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Abstract

A Diophantine m-tuple with property D(ℓ) is a set of m integers such that the product of any two

integers plus ℓ results in a perfect square. This thesis establishes that a particular family of D(4) pairs

of Pell numbers can be extended to a D(4) triple by exactly one Pell number. A similar result has

been found for the Diophantine triples of Fibonacci numbers, a discussion of which is included in the

first chapter of this thesis. This chapter finishes with a statement of the main result of my thesis, and

the subsequent chapters discuss several topics in number theory which were used to prove the main

result in chapter 5. Specifically, results about continued fractions, Pell-type equations, and linear forms

in logarithms were used. These topics are the subjects of chapters 2, 3 and 4, which contain some

history and discussions of the important results. The conclusion of this thesis discusses some possible

generalizations.

Key words and phrases: Linear forms in logarithms; Diophantine triples; Pellian equations; Pell num-

bers.
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1 Introduction

1.1 The Property of Diophantus

It has been noticed by Diophantus of Alexandria that the set
{

1
16 ,

33
16 ,

68
16 ,

105
16

}
has the property that

taking the product of any two numbers and adding one results in a rational square. Sets of integers

have been found with similar properties. For example, consider the set {1, 3, 8} and observe:

1× 3 + 1 = 22, 1× 8 + 1 = 32, 3× 8 + 1 = 52.

The set {1, 3, 8} is an example of what’s called a Diophantine triple with property D (1). More

generally, a Diophantine m-tuple with property D (ℓ) is a set {a1, a2, ..., am}, usually consisting of

integers, such that aiaj + ℓ is a perfect square for any i ̸= j. The first set of four integers with this

property was found by Fermat, who noticed that {1, 3, 8, 120} is a D (1)-quadruple. It was proved by

Baker and Davenport in [1] that 120 is the only integer that can extend {1, 3, 8} to a D (1)-quadruple.

Their work uses results about lower bounds for linear forms in logarithms, which are also used to solve

the main problem of my thesis in chapter 5. A discussion about linear forms in logarithms is included

in chapter 4. Their paper is also the first appearance of a method called Baker-Davenport reduction,

which is commonly used when studying Diophantine m-tuples.

1.2 The Fibonacci Sequence

It is well-known that Diophantine triples can be constructed from the Fibonacci sequence. The Fi-

bonacci sequence is defined as

Fn+1 = Fn + Fn−1, F0 = 0, F1 = 1.

The sequence has been frequently studied in recent years in the context of Diophantine triples. It

satisfies the well-known Catalan’s identity:

F 2
n − Fn−rFn+r = (−1)

n−r
F 2
r .

A simple family of D (1)-triples can be constructed by performing the following substitutions into

Catalan’s identity:

(n, r) = (2n+ 1, 1) ⇒ F2nF2n+2 + F 2
1 = F 2

2n+1

(n, r) = (2n+ 3, 1) ⇒ F2n+2F2n+4 + F 2
1 = F 2

2n+3

(n, r) = (2n+ 2, 2) ⇒ F2nF2n+4 + F 2
2 = F 2

2n+2

Since F1 = F2 = 1, this shows that {F2n, F2n+2, F2n+4} is a D (1)-triple. It is possible to construct

families of D (ℓ) triples for values of ℓ > 1. The Fibonacci sequence can be solved to obtain the

1



formula for the nth term Fn = φn−φ̄n

φ−φ̄ , where φ = 1+
√
5

2 and φ̄ = 1−
√
5

2 . This is called Binet’s Formula.

Define the sequence Ln := φn + φ̄n (this sequence is known as the Lucas Numbers), and observe that

LnFn = (φn + φ̄n) · φn−φ̄n

φ−φ̄ = φ2n−φ̄2n

φ−φ̄ = F2n. Similar to before, we can perform substitutions into

Catalan’s identity. There will be an additional step of multiplying two of the equations by L2
r and

applying the identity LrFr = F2r.

F2nF2n+2r + F 2
r = F 2

2n+r

F2n+2rF2n+4r + F 2
r = F 2

2n+3r

F2nF2n+4r + F 2
2r = F 2

2n+2r

multiply first two
equations by L2

r−−−−−−−−−−−→
L2
rF2nF2n+2r + F 2

2r = L2
rF

2
2n+r

L2
rF2n+2rF2n+4r + F 2

2r= L2
rF

2
2n+3r

F2nF2n+4r + F 2
2r = F 2

2n+2r

This shows that
{
F2n, L

2
rF2n+2r, F2n+4r

}
is a D

(
F 2
2r

)
-triple. Taking r = 2, 3 gives the D (9)-triple

{F2n, 9F2n+4, F2n+8} and the D (64)-triple {F2n, 16F2n+6, F2n+12}, respectively. The cases of r =

2, 3 were studied in [4], where the authors were concerned with whether it is possible to extend{
L2
rF2n+2r, F2n+4r

}
to a D

(
F 2
2r

)
-triple by another Fibonacci number. In the case of r = 2, they

showed for n > 1 that the only Fibonacci number which can extend
{
L2
rF2n+2r, F2n+4r

}
to a D (9)-

triple is F2n. In the case of r = 3, they proved the same result under the assumption that 3|n.

1.3 Binary Recurrence Relations

While the Fibonacci sequence has been commonly studied in the context of Diophantine triples, it is

possible to construct Diophantine triples using any binary recurrence relation of the form

Sn+1 = a · Sn + b · Sn−1, S0 = 0, S1 ̸= 0, a2 ̸= −4b.

Just like the Fibonacci sequence, this more general recurrence can be solved for the nth term to obtain

the Binet-like formula Sn = S1
αn−ᾱn

α−ᾱ , where α, ᾱ are distinct roots of the polynomial λ2 − aλ− b. I

prove this fact below.

Theorem 1.1. Sn = S1
αn−ᾱn

α−ᾱ

Proof. The recurrence relation can be expressed using matrices:[
Sn

Sn+1

]
=

[
0 1

b a

][
Sn−1

Sn

]
apply recursively−−−−−−−−−−−→

[
Sn

Sn+1

]
=

[
0 1

b a

]n [
S0

S1

]

The characteristic polynomial of

[
0 1

b a

]
is λ2 − aλ − b. Since a2 ̸= −4b, the eigenvalues α, ᾱ are

distinct. The corresponding eigenvectors are

(
1

α

)
and

(
1

ᾱ

)
, respectively. Therefore,

[
0 1

b a

]
has the

2



following diagonalization: [
0 1

b a

]
=

1

α− ᾱ

[
1 1

α ᾱ

][
α 0

0 ᾱ

][
−ᾱ 1

α −1

]

With this, we perform matrix multiplication to see that see that(
Sn

Sn+1

)
=

1

α− ᾱ

[
1 1

α ᾱ

][
αn 0

0 ᾱn

][
−ᾱ 1

α −1

](
0

S1

)
=

S1

α− ᾱ

(
αn − ᾱn

αn−1 − ᾱn−1

)

And so we have the formula for Sn: Sn = S1
αn−ᾱn

α−ᾱ

Using this formula, it is possible to prove a variant of Catalan’s identity:

S2
n − Sn−rSn+r = (−b)

n−r
S2
r .

Define the sequence Cn := αn + ᾱn, so that CnSn = S2n. Combining these two facts, we find that

C2
rS2nS2n+2r + bS2

2r = C2
rS

2
2n+r

C2
rS2n+2rS2n+4r + bS2

2r = C2
rS

2
2n+3r

S2nS2n+4r + bS2
2r = S2

2n+2r

and we therefore notice that
{
S2n, C

2
rS2n+2r, S2n+4r

}
is a D

(
bS2

2r

)
-triple.

1.4 The Pell Sequence

The problem of my thesis is similar to what was done in [4] and [11], where my work pertains to the

Pell sequence as opposed to the Fibonacci sequence. The Pell numbers are historically noteworthy for

being involved in the approximations of
√
2 by rational numbers. They were known as early as 130

C.E. by Theon of Smyrna [6], who used the term “side and diameter numbers” to describe the integer

solutions to the equation

x2 − 2y2 = ±1, x, y ∈ Z

This equation is a particular case of Pell’s equation, which is discussed in a later chapter in more

detail. There is a straightforward procedure to solve this equation for relatively small x and y. We

can simply substitute values of y one-by-one into the expression 2y2 ± 1, and take note of whether or

not the resulting number is a square. If it is a square, then that particular pair (x, y) is a solution. By

3



this process we can find the first few solutions:

n 1 2 3 4 5 6 7 8 ...

xn 1 3 7 17 41 99 239 577 ...

yn 1 2 5 12 29 70 169 408 ...

The sequence yn is called the Pell sequence. It seems to follow the recurrence relation yn+1 = 2yn+yn−1,

and the sequence xn appears to follow xn = yn+yn−1. Note that if (xn, yn) is a solution to x2−2y2 =

±1, then
(

xn

yn

)2
− 2 = ± 1

y2
n
. Since the right-hand side approaches zero as the denominators grow

larger, we find that lim
n→∞

(
xn

yn

)2
= 2. This means that solutions to x2 − 2y2 = ±1 can be used to

produce a rational approximation x
y of

√
2, and the approximations become more accurate as the size

of the denominator increases.

Indeed, it can be verified that the Pell sequence, defined as

Pn+1 = 2Pn + Pn−1, P0 = 0, P1 = 1

can be used to generate solutions (x, y) = (Pn−1 + Pn, Pn) to the equation x2 − 2y2 = ±1. This fact

was mentioned by Theon of Smyrna, although he did not provide a proof, but rather verified the first

few cases. The proof I will give requires the Catalan-like identity:

P 2
n = Pn−1Pn+1 + (−1)

n+1

Since irrational numbers were contentious at this point in history, I would like to give a proof without

reference to irrational numbers. First, using a similar recursive process to theorem 1.1, we can establish

that (
Pn

Pn+1

)
=

(
0 1

1 2

)n(
0

1

)
and

(
Pn−1

Pn

)
=

(
0 1

1 2

)n(
1

0

)
.

From these, we obtain the following matrix formula for the Pell-numbers:(
Pn−1 Pn

Pn Pn+1

)
=

(
0 1

1 2

)n

The Catalan-like identity results from taking the determinant of both sides. Now, we substitute
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(x, y) = (Pn−1 + Pn, Pn) into the expression x2 − 2y2:

(Pn−1 + Pn)
2 − 2P 2

n = P 2
n−1 + 2PnPn−1 − P 2

n

= PnPn−2 + 2PnPn−1 − P 2
n + (−1)

n • by the Catalan - like identity

= Pn (Pn−2 + 2Pn−1)− P 2
n + (−1)

n

= P 2
n − P 2

n + (−1)
n • by definition of Pell numbers

= (−1)
n

Thus it has been established that (Pn−1 + Pn, Pn) is a solution to x2 − 2y2 = ±1. This means that

numbers of the form Pn−1+Pn

Pn
give rational approximations of

√
2, with the approximations becoming

more accurate as we go deeper into the sequence.

Now I will state the problem which I have been asked to solve. From section 1.3, we can see that

{P2n, 4P2n+2, P2n+4} is a D (4)-triple. The main problem of this thesis is to show that that the only

Pell number which can extend the set {4P2n+2, P2n+4} to a D (4)-triple is P2n. That is, I prove the

following theorem.

Theorem 1.2. The set {Pk, 4P2n+2, P2n+4} is a D (4)-triple if and only if k = 2n.

The plan of attack to prove this result is as follows:

• Set up a Pellian equation for the triple {Pk, 4P2n+2, P2n+4} and use a lemma from [4] to classify

the full solution set.

• Use bounds on linear forms in logarithms to narrow down the possible solutions to a finite list.

• Use results about continued fractions, as well as a method called Baker-Davenport reduction, to

reduce the number of solutions to a more computationally manageable size.

• Test the remaining possibilities one-by-one.

The solution to this problem uses results about continued fractions, pellian equations, and linear forms

in logarithms. As such, the next three chapters discuss the important background theory and results

about these topics.
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2 Continued Fractions

2.1 Huygens’ Planetarium

In 1680, the Dutch mathematician Christiaan Huygens had set out to construct a planetarium to model

the solar system using interconnected gears [12]. He had encountered the problem of determining the

number of teeth he ought to use in his interconnected gears, so that the planets in his model reflected

the orbital periods of the planets in the solar system.

Using data on the orbital periods of the planets derived from Johannes Kepler, he was able to

determine that it takes Mercury 25335
105190 years to rotate once around the sun – that is, for every 105190

rotations Mercury completes around the sun, the Earth rotates around the sun 25335 times. Thus,

in an ideal model, he would have one gear with 25335 teeth, and the other with 105190 teeth. For

practical reasons, it was not possible for him to have gears with such large numbers of teeth. As such,

he was confronted with another problem of approximating the ratio 25335
105190 with a number sufficiently

close to it, but with the numerator and denominator not exceeding a certain size.

To address this problem, Huygens was able to come up with the following representation of 25335
105190 :

25335

105190
=

1

4 +
1

6 +
1

1 +
1

1 +
1

2 +
1

1 +
1

1 +
1

1 +
1

1 +
1

7 +
1

1 +
1

2

The next section explains how to calculate such a representation. By truncating this expression

after 5 divisions, he obtained the number

1

4 +
1

6 +
1

1 +
1

1 +
1

2

=
33

137

which is remarkably close to 25335
105190 , and with a much smaller numerator and denominator. The error
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of the approximation is ∣∣∣∣ 25335105190
− 33

137

∣∣∣∣ = 0.00002602173...

With this result, Mercury could be modelled in the planetarium using one gear with 33 teeth, and

another with 137 teeth. The representation Huygens found for 25335
105190 is now known as a continued

fraction. The fact that truncating the continued fraction after a certain number of terms results in

a close approximation of 25335
105190 is not a coincidence. Continued fractions can be used to generate

rational approximations for real numbers, while having restrictions on the size of the denominator.

Huygens’ work on the planetarium is the first to demonstrate this application.

2.2 Representation of Real Numbers by Continued Fractions

A finite simple continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

It is possible to represent any rational number by a finite continued fraction with integer a0, a1, ..., an,

using a method which parallels the Euclidean algorithm. To do this for a reduced fraction p
q > 0, we

can perform computations according to the following recurrence relation:

rk
rk+1

=

⌊
rk

rk+1

⌋
+

rk+2

rk+1
, r0 = p, r1 = q.

Since the rk are strictly decreasing, we will eventually find that rn = 0. If we denote ak =
⌊

rk
rk+1

⌋
,

then by noting that rk+1

rk
= 1

ak+rk+2/rk+1
, a series of substitutions reveals that

r0
r1

= a0 +
r2
r1

= a0 +
1

a1 +
r3
r2

= ... = a0 +
1

a1 +
1

. . . +
1

an−2

It is obvious that a finite continued fraction is rational, so this establishes that a number is rational if

and only if it can be represented by a finite simple continued fraction.

The process described above for finding a continued fraction representation of a rational number

can be generalized to irrational real numbers as well. For a positive real number α define the recurrence

relation

αk+1 = (αk − ⌊αk⌋)−1
, α0 = α.

7



One can rearrange this to see that αk = ⌊αk⌋+ 1
αk+1

. Therefore,

α = ⌊α0⌋+ (α0 − ⌊α0⌋) = ⌊α0⌋+
1

α1
= ⌊α0⌋+

1

⌊α1⌋+
1

α2

= ⌊α0⌋+
1

⌊α1⌋+
1

⌊α2⌋+
1

. . .

If we denote ak = ⌊αk⌋, then it appears as though we can represent α by the infinite continued fraction

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

, a0, a1, a2, ... ∈ Z+

Here the a0, a1, a2, ... are called partial quotients. As with all infinite processes, there still remains

the question of convergence. It is a fundamental fact in the theory of continued fractions that every

continued fraction with positive integer partial quotients converges to an irrational real number, and

that every irrational real number can be represented in a unique way as an infinite continued fraction

whose partial quotients are positive integers, except for the first partial quotient which may be any

integer. (See Theorem 1.2.13 in [2]).

2.3 Some Definitions and Basic Results

The theory of continued fractions is used in each of the upcoming chapters. For further discussion,

the introduction of some common terminology is in order.

Definition 2.1 (Infinite Simple Continued Fraction). Let a0, a1, a2, ... be real numbers. Define the

expression

ζ := a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

This is called an infinite simple continued fraction, and is denoted more compactly by [a0, a1, a2, a3, ...].

• The number aj is called the jth partial quotient of ζ.

8



• The following expression, which we denote by [a0, a1, a2, ...an] is called the nth convergent of ζ:

[a0, a1, a2, ...an] := a0 +
1

a1 +
1

a2 +
1

...+ an−1 +
1

an

• A continued fraction with a repeating block of partial quotients is called a periodic continued

fraction, and is denoted by

• [a0, a1, a2, ...ak, ak+1, ak+2, ...ak+ℓ]

• where [a0, a1, a2, ...ak] are the initial block of partial quotients, which is followed by the block

[ak+1, ak+2, ...ak+ℓ] of partial quotients which repeats indefinitely. Here the length of the repeating

block, ℓ, is called the period of ζ.

The convergents of a continued fraction are given by the following recurrence relations:

Theorem 2.1. Let pk

qk
= [a0, a1, a2, ..., ak]. Then for n ≥ 0,

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2

where it’s defined that p−2 := 0, p−1 := 1, q−2 := 1, q−1 := 0.

The convergents satisfy the following identity which is frequently useful:

Theorem 2.2. For n ≥ 0,

qnpn−2 − pnqn−1 = (−1)
n

Quadratic irrational numbers can be characterized in terms of periodic continued fractions.

Theorem 2.3. A real number α is a quadratic irrational if and only if its simple continued fraction

representation is eventually periodic.

Theorem 2.4. If d ∈ Z+ is not a perfect square, then

√
d =

[
a0, a1, ..., an−1, 2a0

]
where a0 =

⌊√
d
⌋
, and an−1 = a1, an−2 = a2, ... are positive integers.

These theorems are theorem 1.3.8 and 1.3.9 in [2]. The latter theorem is useful in solving Pell’s

equation, which is discussed in the next chapter.

The upcoming lemmas 2.5 and 2.6 are used to prove lemma 2.11, which is used in section 5.4. They

are also used to prove theorem 2.7, which establishes that successive convergents are closer rational

approximations of an irrational number.
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Lemma 2.5. If ai ∈ Z+ for each i ∈ N, then a0 < [a0, a1, a2, ...] < a0 + 1.

Proof. It’s evident that [a0, a1, a2, ...] = a0 +
1

[a1,a2,a3,...]
> a0. Now suppose, to the contrary, that the

second inequality doesn’t hold. Then

[a0, a1, a2, ...] = a0 +
1

[a1, a2, a3, ...]
≥ a0 + 1 ⇒ 1 ≥ [a1, a2, a3, ...] ⇒ 1 ≥ a1 +

1

[a2, a3, a4, ...]
> a1

which is absurd.

Lemma 2.6. Let α = [a0, a1, a2, ...] for integers a0, a1, a2, .... Define xi = [ai, ai+1, ...]. Then

α =
(−1)

k

qk (xk+1qk + qk−1)

Proof. By theorem 2.1 we have

a = [a0, a1, ..., ak, xk+1] =
xk+1pk + pk−1

xk+1qk + qk−1

Pairing this result with theorem 1.2,

a− pk
qk

=
pk−1qk − qk−1pk
qk (xk+1qk + qk−1)

=
(−1)

k

qk (xk+1qk + qk−1)

2.4 Approximation of Irrational Real Numbers using Rational Numbers

We have seen that an irrational real number α can be represented by a convergent infinite continued

fraction. Each successive convergent is closer approximations of α. This is a corollary of the following

theorem:

Theorem 2.7. Let α be an irrational number and let pk

qk
denote convergents of its simple continued

fraction. Then

qn

∣∣∣∣α− pn
qn

∣∣∣∣ > qn+1

∣∣∣∣α− pn+1

qn+1

∣∣∣∣
Proof. By lemma 2.6,

qk

∣∣∣∣α− pk
qk

∣∣∣∣ = 1

xk+1qk + qk−1
where xk+1 = [ak+1, ak+2, ak+3, ...]

By lemma 2.5, we know that

ak+1 < xk+1 < ak+1 + 1.
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From this and theorem 2.1, it follows that

• xk+1qk + qk−1 ≥ ak+1qk + qk−1 = qk+1

• xk+1qk + qk−1 = (xk+1 − ak+1) qk + qk+1 < qk + qk+1

Therefore
1

qk + qk+1
< qk

∣∣∣∣α− pk
qk

∣∣∣∣ ≤ 1

qk+1

Note also the inequality qk + qk+1 ≤ qk + ak+2qk+1 = qk+2. Therefore,

qk+1

∣∣∣∣α− pk+1

qk+1

∣∣∣∣ ≤ 1

qk+2
≤ 1

qk + qk+1
< qk

∣∣∣∣α− pk
qk

∣∣∣∣

An important application of continued fractions is to approximate irrational real numbers by ratio-

nal numbers, with restrictions on the size of the denominator. If pn

qn
is a convergent of a real number

α, then pn

qn
is closer to α than any other rational number with lesser or equal denominator. That is to

say that ∣∣∣∣α− pn
qn

∣∣∣∣ < ∣∣∣∣α− p′

q′

∣∣∣∣ for any p′/q′ ̸= pn/qn where 0 < q′ ≤ qn.

In this sense, convergents of continued fractions are said to give the best approximations of α. This is

a corollary of the following theorem.

Theorem 2.8. Let α > 0 be a real number. If pn

qn
, n ≥ 2 is a convergent of α, then

|qnα− pn| < |qα− p|

for any p/q which is not a convergent of α, where 0 < q ≤ qn.

Proof. If q = qn, then it means p ̸= pn. Note that∣∣∣∣pq − pn
qn

∣∣∣∣ = |p− pn|
qn

≥ 1

qn
and

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1
<

1

2qn

Where the second inequality is true since qn+1 > 2 for n ≥ 2. Therefore,∣∣∣∣α− pn
qn

∣∣∣∣ < 1

2qn
=

1

qn
− 1

2qn
<

∣∣∣∣pq − pn
qn

∣∣∣∣− ∣∣∣∣α− pn
qn

∣∣∣∣ ≤ ∣∣∣∣α− p

q

∣∣∣∣
Multiplying the inequality by q = qn gives |qnα− pn| < |qα− p|.

11



Now suppose 0 < q < qn. Consider the linear system

qnx+ qn−1y = q

pnx+ pn−1y = p

By theorem 2.2 we know that

det

(
qn qn−1

pn pn−1

)
= qnpn−1 − qn−1pn = (−1)

n

This means that the system solvable for integer values of x and y. Note that x and y are nonzero. If

one of them was 0, it would make p
q a convergent of α. Since qnx + qn−1y = q and 0 < q < qn, it

means x and y are of opposite signs. By lemma 2.6, we also know that qnα − pn and qn−1α − pn−1

are of opposite signs. Therefore,

|qα− p| = |qnα− pn| |x|+ |qn−1α− pn−1| |y| > |qn−1α− pn−1| > |qnα− pn|

The converse of this theorem is also true.

Theorem 2.9. If |q′α− p′| < |qα− p| for all p/q ̸= p′/q′ with 1 < q ≤ q′, then p′

q′ is a convergent of

the continued fraction of α.

Proof. Suppose, to the contrary, that p′

q′ is not a convergent of α. For any q′ > 1 there are convergents

qk−1 and qk such that qk−1 < q′ ≤ qk. In the proof of the previous theorem, we have established in

this case that |qk−1α− pk−1| < |q′α− p′|. Since qk−1 < q′, this means p′

q′ can not satisfy the premise

of the theorem. Thus, p′

q′ is a convergent.

The next theorem is a criterion due to Legendre, and is used in section 5.4. It gives a condition for

when a rational number is a convergent of a continued fraction representation of an irrational number.

Lemma 2.10. Let α be an irrational number. Let p, q ∈ Z with q > 1 such that
∣∣∣α− p

q

∣∣∣ < 1
2q2 . Then

p
q is a convergent of α.

Proof. Suppose
∣∣∣α− p

q

∣∣∣ < 1
2q2 . Let

p′

q′ ̸=
p
q satisfy |q′α− p′| ≤ |qα− p| = q

∣∣∣α− p
q

∣∣∣ < 1
2q . Then

1

qq′
≤ |pq′ − qp′|

qq′
=

∣∣∣∣pq − p′

q′

∣∣∣∣ ≤ ∣∣∣∣α− p

q

∣∣∣∣+ ∣∣∣∣α− p′

q′

∣∣∣∣ < 1

2q2
+

1

2qq′

Rearranging this inequality reveals that q < q′. By the previous theorem, this implies that p
q is a

convergent of α.
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The next result is used 5.4 and gives bounds for how well a convergent approximates an irrational

number in terms of the subsequent partial quotient in its continued fraction representation.

Lemma 2.11. Let x be an irrational number, let pk

qk
be the kth convergent of its continued fraction

representation, and let ak+1 be its (k + 1)
st

partial quotient. The following inequality holds:

1

q2k (ak+1 + 2)
<

∣∣∣∣x− pk
qk

∣∣∣∣ ≤ 1

q2kak+1

Proof. By lemma 2.6,∣∣∣∣x− pk
qk

∣∣∣∣ = 1

qk (xk+1qk + qk−1)
where xk+1 = [ak+1, ak+2, ak+3, ...]

By lemma 2.5, we know that ak+1 < xk+1 < ak+1 + 1. Since qk−1 < qk, it follows that∣∣∣∣x− pk
qk

∣∣∣∣ = 1

qk (xk+1qk + qk−1)
>

1

qk ((ak+1 + 1) qk + qk−1)
>

1

qk ((ak+1 + 1) qk + qk)
=

1

q2k (ak+1 + 2)

We can also see that∣∣∣∣x− pk
qk

∣∣∣∣ = 1

qk (xk+1qk + qk−1)
<

1

qk (ak+1qk + qk−1)
<

1

q2kak+1

13



3 Pellian Equations

3.1 Pell’s Equation

Let d be a positive integer which is not a perfect square. The Diophantine equation x2 − dy2 = 1

is called Pell’s equation. As this is a Diophantine equation, we are interested in its integer solutions.

A solution (x0, y0) in which x0 and y0 have their smallest positive values is called the fundamental

solution. Note that it is in fact enough to say that x0 is minimized, as this will imply that y0 is

minimized also. To see this, suppose that

x2
1 − dy21 = 1, x2

2 − dy22 = 1, 0 < x1 < x2

Then

1 = x2
1 − dy21 < x2

2 − dy21 = x2
2 − dy22 + d

(
y22 − y21

)
= 1 + d

(
y22 − y21

)
If we assume y1 and y2 are positive, this implies that y2 > y1. We could similarly show that the

minimal x0 is uniquely determined by the minimal y0.

The fundamental solution to Pell’s equation can be found with the use of continued fractions, as

described by the next theorem:

Theorem 3.1. Let n be the period of the continued fraction of
√
d. Then the fundamental solution to

Pell’s equation is

(x0, y0) =

{
(pk−1, qk−1) if k is even

(p2k−1, q2k−1) if k is odd

Where pk

qk
is the kth convergent of

√
d.

The proof of this result uses the fact that
√
d has a periodic continued fraction representation.

More information on solving Pell’s equation using continued fractions can be found in [6].

The general solution to Pell’s equation can be expressed in terms of the fundamental solution, in

accordance with the following result, which is theorem 104 in [10].

Theorem 3.2. Pell’s equation has infinitely many solutions. Moreover, all of the solutions with

positive x and y are of the form

xn + yn
√
d =

(
x0 + y0

√
d
)n

, n = 0, 1, 2, 3, ...

Where (x0, y0) is the fundamental solution.
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3.2 Generalized Pell’s Equation

There is also the generalized Pell’s equation, which is the Diophantine equation

u2 − dv2 = N, N ∈ Z+

We are interested in classifying the entire solution set of this equation. To do so, we will use the related

Pell’s equation x2 − dy2 = 1. If u′ + v′
√
d is a particular solution to u2 − dv2 = N , and x0 + y0

√
d is

the fundamental solution to x2 − dy2 = 1, then for any integer n,

u+ v
√
d =

(
u′ + v′

√
d
)(

x0 + y0
√
d
)n

is also a solution to u2 − dv2 = N . The set
{
u+ v

√
d =

(
u′ + v′

√
d
)(

x0 + y0
√
d
)n

: n ∈ Z
}

forms

what is called a class of solutions of u2 − dv2 = N . The generalized Pell’s equation may have multiple

classes of solutions. For example, consider the equation

u2 − 5y2 = 20

It can be checked that u1 + v1
√
d = 5+

√
5 and u2 + v2

√
d = 10 + 4

√
5 are solutions to this equation.

For these two solutions to be in the same class, there would need to be an integer n such that

10 + 4
√
5 =

(
5 +

√
5
) (

9 + 4
√
5
)n ⇒

(
9 + 4

√
5
)n

= 10+4
√
5

5+
√
5

= 3
2 + 1

2

√
5

But the coefficients from expanding
(
9 + 4

√
5
)n

would be integers, so these two solutions cannot be

of the same class. This particular example can be generalized to classify whether two solutions are of

the same class. Note that for two solutions u+ v
√
d and u′ + v′

√
d to be of the same class, there must

be an integer n such that

u+ d
√
v =

(
u′ + v′

√
d
)(

x0 + y0
√
d
)n

⇒ u+ d
√
v

u′ + v′
√
d
=
(
x0 + y0

√
d
)n

It is possible to write u+v
√
d

u′+v′
√
d
= s+d

√
t. If s and t are not both integers, then the two solutions cannot

be of the same class since expanding
(
x0 + y0

√
d
)n

results in integer coefficients. If s and t are both

integers, then s+d
√
t is a solution to the Pell’s equation x2−dy2 = 1, so s+ t

√
d =

(
x0 + y0

√
d
)n

for

some n ∈ Z. Therefore u+ d
√
v =

(
u′ + v′

√
d
)(

x0 + y0
√
d
)n

, meaning the solutions are of the same

class.

Although a generalized Pell’s equation can have multiple solution classes, it can be shown that

there are finitely many. In [10], Nagell defines the fundamental solution of a particular class as the
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solution (u0, v0) with the smallest nonnegative v occurring in that class. This restriction also implies

|u| is the smallest in the class. Section 58 of [10] establishes bounds which narrow down the possible

fundamental solutions to a finite list. Since there are finitely many fundamental solutions, and each

class is entirely determined by one of its solutions, it means there are finitely many classes of solutions

to a generalized Pell’s equation.

3.3 Lemma on Pellian Equations

The following result gives a general solution to a certain class of Pellian equations. It is a generalization

of a result from [11], and is proven and applied in [4]. This lemma will be of use in chapter 5 of this

thesis.

Lemma 3.3. Let {a, b, c} be a D
(
l2
)
-triple – that is, there exist positive integers r, s, t such that

ab+ l2 = r2, ac+ l2 = s2, and bc+ l2 = t2

Suppose that a < b < a
(
4 + 4

l2

)
. If one of the following conditions holds:

i)

ii)

iii)

l = 2

l is an odd prime and l|ab, or
l2|a or l2|b

Then all solutions of the equation

at2 − bs2 = l2 (a− b)

are of the form

t
√
a+ s

√
b =

(
±l

√
a+ l

√
b
)(r +

√
ab

l

)ν

ν ∈ Z+
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4 Linear Forms in Logarithms

4.1 Hilbert’s Seventh Problem

In the year 1900, David Hilbert published a list of 23 unsolved problems which he believed would

have a major impact on mathematics. Among those problems, the seventh problem inquired on the

transcendence of αβ where α ̸= 0, 1 is algebraic and β is an algebraic irrational. This problem was

solved by Gelfond and Schneider in 1935, where they obtained the following result:

If α and β are nonzero algebraic numbers with logα and log β linearly independent over

Q, then logα and log β are linearly independent over the algebraic numbers.

The answer to Hilbert’s seventh problem is a consequence of this result. Let α ̸= 0, 1 be algebraic

and β ∈ Q be irrational. Suppose that αβ is algebraic. This would make log
(
αβ
)
and logα linearly

dependent over the algebraic numbers:

log
(
αβ
)
− β logα = 0

By Gelfond and Schneider’s theorem, this would imply that log
(
αβ
)
and logα are linearly dependent

over Q - that is, there is a rational number b such that

log
(
αβ
)
− b logα = 0

After rearranging we find that β = b, which contradicts the irrationality of β. Thus, it must be the

case that αβ is transcendental.

In 1966, Baker was able to generalize the theorem of Gelfond and Schneider to an arbitrary number

of logarithms:

If α1, α2, ..., αm are nonzero algebraic numbers with logα1, ..., logαm linearly independent over Q,

then β1 logα1 + β2 logα2 + ...+ βm logαm ̸= 0 for any algebraic numbers β1, ..., βm not all zero.

Furthermore, Baker was interested in resolving the question of how far away from zero a linear com-

bination of logarithms of algebraic numbers is. He was successful, and the results had far-reaching

applications to other areas of number theory.

4.2 Theorems of Matveev and Laurent

Definition 4.1. (Linear Form in Logarithms) Let α1, α2, ..., αn and β0, β1, β2, ..., βn be complex alge-

braic numbers. A linear form in logarithms is an expression of the form

Λ = β0 + β1 logα1 + β2 logα2 + ...+ βn logαn
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Where log denotes any determination of the logarithm.

Since Baker’s work, there have been several results which give lower bounds for linear forms in

logarithms. By using these lower bounds, linear forms in logarithms have applications in solving

Diophantine equations. A typical strategy is as follows:

• Rewrite the Diophantine equation into an exponential equation with variables in the exponents.

• Associate the exponential equation to a linear form in logarithms, Λ.

• Using standard algebraic manipulations, find an upper bound for Λ .

• Using results about linear forms in logarithms, obtain a lower bound for Λ .

• Compare the upper and lower bounds to narrow down the possible solutions to a finite list.

• Reduce the size of this list to a more manageable size using various methods such as Baker-

Davenport reduction.

• Test the remaining possible solutions one-by-one.

For examples of applications, see [2].

Two results for lower bounds are stated below. The first is due to Matveev, and the second is

due to Laurent. Both of these theorems require the definition of absolute logarithmic height, which is

defined as follows:

Definition 4.2. (absolute logarithmic height) Let γ be an algebraic number with minimal polynomial

over Z is a
d

Π
j=1

(
x− γ(j)

)
, where γ(1), γ(2), ..., γ(d) are the conjugates of γ, including γ. Define

h (γ) =
1

d

log a+

d∑
j=1

logmax
(
1,
∣∣∣γ(j)

∣∣∣)


The following theorem due to Matveev is from [9].

Theorem 4.1. Let Λ be a linear form in logarithms of multiplicatively independent, totally real alge-

braic numbers α1, α2, ..., αN with nonzero rational integer coefficients b1, b2, ..., bN . Let h (αj) denote

the absolute logarithmic height of αj. Let D be the degree of Q (α1, α2, ..., αN ) as a field extension over

Q. Define the numbers Aj and E so that

Aj ≥ max {Dh (αj) , |logαj |} , 1 ≤ j ≤ N and E = max
{
1,max

{
|bj | Aj

AN
; 1 ≤ j ≤ N

}}
Then

log |Λ| > −C (N)C0WoD
2Ω
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where

C (N) = 8
(N−1)! (N + 2) (2N + 3) (4e (N + 1))

N+1
C0 = log

(
e4.4N+7N5.5D2 log (eD)

)
W0 = log (1.5eED log (eD)) Ω = A1 ·A2... ·AN

The following theorem on linear forms in two logarithms is due to Laurent [7].

Theorem 4.2. Let γ1 > 1 and γ2 > 1 be two real multiplicatively independent algebraic numbers,

b1, b2 ∈ Z not both 0, and Λ = b2 log γ2 − b1 log γ1. Let

D = [Q (γ1, γ2) : Q] .

Let

hi ≥ max

{
h (γi) ,

|log γi|
D

,
1

D

}
for i = 1, 2 b′ ≥ |b1|

Dh2
+

|b2|
Dh1

Then log |Λ| ≥ −17.9 ·D4
(
max

{
log b′ + 0.38, 30

D , 1
})2

h1h2.

4.3 Baker-Davenport Reduction

After applying the previous two theorems, the bounds may still be too large to practically check the

remaining possibilities. The following result due to Dujella [3] is a variation of a method first used by

Baker and Davenport in [1] to reduce the bounds to a more manageable size. It is part (a) of lemma

5 in [3].

Remark. Dujella’s original lemma in [3] had the requirement that q > 6M . His lemma had two parts,

and this requirement is only necessary for part (b) of his lemma, which is not needed in this thesis.

As such, I have omitted this requirement in the theorem below. I have included a proof to show that

there is no need to assume that q > 6M .

Lemma 4.3. Assume κ and µ are real numbers and M is a positive integer. Let p/q be the convergent

of the continued fraction expansion of κ such that q > 1, and let

ε = ∥µq∥ −M · ∥κq∥

where ∥ · ∥ denotes the distance to the nearest integer. If ε > 0, then there is no solution to the

inequality

0 < jκ− k + µ < AB−j

In integers j and k with
log (Aq/ε)

logB
≤ j ≤ M

.

19



Proof. Since p/q is a convergent of κ, theorem 2.9 implies that

∥κq∥ = |κq − p| .

Suppose 0 ≤ j ≤ M and that 0 < jκ − k + µ < AB−j . Applying the reverse triangle inequality, we

find that
q (jκ− k + µ) = µq + jp− kq + j (κq − p)

= (µq + jp− kq)± j ∥κq∥

≥ |µq − (kq − jp)| − j ∥κq∥

≥ ∥µq∥ −M ∥κq∥

= ε

The above inequality implies that ε < qAB−j , which further implies that

j <
log (Aq/ε)

logB

This reduction process can be straightforwardly implemented in MapleTM. A code for doing so is

found in section 5.5.
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5 On the Extendibility of a D(4)-Pair of Pell Numbers

5.1 The D(4)-triple

The Pell numbers are defined by the recurrence relation

Pn = 2Pn−1 + Pn−2 with initial conditions P0 = 0, P1 = 1.

The nth term is given by

Pn = 1
2
√
2

((
1 +

√
2
)n

−
(
1−

√
2
)n)

Herein we will denote α := 1 +
√
2, which gives the following representations:

Pk =
αk − ᾱk

α− ᾱ
and Pk =

αk − (−1)
k
α−k

2
√
2

(5.1)

Where ᾱ = 1−
√
2. The Pell numbers satisfy an analogue of Catalan’s identity:

P 2
n − Pn−rPn+r = (−1)

n−r
P 2
r

The Pell numbers also satisfy the following bounds in terms of α:

Lemma 5.1. αn−2 + 1 ≤ Pn < αn−1 for n ≥ 2. The first inequality is strict for n > 2.

Proof. For Pn < αn−1, start with Pn = αn−ᾱn

α−ᾱ , multiply top and bottom by αn and use (αᾱ)
n
= (−1)

n
.

Pn =
αn − ᾱn

α− ᾱ
=

α2n − (−1)
n

αn+1 + αn−1
= αn−1α

2n − (−1)
n

α2n + α2n−2
< αn−1α

2n + 1

α2n + 1
= αn−1

For αn−2+1 ≤ Pn, equality holds when n = 2. For n > 2, use induction. The inequality is strict when

n = 3 and n = 4. For some k > 4, assume that αk−2 + 1 < Pk and that αk−3 + 1 < Pk−1. Then

Pk+1 − 1 = 2Pk + Pk−1 − 1 > 2 (Pk − 1) + (Pk−1 − 1) > 2αk−2 + αk−3 =
(
2α−1 + α−2

)
αk−1 = αk−1

The following theorem, first stated in Chapter 1, is the main result of this chapter:

Theorem 5.2. The set {P2n+4, 4P2n+2, Pk} is a D (4)-triple if and only if k = 2n.

It can be shown using Catalan’s identity that {P2n+4, 4P2n+2, P2n} is a D (4)-triple, so it re-

mains to show that k = 2n is the only solution which makes {P2n+4, 4P2n+2, Pk} a D (4)-triple. If
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{P2n+4, 4P2n+2, Pk} is a D (4)-triple, then for some integers X and Y we have

P2n+4Pk + 4 = X2 and 4P2n+2Pk + 4 = Y 2

We can eliminate Pk to obtain the Pellian equation

4P2n+2X
2 − P2n+4Y

2 = 4 (4P2n+2 − P2n+4)

We now apply lemma 3.3 with the quantities a = 4P2n+2, b = P2n+4 and l = 2. Since 4P2n+2 <

P2n+4 < 20P2n+2, this equation has general solution

Y
√

P2n+4 + 2X
√
P2n+2 =

(
2
√
P2n+4 ± 4

√
P2n+2

)(
P2n+3 +

√
P2n+2P2n+4

)ν
ν ∈ Z+ (5.2)

Define the sequences Vj , Uj by

Vj + Uj

√
P2n+2P2n+4 :=

(
P2n+3 +

√
P2n+2P2n+4

)j
(5.3)

This results in

Y
√

P2n+4 + 2X
√
P2n+2 =

(
2
√

P2n+4 ± 4
√
P2n+2

)(
Vj + Uj

√
P2n+2P2n+4

)
= (2Vj ± 4P2n+2Uj)︸ ︷︷ ︸

Y

√
P2n+4 + (2UjP2n+4 ± 4Vj)︸ ︷︷ ︸

2X

√
P2n+2

Which gives the expressions for Xj and Yj :

X = Xj = ±2Vj + UjP2n+4 and Y = Yj = ±4P2n+2Uj + 2Vj (5.4)

Thus,

P2n+4Pk + 4 = X2 = (±2Vj + UjP2n+4)
2

4P2n+2Pk + 4 = Y 2 = (±4P2n+2Uj + 2Vj)
2

rearrange for Pk−−−−−−−−−−→
Pk =

4V 2
j −4

P2n+4
+ P2n+4U

2
j ± 4UjVj

Pk =
V 2
j −1

P2n+2
+ 4P2n+2U

2
j ± 4UjVj

By eliminating the first term on the right-hand side in both of the above equations for Pk, we get(
1

P2n+2
− 4

P2n+4

)
Pk =

(
P2n+4

P2n+2
− 16P2n+2

P2n+4

)
U2
j +

(
± 1

P2n+2
∓ 4

P2n+4

)
4UjVj

Dividing both sides by
(

1
P2n+2

− 4
P2n+4

)
gives the equation

Pk = (P2n+4 + 4P2n+2)U
2
j ± 4UjVj (5.5)
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We call the resulting expression C±
j :

C±
j := ±4UjVj + (P2n+4 + 4P2n+2)U

2
j .

The goal is to find the values of j such that C±
j results in a Pell number – that is, to find a pair of

integers (j, k) such that Pk = C±
j . Note that when j = 1 we have:

C−
1 = −4P2n+3 + P2n+4 + 4P2n+2

= P2n+2 − 2P2n+1 − 4P2n+3 + P2n+4 + 3P2n+2 + 2P2n+1

= P2n+2 − 2P2n+1 − 2P2n+3 + 4P2n+2 + 2P2n+1

= P2n+2 − 2P2n+1 − 2P2n+3 + 2P2n+3

= P2n

and also P2n+6 < C+
1 < P2n+7, which follows from:

C+
1 = 4P2n+3 + P2n+4 + 4P2n+2

= P2n+6 + 4P2n+3 − (P2n+6 − P2n+4) + 4P2n+2

= P2n+6 + 4P2n+3 − 2P2n+5 + 4P2n+2

= P2n+6 + 2P2n+3 + 4 (P2n+2 − P2n+4)

= P2n+6 + 10P2n+3

< P2n+6 + 3P2n+3 + 7P2n+4

= P2n+6 + 3P2n+5 + P2n+4

= 2P2n+6 + P2n+5

= P2n+7

So C−
1 is the already-known solution of k = 2n and C+

1 cannot be a Pell number.

From equation (5.2) we can obtain recursive forms for Xj and Yj :

Yj+1

√
P2n+4 + 2Xj+1

√
P2n+2 =

(
Yj

√
P2n+4 + 2Xj

√
P2n+2

)(
P2n+3 +

√
P2n+2P2n+4

)
= (YjP2n+3 + 2XjP2n+2)

√
P2n+4 + (YjP2n+4 + 2XjP2n+3)

√
P2n+2
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Which means 2Xj+1 = 2XjP2n+3 + YjP2n+4. Therefore,

X±
j+1 = XjP2n+3 +

1
2YjP2n+4

= (±2Vj + P2n+4Uj)P2n+3 + (±2P2n+2Uj + Vj)P2n+4 • by (5.4)

= ±2VjP2n+3 + P2n+4P2n+3Uj ± 2P2n+2P2n+4Uj + VjP2n+4

= (±2P2n+3 + P2n+4)Vj + (P2n+3 ± 2P2n+2)P2n+4Uj

> ±2Vj + P2n+4Uj

= X±
j • by (5.4)

So we have that X±
j+1 > X±

j and X+
1 > X−

1 > 0. We are interested in solutions (j, k) that satisfy

P2n+4Pk + 4 =
(
X±

j

)2
. When j = 1 we have P2n+4P2n + 4 =

(
X−

1

)2
. For any solution (j, k) with

j > 1,

P2n+4Pk + 4 =
(
X±

j

)2
>
(
X−

1

)2
= P2n+4P2n + 4

which implies that Pk > P2n. Based on this, we conclude that any solution different from (j, k) =

(1, 2n) would have j ≥ 2 and k > 2n. Define βn := P2n+3 +
√

P 2
2n+3 − 1. Then β−1

n = P2n+3 −√
P 2
2n+3 − 1, so from (5.3),

Vj + Uj

√
P2n+2P2n+4 = βj

n

Vj − Uj

√
P2n+2P2n+4 = β−j

n

⇒ Vj =
βj
n+β−j

n

2 and Uj =
βj
n−β−j

n

2
√

P2n+2P2n+4

So C±
j can be rewritten as

C±
j := ± β2j

n − β−2j
n√

P2n+2P2n+4

+ (P2n+4 + 4P2n+2)
β2j
n + β−2j

n − 2

4P2n+2P2n+4

= ± β2j
n√

P2n+2P2n+4

+
(P2n+4 + 4P2n+2)β

2j
n

4P2n+2P2n+4
− ±β−2j

n√
P2n+2P2n+4

+
(P2n+4 + 4P2n+2)β

−2j
n

4P2n+2P2n+4
− P2n+4 + 4P2n+2

2P2n+2P2n+4

=

(
±1√

P2n+2P2n+4

+
P2n+4 + 4P2n+2

4P2n+2P2n+4

)
︸ ︷︷ ︸

γ±
n

β2j
n − P2n+4 + 4P2n+2

2P2n+2P2n+4
+

(
∓1√

P2n+2P2n+4

+
P2n+4 + 4P2n+2

4P2n+2P2n+4

)
︸ ︷︷ ︸

γ∓
n

β−2j
n

Define γ±
n := ±1√

P2n+2P2n+4

+ P2n+4+4P2n+2

4P2n+2P2n+4
so that the problem may be expressed as finding j ≥ 2 and

k > 2n which satisfy the equation

γ±
n β2j

n − P2n+4 + 4P2n+2

2P2n+2P2n+4
+ γ∓

n β−2j
n =

αk − ᾱk

2
√
2

where α = 1 +
√
2. (5.6)
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5.2 A Linear Form in Three Logarithms

From (5.6) we find that

1− 1

γ±
n β2j

n

αk

2
√
2
=

1

γ±
n β2j

n

(
P2n+4 + 4P2n+2

2P2n+2P2n+4
− ᾱk

2
√
2

)
− γ∓

n β−2j
n

γ±
n β2j

n

(5.7)

Observe that the left-hand side above is 1−e−Λ, where Λ is the following linear form in three logarithms:

Λ := 2j log βn − k logα+ log
(
2
√
2γ±

n

)
It will be established in 5.6 that Λ is positive. We will be able to get an upper bound for the left-hand

side of equation (5.7), which will give us an upper bound for Λ using the following lemma.

Lemma 5.3. For 0 < x < 4
3 , the inequality 2 (1− e−x) > x is true.

Proof. Using the Taylor series of the logarithm, we have

− log
(
1− x

2

)
=

x

2
+

∞∑
k=2

xk

2kk
<

x

2
+

∞∑
k=2

xk

2k+1
=

x

2
+

x2

4 (2− x)
< x

which is equivalent to 2 (1− e−x) > x.

Using theorem 4.1, we will be able to get a lower bound for Λ. Once we have an upper and lower

bound for Λ, we will be able to compare these two bounds to obtain the following bound for n and j :

Proposition 5.4. If equation (5.5) has a positive integer solution (j, k) with j > 1, then

j < 1.9241× 1012 (4n+ 7) log (39j (4n+ 7)) .

To get an upper bound for 1 − e−Λ, we will start by finding bounds on γ±
n . Using the identity

± 1
xy + y2+4x2

4x2y2 =
(

1
y ± 1

2x

)2
we have

√
γ±
n = ± 1√

P2n+4

+
1

2
√

P2n+2

Lemma 5.5. γ±
n satisfy the following:

0.02081α−2n−2 < γ−
n < 0.02093α−2n−2 and 2.36395α−2n−2 < γ+

n < 2.36514α−2n−2
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Proof. We have √
γ±
n = ± 1√

P2n+4

+
1

2
√

P2n+2

= ± 1√
(α2n+4 − α−2n−4) /

(
2
√
2
) + 1

2
√

(α2n+2 − α−2n−2) /
(
2
√
2
)

= 23/4α−n−1

(
± 1

α
√
1− α−4n−8

+
1

2
√
1− α−4n−4

)

From the Taylor series of (1− x)
−1/2

, for 0 < x < 1 we have

1 +
1

2
x <

1√
1− x

= 1 +
1

2
x+

3

8
x2 + ... < 1 +

x

2

(
1

1− x

)
So

1

α

(
1 +

1

2
α−4n−8

)
<

1

α
√
1− α−4n−8

<
1

α

(
1 +

α−4n−8

2 (1− α−4n−8)

)
Hence,

0.41421356 <
1

α
<

1

α
√
1− α−4n−8

<
1

α

(
1 +

1

2

1

α4n+8 − 1

)
< 0.414218846

Similarly,

0.5 <
1

2

(
1 +

1

2
α−4n−4

)
<

1

2
√
1− α−4n−4

<
1

2

(
1 +

α−4n−4

2 (1− α−4n−4)

)
< 0.50021665

We then obtain bounds for
√
γ±
n

0.085781154 < 2−3/4αn+1
√
γ−
n = − 1

α
√
1− α−4n−8

+
1

2
√
1− α−4n−4

< 0.08600309

0.91421356 < 2−3/4αn+1
√
γ+
n =

1

α
√
1− α−4n−8

+
1

2
√
1− α−4n−4

< 0.914435496

So we get the following bounds:

0.02081α−2n−2 < γ−
n < 0.02093α−2n−2 and 2.36395α−2n−2 < γ+

n < 2.36514α−2n−2

With this we can show that Λ is positive and obtain an upper bound for it.

Lemma 5.6. 0 < Λ < 4046β−2j
n for j ≥ 2.

Proof. First, we show that Λ > 0. Λ = log 2
√
2γ±

n β2j
n α−k > 0 if and only if 2

√
2γ±

n β2j
n α−k > 1. For
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an argument by contradiction, suppose this is not the case. This implies that

γ±
n β2j

n ≤ αk

2
√
2

and
2
√
2

αk
≤ β−2j

n

γ±
n

≤ β−2j
n

γ−
n

(5.8)

This gives

1
P2n+2

< 14
11

(
1

2P2n+2
+ 2

P2n+4

)
• because P2n+4 < 7P2n+2

= 14
11

(
P2n+4+4P2n+2

2P2n+2P2n+4

)
= 14

11

(
ᾱk

2
√
2
+ γ∓

n β−2j
n +

(
γ±
n β2j

n − αk

2
√
2

))
• by equation (5.6)

≤ 14
11

(
γ∓
n β−2j

n + ᾱk

2
√
2

)
• by (5.8)

≤ 14
11

(
γ∓
n β−2j

n + 2
√
2

8αk

)
• since ᾱk ≤ α−k

≤ 14
11β

−2j
n

(
γ∓
n + 1

8γ−
n

)
• by (5.8)

Which we apply below, along with the bounds on γ±
n from lemma 5.5:

P j
2n+2P

j
2n+4 =

(
P 2
2n+3 − 1

)j • by Catalan’s identity

< β2j
n

< 14
11P2n+2

(
γ∓
n + 1

8γ−
n

)
• by the previous result

< P2n+2

(
3.02α−2n−2 + 7.61α2n+2

)
• by lemma 5.5

< P2n+2 · 20.65
(

α2n+3+α−2n−3

2
√
2

)
= 20.65P2n+2P2n+3 • by (5.1)

< 20.65P2n+2P2n+4

Which implies that

20.65 > P j−1
2n+2P

j−1
2n+4 ≥ P4 · P6 = 12 · 70,

which is a contradiction. We now establish the upper bound for Λ, first by finding the upper bound

for 1− e−Λ = 1− αk

2
√
2

1

γ±
n β2j

n
.

0 < 1− αk

2
√
2

1

γ±
n β2j

n
• since Λ > 0

= 1

γ±
n β2j

n

(
P2n+4+4P2n+2

2P2n+2P2n+4
− ᾱk

2
√
2

)
− γ∓

n β−2j
n

γ±
n β2j

n
• by equation (5.7)

≤ 1

γ±
n β2j

n

(
P2n+4+4P2n+2

2P2n+2P2n+4
+ 1

2
√
2αk

)
• since (ᾱα)

k
= (−1)

k

< 1

β2j
n γ±

n

(
5

2P2n+2
+ 1

2
√
2α2n+1

)
• since P2n+2 < P2n+4

= 1

β2j
n ×0.02081α−2n−2

(
5

2P2n+2
+ 1

2
√
2α2n+1

)
• by lemma 5.5

< 2023

β2j
n

< 1
2
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Note that 1 − e−x < 1
2 implies that x < ln 2, so by lemma 5.3 we must have Λ < 2

(
1− e−Λ

)
<

4046β−2j
n .

We will now work towards using theorem 4.1 to get a lower bound for Λ. To apply this theorem,

we will take (α1, α2, α3) =
(
βn, α, 2

√
2γ±

n

)
. We will need to find the degree D of Q (α1, α2, α3) as a

field extension over Q, and to establish that α1, α2, α3 are multiplicatively independent – that is, for

p, q, r ∈ Z, that αp
1α

q
2α

r
3 = 1 if and only if p = q = r = 0. In order to do this, we will need to establish

the following result:

Lemma 5.7. P2n+2P2n+4 is neither a square nor 2 times a square.

Proof. The fact that P2n+2P2n+4 is not a square follows simply from Catalan’s identity:

P2n+2P2n+4 = P 2
2n+3 − 1

As we know that consecutive integers will not both be squares. For the sake of contradiction, suppose

that P2n+2P2n+4 = 2Y 2 for some integer Y. Catalan’s identity gives:

X2 − 2Y 2 = 1 where X = P2n+3 for some n ∈ Z+ (5.9)

We find the fundamental solution (X,Y ) = (3, 2), and with this obtain the general solutionXj+Yj

√
2 =(

3 + 2
√
2
)j
, j ∈ Z+. With this we can obtain the general solution for Xj :

X + Y
√
2 =

(
3 + 2

√
2
)j

X − Y
√
2 =

(
3− 2

√
2
)j eliminate Y−−−−−−−→ X =

(3+2
√
2)

j
+(3−2

√
2)

−j

2

Noting that 3 + 2
√
2 = α2, we have Xj =

α2j+α−2j

2 . Thus we have

Xj = P2n+3 ⇒ α2j+α−2j

2 = α2n+3+α−2n−3

2
√
2

Following from this result, we obtain the inequalities:

α2n+2+α−2n−2

2 = α−1α2n+3+α−2n−3α
2

<

1√
2
α2n+3+

1√
2
α−2n−3+

(
α−1− 1√

2

)
α2n+3+

(
α− 1√

2

)
α−2n−3

2

<
1√
2
α2n+3+

1√
2
α−2n−3−0.29α2n+3+1.71α−2n−3

2

< α2n+3+α−2n−3

2
√
2

= a2j+a2j

2
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α2n+4+α−2n−4

2 = α2n+3α+α−2n−3α−1

2

=

1√
2
α2n+3+

1√
2
α−2n−3+

(
α− 1√

2

)
α2n+3+

(
α−1− 1√

2

)
α−2n−3

2

>
1√
2
α2n+3+

1√
2
α−2n−3+1.7α2n+3−0.3α−2n−3

2

> α2n+3+α−2n−3

2
√
2

= α2j+α−2j

2

The above inequalities show that 2n+2 < 2j and that 2j < 2n+4, respectively. Since n+1 < j < n+2,

it means that j cannot be an integer, so equation (5.9) does not have a solution. With this we conclude

that P2n+2P2n+4 is neither a square nor 2 times a square.

With this fact established, we can take Q (α1, α2, α3) = Q
(√

d,
√
2
)
where d is the squarefree part

of P2n+2P2n+4. This field extension has basis
{
1,
√
2,
√
d,
√
2d
}
as a vector space over Q, so its degree

D is 4.

Proposition 5.8. α1, α2, α3 are multiplicatively independent.

Proof. Suppose, to the contrary, that there exist p, q, r ∈ Z, not all zero, such that αp
1α

q
2α

r
3 = 1. By

lemma 5.7 it follows that Q
(√

d
)
is a quadratic field different from Q

(√
2
)
. Since γ±

n , βn ∈ Q
(√

d
)

for all n, by closure under multiplication we have

βp
n

(
γ±
n

)r
=
(
2
√
2
)−r

αp
1α

r
3 ∈ Q

(√
d
)

However, by rearranging αp
1α

q
2α

r
3 = 1 we find that

(
2
√
2
)−r

αp
1α

r
3 =

(
2
√
2
)−r

α−q
2 , and the right-hand

side of this equation is always irrational in Q
(√

2
)
unless q = 0 and r is even (in this case it is rational).

Thus, letting q = 0 and r = 2k we have that αp
1α

2k
3 = 1, or moreover that α−p

1 = α2k
3 .

Note that α1 and α−1
1 are both algebraic integers, so a−p

1 is an algebraic integer, and thus α2k
3 must

also be. However, the minimal polynomial of α2k
3 has constant term

(
8γ+

n γ−
n

)2k
=

(
P2n+4 − 4P2n+2√

2P2n+2P2n+4

)4k

< 1 for all n

The constant term is never an integer, so α2k
3 is not an algebraic integer – a contradiction. To see that

the constant term is always less than 1, the inequality 0 < P2n+4−4P2n+2√
2P2n+2P2n+4

< 1 can be verified by noting
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that P2n+4 − 4P2n+2 = 2P2n+1 + P2n+2 > 0 and

4P2n+2 +
√
2P2n+2P2n+4 − P2n+4 = 4P2n+2 +

√
2P2n+2P2n+4 − 2P2n+3 − P2n+2

= 3P2n+2 +
√
2P 2

2n+3 − 2P2n+3 −
√
2

= 3P2n+2 +
√
2
(
P2n+3 −

√
2
2

)2
− 3

√
2

2

> 0

Rearrange this and raise to the power 4k to obtain
(

P2n+4−4P2n+2√
2P2n+2P2n+4

)4k
< 1.

From lemma 5.1 we know that αλ−2 + 1 < Pλ < αλ−1. With this fact we find that

βn = P2n+3 +
√

P 2
2n+3 − 1 < 2P2n+3 < 2α2n+2 < α2n+3, and

βn = P2n+3 +
√

P 2
2n+3 − 1 > 2P2n+3 − 1 > 2α2n+1

(5.10)

With this we can prove the following fact which will be useful when applying theorem 4.1.

Lemma 5.9. k ≤ j (4n+ 7)

Proof. First note that 1
9 > 1

16 +
(

1
12

)2 ≥ 1
16 +

(
1

P2n+2

)2
. Multiplying by (P2n+2P2n+4)

2
shows that

1
9 (P2n+2P2n+4)

2
> 1

16 (P2n+2P2n+4)
2
+ P 2

2n+4

Also note that 24×16 < 12×70 = P4P6 ≤ P2n+2P2n+4 implies that 24P2n+2P2n+4 <
(
1
4P2n+2P2n+4

)2
.

Therefore,

(P2n+4 + 4P2n+2)
2
= 16P 2

2n+2 + 8P2n+2P2n+4 + P 2
2n+4

< 16P2n+2P2n+4 + 8P2n+2P2n+4 + P 2
2n+4

= 24P2n+2P2n+4 + P 2
2n+4

<
(
1
4P2n+2P2n+4

)2
+ P 2

2n+4

< 1
9 (P2n+2P2n+4)

2
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Which means that P2n+4 + 4P2n+2 > 1
3P2n+2P2n+4. Using this we establish the result:

αk−1 < 3αk−2

< 3Pk • by lemma 5.1

= ±12UjVj + 3U2
j (P2n+4 + 4P2n+2) • by equation (5.5)

< 12UjVj + U2
j P2n+2P2n+4 • by the previous result

<
(
Vj + Uj

√
P2n+2P2n+4

)2 − V 2
j • because 12 < 2

√
P4P6 ≤ 2

√
P2n+2P2n+4

<
(
Vj + Uj

√
P2n+2P2n+4

)2
= β2j

n • by equation (5.3) and definition of βn

< α2j(2n+3) • by (5.10)

Therefore k ≤ j (4n+ 7).

We have everything needed to apply Matveev’s theorem 4.1 to get an upper bound for − log |Λ|.
From lemma 5.6 we have the lower bound 2j log βn−log 4046 < − log |Λ|. Combining these two bounds

will allow us to prove proposition 5.4.

Proof. (proof of proposition 5.4) To prove this, we will apply theorem 4.1 to the linear form in loga-

rithms

Λ = 2j log βn − k logα+ log
(
2
√
2γ±

n

)
with the following quantities as specified by theorem 4.1:

N = 3 D = 4 b1 = 2j b2 = −k b3 = 1

α1 = βn α2 = α α3 = 2
√
2γ±

n

We have already established that D = 4 and α1, α2, α3 are multiplicatively independent. Since α1

and α2 are both algebraic integers with degree 2 and their conjugates are less than 1, their absolute

logarithmic heights are

h (α1) =
1
2 log βn and h (α2) =

1
2 logα

For α3, note that γ+
n and γ−

n are roots of the polynomial

(
x− γ+

n

) (
x− γ−

n

)
= x2 + 2

(
P2n+4 + 4P2n+2

4P2n+2P2n+4

)
x+

(
P2n+4 − 4P2n+2

4P2n+2P2n+4

)2

Clearing the denominators, we find that the minimal polynomial of γ±
n has leading coefficient 16P 2

2n+2P
2
2n+4.

Since |γ±
n | < 1 for all n, and Pλ < αλ/23/2 for positive even λ, we have

h
(
γ±
n

)
= 1

2 log
(
16P 2

2n+2P
2
2n+4

)
= log (4P2n+2P2n+4) < (4n+ 6) log (α) + log

(
1
2

)
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Thus we can take

h (α3) = h
(
2
√
2γ±

n

)
< h

(
2
√
2
)
+ h

(
γ±
n

)
< 3

2 log 2 + (4n+ 6) log (α) + log
(
1
2

)
< 3

2 log 2 + log
(
1
2

)
+ (4n+ 6) log (α)

< logα+ (4n+ 6) log (α)

= (4n+ 7) log (α)

Since we need Ai ≥ max {Dh (αi) , |logαi|}, where D = 4, we take

A1 = 2 log βn A2 = 2 logα A3 = 4 (4n+ 7) logα

Note that the requirement that A3 > |logα3| is met:∣∣∣log (2√2γ±
n

)∣∣∣ ≤ ∣∣∣log (2√2× 0.02081α−2n−2
)∣∣∣

<
∣∣∣log (2√2× 0.02081α−4(4n+4)

)∣∣∣
<
∣∣∣log (α−4(4n+7)

)∣∣∣
= 4 (4n+ 7) logα

For E we have

E = max
{
1,max

{
|bj | Aj

A3
: 1 ≤ j ≤ 3

}}
= max

{
1,max

{
|b1|A1

A3
, |b2|A2

A3
, |b3|A3

A3

}}
= max

{
j log βn

(4n+7) logα ,
k

2(4n+7) , 1
}

≤ max
{

j
2 ,

j
2 , 1
}

• by (5.10) and lemma 5.9

< j (4n+ 7)

To apply lemma 4.1, take the quantities

C (3) = 8
2 (5) (9) (16e)

4
< 6.45× 108 C0 = log e20.235.5 (16) log (4e) < 30

W0 = log (1.5eE · 4 log 4e) < log (39j (4n+ 7)) Ω = (2 log βn) (2 logα) (4 (4n+ 7) logα)

Therefore,

2j log βn − log 4046 < − log |Λ| • by lemma 5.6

< C (3)C0W0D
2Ω • by theorem 4.1

< 3.8481× 1012 (4n+ 7) (log βn) log (39j (4n+ 7))
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which implies

j < 1.9241× 1012 (4n+ 7) log (39j (4n+ 7))

5.3 Linear Form in Two Logarithms

Firstly, define a new linear form in three logarithms, Λ0, by substituting (j, k) = (1, 2n) into Λ:

Λ0 := 2 log βn − 2n logα+ log
(
2
√
2γ±

n

)
By the easily verifiable identity x+

√
x2 − 1 = 2x

(
1− 1

2x(x+
√
x2−1)

)
, and that P2n+3 = α2n+3

2
√
2

(
1 + 1

α4n+6

)
,

we find that

βn = P2n+3 +
√

P 2
2n+3 − 1 = 2P2n+3

(
1− 1

2P2n+3

(
P2n+3+

√
P2
2n+3−1

)
)

= 1√
2
α2n+3 (1 + 1

α4n+6

) (
1− 1

2P2n+3βn

)
︸ ︷︷ ︸

δn

Let’s define δn =
(
1 + 1

α4n+6

) (
1− 1

2P2n+3βn

)
. We then obtain

Λ− Λ0 =
(
2j log βn − k logα+ log

(
2
√
2γ±

n

))
−
(
2 log βn − 2n logα+ log

(
2
√
2γ±

n

))
= (2j − 2) log βn − (k − 2n) logα

= (2j − 2)
(
log
(

1√
2

)
+ (2n+ 3) logα+ log δn

)
− (k − 2n) logα

= (2j − 2) log
(

1√
2

)
+ [(2j − 2) (2n+ 3)− (k − 2n)]︸ ︷︷ ︸

K

logα+ (2j − 2) log δn

If we define the linear form in two logarithms:

Λ1 := K logα− (j − 1) log (2) where K = (2j − 1) (2n+ 3)− k − 3,

this means that

Λ1 = Λ− Λ0 − (2j − 2) log δn

which, by the triangle inequality, implies that |Λ1| ≤ |Λ|+ |Λ0|+ (2j − 2) |log δn| .
In this section the task is to find an upper bound for |Λ1|, and then Laurent’s theorem 4.2 gives

a lower bound. Combining these bounds with the result from proposition 5.4 will allow us to get the

following bounds for n and j :
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Proposition 5.10. If equation (5.5) has a positive integer solution (j, k) with j > 1, then

j < 9.19× 1018 and n < 20358

We already have an upper bound for Λ from lemma 5.6. In order to get an upper bound for |Λ1|,
it remains to find an upper bound for |Λ0| and for |log δn|. We will begin with |Λ0|.

Lemma 5.11. |Λ0| < 15911β−2
n

Proof. For now assume n ≥ 2. Substituting (j, k) = (1, 2n) into (5.7) we obtain

1− 1

γ±
n β2

n

α2n

2
√
2
=

1

γ±
n β2

n

P2n+4 + 4P2n+2

2P2n+2P2n+4
− 1

γ±
n β2

n

ᾱ2n

2
√
2
− 1

γ±
n β2

n

γ∓
n β−2

n (5.11)

Observe that 1 − e−Λ0 = 1 − e− log(β2
nα

−2n2
√
2γ±

n ) = 1 − 1
γ±
n β2

n

α2n

2
√
2
, the left-hand side of the above

equation. This part of the proof is split into two cases:

(1) 1− e−Λ0 ≤ 0 and (2) 1− e−Λ0 > 0

If 1− e−Λ0 ≤ 0, then

0 ≤ 1
γ±
n β2

n

α2n

2
√
2
− 1 • because 1− e−Λ0 ≤ 0

=
ᾱ2n

2
√
2
+γ∓

n β−2
n

γ±
n β2

n

− 1
γ±
n β2

n

P2n+4+4P2n+2

2P2n+2P2n+4
• by equation 5.11

<

β2
nα

−2n

2
√
2

+γ∓
n

γ±
n β4

n

<

1
8γ±

n
+γ∓

n

γ±
n β4

n

• because 1− e−Λ0 ≤ 0 implies α−2n

2
√
2

≤ 1
8γ±

n β2
n

<
1

8×0.02081α−2n−2 +2.36514α−2n−2

β4
n0.02081α

−2n−2 • by lemma 5.5

< 113.654+288.646α4n+4

β4
n

< 113.654+288.646α4n+4

4β2
nα

4n • by (5.10)

< 2480β−2
n

Note that e−x − 1 ≥ 0 implies x ≤ 0. It follows in this case that

|Λ0| = −Λ0 < e−Λ0 − 1 < 2480β−2
n .
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If 1− e−Λ0 > 0, then

0 < 1− 1
γ±
n β2

n

α2n

2
√
2

• because 1− e−Λ0 > 0

= 1
γ±
n β2

n

P2n+4+4P2n+2

2P2n+2P2n+4
−

ᾱ2n

2
√
2
+γ∓

n β−2
n

γ±
n β2

n

• by equation (5.11)

< 1
γ±
n β2

n

(
1

2P2n+2
+ 2

P2n+4

)
< 1

γ±
n β2

n

(
5

2P2n+2

)
• because P2n+2 < P2n+4

< 701β−2
n

< 1
2

Note that 0 < 1− e−x < 1
2 implies that 0 < x < ln 2, so by lemma 5.3 we must have

|Λ0| = Λ0 < 2
(
1− e−Λ0

)
< 1402β−2

n .

If n = 1, then

|Λ0| = 2 log
(
29 +

√
292 − 1

)
− 2 log

(
1 +

√
2
)
+ log

(
2
√
2

(
± 1√

70
+

1

2
√
12

)2
)

< 4.7326 < 15911β−2
1

In any case, we have |Λ0| < 15911β−2
n .

To find a bound for |log δn|, note that for 0 < x < 1
2 and 0 < y we have the following:

− log (1− x) < 2x and log (1 + y) < y

Using this and the bounds from lemma 5.1 and (5.10), we obtain the bound for |log δn|:

|log δn| ≤
∣∣∣log (1− 1

2P2n+3βn

)∣∣∣+ ∣∣log (1 + 1
α4n+6

)∣∣ < 1
P2n+3βn

+ 1
α4n+6 < 1

2α4n+2 + 1
α4n+6 < 18

α4n+6

Using the bounds for |Λ0| and |log δn|, and the bound for |Λ|, we prove the following result:

Lemma 5.12. |Λ1| < 7j+29074
α4n+4

Proof. Bringing together |Λ| < 4046β−2j
n , |Λ0| < 15911β−2

1 and |log δn| < 18
α4n+6 , we have that

|Λ1| ≤ |Λ|+ |Λ0|+ (2j − 2) |log δn|

< 4046β−2j
n + 15911β−2

1 + (2j − 2) 18
α4n+6

<
4046

(2α2n+1)
2j

+
15911

(2α2n+1)
2 + (2j − 2)

18

α4n+6

<
7j + 29074

α4n+4
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Now, using the theorem 4.2 due to Laurent on linear forms in two logarithms, we can prove

proposition 5.10.

Proof. (proof of proposition 5.10) We will apply theorem 4.2 on Λ1 := K logα − (j − 1) log (2). We

have

D = 2 γ1 = 2 γ2 = α b1 = j − 1 b2 = K

Also we take h1 and h2 as shown below:

h1 = log 2 ≥ max
{
h (γ1) ,

|log γ1|
D , 1

D

}
= max

{
log 2, log 2

4 , 1
4

}
= log 2

h2 = 1
2 ≥ max

{
h (γ2) ,

|log γ2|
D , 1

D

}
= max

{
1
2 logα,

1
4 logα,

1
4

}
By lemma 5.12,

K <
(j − 1) log (2) + (7j + 29074)α−4n−4

logα
< 0.794j + 27.799

And because
|b1|
Dh2

+
|b2|
Dh1

= (j − 1) +
|K|

2 log 2
< 1.573j + 19.0523 =: b′

Applying theorem 4.2 we obtain the bound

log |Λ1| > −17.9 · 8 log 2 · (max {log (1.573j + 19.0523) + 0.38, 15})2

And from lemma 5.12 we have the bound

log |Λ1| < log (7j + 29074)− (4n+ 4) logα

Combining these two bounds yields

n < 10.279(max {log (1.573j + 19.0523) + 0.38, 15})2 + 0.104 log (7j + 29074)

If log (1.573j + 19.0523) + 0.38 < 15, then j < 2.81554× 106. Otherwise,

n < 10.279(log (1.573j + 19.0523) + 0.38)
2
+ 0.104 log (7j + 29074)

In proposition 5.4 we found the bound j < 1.9241 × 1012 (4n+ 7) log (39j (4n+ 7)). Bringing these
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two results together, we have

j < 1.9241× 1012
(
4
(
10.279(log (1.573j + 19.0523) + 0.38)

2
+ 0.104 log (7j + 29074)

)
+ 7
)

× log
(
39j

(
4
(
10.279(log (1.573j + 19.0523) + 0.38)

2
+ 0.104 log (7j + 29074)

)
+ 7
))

Which implies j < 9.19× 1018 and therefore n < 20358.

5.4 Refining the Bounds

In this section, the bounds on n and j are improved before Baker-Davenport reduction is applied in

the next section.

Lemma 5.12 gives

|K logα− (j − 1) log 2| < 7j + 29074

α4n+4

divide by j−1−−−−−−−−−→
∣∣∣∣ log 2logα

− K

j − 1

∣∣∣∣ < 7j + 29074

(j − 1)α4n+4 logα

Assume that
7j + 29074

(j − 1)α4n+12 logα
<

1

2(j − 1)
2

Then by the inequality above, ∣∣∣∣ log 2logα
− K

j − 1

∣∣∣∣ < 1

2(j − 1)
2

By lemma 2.10, K
j−1 is a convergent of the continued fraction of log 2

logα . The 38th convergent of continued

fraction of log 2
logα is

7486685157270191075

9519719241472897252

Its denominator is larger than the upper bound of 9.19 × 1018 established for j, so K
j−1 cannot be

equal to the 38th convergent, nor any convergent that follows it. Therefore K
j−1 is a convergent that

occurs among the first 37 convergents of log 2
logα . By theorem 2.7, we can use the denominator of the

37th convergent
5063552340916761513

6438576704834547937

to obtain the lower bound:∣∣∣∣ log 2logα
− K

j − 1

∣∣∣∣ ≥ ∣∣∣∣ log 2logα
− 5063552340916761513

6438576704834547937

∣∣∣∣ > 1.00× 10−38

Combining these bounds we obtain

10−38 <
7j + 29074

(j − 1)α4n+4 logα
<

29200

α4n+4 logα
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Which implies that n < 27. We now apply lemma 2.11 to deduce that∣∣∣∣ log 2logα
− pr

qr

∣∣∣∣ ≥ 1

(ar+1 + 2) q2r

where pr

qr
is the rth convergent of log 2

logα , and ar+1 is the (r + 1)
st

partial quotient of log 2
logα . Therefore,

since K
j−1 is among the first 37 convergents of log 2

logα , we have for 2 ≤ r ≤ 37 that

min
2≤r≤37

{
1

(ar+1 + 2) (j − 1)
2

}
<

∣∣∣∣ log 2logα
− K

j − 1

∣∣∣∣ < 7j + 29074

(j − 1)α4n+4 logα

Since max {ar+1 : 2 ≤ r ≤ 37} = a27 = 100,

α4n+4 < 102 (j − 1) (7j + 29074) (logα)
−1

All of this was under the assumption that 7j+29074
(j−1)α4n+4 logα < 1

2(j−1)2
. If this is not the case, then

α4n+4 ≤ 2 (j − 1) (7j + 29074) (logα)
−1

In either case, α4n+4 < 9× 105j2. This leads to the following result.

Proposition 5.13. If equation (5.5) has a positive integer solution (j, k) with j > 1, then

n < 0.568 log j + 3.889

Combining this result with the bound for j found in proposition 5.4, we get

j < 1.9241× 1012 (4 (0.568 log j + 3.889) + 7) log (39j (4 (0.568 log j + 3.889) + 7))

Which implies j < 9.21× 1015 and n < 25.

5.5 Baker-Davenport Reduction

We will apply the method of Baker-Davenport Reduction described in lemma 4.3. We know from

lemma 5.6 that

0 < 2j log βn − k logα+ log
(
2
√
2γ±

n

)
< 4046β−2j

n

So we can apply lemma 4.3 with the quantities

κ =
2 log βn

logα
, µ =

log
(
2
√
2γ±

n

)
logα

, A =
4046

logα
, B = β2

n, M = 9.21× 1015, 1 ≤ n ≤ 24
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The following code written by myself in MapleTM carries out the reduction for each 1 ≤ n ≤ 24. Note

that there is a “±” symbol in the definition of G(n). This needs to be specified as “+” or “-” to

differentiate between γ+
n and γ−

n , respectively.

> with(NumberTheory):

P := n -> 1/2*((1 + sqrt(2))ˆn - (1 - sqrt(2))ˆn)/sqrt(2):

n := 1:

while n < 25 do

B(n) := P(2*n + 3) + sqrt(P(2*n + 3)ˆ2 - 1);

G(n) := (±1/sqrt(P(2*n + 4)) + 1/(2*sqrt(P(2*n + 2))))ˆ2;

Digits := 10000;

i := 0;

t := 2*ln(B(n))/ln(1 + sqrt(2));

cf := ContinuedFraction(t);

M := 9.21*10ˆ15;

u := ln(2*sqrt(2)*G(n))/ln(1 + sqrt(2));

epsilon := -1;

while epsilon <= 0 do

q := Denominator(cf, i);

epsilon := evalf(abs(u*q - round(u*q)) - M*abs(t*q - round(t*q)));

i := i + 1;

end do:

q := Denominator(cf, i);

epsilon := evalf(abs(u*q - round(u*q)) - M*abs(t*q - round(t*q)));

nBound[n] := floor(evalf(log(4046*q/(ln(1 + sqrt(2))*epsilon))/log(B(n)ˆ2)));

n := n + 1;

end do:

for n to 24 do

nBound[n];

end do;

In each case we find that j ≤ 6, which implies n ≤ 4.

Proposition 5.14. If equation (5.5) has solutions (j, k) with j > 1, then j ≤ 6 and n ≤ 4.

Applying this result to the equation Pk = C±
j , we can prove theorem 5.2.

Proof. (proof of theorem 5.2) By testing each case one-by-one, we find that no combination of n and j

with 1 < j ≤ 6 and 1 ≤ n ≤ 4 results in C±
j being a Pell number. When j = 1, we have already seen

that C1
− = P2n and P2n+6 < C+

1 < P2n+7.
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6 Conclusion

It may be possible to generalize this result to other binary recurrences. If Sn is defined by the recurrence

relation Sn+1 = c ·Sn +Sn−1 with initial conditions S0 = 0 and S1 = 1 for a positive integer c, then it

was shown in section 1.3 that
{
S2n, c

2S2n+2, S2n+4

}
is a D

(
c2
)
-triple. The case of c = 2 was covered

in this paper. It may be possible to use the method in this paper to prove a similar result for other

values of c. However, this method on its own will come short when trying to make a general argument

for all values of c. The theorem of Matveev requires that α1, α2, α3 are multiplicatively independent.

For general c we have that α2 = 1
2

(
c+

√
c2 + 4

)
. To establish multiplicative independence, we would

need to prove that the squarefree part of S2n+2S2n+4 is different from the squarefree part of c2 + 4.

In the case of c = 2, this result was proved in lemma 5.7. If we leave c unspecified, we will not have

a general expression for the squarefree part of c2 + 4, so we will not be able to find the fundamental

solution of the Pellian equation that comes up in lemma 5.7. We can, however, make the restriction

that c2+4 is squarefree. It has been shown by Estermann [5] that there are infinitely many squarefree

numbers of this form. In this case, the relevant Pellian equation becomes X2 −
(
c2 + 4

)
Y 2 = 1. I

was able to find the continued fraction representation
√
c2 + 4 =

{ [
c; c

2 , 2c
]

if c is even[
c; c−1

2 , 1, 1, c−1
2 , 2c

]
if c is odd

.

With this, the fundamental solution to X2 −
(
c2 + 4

)
Y 2 = 1 can be found and it can be proved by a

similar argument as lemma 5.7 that S2n+2S2n+4 is neither a square nor c2 + 4 times a square. After

this point, the bounds found from applying theorems 4.1 and 4.2 would have an additional variable c

in them. It may be worthwhile to carry out a similar procedure and see if a general argument can be

made which works for all c such that c2 +4 is squarefree, or at the very least show a similar result for

other particular values of c.
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[2] S. Bujačić and A. Filipin, Linear Forms in Logarithms, Diophantine Analysis, Course Notes from

a Summer School, Birkhäuser (Basel, 2016).
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