, 1 _op-3 —1_ 1\ on43 1\ _an-3
< \/ﬁa +\/§a +| o \/5 @ +| o V2 [e%
1 ony3, 1 _op_3 2n+3 —2n-3
\/ia +\/§a 0.29« +1.71c
2
Q2n+3 4 o —2n—3
2v2

a2j+a2j
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a2ntd g —2n—4 a2 t3gqpq 20341
2 2

1 opy3, 1 _op-3 _ 1\ 2ny3 —1_ 1\ _—2n-3
\/ﬁa +\/§a +<a \/5)(1 + | « ﬂ @
2

1 ony3, 1 _on-3 2n43 —2n—3
\/Ea +\/§a +1.7a 0.3

2

052n+3+05_2n_3

2V2

o azJ +a727
2

The above inequalities show that 2n+2 < 2j and that 2j < 2n+4, respectively. Since n+1 < j < n+2,
it means that j cannot be an integer, so equation (5.9) does not have a solution. With this we conclude

that Paj49P2n44 is neither a square nor 2 times a square. ]

With this fact established, we can take Q (g, ag,a3) = Q (\/&, \/§> where d is the squarefree part

of Popy2Pantq. This field extension has basis {1, V2,\/d, v 2d} as a vector space over Q, so its degree
D is 4.

Proposition 5.8. ay, as, az are multiplicatively independent.

Proof. Suppose, to the contrary, that there exist p,q,r € Z, not all zero, such that ofadal = 1. By
lemma 5.7 it follows that Q (\/&) is a quadratic field different from Q (\/5) Since v, 3, € Q (\/&)

for all n, by closure under multiplication we have
-
B.(7) = (2v2) ooz e Q(Va)

However, by rearranging ofadal = 1 we find that (2v/2) aPas = (2v2) ""a;7, and the right-hand

side of this equation is always irrational in Q (\/5) unless ¢ = 0 and r is even (in this case it is rational).

Thus, letting ¢ = 0 and 7 = 2k we have that ofa2* = 1, or moreover that a;? = a2F.

p 2k

Note that a; and ozl_l are both algebraic integers, so a; * is an algebraic integer, and thus a5” must

also be. However, the minimal polynomial of a3* has constant term

P4 — 4P,
(S'Yn'Y;)Qk _ < 2n+4 2n+2

4k
<1 foralln
\/§P2n+2p2n+4 )

%’“ is not an algebraic integer — a contradiction. To see that

Popta—4Pon42
V2P2p 2Pyt

The constant term is never an integer, so «

the constant term is always less than 1, the inequality 0 < < 1 can be verified by noting
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that Popyg — 4Popyo = 2Poy 1 + Popyo > 0 and
4Pspio + V2Poni2Ponya — Ponya = 4Ponyo + V2Poy 2Ponia — 2Pani3 — Pansa
=3Py + \/§P22n+3 —2Psni5— V2
2
= 3P40 + \/§<P2n+3 - ?) - %

>0

4k
Rearrange this and raise to the power 4k to obtain (M> <1 O
V2P 42Ponta

From lemma 5.1 we know that a* =2 +1 < Py < o*~!. With this fact we find that

Bn = Popys + \/P22n+3 —1 < 2Ps43 < 2a*"T2 < 0?3 and

Bn = Papis+ /P25 —1>2Ps 15— 1> 2"

With this we can prove the following fact which will be useful when applying theorem 4.1.

(5.10)

Lemma 5.9. k < j(4n+7)

2
Proof. First note that % > 1—16 + (%)2 > %6 + ( L ) . Multiplying by (P2n+2P2n+4)2 shows that

Popy2

%(P2n+2P2n+4)2 > %(P2n+2p2n+4)2 +P3 iy

Also note that 24 x 16 < 12x70 = PyPs < Py, 2 Pay 14 implies that 24Ps,, 1 Panya < (1 PaniaPanya)’.
Therefore,
(Ponya +4Poni2)? = 16P5, 5 + 8Py 2Popia + Payiy

< 16Psy12Popia + 8Popi2Ponya + Py iy
= 24Psy 10 Popya + Py iy

2
< (3 Pent2Ponsa)” + Pioiy

< %(P2n+2p2n+4)2
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Which means that Po, 44 +4P5,42 > %P2n+2P2n+4. Using this we establish the result:

ak:—l < 3Oék_2

< 3P e by lemma 5.1
= F120;V; + 3U7 (Panta + 4P2ny2) ® by equation (5.5)
< 120;V;4+U j2P2n+2P2n+4 e by the previous result
< (Vi+ Uj\/P2n+2P2n+4)i ~V2 e because 12 < 2V/PiFs < 2/PontaPonsa
< (Vi + Uj\/Pony2Ponsa)
= B e by equation (5.3) and definition of 3,
< a¥@n+3) e by (5.10)

Therefore k < j (4n+ 7). O

We have everything needed to apply Matveev’s theorem 4.1 to get an upper bound for — log |A].
From lemma 5.6 we have the lower bound 25 log 8,, —1log 4046 < —log |A|. Combining these two bounds

will allow us to prove proposition 5.4.

Proof. (proof of proposition 5.4) To prove this, we will apply theorem 4.1 to the linear form in loga-

rithms

A =2jlog B, — kloga + log (2&%%)

with the following quantities as specified by theorem 4.1:

N=3 D=4 b1 =25 by = —k b3 =1
ay; = By g = a3:2\@fyf

We have already established that D = 4 and a1, as, a3 are multiplicatively independent. Since oy
and ao are both algebraic integers with degree 2 and their conjugates are less than 1, their absolute
logarithmic heights are

h(ai)=3logB, and h(az)=1loga

For as, note that ;7 and ~y,, are roots of the polynomial

Popia + 4P, Ponia — 4Py 0\
(x—%'f)(x—'y;):xQ—i—Q( 2n+4 + 2+2>x+( 2n+4 2+2)
4P 1o Popyy 4Pop o Popya

Clearing the denominators, we find that the minimal polynomial of v has leading coefficient 16 P2, +2P22n e

Since |y;F| < 1 for all n, and Py < a*/23/2 for positive even \, we have

h (’yﬂf) = %1og (16P22n+2P22n+4) = log (4Pan+2Pon+4) < (4n + 6)log (o) + log (%)
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Thus we can take

h(as) = h (2v37)
<h(2v2) +n(5)
< 2log2+ (4n + 6) log (a) + log (3)
< 3log2+1log (%) + (4n + 6) log ()
< log a4+ (4n + 6) log (o)
= (4n + 7)log (@)

Since we need A; > max {Dh («;), [log a;|}, where D = 4, we take
Ay = 2log B, Ay =2log Az =4(4n + T)log

Note that the requirement that As > |log as| is met:

‘log (2\/5735)‘ < ‘log (2\/5 x 0.02081a_2"_2)‘
< ’10g (2[2 x 0.02081074(4“4))‘
< ‘log (a—4(4n+7)>‘
=4(4n+7)loga

For F we have

_ 1A :
E = maxql,max |b]|A3.1§j§3}}
= max 1 1, max ‘b;xl?l, ‘bﬂ;427 ‘bﬂjs }}
_ j 1og Bn k
= max (4rjz+% Tog o’ 2(dn+7)° 1}
< max{%, 1,1} e by (5.10) and lemma 5.9
< jn+7)
To apply lemma 4.1, take the quantities
C(3) = 5(5)(9) (16e)* < 6.45 x 10° Co = log e2°-23% (16) log (4e) < 30
Wy = log (1.5eE - 41logde) < log (395 (4n + 7)) Q= (2log B,) (2log ) (4 (4n + 7) log @)
Therefore,
2jlog B, —logd4046 < —log|A]| e by lemma 5.6

< C(3)CoWoD2Q e by theorem 4.1
< 3.8481 x 10" (4n + 7) (log 3,,) log (39j (4n + 7))
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which implies
§ < 1.9241 x 10'2 (4n + 7) log (395 (4n + 7))

5.3 Linear Form in Two Logarithms

Firstly, define a new linear form in three logarithms, Ag, by substituting (j, k) = (1,2n) into A:
Ag :=2log B, — 2nlog a + log (2\[275)

2n+3

. . . . _ 1
By the easily verifiable identity z+v/22 — 1 = 2x (1 — W) and that Py, 43 = W) (1 + a4,,+())
we find that

= 34+4/P2 . —1= . — 1 — 1, 2n+3 I
O = Pon P2n+3 b= 2P (1 2Pyp43 (P2n+3+\/P22n+3_1)) Ve (1 i a4"+6) (1 2P2n+35")

Sn

Let’s define 8, = (1-+ k) (1 g7t ) We then obtain

A—Ay= (2]' log 3, — klog a + log (2\/57%)) — (2 log B, — 2nlog a + log (2ﬁ7f))
= (2j — 2)log B — (k — 2n)log o
=(2j—-2) (log (%)-l— (2n +3) 10ga+10g5) (k —2n)log a
= (

2j7210g<7>+ (27 —2)(2n+3) — (k—2n)]loga + (25 — 2) log dy,

K

If we define the linear form in two logarithms:
Ay :=Kloga—(j—1)log(2) where K=(2j—1)(2n+3)—k—3,

this means that
A1 =A- AO — (2] — 2)10g5n

which, by the triangle inequality, implies that |A1] < |A| + [Ao| + (25 — 2) |log 0, -
In this section the task is to find an upper bound for |A;|, and then Laurent’s theorem 4.2 gives
a lower bound. Combining these bounds with the result from proposition 5.4 will allow us to get the

following bounds for n and j:

33



Proposition 5.10. If equation (5.5) has a positive integer solution (j,k) with j > 1, then
j<9.19 x 10" and n < 20358

We already have an upper bound for A from lemma 5.6. In order to get an upper bound for |A4],
it remains to find an upper bound for |Ag| and for |logd,|. We will begin with |Ag].
Lemma 5.11. |Ao| < 1591143,,2

Proof. For now assume n > 2. Substituting (j, k) = (1,2n) into (5.7) we obtain

1 04277’ 1 P2n+4 + 4P2n+2 1 072"

T x =TI - F S A (5.11)
'7715721 2\/§ ’Ynﬁ»,% 2Pon+2Ponta '77157% 2\/§ '77L672L

—2n + n
Observe that 1 — e %0 =1 — e*IOg(ﬂia 2VayE) 1- L o

TE 03 the left-hand side of the above

equation. This part of the proof is split into two cases:
(1) 1—e M <0 and (2) 1—ef>0
If 1 — e %0 <0, then

2n
0 < —F-o_1 e because 1 — et <0
- B2 2v2 -
aon R
_ 2V2 Tn Pn 1 PopyatidPonyo
~Ep2 YEB2 2P2ni2Panta

e by equation 5.11

A
o
)
B

K e because 1 — ™% < 0 implies 77 < 77

SX0.02081a=27=2 +2:36514a 2" 72

< £%0.02081a—27—2 e by lemma 5.5
< 113.6544288.646a7 4
4
113.654+288.6460 T4
< 200 Ig;?iiﬁa e by (5.10)
< 248()@;2

Note that e — 1 > 0 implies = < 0. It follows in this case that

|Ao| = —Ag < e — 1 < 24808, 2.
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If 1 —e %0 >0, then

1 a® . _ ,—Ao
0 < 1 sz ova 2 e because 1 —e¢ >0
d n

Fa-2
1 PoptatdPonyo 2\/§+’Y” B

1

o gt e e by equation (5.11)

< ,\/}153 2P21n+2 + P272l+4

< ﬁ ﬁ e because Po,io < Pty
< 7018;2

<

2
Note that 0 <1 —e™% < % implies that 0 < z < In2, so by lemma 5.3 we must have
Ao = Ag < 2 (1 — e 0) < 14028, 2.

If n =1, then

2
o] = 2log (29 129 1) ~2log (1 + \/5) +log (2&(1\/177) + %) ) < 4.7326 < 159118 2

In any case, we have |Ag| < 159118, 2.

To find a bound for |logd,|, note that for 0 < z < 1 and 0 < y we have the following:
—log(l1—2z)<2x and log(l4+y)<y

Using this and the bounds from lemma 5.1 and (5.10), we obtain the bound for [logd,|:

llog 0| < ‘IOg (1 - m)‘ + flog (1 + a4}1+6)| < p2ni35n + a4711+6 < 2a41n+2 + a4rlz,+6 < a41n8+6

Using the bounds for [Ag| and |logd,|, and the bound for |A|, we prove the following result:

Lemma 5.12. |A;| < %

Proof. Bringing together |A| < 40468, |A¢| < 1591153; % and [log 6,| < —tor, we have that

[A1] < Al + [Aof + (25 — 2) [log 6,
< 404683, % + 159118, + (25 — 2) 22+

4046 15911 (25— 2) 18
(2a2n+1)2j (20{2n+1)2 J Oé4n+6
7 + 29074

a4n+4
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Now, using the theorem 4.2 due to Laurent on linear forms in two logarithms, we can prove

proposition 5.10.

Proof. (proof of proposition 5.10) We will apply theorem 4.2 on A; := Kloga — (7 — 1)log (2). We
have
D=2 ’}/122 Yo =« blzj—l bQZK

Also we take h; and hy as shown below:

hi =log2 > max{h('yl)7 “0%71 ,%} = max{logQ7 1052, %} =log2

he = 4 > max {h (12), 22%52], 4} = max {3 loga, $loga, 1}

By lemma 5.12;
(j —1)log (2) + (7j + 29074) o= 4n—*

K< < 0.7945 + 27.799
log o
And because | bl K|
1 2 . . ,
—t+——=(j-1 —— < 1.573 19.0523 =: b
Dhs "Dy~ U 51000 7+

Applying theorem 4.2 we obtain the bound

log |A1| > —17.9 - 8log 2 - (max {log (1.573] + 19.0523) + 0.38, 15})?
And from lemma 5.12 we have the bound

log |A1] < log (75 + 29074) — (4n + 4) log «
Combining these two bounds yields
n < 10.279(max {log (1.5735 + 19.0523) + 0.38, 15})2 + 0.104 log (75 4+ 29074)

If log (1.5735 + 19.0523) + 0.38 < 15, then j < 2.81554 x 10°. Otherwise,

n < 10.279(log (1.5735 + 19.0523) + 0.38)2 +0.104 1log (75 + 29074)

In proposition 5.4 we found the bound j < 1.9241 x 10'2 (4n + 7)log (395 (4n + 7)). Bringing these
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two results together, we have

j < 1.9241 x 1012 (4 (10.279(log (1.573j + 19.0523) + 0.38)2 + 0.104 log (75 + 29074)) + 7)

x log (39j (4 (10.279(10g (1.5735 + 19.0523) + 0.38)2 + 0.104 log (7j + 29074)) + 7))

Which implies j < 9.19 x 10'® and therefore n < 20358. O

5.4 Refining the Bounds

In this section, the bounds on n and j are improved before Baker-Davenport reduction is applied in
the next section.

Lemma 5.12 gives

75 4+ 29074 divide by j—1
O/111—0—4

log2 K 7j + 29074

Kl —(—1Dlog2| <
| og @ (J )Og | loga j—l‘ (j—l)Oé4n+410gO{

Assume that
75 + 29074 1

G- Do 2loga = 2~ 1)?

Then by the inequality above,
log 2 K 1

— = <
log J—l‘ 2(j — 1)?

log 2
log

By lemma 2.10, j% is a convergent of the continued fraction of . The 38th convergent of continued

log 2

fraction of is
og

7486685157270191075
9519719241472897252

Its denominator is larger than the upper bound of 9.19 x 10'® established for j, so £ cannot be

Jj—1
equal to the 38th convergent, nor any convergent that follows it. Therefore ]% is a convergent that

occurs among the first 37 convergents of llggi By theorem 2.7, we can use the denominator of the
37th convergent

5063552340916761513

6438576704834547937

to obtain the lower bound:

log2 K log2  5063552340916761513 > 1.00 x 1038
logaw  j—1| " |loga 6438576704834547937 ’
Combining these bounds we obtain
75 429074 29200

10-38
< (j—1)a**tloga < adrttlog a
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Which implies that n < 27. We now apply lemma 2.11 to deduce that

log2 p, S 1

IOga qr| (ar+1 + 2) qg
where £= is the r*® convergent of llggi, and a,41 is the (r +1)** partial quotient of %. Therefore,
since J% is among the first 37 convergents of 112527 we have for 2 < r < 37 that

log2 K 7j + 29074
logaa j—1 (j—1)a**+loga

1
min . 7 (<
2227 o +2)G - 1)
Since max {a,41 : 2 <r < 37} = agy = 100,
"t <102 (j — 1) (75 + 29074) (log o)

75+29074
(j—Da**ttloga

1 ..
<3517 If this is not the case, then

All of this was under the assumption that
ot <925 — 1) (75 +29074) (log )
In either case, a*"™* < 9 x 10°j2. This leads to the following result.
Proposition 5.13. If equation (5.5) has a positive integer solution (j,k) with j > 1, then
n < 0.568log j + 3.889
Combining this result with the bound for j found in proposition 5.4, we get

§ < 1.9241 x 10 (4 (0.568 log j + 3.889) + 7) log (395 (4 (0.568 log j + 3.889) + 7))

Which implies j < 9.21 x 10'® and n < 25.

5.5 Baker-Davenport Reduction

We will apply the method of Baker-Davenport Reduction described in lemma 4.3. We know from
lemma 5.6 that
0 < 2jlog B, — kloga + log (2V27) < 40463,

So we can apply lemma 4.3 with the quantities

_ 2log B, _ log (2v27) 4 4046
loga ’ logae ' loga’

B=p% M=921x10"% 1<n<24
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The following code written by myself in Maple™ carries out the reduction for each 1 < n < 24. Note
that there is a “£” symbol in the definition of G(n). This needs to be specified as “+” or “” to

differentiate between ~," and =, , respectively.

> with
P
n
whi

end
for

end

In ea

(NumberTheory) :

i=n -> 1/2*((1 + sqrt(2))"n - (1 - sqrt(2))"n)/sqrt(2):
= 1:

le n < 25 do

B() := PQ2*n + 3) + sqrt(P(2*n + 3)72 - 1);

G(n) := (z1/sqrt(P(2*n + 4)) + 1/Q*sqrt(P(*n + 2))))"2;
Digits := 10000;

i:=0;

t = 2*In(B(m))/In(1 + sqrt(2));

cf := ContinuedFraction(t);

M := 9.21*10715;
u := In(2*sqrt(2)*G(m))/In(1 + sqrt(2));
epsilon := -1;

while epsilon <= 0 do
q := Denominator(cf, i);

epsilon := evalf(abs(u*q - round(u*q)) - M*abs(t*q - round(t*q)));
i:=1+1;
end do:

q := Denominator(cf, i);

epsilon := evalf(abs(u*q - round(u*q)) - M*abs(t*q - round(t*q)));
nBound[n] := floor(evalf(log(4046*q/(In(l + sqrt(2))*epsilon))/log(B(n)"2)));
n:=n+ 1;

do:

n to 24 do

nBound[n];

do;

ch case we find that j < 6, which implies n < 4.

Proposition 5.14. If equation (5.5) has solutions (j,k) with j > 1, then j <6 and n < 4.

Applying this result to the equation P = C']i, we can prove theorem 5.2.

Proof. (proof of theorem 5.2) By testing each case one-by-one, we find that no combination of n and j

with 1 < j <6 and 1 <n <4 results in C’ji being a Pell number. When j = 1, we have already seen
that C'y~ = Py, and P2'n,+6 < Of_ < P2n+7~ O
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6 Conclusion

It may be possible to generalize this result to other binary recurrences. If S, is defined by the recurrence
relation Sy,41 = ¢- S, + S,p—1 with initial conditions Sy = 0 and S; = 1 for a positive integer ¢, then it
was shown in section 1.3 that {Sgn, c2Sonyo, Sgn+4} isa D (02)—triple. The case of ¢ = 2 was covered
in this paper. It may be possible to use the method in this paper to prove a similar result for other
values of ¢. However, this method on its own will come short when trying to make a general argument
for all values of c¢. The theorem of Matveev requires that ag, as, as are multiplicatively independent.
For general ¢ we have that ay = % (c + \/m) To establish multiplicative independence, we would
need to prove that the squarefree part of So, 2S2,44 is different from the squarefree part of ¢ + 4.
In the case of ¢ = 2, this result was proved in lemma 5.7. If we leave ¢ unspecified, we will not have
a general expression for the squarefree part of ¢ + 4, so we will not be able to find the fundamental
solution of the Pellian equation that comes up in lemma 5.7. We can, however, make the restriction
that c? +4 is squarefree. It has been shown by Estermann [5] that there are infinitely many squarefree
numbers of this form. In this case, the relevant Pellian equation becomes X2 — (¢ 4+4)Y? = 1. 1
[c;m if cis even
¢ %, 1,1, 05—1,20} if cis odd
With this, the fundamental solution to X2 — (62 + 4) Y2 =1 can be found and it can be proved by a

similar argument as lemma 5.7 that So,, 252,44 is neither a square nor ¢? + 4 times a square. After

was able to find the continued fraction representation v/c? +4 = { [

this point, the bounds found from applying theorems 4.1 and 4.2 would have an additional variable ¢
in them. It may be worthwhile to carry out a similar procedure and see if a general argument can be
made which works for all ¢ such that ¢ + 4 is squarefree, or at the very least show a similar result for

other particular values of c.
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