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Abstract

Emergent behaviour is behaviour that arises from the interactions between the indi-

vidual components of a system, rather than being explicitly programmed or designed.

In this work, genetic programming is used to evolve an adaptive game AI, also known

as an intelligent agent, whose job is to capture up to twenty-five prey agents in a sim-

ulated pursuit environment. For a pursuit game, the fitness score tallies each prey the

predator captured during a run. The fitness is then used to evaluate each agent and

choose who moves forward in the evolutionary process. A problem with only choos-

ing the best performing agents is that genetic diversity becomes lost along the way,

which can result in monotonous behaviour. Diverse behaviour helps agents perform

under situations of uncertainty and creates more interesting computer opponents in

video games, as it encourages the agent to explore different possibilities and adapt to

changing circumstances. Inspired by the works of Cowan and Pozzuoli in diversifying

agent behaviour, and Chen’s work in L-system tree evaluation, a convolutional neural

network is introduced to automatically model the behaviour of each agent, something

previously done manually. This involves training the convolutional neural network

on a large data set of behaviours exhibited by the agents, which take the form of

image-based traces. The resulting model is then used to detect interesting emergent

behaviour. In the first set of experiments, the convolutional neural network is trained

and tested on several sets of traces, then the performance of each run is analyzed.

Results show that the convolutional neural network is capable of identifying 6 emer-

gent behaviours with 98% accuracy. The second set of experiments combine genetic

programming and the convolutional neural network in order to produce unique and

interesting intelligent agents, as well as target specific behaviours. Results show that

the system is able to evolve more innovative and effective agents that can operate in

complex environments and could be extended to perform a wide range of tasks.
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Chapter 1

Introduction

In this chapter, the problem description is described, highlighting the limitations of

traditional measures of fitness, especially concerning the creation of diverse intelligent

agents. Next, the key objectives and motivation behind the work will be presented.

Four crucial research questions are posed that serve as motivation for the work. A

brief discussion of the structure of the thesis concludes the chapter.

1.1 Problem Description

In a simulated pursuit domain (also known as predator-prey), an intelligent agent

is given the task to capture a set number of prey agents scattered across the envi-

ronment [46]. In this domain, evolutionary algorithms are commonly used to evolve

the predator’s controller [40]. A fitness score tallies the number of prey the predator

caught during a run and is used to determine who moves forward in the evolutionary

process. In essence, this is survival of the fittest.

A problem with only choosing the best performing agents is that genetic diversity

becomes lost along the way, which can result in the evolution of common solutions

having generic and monotonous behaviour. On the other hand, diverse behaviour

helps agents perform under situations of uncertainty and creates more interesting

computer opponents in video games, as it encourages the agent to explore different

possibilities and adapt to changing circumstances.

One approach to addressing this issue is to use techniques that promote diversity

in the population. These techniques encourage agents to explore different strategies,

which can lead to an improvement in performance. For example, fitness sharing [8] is

inspired by the idea of individuals in a population having to share their fitness score

in a similar way to how species in nature occupying the same ecological environment

1



CHAPTER 1. INTRODUCTION 2

have to share resources [38]. Thus, individuals who are close to one another receive

a lower fitness score, in hopes that the population spreads out into more genetically

diverse areas. This method produces diverse individuals by making it difficult for

a single dominant solution to emerge due to the incentives of exploring the search

space. On the other hand, novelty search [29] rewards agents for discovering new and

unexpected behaviours, regardless of their performance. Similarly, agents are encour-

aged to explore the environment and find novel solutions, which can help them adapt

to changing circumstances and avoid local optima. Many-objective optimization [14]

considers many fitness objectives simultaneously, such as maximizing performance

and diversity. Techniques such as Pareto optimization are often used to find a set of

solutions that trade-off between these objectives.

In the context of predator-prey, identifying agent behaviour can be a difficult

task due to the complexity of the agents and their environment. Predator agents

often exhibit a wide range of behaviours and hunting strategies such as ambushing

or pursuit which make it difficult to develop a universal method for identifying and

analyzing agent actions. In many cases, the predator’s sensory information such as

vision and hearing can vary which may further complicate the task of accurately

identifying agent behaviour. Another problem with identification is that it can often

be subjective and context-dependent which can make it challenging to be consistent

when labeling data. It can also be time consuming and tedious to label thousands of

agents [12]. To improve the identification process, a proposed solution is to automate

the entire process using a convolutional neural network (CNN). The CNN can then

be combined with genetic programming (GP) to help improve the agent generation

process and create more unique and interesting agents.

1.2 Objectives & Motivation

The primary goal of this research is to use convolutional neural networks (CNNs)

to model the diverse emergent behaviours of intelligent agents, and thus automate

the recognition of agent behaviour. Previously, the act of behaviour recognition was

completed manually by inputting a trace file into a viewer and analyzing the output

image [12]. This method was shown to be inefficient, as it could take several minutes

to generate a single trace file, view the output, and categorize the behaviour. This

method was also prone to human error, as many of the behaviours are difficult to

identify.

One interesting property of emergent behaviour is that a single agent can display
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several classes of behaviours in a single run. Even in a simple pursuit domain envi-

ronment, the predator agent could perform actions such as wall-scraping, ricocheting,

and circling, among others. Agents that display such novel behaviours have shown to

be high quality, effective, and therefore desirable [12].

In order to detect which agents are performing certain actions automatically, we

can use the convolutional and pooling layers of a CNN to identify patterns in the

data. Once recognized, these patterns can be used to efficiently score the diversity

portion of a hybrid fitness-diversity score, allowing us to produce more interesting

intelligent agents. Previously, pure optimization scoring using traditional GP fitness

has resulted in effective agents, but with generic behaviours. Therefore, through the

use of a CNN, the AI system will be able to evolve high-performing agents while

focusing on those that have diverse and interesting behaviours.

This approach to behaviour recognition and intelligent agent creation has many

potential applications, including in video games [52], robotics [7], and virtual assis-

tants [34]. By using the increased accuracy and speed of the CNN model, it is possible

to create more sophisticated video game characters, which enhance the user experi-

ence and overall interaction. Specifically in the domain of stealth-based video games,

the model can be used to train opponents that recognize and adapt to their environ-

ment, allowing them to sneak around effortlessly, and making them more interesting

to play against.

1.3 Research Questions

There are four primary research questions to be considered in this thesis:

1. Can a CNN be trained to recognize classes of emergent behaviours?

In a predator versus prey simulation, training a CNN to recognize classes of

emergent behaviours is essential to gaining a better understanding of the per-

formance of the predator agent. This is because the predator’s behaviour often

determines how successful it will be during its simulated hunt. By recogniz-

ing emergent behaviours such as wall-scraping, ricocheting, and circling, among

others, it is hoped that the AI model could accurately predict how success-

ful the predator is by only looking at its trace file. This can also lead to the

development of more effective predator agents that are adaptive and employ

behaviours that have shown to be successful. Additionally, the CNN model can

help us identify new emergent behaviours that weren’t previously categorized,

potentially leading to the discovery of new emergent behaviours.
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2. Can a CNN model be used to distinguish new emergent behaviours?

Some behaviours exhibited by predator agents can be monotonous, meaning

that they are unsurprising, generic, and predictable. However, new behaviours

that haven’t previously been seen before have proven to be the most interesting

and high-performing ones, as they can be more effective in different situations

[12]. Therefore, recognizing novel patterns of behaviour that emerge as agents

learn and adapt to their environment is crucial to improving the overall per-

formance of the population. Through the use of a trained CNN model capable

of detecting new emergent behaviours, we can make sure to incorporate these

agents into the genetic pool for further iterations of the simulation.

3. Can a CNN be used to score the diversity of an agent?

Various methods of scoring agent fitness exist, such as traditional fitness scoring

that focuses on the performance of the agent or diversity-based fitness scoring

that focuses on the novelty of the agent. Both these approaches help to assess

the effectiveness of the predator agent, but with some caveats. As shown in [12],

using a hybrid fitness-diversity score produces minimal harm to fitness and in

many cases improves the overall performance of the population. Therefore, it

should be possible to use a trained CNN model to help assess the effectiveness

of different predator strategies by recognizing patterns of behaviour associated

with successful outcomes. Specifically, unique and novel behaviours exhibited

by an agent can help contribute to its diversity score. On the other hand, if

the CNN model detects an agent using a strategy that has been seen before,

such as one of the behaviours the CNN was trained to detect, it may indicate

that the agent is less effective and needs to be modified. This type of feedback

is valuable to improving the overall quality of the population, as it allows for

monotonous agents with ineffective behaviours to be identified and eliminated.

4. Can the entire process be automated?

Automating the entire process of creating intelligent agents with diverse emer-

gent behaviour for a pursuit domain is important because it can significantly

reduce the time and effort required to test different predator strategies. Further-

more, it would make way for significantly more interesting opponents, especially

considering how long it takes modern video-games to develop opponents that

mimic real-time adaption to the players [12]. This could ultimately lead to the

development of more effective AI that is capable of adapting to new situations,

operating in complex environments, and performing a wide range of tasks.
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1.4 Thesis Structure

Chapter 2 presents a literature review of topics related to this work. Chapter 3 dis-

cusses the background reading required to understand core concepts of this research.

Chapter 4 delves into the architecture and parameters of the GP system. Chapter 5

looks at the architecture and parameters of the CNN system. Chapter 6 presents the

first series of experiments related to training and testing the CNN model. Chapter

7 looks at the architecture and parameters of the combined GP and CNN system.

Chapter 8 presents the second series of experiments related to automatic agent gen-

eration. Chapter 9 concludes the work presented.



Chapter 2

Literature Review

This chapter provides an overview of research on intelligent agents and related areas.

These topics are actively studied in the field of AI in order to improve the develop-

ment of intelligent systems, especially those capable of adapting and learning from

their environment. The intelligent agents section will outline various types of agents,

along with some of the domains that agents may be suited for. In the pursuit domains

section, applications of pursuit agents and their applications in computer games will

be discussed. The section on novelty search will look into a relatively recent search

and optimization approach which emphasizes the discovery of novel solutions. In the

emergent behaviour section, information can be found about the type of behaviour

that arises out of the interactions between parts of a system, which cannot be easily

extrapolated from the behaviour of those individual parts. Lastly, the deep learn-

ing section will discuss various papers relating to classification problems and how

researchers used CNNs to solve them.

2.1 Intelligent Agents

An intelligent agent is an agent that can autonomously solve a problem. In recent

years, intelligent agents enable AI to help make decisions. The research area of

intelligent agents is vast [22, 39, 51]. There are a multitude of search techniques that

agents employ, such as A* [31, 45], minimax [15, 45], and Monte Carlo tree search

(MCTS) [13, 32]. Intelligent agents can also be suited for a variety of domains, such

as food gathering [27], shepherding [50], and predator-prey [12].

Intelligent agents have distinguishing characteristics which make them unique.

They are able to interact with other agents (cooperatively or competitively), humans,

and systems. It is also possible that goal-oriented habits may be exhibited by agents

6
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in the form of emergent behaviour. This comes as a byproduct of agents having some

level of autonomy that allows them to perform tasks and discover new information of

their own.

When designing an intelligent agent, there are 5 primary categories to choose

from, which are grouped based on their perceived level of intelligence [22].

• Simple Reflex Agents - These agents perform an action based on a simple

condition-action rule. They do not look at the sensory inputs or percepts that

an agent has stored in its memory over a period of time, but instead only focus

on the current prompt.

• Model-based Reflex Agents - Model-based agents are an upgrade from sim-

ple reflex agents as they are able to look at the percept history of their actions.

An internal model is used to determine an action to perform which reflects on

the state of the observable environment.

• Goal-based Agents - Goal-based agents have a goal in mind when completing

a task. These agents will use information about the goal to the best of their

ability when choosing their next action.

• Utility-based Agents - These agents are more advanced than goal-based

agents due to an extra utility measurement. The agent will work towards opti-

mizing the expected utility before completing the goal, which in turn allows for

more rational action selection.

• Learning Agents - Learning agents are the most complex type of agent and are

built using the following elements: A learning element, a critic, a performance

element, and a problem generator.

The agents to be used in this thesis are a special type of goal-based, embodied

agent, that use an evolved GP controller for movement and rotation in a pursuit

domain.

2.1.1 Pursuit Agents

Pursuit domains, specifically the predator versus prey environment, is a heavily re-

searched domain that consists of two groups of agents. The predator, typically found

in a smaller group and sometimes by itself, is tasked with capturing all of the prey

during a simulated hunt. The prey on the other hand, try to escape the predators and
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survive as long as possible. Much of the research in this field is devoted to exploring

different behaviours that predator and prey agents develop in order to improve their

hunting, or their survival skills.

Video games are a common place to find pursuit agents due to the high number

of use cases that exist in that domain. One of the first pursuit-based video games

created is Pac-Man, which is still being researched over 40 years after its creation. In

[43], Pac-Man and its equally popular successor Ms. Pac-Man are referred to being

the front-runners of the golden age of arcade video games. Moreover, the field of

computational intelligence has seen many benefits from research into these games.

The authors go into detail about different strategy guides that were published in the

early days and the theoretical meaning behind the game. The authors also mention

several spin-off implementations of the game which are widely used across academia

and what makes Pac-Man such a target for research. An example of these traits is

that Pac-Man simply poses a variety of challenges to overcome. The game field can

be represented by using undirected connected graphs and therefore graph theorists

began looking into how to solve the game. Another reason that Pac-Man is so difficult

for an intelligent agent to learn is that the game is played in real-time. Lastly, the

authors mention that even primates have been given the task to learn how to play

Pac-Man due to its controller being a simple four-way joystick.

An example of some of the algorithms used in Pac-Man research include: rule-

based algorithms, tree search and Monte Carlo, evolutionary algorithms, artificial

neural networks, neuro-evolutionary approaches, reinforcement learning, and several

other approaches such as ant colony optimization. Overall, this study highlights

Pac-Man’s significance in computational intelligence by detailing the wide variety of

research that exists not only in computer science, but also in fields such as psychology,

sociology, robotics, and biology. In conclusion, the most dominating forces to play

Pac-Man are both rule-based approaches and MCTS.

Another domain in which pursuit agents can be found is in stealth-based games.

These games involve scenarios such as navigating around buildings, walking through

dense forests, and sneaking quietly behind enemy lines to avoid detection. Sometimes,

the enemy gains sight of you for a brief moment, and you need to quickly retreat to

a safe location before attempting your mission again. The non-playable character

(NPC) enemies that observe you engage in a type of real-time pursuit, and they need

to be effective. It’s common practice for these enemies to start searching for you in

your last known location, before looking in obvious hiding spots. In order to more

efficiently search for opponents, researchers have developed a novel search method
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called skeleton search [1], which is effective in hide-and-seek and pursuit/evasion

domains.

The method of skeleton search involves using a navigation mesh for each agent to

walk on. By doing so, agents are able to move around freely to avoid detection, rather

than being limited to a set path. In order to calculate the position of an opponent

who is freely moving around, a numerical value is propagated through the topology

graph which represents the probability the opponent is at a certain position. The

topology graph itself is based on a simplified representation of the map and is created

using scale axis transform (SAT). The graph is then discretized by dividing each edge

of the graph into smaller edges with a fixed length, referred to as segments.

Experiments were conducted by recreating maps from popular commercial games,

with categories being first-person shooter, action/stealth, and role-playing games.

Search behaviours were narrowed down into three categories: cheating (guards know-

ing positions at all time), probability propagation, and probability diffuse. Other

parameters are measured such as the radius of the guards field of view, the number of

guards actively searching for an opponent, and the opponent’s speed. Overall search

performance showed that the probability propagation method performed best in most

maps, even exceeding their cheating upper-bound. Furthermore, this work showed

that NPCs who show rational, intuitive behaviour can be more interesting to play

against [1].

2.1.2 Emergent Behaviour

Emergent behaviour refers to behaviour of a system that arises out of the interactions

between components of a system which cannot be easily predicted by the designer of

those individual parts. In essence, the whole is greater than the sum of the parts.

In [26], Koza applies genetic programming to a problem of behaviour ecology in

biology. In the simulation, a type of lizard known as the Caribbean Anolis lizard is

required to forage for food. It is up to the lizard to determine the most optimal food

foraging strategy. In the real world, these anoles are sit-and-wait predators which

typically perch with their head down on tree trunks and scan the ground for desirable

insects to eat [44]. The question arises as to what the most optimal way for the lizard

to hunt insects is. If there are an abundance of insects, the lizard would have great

success with hunting any nearby insects. However, if the lizard leaves its perch to

hunt for distant insects, it may lose the possibility of hunting for a greater number of

nearby insects. This suggests ignoring distant insects [26]. In the first version of the
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problem, the lizard always catches the insect if the lizard decides to chase the insect.

It was shown that an average of 132,000 individuals were evaluated in order to solve

this problem with a 99% success rate. In the second version of the problem, the lizard

does not necessarily catch the insect at the location where it saw the insect. It was

shown that the lizard was able to learn to ignore insects it sees in the first region,

and that it should chase insects it sees in the second region. This is an example of

an emergent behaviour.

In [20], Grossi investigates how GP can be effectively used in a multi-agent system

to enable agents to learn and communicate in pursuit domains. This study continues

where previous studies have left off, by searching to evolve emergent behaviours in

a multi-agent system. The pursuit domain uses multiple predators who are tasked

with learning about a simple set of commands they are given, and using them to

find and follow the prey. The predator agents were given limited knowledge of their

environment in these experiments, this way their behaviour could be emerged from

little to no information. Not only do they not know the location of the prey they are

trying to capture, but the predators also do not know the location of other predators.

The only information the predators have access to is the relative direction of other

predators and the ability to send messages to each other. Results of her experiments

determine that emergent behaviour occurs in both scenarios, enabling a high degree

of communication. The most prevalent behaviour found was a message sending pat-

tern which emerged from predators sending simple messages between one another.

Eventually, this simple message sending became a synchronized alternative message

sending pattern which enabled the predators to better track down the prey.

2.2 Novelty Search

Novelty search is an advanced search technique used to balance the perfect combina-

tion of exploring a search space to find new solutions, and exploiting a specific portion

of the search space in order to improve upon already strong performing solutions [30].

This is known as the exploration-exploitation trade-off. The primary goal of novelty

search is to find solutions that may not be found by traditional search techniques

that focus heavily on fitness. In its purest form, novelty search uses novelty as 100%

of the fitness metric, without caring about the exploitation aspect at all.

Lehman and Stanley show that novelty search has significantly outperformed

objective-based search techniques in two problem tasks, without focusing on the ob-

jective at all [30]. The first domain explored was in a deceptive maze experiment. In
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this type of domain, traditional fitness-based approaches have a difficult time escap-

ing due to repeatedly being deceived by solutions that look like they are going to let

them escape. With a novelty-based approach, new agents continuously explore the

landscape until an exit is found.

The second domain explored was in a bipedal robot experiment. The purpose of

this experiment was to use a well-known problem with high difficulty that is not suited

towards novelty, but is rather challenging to solve in general. When averaged over

50 runs, the novelty-based controllers travelled 4.04 meters on average whereas the

fitness-based approach only travelled 2.88 meters on average. As a conclusion, this

research has shown that novelty search shows what is left if the pressure to achieve

the objective is abandoned and that objective-driven search has its limits.

In [12], Cowan explores different methods of evolving predator behaviours through

the use of diversity search, while maintaining a high level of efficacy. Cowan’s mo-

tivations came from diversified behaviours having the potential to improve a wide

range of applications, like art, architecture, virtual robotics, and so on [19]. The

conclusions showed that the nature of fitness-based evaluation tends to exploit par-

ticular behaviours in monotonous and uninteresting ways, but with the addition of

diversity-based evaluation, this is remedied [12]. The best results achieved in this

paper were the k-nearest neighbours with archive (KNNA) approach with 50/50 split

of fitness-diversity score (50F/50D) which was proved in more than one domain.

The Multi-dimensional Archive of Phentotypic Elites (MAP-Elites) algorithm [36]

is an effective tool for finding elite solutions with diverse behaviour, but it has its

limitations when exploring high-dimensional feature spaces. In Pozzuoli’s work [41],

an Age-Layered MAP-Elites (ALME) algorithm is proposed which addresses this

limitation by separating the population into age layers with their own feature spaces,

enabling the algorithm to increase the number of behaviours without exponential

growth of the solution space. The algorithm was applied to a pursuit domain task,

with results showing that ALME was able to find a high diversity of solutions with

no fitness-diversity trade-off. Furthermore, the algorithm was capable of adding more

features without adding more individuals. The primary drawback of this algorithm

was that not all regions of the feature space were able to produce useful individuals,

thus manually searching for those solutions was a time consuming task.
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2.3 Deep Learning

Behaviour classification involves analyzing and categorizing the many behaviours that

characterize intelligent agents. These behaviours can be classified manually by hu-

mans, or by using artificial intelligence to automate the process.

In [3], Asadi et al. use a supervised feed-forward neural network as an intelligent

classifier for their system. By training the model using a supervised set of data, the

framework is able to learn the information from the environment and its behaviour is

recognized by the weights of the neural network. Due to the complexity of the super-

vised multi-layer neural network (SMNN), a suitable data pre-processing technique is

required to find valid input values along with pre-training techniques to find desirable

weights. By doing so, the training process can be reduced. In this case, potential

weights linear analysis (PWLA) is used. PWLA is made up of three steps: (1) data

pre-processing involving the normalization of input values, (2) pre-training by setting

each weight equivalent to the sum of all absolute normal values in each instance, and

(3) dimension reduction through hidden layer pruning. By using the SMNN model,

it was shown that the classification system has capability of predicting future status

and showing complex relations between components of systems.

Another type of deep learning algorithm that can be used for classification prob-

lems is the convolutional neural network (CNN). One example is a machine learning

pipeline called DeepEthogram [5] that was developed by Bohnslav et al. to classify

behaviour from raw pixels. Using this pipeline, videos of animal behaviour were used

to study neural function, gene mutations, and pharmacological therapies. The over-

all architecture involves three stages: (1) estimating motion from a small snippet

of video frames; (2) compressing a snippet of optic flow and individual still images

into a lower dimensional set of features; and (3) using a sequence of the compressed

features to estimate the probability of each behaviour at each frame in a video. To

test the performance of their model, nine difference neuroscience research sets were

used that include two species and present several challenges for computer vision algo-

rithms. When trained with only 80 example frames of a given behaviour, the model

performed with more than a 90% accuracy. Similarly, the model was able to predict

with over 95% accuracy using only 100 example frames. Therefore, DeepEthogram

models require little training to achieve high performance [5].



Chapter 3

Background Reading

This chapter provides the reader with background information required to understand

the fundamentals of two machine learning algorithms used throughout this thesis.

Genetic programming is an evolutionary algorithm based on Darwinian evolution

that focuses on evolving a population of computer programs. A convolutional neural

network is a deep learning algorithm commonly used to classify images. In this

chapter, both algorithms will be described in detail, along with their components.

3.1 Genetic Programming

In 1988, nearly 30 years after researchers first experimented with machine evolution,

John Koza patented his invention of a genetic algorithm (GA) for program evolution

[24]. This patent would serve as the foundation for a new branch of evolutionary

computation called genetic programming (GP), a process of evolving entire computer

programs. In [25], Koza describes computer programs as some of the most complex

structures created by man. The purpose of this literature was to answer an important

question in computer science: How can computers learn to solve problems without

being explicitly programmed?

3.1.1 Representation

To answer this question, we need to take a look at how GPs are represented. It

is much the same as a traditional GA, except the flat data structure of a vector is

replaced by a variable-length, tree-based structure. Another key difference is that

instead of a node representing a data point, it represents a function. The functions

could be mathematical operators such as add, subtract, or modulo. There are also

13
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more complex functions that could be used, depending on the problem space. The

children of these functions are then recursively computed until a terminal state is

reached.

Figure 3.1: Genetic Program Representations

3.1.2 Initialization

The first parameter that must be determined before initialization is the population

size. The population size refers to the number of individuals in the initial population,

and can vary depending on the problem space. By choosing a large population size,

the diversity of solutions will increase alongside computational costs. The inverse is

also true, meaning a smaller population size will result in less diverse solutions and a

decrease in computational costs.

During the initialization phase, the population is created by generating random

individuals using a selection of randomly selected GP functions and terminals. Func-

tions in GP represent operations that can be performed on input values, whereas

terminals represent input values or constants that are combined with functions to

create candidate solutions. These individuals are typically very poor performing due

to the random nature of their actions and are not expected to generate optimal so-

lutions. This randomness may continue into the first few iterations of evolution,

but as the population is evaluated and the best individuals are selected for the next

generation, their performance starts to improve.

3.1.3 Evaluation

The evaluation phase is a critical component of a GP, as it allows for the program to

assess the quality of candidate solutions in the current generation. The goal of this
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phase is to determine how well each individual solves the problem which the program

is trying to address. To do this, a fitness function must first be defined.

A fitness function is created in order to quantify how well each individual solves

the problem. Depending on the problem, the structure of a fitness function may

vary significantly. Some fitness functions focus on minimizing their score, such as

how long it took an individual to find the exit to a maze. Other fitness functions

look to maximize their score, such as how many images it correctly identified in a

classification problem.

It can be difficult to find the most optimal fitness function for given problem,

which is why researchers go to great lengths to try different strategies of evaluating

GPs. The most common method of evaluating individuals is to use a traditional

fitness function based on how well the individual’s solution represents a solution to

the problem being addressed. In other words, the better the individual performs, the

better the individual’s solution is.

Other methods of fitness evaluation exist, such as novelty-based evaluation seen in

[12] which measures the fitness of an individual based on a combination of traditional

fitness and an individual’s diversity when compared to its neighbouring solutions.

Once the fitness function is defined, the evaluation process runs the fitness function

over each individual in the population to determine their scores.

3.1.4 Selection

Once the individuals in the current population have been evaluated, the next step

is to select individuals for the next generation based on their fitness scores. A va-

riety of selection techniques can be chosen, such as tournament selection or roulette

wheel selection [18]. The goal with the selection process is to select high performing

individuals for the next population in order to gradually improve performance over

time.
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Figure 3.2: GP Tournament Selection

Tournament selection is the most popular selection method [18]. The first step is

to select K random individuals from the current population. Once the competitors

are selected, the individual with the best fitness score is selected for the reproduction

stage as a parent.

3.1.5 Reproduction

The reproduction phase allows GP to create a new population of individuals based on

those chosen during the selection process. Once the two parent solutions have been

selected, the genetic material between them are combined using a method known as

crossover.
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Figure 3.3: GP Crossover

Crossover involves choosing random branches from each of the parents trees and

swapping them in order to create one or more offspring. Due to the nature of GP

solutions, its important to make sure that the genetic material is compatible on both

trees to prevent any type mismatches.
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Figure 3.4: GP Mutation

Once crossover has been performed, there is a small chance that the offspring will

be subjected to a mutation. The mutation operator introduces a random change to

the genetic material of an individual, typically in the form of a removal, addition, or

change of a single component. This process allows for new genetic material to enter

the population and expand upon the search space. Mutation is typically applied with

a low probability in order to avoid drastic changes to the offspring.

3.1.6 Termination

The termination condition is used to stop the evolutionary process when a solution

that satisfies the problem has been found. Common termination conditions include

reaching a maximum number of generations or when the fitness score of an individual

reaches a threshold. Once the termination condition has been met, the GP will

terminate.

3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep neural network made up

of several interconnecting layers which differ from a traditional feed-forward neural

network (FFNN) [17]. CNNs are widely used in computer vision tasks such as image
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classification and recognition, due to their ability to learn and extract features from

images.

3.2.1 Convolutional Layers

The core building block of a CNN is the convolutional layer. In this layer, a set of

filters are applied to the input image. The filters work by performing a convolution

operation which then produces a set of output feature maps. The filters are rep-

resented by a small matrix, typically between 2x2 and 5x5, which slides across the

image and computes the dot product of the pixel values found in its location.

Figure 3.5: Convolutional Layer

Through the use of filters, different patterns and features in the image can be

captured, such as edges and shapes. As more convolutional layers are added, more

detailed patterns can be captured, such as faces and textures. The number of filters

can vary, depending on how many convolutional layers are needed. Other parameters

include stride and padding, which work to control spacing between the filters and add

extra pixels to the input image in order to maintain the output size.
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3.2.2 Pooling Layers

A pooling layer is typically found after each convolutional layer. These layers work

to reduce the spatial size of the convolved feature, while retaining the most impor-

tant features. The two main types of pooling are max pooling and average pooling.

Max pooling works by returning the maximum value from the portion of the image

traversed by the kernel at each section, and discards the rest. This means that much

of the valuable information is discarded during the early stages of the network [37].

On the other hand, average pooling returns the average of all values, which helps to

give the average of all features present in a kernel.

Figure 3.6: Max Pooling Layer (Filter = 2x2, Stride = 2)

3.2.3 Dense Layers

After the data has traversed through several convolutional and pooling layers, it will

go through a series of fully-connected layers called dense layers. In this layer, every

neuron is connected to all activations from the previous layer. Once the dense layers

are traversed through, a final output layer allows the CNN to give its prediction. The

number of neurons used in each dense layer depends on how complex the problem is,

and what the size is of the previous layer. Optimization techniques such as backprop-

agation are used during training in order to reduce the error between the predicted

and actual output. For classification tasks, a softmax activation function is typically

used to give a prediction in the final dense layer.

3.2.4 Dropout Layers

In 2012, Geoffrey Hinton introduced dropout, an efficient way to prevent overfitting

of neural networks [49]. Overfitting occurs when there is not enough training data

for the CNN to learn from, and thus the model is unable to generalize and fits itself

closely to the training data instead. By using dropout, the CNN is encouraged to
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Figure 3.7: Fully-connected Layer

learn more about the features of the training data. During training, the dropout

layer randomly drops out a portion of the inputs, forcing the network to adapt to

different subsets of connections. When the CNN is finished training, the connections

are turned back on for testing.

Figure 3.8: Dropout Layer (Left: All neurons are connected. Right: Crossed neurons
have been dropped)
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Pursuit Domain Simulation

The first of 3 systems to be discussed in this thesis is the pursuit domain simulation.

In this simulation, an intelligent predator agent is given the task of capturing a

set number of prey agents randomly scattered across the environment. A fitness

score tallies the number of prey the predator caught during its hunt, and is used to

determine who moves forward in the evolutionary process. As shown in [42, 12, 20],

the predator-prey pursuit problem is an appropriate test bed for multi-agent systems.

The goal of the pursuit domain simulation is to generate thousands of trace files which

depict the predator’s movement and behaviour. These trace files will then be stored

in a trace database and later used for CNN experiments in Chapter 6.

Figure 4.1: Simulation Overview (red square = predator, green crosses = prey)

The simulation is inspired by the work of Cowan [12] and Pozzuoli [41]. An image

of the environment can be found in Figure 4.1, which depicts what a typical seed

22
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looks like before any of the agents have moved. The environment is set to a size of

200 units by 200 units, with agents being able to freely move around in continuous,

floating-point action space. The red square represents the predator agent, who always

starts in the center of the environment and faces a random direction between −2π and

2π. At the start of the simulation, all 25 prey agents are randomly placed inside the

environment, as indicated by green symbols. A boundary of 25 units is put in place

during initialization phase, which prevents agents from being initialized too close to

the walls of the environment. After all agents are initialized, they are free to move

past the white boundary square towards the edges.

4.1 Predator & Prey Controllers

The predator and prey agents store 4 crucial pieces of information about themselves

which are used to guide them through the simulation. The most important piece of

information is the agent’s (x, y) coordinates, which represents their real-time position

in the simulation. The position is calculated at the beginning of each step and is

saved after each move, allowing for the later recreation of text-based and image-

based trace files. The next piece of information is the predator’s orientation, which

works in congruence with the predator’s vision cone and sensing radius. The GP tree

is evaluated at every step and returns a floating-point value. This value is then added

to the predator’s current orientation which rotates the predator in a new direction.

Giving the predator a sense of direction allows for dynamic movement around the

environment and an improved ability to locate prey. The final piece of information

used to guide the agents through the simulation is their speed. This is where the

predator has a major advantage over the prey, due to the fact that the prey have a

locked speed at 0.7 units per move. When initialized, the predator has a speed of 1.0

units per move, but this can be increased up to 5.0 or decreased to 0.5 through use

of the SetSpeed function.

Two common approaches were considered when designing the movement of each

agent. The first approach was to limit the agents’ movement to four cardinal directions

on a grid, creating a discrete environment with strict instructions. This approach

would be easy to implement, as it has similarities to the artificial ant problem [10].

However, this would limit the diversity in agent behaviour significantly as the agents

would only be able to move in four directions. The second approach was to allow the

agents to move in floating-point action space with limited restrictions. Due to this

research focusing heavily on diverse emergent behaviours, choosing the continuous
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action space with limited restrictions was the obvious choice. By doing so, agents

possess the ability to rotate and move in any direction, allowing for patterns such as

circling and ricocheting to become more abundant.

Once the agents are initialized, the predator moves in the direction they are facing

by multiplying their orientation by speed, and adding it to their current position.

The result is a new set of (x, y) coordinates which is where the predator will sit and

wait while the prey make their moves. The prey agents use a predefined approach

to movement, allowing for more consistent experimentation within the environment.

Once the predator is sitting and waiting, each of the 25 prey move 0.7 units in the

direction they are facing. Their orientation is fixed, but once each prey have moved

in their current direction 5 times, they all rotate to a new, unique orientation between

−2π and 2π.

If a predator finds themselves within 1 unit of a prey, the prey becomes captured

and are added to the predator’s fitness score. Once a prey is captured, it is no longer

able to move or be re-captured by the predator. If any agent is found stuck in one

of the four corners of the environment, they are rotated to a new direction between

−2π and 2π. This cycle continues until 5000 steps are made by all agents.

Figure 4.2: Predator Perception

Figure 4.2 shows the perception of a predator agent who has the ability to seek

and sense in every direction. This combination of sensors is not always guaranteed,

as predator agents can differ from one another in many ways depending on their GP

controller. This is why as the predator evolves, so does their perception. A predator

may not develop all of its functionality until later in the evolutionary process, or even

at all, which allows for diverse and interesting behaviour to emerge out of uncertainty.
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4.2 GP Architecture

A GP language is used to evolve the controller of the predator agent. ECJ 27 [33], a

Java-based [2] evolutionary computation library is used for implementation of the GP

system. Various parameters were tested during the discovery phase of this research,

and the following were chosen due to their use in related literature. The primary

criteria used to determine the GP parameters was to allow for diverse emergent be-

haviours to be abundant, and to limit the success of the predator within reason. This

is why the predator’s sensors and speed are clamped, as the predator must develop

its own strategies for catching as many prey as possible.

Parameter Value

Generations 50

Number of Steps 5000

Population Size 500

Tournament Size 2

Number of Elites 0

Maximum Tree Depth 15

Crossover Chance 90%

Mutation Chance 10%

Growth Algorithm Half Builder

Growth Chance 50%

Initial Depth 2 to 6

Table 4.1: GP Parameters

Table 4.1 provides a breakdown of the various parameters used in the GP system.

The number of generations is 50 which represents how many times the predator’s tree

has a chance to crossover or mutate with another parent. The number of steps is 5000

which represents how many moves a predator makes in its environment. During these

moves, each predator is allocated a new (x, y) coordinate and orientation, as well as

a potential update to its speed. The population size is 500 which represents how

many predators are competing against one another. In order to compete, tournament

selection chooses 2 random agents in the population and the highest fitness score is

chosen for the next stage in the evolutionary process. After two agents are chosen,

they have a 90% chance to crossover and a 10% chance to mutate.
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GP Function Description

Add (A, B) Return A + B

ASin (A) Return arcsin(A)

Divide (A, B) If B ̸= 0 return A ÷ B, else return 0

GreaterThan (A, B, C, D) If A < B return C, else return D

Multiply (A, B) Return A · B
Negative (A) Return −A

Sin (A) Return sin(A)

Subtract (A, B) Return A − B

Table 4.2: Math Functions

The math functions in the GP language are summarized in Table 4.2. Functions

with one child include: ASin which returns the arcsin of the value, Negative which

flips the sign of a value, and Sin which returns the sin of the value. Functions with

two children include: Add which adds the result of two children and returns the value,

Divide which safely divides the result of two children and returns the value, Multiply

which multiplies the result of two children and returns the value, and Subtract which

subtracts the result of one child from the other and returns the value. Lastly, the

GreaterThan function executes the first two children. If the result of executing the

first child branch is greater than the result of executing the second child branch, then

the third child branch is executed and the value is returned. If the result of executing

the second child branch is greater than the result of executing the first child branch

or they are equal, the fourth child branch is executed and the value is returned.

GP Function Description

SetSpeed (A) Set predator speed to [0.5 <= A <= 5.0] and return A

Table 4.3: Speed Function

The SetSpeed function shown in Table 4.3 is one of the key functions that allow

the predator agent to gain an advantage over the prey agents. The prey agents have

their speed locked at 0.7 units per move, whereas with the SetSpeed function, the

predator is able to adjust their speed between a set of boundaries as needed. The

function executes the child branch and receives the float value which is then converted

into the predator’s speed attribute. The speed value is locked between 0.5 units and

5.0 units, so as to not give the predator too much of an advantage. This function
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allows the predator make dynamic movements, such as turning around corners slowly

or chasing after prey.

Terminal Description

MovesRemaining The number of moves remaining in the current run

MovesTaken The number of moves taken in the current run

Orientation The current orientation of the predator

PreyCaptured The number of prey captured in the current run

PreyRemaining The number of prey remaining in the current run

Table 4.4: Terminals

Environment operands shown in Table 4.4 are terminals that change value as the

simulation is running. These changing values allow the predator agent to behave

differently as prey get captured and moves are taken. For instance, the first two

terminals MovesRemaining and MovesTaken return a normalized value representing

how many moves the predator has left, or has taken. Next, Orientation allows for

the predator’s orientation to be used in the GP language in other functions. Lastly,

PreyCaptured and PreyRemaining return a normalized value representing how many

prey are remaining, or have been captured.

Terminal Description

Ephemeral Random constant between [-1, 1]

Pi The number π

Table 4.5: Constants

The next set of GP terminals are constant values seen in Table 4.5. These termi-

nals store information like the environment variables but remain static across all tree

executions after initialization. The Ephemeral operand generates a random number

between −1 and 1 and remains constant throughout the evolutionary process. How-

ever, other individuals who have ephemeral random constants in their GP tree may

have other static values they use instead. The second operand is Pi which represents

the value of π in mathematics.
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GP Function Description

SeekPreyLeft (A, B) If prey in left vision radius return A, else return B

SeekPreyRight (A, B) If prey in right vision radius return A, else return B

SeekWall (A, B) If wall in vision radius return A, else return B

SensePreyNorth (A, B) If prey in north sensing radius return A, else return B

SensePreyEast (A, B) If prey in east sensing radius return A, else return B

SensePreyWest (A, B) If prey in west sensing radius return A, else return B

SensePreySouth (A, B) If prey in south sensing radius return A, else return B

TouchingWall (A, B) If prey touching wall return A, else return B

Table 4.6: If Statements

Table 4.6 outlines the various conditional statements that represent the predator’s

simulated vision and senses. Each of the functions have 2 children and work by

executing the first branch if the conditional statement is true, or the second branch if

the conditional statement is false. By using these conditional statements, a multitude

of behaviours can emerge as the predator learns to adapt to seeking or sensing prey

and walls.

4.3 Generating Training Data

The GP system generates data files and trace files after each run. The data files store

information about each generation such as the population’s average fitness, the best

found agent’s fitness, and the GP tree of the best found agent. The trace files on the

other hand, are used to evaluate the emergent behaviour of the best found agent.

Figure 4.3: Simulation Flow Chart

Figure 4.3 outlines the flow of the GP-based trace generation system from left to

right. The first step is to run the GP system until all 50 generations have completed.
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At the end of execution, the best predator agent is isolated and performs 30 simulated

hunts. Each of these simulated hunts will store the (x, y) coordinates of the predator

at each step and output it as a text-based trace file. These trace files are then manually

analyzed for behaviour qualities and labelled by hand. Once all 30 traces are labelled

by their primary emergent behaviour, they are put into the trace database for later

use. The trace database is simply a series of folders which store .txt based files.

Figure 4.4: A Text-based Trace File

Figure 4.4 shows what a text-based trace file looks like. The first numerical column

represents the predator’s orientation between −2π and 2π. The next two columns

represent the (x, y) coordinate of the predator.
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CNN for Emergent Behaviour

Classification

The second system to be discussed in this thesis is the emergent behaviour classifier.

The CNN is trained on thousands of images depicting the predator agent’s behaviour

as it traverses through the simulation. In [12], the process of manually categorizing the

behaviour of each agent individually was found to be highly monotonous and prone

to human error. To remedy this, a CNN is trained to automate the classification of

emergent behaviour with a low margin of error and limited training data.

5.1 Trace Files

A trace file refers to a type of file that is readable by humans or computers and

contains representations of various events, such as the execution of actions and other

relevant data points. Text-based trace files are easy for computers to interpret which

makes them a popular choice for small to medium sized feed-forward neural networks

when only a limited amount of data needs to be stored. On the other hand, image-

based trace files are easy for humans to interpret and represent the data visually

in the form of an image. These trace files can show a more detailed overview of a

run which can include heat maps, gradients, and other simultaneous layers of data.

Moreover, this format of trace is concise and allows for a larger amount of data to be

stored in a compact visual form. It is also the input of choice for CNNs.

There were several considerations that had to be made when choosing the kind

of trace to be used in each experiment. The first was to figure out which type allows

for the easiest analysis and classification of each predator’s behaviour. For complex

models with large-scale data, visualizations can be more effective than inspecting raw

30
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text. However, each predator only exhibits a few thousand steps per run, so it wasn’t

obvious if images were necessary during preliminary stages. The next consideration

was to understand how a trace may be interacted with. For instance, text-based

traces could technically be read by humans but it would make much more sense to

feed it into a feed-forward neural network for analysis. On the other hand, the use

of image-based traces allows for more interactive exploration of the data, such as

zooming, panning, or even the possibility to interact with visual elements which can

enhance the analysis process. Ultimately, it was found that image-based traces would

allow for easier labelling of the data, saving countless hours. Lastly, it was important

to determine which types of files would be most suitable for presentations and reports.

For this the answer was also image-based trace files, as they are generally easier to

understand and interpret compared to raw text. Even those not familiar with the

system can still gauge how the predator is performing and what behaviours they

exhibit.

In [12], a predator versus prey environment was used to conduct a series of exper-

iments to determine which evolution strategies were best at evolving high-performing

diverse predator agents. The method for analyzing the agents was a slow, manual

process, and although the author found a high degree of success in their experiments,

it should be possible to automatically categorize the behaviours of intelligent agents

with no metrics or human interference using a CNN. To automatically categorize the

behaviour of an intelligent predator agent, a trace file that models its movement over

time is necessary. With a single trace file, insights about the agent’s decision making

process, behaviour, and performance can be found. The most important insight is

the movement patterns of the agent. These patterns can be used to determine if the

agent exhibits specific strategies, such as exploring the environment in a systematic

manner or by favouring specific regions. They can also be used to determine the type

of behaviour the predator is exhibiting, such as ricocheting off walls, rotating in a

circle, or locking onto prey and pursuing them. The exploration versus exploitation

tradeoff is another valuable insight which can be seen in a trace file. This tradeoff

looks at balancing the need for the predator to discover new areas of its environment

versus exploiting the knowledge it already has in order to capture more prey.

Learning and adaptation, which looks into how the predator adapts its movement

based on information it gathers during its run, is also a valuable insight. The predator

can use information about how many steps it has left or how many prey remain to

dynamically change their approach. For instance, when the predator is low on moves,

they may choose to increase their speed to further explore the environment with the
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possibility of finding those last few hard to find prey. Obstacle avoidance is another

crucial aspect of the agents performance. Although there are no obstacles in the

middle of the environment, the predator will still need to avoid getting stuck on walls

by using its perception to see when a wall is in their view. Efficiency is also a critical

aspect to evaluate the agent’s movement, especially due to their limited number of

moves. If an agent is able to find optimal paths to each prey, there is a high chance

that it will be selected for evolution in the next generation. Agents that continuously

optimize their routes and improve are seen as the most valuable and intelligent type

of agents when evaluating them using traditional fitness measurements. In order to

generate traces once the predator has completed their simulated hunt, a trace image

generator program is introduced.

5.2 Trace Image Generator

The trace image generator is a program that was developed in congruence with the

emergent behaviour classifier program that converts text-based trace files into image-

based trace files that are ready for CNN classification. The system was created using

the Python 3.7 programming language [48] and Pillow 9.4 library [11].

(a) Text-based Trace (Excerpt) (b) Image-based Trace

Figure 5.1: Text to Image Conversion

Figure 5.1 shows a portion of an original text-based trace file on the left, and its

resulting image on the right. The program opens the text file as parses it line by line.

Once a line is parsed, it is then split into four parts: the individual’s name (in this



CHAPTER 5. CNN FOR EMERGENT BEHAVIOUR CLASSIFICATION 33

case, the predator), the orientation of the agent, the agent’s x coordinate, and the

agent’s y coordinate.

A key feature of this system is that both types of trace files can be flipped along a

horizontal or vertical axis and rotated in any direction, in order to create more entries

for the data base. By doing so, a single text-based trace can now produce 8 different

images. This means a single run of the GP system will generate 30 text-based traces

and create up to 240 image-based traces.

5.3 CNN Architecture

The primary objective in this section is to create a CNN model that can accurately

categorize the behaviours of intelligent predator agents during the pursuit of prey. By

achieving this, the model will help with understanding the dynamics of the predators’

decision making and adaptive strategies in their simulated environment. Successful

implementation would mean that the model is capable of accurately detecting up to six

predetermined emergent behaviours exhibited by the predator agents. Furthermore,

the model could be extended to other applications where understanding predator-

prey dynamics is crucial, such as biology or ecology. The system was created using

the Python 3.7 programming language [48] and TensorFlow 2.12 library [16].

Figure 5.2: Classifier Flow Chart

Figure 5.2 outlines the flow of data from the moment it exits the trace database to

the time its categorized using the CNN model. The first step is to obtain a labelled

trace file from the trace database. The CNN uses a supervised approach for training,

which means each trace has been manually labelled based on one of six emergent

behaviours. The traces contained in the trace database were specifically chosen based

on their easy to classify characteristics. For instance, an agent that exhibits a ricochet

behaviour and a circling behaviour in one trace would not be easily classifiable, so
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they are not added to the database. On the other hand, agents that emit only a single

type of easily identifiable behaviour such as circling are added.

(a) Difficult to categorize due to multiple behaviours

(b) Easy to categorize due to simple circular behaviour

Figure 5.3: Comparison of Behaviours Based on Complexity

The next step in the classification pipeline is to convert the text-based trace file

into an image-based trace file using the trace image generator program. Since all

traces begin as text files, this stage is necessary in order to provide the CNN with

proper input. Once completed, the image is fed into the CNN model for classification.
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# Layer
Output

Shape
Neurons

Activation

Function
Note

1 Rescaling (200, 200) 1 Input

2 Conv2D (198, 198) 32 ReLU Kernel Size = (3, 3)

3 MaxPooling2D (99, 99) 32 Pool Size = (2, 2)

4 Conv2D (97, 97) 64 ReLU Kernel Size = (3, 3)

5 MaxPooling2D (48, 48) 64 Pool Size = (2, 2)

6 Conv2D (46, 46) 128 ReLU Kernel Size = (3, 3)

7 MaxPooling2D (23, 23) 128 Pool Size = (2, 2)

8 Dropout (23, 23) 128 Rate = 0.25

9 Dense (256) 256 ReLU Batch Normalization

10 Dropout (256) 256 Rate = 0.5

11 Dense (128) 128 ReLU Batch Normalization

12 Dropout (128) 128 Rate = 0.5

13 Dense (6) 6 Softmax Output

Table 5.1: CNN Architecture

A variety of CNN architectures were examined before settling on the architecture

seen in Table 5.1. After trying different approaches with varying degrees of success,

the architecture chosen was based on the work of Chen [9] due to using similarly

sized black and white images containing thin line strokes. The model was also heavily

inspired by VGGNet [47] and LeNet [28]. Some modifications were made to the overall

architecture, such as the increasing the number of filters used in the 3 convolutional

layers, as well as changing the number of outputs in the last dense layer to 6 in order

to represent the number of emergent behaviour classes.

Table 5.1 shows that the CNN consists of 13 layers, each with different character-

istics. The rescaling layer is the first layer in the CNN. It takes an image input of

(200, 200, 1) which represents a 200 pixel by 200 pixel image with a single grayscale

colour channel, and normalizes all pixel values between 0 and 1 by dividing them by

255. The following six layers consist of convolutional layers and max pooling layers.

In each of the convolutional layers, a kernel size of (3, 3) is chosen alongside the ReLU

activation function. The max pooling layers use a pool size of (2, 2). By combining

these two layers and increasing the number of filters at each stage, various features

can be extracted from the images. Layers 8, 10, and 12 are dropout layers which

help to prevent overfitting by randomly dropping out some of the neurons. The first
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dropout layer uses a rate of 0.25, whereas the final two dropout layers use a rate of

0.50. The dense layers are fully connected and use batch normalization which allow

for faster and more stable training of the network. The last dense layer is the output

layer which uses a softmax activation function to produce a probability distribution

over the six output classes.

−2 0 2 4

0

2

4

Figure 5.4: Graph of ReLU Activation Function

The ReLU activation function is a widely used activation function for training

CNNs. Figure 5.4 shows what the ReLU function looks like when graphed. The

function equates to ReLU(z) = max(0, z) meaning that if the output of a neuron is

less than 0, it will automatically round up to 0. If the output is greater than 0, it

will use the original output instead.

The softmax activation function is commonly used in the final layer of a CNN for

multi-class classification tasks. It works by taking the raw class scores (also referred

to as logits) produced by the previous layers and converts them into probabilities that

represent the likelihood of each class being the correct one. The softmax function is

defined as:

σ(z⃗)i =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . , K (5.1)

where σ is the result from the softmax, z⃗ is the input vector, ezi is the standard

exponential function for the input vector, ezi is the standard exponential function for

the output vector, and K is the number of classes.
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Figure 5.5: Softmax Function Example

Figure 5.5 shows what happens when a vector z⃗ consisting ofK = 5 real numbers is

fed into the softmax function and normalized into a probability distribution. Notice

the probability distribution is proportional to each value and sums to 1. In this

example, the highest input value from vector z⃗ results in the highest probability

value in the output vector. Therefore, as the result of the classification, the value at

index 1 (5.1 → 0.90) represents the CNN’s prediction output.



Chapter 6

Experiment Series I: Emergent

Behaviour Classification

The goal of this series of experiments is to successfully train a CNN model to classify

emergent behaviours of intelligent agents and test the model on a variety of traces.

6.1 Experiment A - Training the CNN Model

The purpose of the first experiment is to train the CNN model on a data set of

emergent behaviours. These behaviours were chosen after running the GP system over

250 times and generating over 60,000 trace images. The 6 most prevalent categories

of emergent behaviours were used to train the model: arched line ricochet, classic

pursuit, large circle pursuit, medium circle pursuit, small circle pursuit, and straight

line ricochet. 2,000 images from each category were selected to train and validate

the model. Only trace images which clearly depict the behaviour and are easily

distinguishable from other behaviours were chosen.

6.1.1 Training Dataset

Training the perfect CNN model to fit a specific set of data is not an easy task,

especially when data can be difficult to fit into definitive categories. This is why the

model chosen for this work will not resemble a perfect model but instead, a model that

is deemed performant enough to categorize most emergent behaviours. After running

the GP system over 250 times and generating over 60,000 hand-labelled training

images, 6 categories of emergent behaviours were shown to be the most prevalent.

38
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(a) Arched Ricochet (b) Classic Pursuit (c) Large Circle

(d) Medium Circle (e) Small Circle (f) Straight Ricochet

Figure 6.1: Categories of Emergent Behaviours

The first category is arched-line ricochet which represents lines that bounce off

walls and are curved in nature. The second category is classic pursuit which represents

typical cat and mouse behaviour. The third category is large circle pursuit which

represents a large circling behaviour, often confused with arched-line ricochet. The

fourth category is medium circle pursuit which represents medium circling behaviour

and is often seen overlapping. The fifth category is small circle pursuit which are
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sometimes difficult to distinguish from classic pursuit but easy to distinguish from

medium circles. The sixth category is straight line ricochet which are straight lines

at various angles that ricochet off the walls.

In order to generate a significant amount of training data for the CNN to train

on, each trace is converted into 8 rotated and reflected versions. By doing so, a single

GP run can generate 8 times as many training data images.

(a) From left to right: XY, X-Y, -XY, -X-Y

(b) From left to right: YX, Y-X, -YX, -Y-X

Figure 6.2: Comparison of Rotations and Reflections in Traces

Figure 6.2 depicts the 8 orientations that are possible from rotating and reflecting

a trace file. Notice that there are no trace images where a translation has taken place.

This is because images are known to be translation invariant when tested on CNNs,

but variant to rotations and reflections. In (a), the first image is the original trace

file, the second image is the result of using the original x values and subtracting the

y values from 200, the third image is the result of subtracting the x values from 200

and using the original y values, and the fourth image is the result of subtracting the

x and y values from 200. In (b), each image is reflected by switching the x and y

values. The first image is the original trace file, the second image is the result of using

the original y values and subtracting the x values from 200, the third image is the

result of subtracting the y values from 200 and using the original x values, and the

fourth image is the result of subtracting the y and x values from 200. The number

200 is chosen to subtract by because it is the height and width of the simulation

environment as well as the size of the 200px by 200px image traces. If the simulation
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environment was a different size, it would need to be accounted for when creating the

rotated and reflected trace file variants.

6.1.2 Setup

To begin training the CNN for behaviour classification, several parameters were set,

as shown in Table 6.1. All of the following values are widely accepted parameters

used in various literature [9], [4], [6].

Parameter Value

Validation Split 20%

Batch Size 32

Optimizer Adam

Metrics Accuracy, Loss

Loss Type Sparse Categorical Cross-entropy

Epochs 20

Table 6.1: CNN Training Parameters

Validation split is an essential process that allows the model to evaluate its per-

formance on data it has never seen before. By doing so, it will prove that the model

is capable of generalizing, rather than memorizing, data. The validation split used

in all experiments will be 0.2, meaning that 20% of the training examples will be

withheld from training and used to validate the model as time goes on. Since there

is a total of 12,000 images in the data set, 9,600 will be used to train the model and

2,400 will be used for validating. Another process used while training a CNN is to

separate data into smaller subsets called batches. The batch size refers to the number

of training examples a model will be fed before updating its parameters. Choosing

an appropriate batch size will have a large effect on the model, as smaller batch sizes

lead to more frequent updates which can help the model generalize well. On the other

hand, large batch sizes speed up the training process but require more memory. The

batch size chosen for this work is 32 and based on [9]. The adaptive moment esti-

mation optimization algorithm, also known as Adam, is an optimization algorithm

commonly used for training CNNs [23]. It works by maintaining a learning rate that

adapts over time and applies itself to each parameter. Another key feature of Adam

is that it keeps track of the momentum of past gradients which allows it to perform

well on deep learning tasks and helps converge quickly.
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The primary metrics used to evaluate the performance of the CNN model are

accuracy and loss. Accuracy is defined as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100% (6.1)

The loss is a metric used to compare the predicted class probabilities with the actual

target class. The sparse categorical cross-entropy loss function is used in multi-

class classification problems where each input belongs to a single class. The primary

difference between sparse categorical cross-entropy and categorical cross-entropy is

that the labels are represented as integers rather than one-hot encoded vectors. The

number of epochs used to train the model is 20. This value represents the number of

complete passes the data makes through the CNN during the training phase.

One noticeable feature of the training data set is that there is a high degree of

variation in each of the images. For each of the 6 emergent behaviours, approximately

one third of the images depict a predator that traverses only a small portion of the

arena and is typically low-performing. The next one third of images depict a predator

who traverses a moderate portion of the arena and is typically mid-performing. The

final one third of images depict a predator who traverses a large portion of the arena

and is typically high-performing and reactive. In order to achieve a CNN model that is

able to categorize a multitude of agents regardless of their performance, it is important

to include a wide variety of examples to allow for potential unknown variations in

predator movement to be predicted in the future. Examples of all classes of emergent

behaviours will now be shown.

(a) Small Coverage (b) Medium Coverage (c) Large Coverage

Figure 6.3: Comparison of Classic Pursuit Arena Coverage

Figure 6.3 shows three examples of what we call “classic pursuit” image traces

in order of their arena coverage from left to right. The first image depicts an agent

that is low performing and traverses a very small amount of their environment. The

middle image depicts an agent that performs well and makes adjustments based on
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its surroundings. The final image on the right depicts an agent that performs well

in all aspects, traversing a large portion of its environment and constantly making

adjustments when needed.

(a) Small Coverage (b) Medium Coverage (c) Large Coverage

Figure 6.4: Comparison of Small Circle Arena Coverage

In Figure 6.4, the small circling behaviour seen in the left image depicts a predator

that performs poorly and traverses in a small loop. This predator does not travel far

from the center and therefore it is unlikely to catch many prey. Traces such as these

can be hard for the CNN to correctly identify due to its similarities to a classic pursuit

behaviour. The second and third images depict better performing agents that exhibit

a pattern of small circles combined with chasing behaviour. They also explore close

to 50% of the search space but leave the remaining 50% untouched.

(a) Small Coverage (b) Medium Coverage (c) Large Coverage

Figure 6.5: Comparison of Medium Circle Arena Coverage

In Figure 6.5, the medium circle behaviour can be seen which allows for an im-

provement in arena coverage through use of tightly-coupled circling in multiple direc-

tions. These circles can range from being quite small as shown in the first two images,

to growing quite large as seen in the right-most image. Due to the variance in the

size of circles, it is possible that the CNN may classify these images as a small circle

or large circle behaviour due to the subjective nature of data labelling. However,
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significant effort was made to keep the three kinds of circling behaviours as distinct

as possible.

(a) Small Coverage (b) Medium Coverage (c) Large Coverage

Figure 6.6: Comparison of Large Circle Arena Coverage

The large circling behaviour shown in Figure 6.6 depicts agents that cover a sig-

nificant portion of their environment when compared to small or medium circling

behaviours. Starting at the left most image, the agent traverses a significant portion

of the arena but stops to overlap itself. When looking at the middle image, there is

a significant increase in circle diameter and many changes in the predator’s position-

ing. The final image on the right is full of noise due to having so many large circles

overlapping in such a small area. Due to the simplicity of the other trace files, this

image may be difficult for the CNN to classify, but it is included to help improve

generalization of the model.

(a) Small Coverage (b) Medium Coverage (c) Large Coverage

Figure 6.7: Comparison of Straight Line Ricochet Arena Coverage

The easiest behaviour for humans to identify is straight line ricochet, as seen in

Figure 6.7. This behaviour involves agents who very rarely traverse using curved

lines, but instead choose to snap to their next orientation. Sometimes agents will

only ricochet a handful of times, as seen in the first image on the left. Other times

predators may ricochet dozens of times, exploring a significant portion of the search
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space as seen on the right. Low performing agents that often get stuck after travelling

a small distance, or only ricochet a handful of times, are included in the straight line

ricochet data set.

(a) Small Coverage (b) Medium Coverage (c) Large Coverage

Figure 6.8: Comparison of Arched Line Ricochet Arena Coverage

Figure 6.8 outlines the most difficult to categorize behaviour: arched line ricochet.

The image on the left depicts a predator who makes several turns and ricochets but

does not represent a type of circling behaviour. The middle image depicts a predator

who covers a significant portion of the arena by ricocheting and rotating. The final

image on the right depicts a busy trace with lots of twists, turns and ricochets. The

primary reason that makes arched line ricochet so difficult to classify is that many of

the movements are closely related to that of large circling and straight line ricochet.

6.1.3 Training Results

The following subsection details the results obtained from training the CNN model.

Matplotlib 3.5.3 [21] is used to visualize the data at the end of training.
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Figure 6.9: CNN Training & Validation Results

Figure 6.9 details the results from training and validating the CNN model on all

12,000 images from the trace data set. The graph on the left side represents the

training and validation accuracy of the model, and the graph on the right represents

the training and validation loss of the model. After training the model for 20 epochs,

the training accuracy converges at 98% and the validation accuracy converges at 90%.

The training loss converges at 0.065 and the validation loss converges at 0.37.

The model’s training accuracy shown in Figure 6.9 shows a steady increase during

the initial epochs. This increase is a positive indicator that the model is effectively

learning from the data. The validation accuracy closely mirrors this trend until the

8th epoch. From this point the training accuracy continues to climb but the validation
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accuracy deviates from the trend and converges at 90%. After training for 20 epochs,

a training accuracy of 98% is achieved, indicating a strong fit of the model to the data

set and negating any concerns of under-fitting. In terms of validation, an accuracy of

90% is attained. Even though it falls slightly short of matching the training accuracy,

the outcome is still strong enough to be considered for future experiments.

There are two potential reasons that the training and validation accuracy show

some disparities. One likelihood is that the model is over-fitting to its data, meaning

that it is memorizing the existing data set and having troubles categorizing novel

images. A reason for this could be a lack of variety in training examples, or a lack

of training examples overall. A second reason could be that the data itself may have

some imperfections in the form of challenging to classify examples or potential labeling

errors. Given the subjectivity of categorizing certain behaviours, these imperfections

are the most likely of the two scenarios. Despite this, it is important to note that

a validation accuracy of 90% still shows that the model is very strong at classifying

novel data.

To enhance the model’s performance in future iterations, several strategies could

be employed. The first would be to refine the data set to mitigate any labeling con-

cerns. Removing any examples from the data set that could be considered challenging

to classify may result in some initial improvements. To further improve the label-

ing process, multiple people could be asked to classify the data and only traces that

are agreed upon by the majority would be selected. Employing this strategy could

help mitigate subjectivity. Another improvement could be to expand the data set

by introducing additional training examples, particularly examples that introduce a

greater diversity in traces. Furthermore, introducing new categories of behaviours to

classify could allow for improvements to the model. Overall, terminating the training

process at the 20th epoch seems to be ideal, due to diminishing returns in terms of

accuracy and loss improvement after only the 10th epoch.

6.2 Experiment B - Testing the CNN Model

The following experiment is designed to assess the effectiveness of the CNN model

through use of a carefully crafted testing data set consisting of 350 images. The

data set consists of an array of traces spanning different categories in order to give a

comprehensive evaluation of the model.
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6.2.1 Setup

Now that the CNN model has been trained to recognize and classify traces depicting

predator behaviours, the next step is to give the CNN new data that it has not seen

before in order to gain a comprehensive understanding of which features it may be

struggling with. To do so, 50 images have been selected to test the CNN model from

each of the 6 categories. There is also a 7th set of data consisting of 50 images that

will challenge the CNN model on behaviours it has never seen before which can be

found in Appendix B. These unique images can be classified two ways: either they

are a combination of two or more known behaviours, or they depict an unknown

behaviour that does not belong to one of the six categories the model was trained on.

Despite its specialized training, the CNN model is expected to maintain a reasonably

accurate classification score for traces it hasn’t been exposed to. In cases where the

CNN encounters unique traces, it should still be capable of making predictions by

identifying the most similar behaviour class based on data it was trained on. By

doing so, the model’s adaptability and generalization capability will be highlighted.

To evaluate the model’s performance on testing data, the primary metric to be

used is accuracy. The values to be seen in the results section refer to the prediction

generated by the model after it has been applied to all 50 individual traces. These

traces represent distinct predators from each behaviour category that the model has

not seen before. By averaging the predictions across all traces, an overall representa-

tion of the model’s performance can be seen, reflecting its ability to make accurate

predictions and determining which behaviours are easy or difficult for the model to

classify. The overall objective is to achieve a 100% prediction accuracy within the

category corresponding to the behaviour of each image. To better understand the

dispersion of data in relation to its mean, the standard deviation of each set of data

is measured. The standard deviation quantifies the amount of variability or spread

within a data set. A higher standard deviation signifies a greater dispersion from

the mean, while a lower standard deviation signifies that data points are close to the

mean. The results from this experiment will give insights into multiple aspects of the

CNN, one of which is to understand how the model averages its prediction per be-

haviour category. To better understand this, a visualization using stacked bar charts

is created show the distribution of data from each behaviour category across all 50

traces. This allows for a comprehensive view of the model’s predictive performance.
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6.2.2 Testing Results

The following subsection details the results obtained from testing the CNN model. 7

data sets, each containing 50 trace images were used to evaluate the model.

Experiment

/ Class
ALR SLR CP SCP MCP LCP

ALR 35.1546 30.8238 0.007 0.0196 0.0026 5.3338

SLR 32.2062 68.9732 0.007 0.015 0.0032 0.1524

CP 0.5358 0.0184 97.3672 0.4834 0.0028 0.0244

SCP 2.529 0.0184 0.9232 83.0656 0.8588 0.0258

MCP 0.3156 0.0548 1.6754 16.4 98.9784 5.135

LCP 29.2582 0.1112 0.0138 0.0134 0.1516 89.327

Table 6.2: Average Prediction per Category (50 Examples per Category)

Table 6.2 details the accuracy obtained from testing the CNN on each of the 6

known categories. The first row represents each experiment name, where ALR refers

to arched line ricochet, SLR refers to straight line ricochet, CP refers to classic pursuit,

SCP refers to small circle pursuit, MCP refers to medium circle pursuit, and LCP

refers to large circle pursuit. The first column represents the name of each behaviour.

In the sets of experiments involving the ALR and SLR behaviours, the model

encounters difficulties differentiating between them. The reason for this could be

due to the behaviours being similar in terms of visual characteristics, such as their

long lines and wide angles. The model seems to struggle the most with the ALR

behaviour, and performs better at classifying the SLR behaviour, likely due to ALR

being similar to SLR and LCP, whereas SLR is only similar to ALR. When looking

at the circling behaviours such as SCP, MCP, and LCP, the model demonstrates very

promising results. MCP stands out as the highest accuracy across all experiments

which indicates that the model excels at distinguishing MCP from other behaviours.

Despite the strong performance in the MCP runs, CP and LCP are occasionally

classified as MCP. In summary, these experiments show that while the CNN exhibits

strengths in classifying certain behaviours, it faces challenges when behaviours share

similar attributes. However, these findings provide valuable insights that could be

used to improve the model’s performance in the future.
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Figure 6.10: Average Prediction per Category Visualization

Figure 6.10 provides a visualization of the data presented in Table 6.2.

Experiment

/ Class
ALR ALR CP SCP MCP LCP

ALR 40.22 36.36 0.02 0.08 0.01 18.35

SLR 40.37 36.53 0.02 0.05 0.01 0.60

CP 1.37 0.02 12.32 1.46 0.01 0.04

SCP 11.10 0.02 1.97 33.70 4.78 0.05

MCP 0.67 0.12 11.69 33.79 4.78 17.40

LCP 42.43 0.28 0.07 0.04 0.51 24.80

Table 6.3: Standard Deviation per Category

Table 6.3 details the standard deviation obtained from testing the CNN on each

of the 6 known categories. In the first experiment involving the ALR data, the LCP

category had the highest standard deviation, indicating a significant data spread.

The SLR and ALR categories also showed similar standard deviations, while the SCP

category contained some outliers indicated in Figure 6.14. In the SLR experiment,

both the SLR and ALR categories exhibited high standard deviations which also

indicate significant data spread. In the CP experiment, the CP and MCP categories
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had comparatively higher standard deviations, while the other categories had data

points that were closer to the mean. The CP, SCP, and MCP categories also had some

outliers, as indicated in Figures 6.13, 6.14, and 6.15. In the SCP experiment, the

SCP and MCP categories displayed high standard deviations and contained outliers

as shown in Figures 6.14 and 6.15 which shows that making their distinction can

be challenging for the CNN. In the MCP experiment, the SCP and MCP categories

showed small standard deviations with only a few outliers. In the final experiment

centered around LCP data, moderate standard deviations are seen across the ALR,

MCP, and LCP categories along with several outliers as indicated in Figures 6.11,

6.15, and 6.16. This suggests potential confusion among these 3 categories, despite

the CNN’s reasonable accuracy when classifying them.

Figure 6.11: Arched Line Ricochet Box Plot
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Figure 6.12: Straight Line Ricochet Box Plot

Figure 6.13: Classic Pursuit Box Plot
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Figure 6.14: Small Circle Pursuit Box Plot

Figure 6.15: Medium Circle Pursuit Box Plot
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Figure 6.16: Large Circle Pursuit Box Plot

Figures 6.11 through 6.16 present a graphical representation of the spread of data

across each category in the experiments. The dashed lines (whiskers) represent the

minimum and maximum values in the set, the outer edges of each box represent

Q1 and Q3 quartiles, and the center line represents the median of all entries. Any

individual dots seen outside of the boxes represent outliers in the data.

ALR CP LCP MCP SCP SLR

Totals 622.76 403.19 134.17 561.68 553.25 556.99

5%

Difference
30 34 43 42 27 34

Table 6.4: Unique Classification Differences

Table 6.4 shows the differences between the author’s and CNN’s classification of

the 50 unique images in Appendix B. The first row is the total difference in classi-

fications whereas the second row is the number of classifications out of 50 in which

the author and CNN are within 5% of each other. Unsurprisingly, the ALR category

has the highest total difference in classifications which shows that the author and

CNN are in disagreement as to which traces depict this category. The best category

in terms of total difference is LCP which is significantly lower than the rest of the

categories. The number of 5% differences is 43 out of 50 which shows a very strong

alignment in predictions. Overall it appears that the behaviours the CNN has most
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trouble identifying (ALR and SLR) are the behaviours with the most disagreement

between author and CNN. However, categories such as SCP show interesting results

where only close to half (27 out of 50) traces are within 5% difference of each other.

This could be due to the CP and SCP behaviours having similar characteristics.

Lastly, the most surprising result is that the LCP behaviour is the most agreed upon

category between the author and CNN, even though the CNN had trouble with it in

previous experiments.

ALR CP LCP MCP SCP SLR

H 160.26 163.72 191.52 165.01 142.99 155.54

DF 5 5 5 5 5 5

P-Value 8.69E-33 1.59E-33 1.85E-39 8.47E-34 4.14E-29 8.81E-32

a 0.05 0.05 0.05 0.05 0.05 0.05

Sig Yes Yes Yes Yes Yes Yes

Table 6.5: Kruskal-Wallis Test - CNN Classification

The Kruskal-Wallis Test is used in this experiment to determine whether or not

the group of populations have equal dominance. In order to test this, the CNN is

given 50 traces from each behaviour category and the population of each behaviour

prediction is compared across all runs (i.e., in the first column 6 sets of 50 ALR

predictions are compared to each other, with each set coming from a different type

behaviour trace). By doing so, we can ensure that the CNN is able to distinguish

between different traces and make decisions based on the information it is given.

Looking at the results from the tests, the p-value is significantly lower than alpha

in every run which shows that the population of predictions is very different from one

another. This shows that out of the 6 populations, the CNN is giving one of them a

significantly different set of values (the behaviour the trace belongs to) which shows

that the CNN changes its predictions depending on the type of emergent behaviour

the trace exhibits.

6.3 Experiment C - Rotations and Reflections

The purpose of the following experiment is to determine how the CNN reacts to traces

that have been rotated and reflected. As stated in [35], a standard CNN model is

not invariant to image rotations, and even a slight rotation of an input image can

seriously degrade the performance of a model. In order to test this theory, a series of
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rotated and reflected images belonging to each of the 6 categories are classified by the

model. The goal of this experiment is to show that using rotated and reflected traces

is an efficient method of gathering additional training data, as the classification of

each image is likely to differ.

6.3.1 Setup

In the following subsection, the CNN model will be tested on 8 images from each

behaviour data set. The method of evaluating the model will be to compare the

prediction output for each of the images and their respective rotations and reflections

to see if there are any changes.

(a) From left to right: XY, X-Y, -XY, -X-Y

(b) From left to right: YX, Y-X, -YX, -Y-X

Figure 6.17: ALR Rotations and Reflections Test Data
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(a) From left to right: XY, X-Y, -XY, -X-Y

(b) From left to right: YX, Y-X, -YX, -Y-X

Figure 6.18: CP Rotations and Reflections Test Data

(a) From left to right: XY, X-Y, -XY, -X-Y

(b) From left to right: YX, Y-X, -YX, -Y-X

Figure 6.19: LCP Rotations and Reflections Test Data
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(a) From left to right: XY, X-Y, -XY, -X-Y

(b) From left to right: YX, Y-X, -YX, -Y-X

Figure 6.20: MCP Rotations and Reflections Test Data

(a) From left to right: XY, X-Y, -XY, -X-Y

(b) From left to right: YX, Y-X, -YX, -Y-X

Figure 6.21: SCP Rotations and Reflections Test Data
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(a) From left to right: XY, X-Y, -XY, -X-Y

(b) From left to right: YX, Y-X, -YX, -Y-X

Figure 6.22: SLR Rotations and Reflections Test Data

Figures 6.17 through 6.22 detail the sets of 8 images used to test the CNN on each

behaviour.

6.3.2 Rotations & Reflections Results

XY X-Y -XY -X-Y YX Y-X -YX -Y-X

ALR 79.62 9.6 81.62 69.22 15.46 5.02 94.18 96.79

CP 0.1 1.01 0.04 0.05 2.47 0.17 0.04 0.01

LCP 0.08 0.13 0.12 0.09 0.59 0.07 0.2 0.05

MCP 0.08 0.13 0.04 0.05 0.42 0.07 0.04 0.01

SCP 0.08 0.13 0.04 0.05 2.48 0.07 0.04 0.01

SLR 20.05 89.01 18.13 30.53 78.58 94.6 5.49 3.11

Table 6.6: Rotations and Reflections Classification - Arched Line Ricochet
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XY X-Y -XY -X-Y YX Y-X -YX -Y-X

ALR 0 0 0 0 0 0 0 0

CP 99.98 99.99 99.99 99.99 99.99 99.99 99.99 99.99

LCP 0 0 0 0 0 0 0 0

MCP 0 0 0 0 0 0 0 0

SCP 0.01 0 0 0 0 0.01 0.01 0

SLR 0 0 0 0 0 0 0 0

Table 6.7: Rotations and Reflections Classification - Classic Pursuit

XY X-Y -XY -X-Y YX Y-X -YX -Y-X

ALR 0 0 0 0.04 0.01 0.2 0 0.01

CP 0 0 0 0 0 0 0 0

LCP 99.99 99.95 100 99.95 99.97 99.79 99.93 99.99

MCP 0.01 0.04 0 0.01 0.01 0 0.07 0.01

SCP 0 0 0 0 0 0 0 0

SLR 0 0 0 0 0 0 0 0

Table 6.8: Rotations and Reflections Classification - Large Circle Pursuit

XY X-Y -XY -X-Y YX Y-X -YX -Y-X

ALR 0 0 0 0 0 0 0 0

CP 0 0 0 0 0 0 0 0

LCP 0 0 0 0.08 0 0 0.1 0.22

MCP 99.99 99.92 99.83 99.86 99.99 99.97 99.9 99.78

SCP 0.01 0.08 0.17 0.05 0.01 0.03 0 0

SLR 0 0 0 0 0 0 0 0

Table 6.9: Rotations and Reflections Classification - Medium Circle Pursuit
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XY X-Y -XY -X-Y YX Y-X -YX -Y-X

ALR 0 0 0 0 0 0 0 0

CP 0 0 0 0 0 0 0 0

LCP 0 0 0 0 0 0 0 0

MCP 19.32 0 0.18 0.06 1.36 0.02 0.42 0.47

SCP 80.67 100 99.82 99.94 98.64 99.98 99.57 99.53

SLR 0 0 0 0 0 0 0 0

Table 6.10: Rotations and Reflections Classification - Small Circle Pursuit

XY X-Y -XY -X-Y YX Y-X -YX -Y-X

ALR 87.55 0.24 0.45 17.95 1.98 61.03 24.61 5.84

CP 0 0 0 0 0.01 0.01 0.01 0.01

LCP 0 0 0 0 0.01 0.01 0.01 0.01

MCP 0 0 0 0 0.01 0.01 0.01 0.01

SCP 0 0 0 0 0.01 0.01 0.01 0.01

SLR 12.43 99.75 99.55 82.04 98 38.94 75.34 94.14

Table 6.11: Rotations and Reflections Classification - Straight Line Ricochet

Tables 6.6 through 6.11 detail the results from testing the CNN on 8 images from

each behaviour data set. In the case of ALR and SLR behaviours, the model’s clas-

sifications differ when the images are rotated and reflected, indicating a challenge in

distinguishing between them. In the case of CP, LCP, MCP, and SCP behaviours, the

model consistently classifies them accurately. These results suggest that the model

continues to struggle with classifying the ALR and SLR behaviours but performs

well when classifying the CP, LCP, MCP, and SCP behaviours. Furthermore, the

model’s performance appears to be affected by image transformations, supporting

the idea that it is variant to rotations and reflections. Overall, the use of a training

dataset that includes various instances of rotated and reflected traces was beneficial

in creating a versatile and well-trained model.



Chapter 7

Automatic Agent Generator

In this chapter, the automatic agent generator system will be discussed. The system

allows for the GP predator-prey simulation and CNN emergent behaviour classifier

to be combined in order to introduce a novel approach to intelligent agent design.

7.1 Combining CNN & GP

Previously, the GP system was used to evolve the predator’s controller using a tra-

ditional fitness measurement that keeps track of the number of prey caught during a

simulated hunt. While this method of evolution can produce high performing agents,

their behaviours are quite repetitive as noted in [12]. The reason for this repetitive

behaviour being seen among a population of agents is that the agents are not rewarded

for diverse behaviour. Instead, they are rewarded for completing a single objective,

which is to capture as many prey as possible within an allocated time window. So

what if, instead of giving the agents a single objective to complete, they are also

rewarded for diversifying their behaviours? The results of such an experiment can be

seen in [12], where the agents are evaluated on not only how many prey were caught,

but also on their wall impacts, time spent near prey, cells visited, and average speed.

To summarize their findings, by using a combined fitness score that uses a traditional

measurement and diversity measurement, the overall fitness of an individual could

actually be increased. Agents that display new emergent behaviours were created,

which behave in unique and interesting ways.

One problem that occurred when evaluating these agents is that classifying their

behaviours was performed manually. This essentially meant that the author needed

to watch the animations of agents to determine the emergent behaviour they were

exhibiting. This process was shown to be highly monotonous, so only the best solu-

62
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tion from each run was viewed this way. In [41], an improvement to the GP system

was made which allowed for the creation of trace files for every agent in the popu-

lation. This idea also served as the inspiration for the trace generation system used

in this thesis. By converting the predator’s behaviour into a viewable trace file then

feeding it into a CNN, the act of categorizing their emergent behaviours is improved

significantly.

As previously seen in Chapter 6, the idea of emergent behaviour classification can

be taken one step further by automating the entire process using a CNN. By doing

so, the need for additional data points and human classification is eliminated entirely.

Instead, the CNN can be fed the trace file from each predator’s simulated hunt in real-

time and output an accurate depiction of their emergent behaviour. Since the entire

process is automated and can be run in real-time, the CNN can be supplemented for

up to 100% of the GP fitness function. The result is a cohesive system that allows for

the automatic generation of intelligent agents that show unique emergent behaviours

based on a given set of parameters. Furthermore, these parameters can be set to

generate agents with specific desired behaviours.

The CNN and GP parameters have been defined in order to allow each system to

perform strongly at their given tasks. The GP creates a variety of high performing

agents over 50 generations with 500 individuals per population. Similarly, the CNN is

able to classify emergent behaviour with over 90% validation accuracy after training

for 20 epochs. It’s safe to say that when combining the two systems, the parameters

for each individual system are to remain unchanged in order to prevent any negative

impacts to performance. There are also some new high-level parameters that are

introduced, such as the type of fitness being used (CNN, GP, or Combined), the

CNN model file, Python interpreter, and file system paths that need to be specified

when running the program.

When choosing the type of fitness to be used, the first option is to use 100%

of the GP fitness and 0% CNN, meaning that the predator’s single objective is to

catch as many prey as possible within the given time frame. This is simply generic

fitness-guided evolution. The second option is to use 100% of the CNN fitness and

0% of the GP fitness. This means that the number of prey captured is irrelevant, and

diverse but possibly ineffective behaviour is sought. Instead, a custom-made fitness

function is introduced which uses the output of the CNN to determine the quality

of each agent. For instance, if the goal of running the simulation is to create agents

that primarily exhibit the medium circle pursuit behaviour, the CNN can determine

whether or not this is the case. If it is, the predator will receive a high fitness score
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based on how strongly the CNN classifies the behaviour. Conversely, if the agent

is emitting a different behaviour, the CNN will give the agent a low fitness score.

The third option for fitness scoring is to use a combined approach that portions a

percentage of the fitness as traditional GP fitness and the remaining percentage as

CNN fitness. For example, if the goal is to create a high performing agent that emits

a certain kind of behaviour, a combined fitness of 50% GP and 50% CNN can be

employed. This means that 50% of the fitness function comes from how many prey

were caught by the predator, and the remaining 50% of the fitness is the result of the

CNN’s classification of behaviour.

A decision to make the CNN model exchangeable was made early on in order

to keep the overall system modular. This means that the CNN model file can be

swapped for different models at any point. In the experiments seen in Chapter 8,

the CNN model comes from the 14th epoch due to its similarities in its classifications

when compared to the author’s. In future experiments, the CNN model could be

exchanged for another model that was trained on more than 6 behaviours, which

could allow for more interesting variety in agent behaviour. The final parameters

that were introduced are the Python interpreter and file system paths which are

needed to combine both systems. Since the GP system was developed using Java and

the CNN classifier was developed using Python, the Java ProcessBuilder API is used

to connect the two using relative file paths.

7.2 System Architecture

In this section, the overall system architecture and its individual components will be

discussed.
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Figure 7.1: System Architecture (Blue: GP Simulation, Green: Trace Generator,
Purple: CNN Classifier)

Figure 7.1 gives a high-level overview of the automatic agent generator system and

its 3 key components. The first component is the GP simulation which is labelled in

blue. This component consists of the simulation itself as well as the GP controller

used to control the predator agent in its environment. Once the simulation has ran

for 50 generations, a trace file is output which depicts the best performing predator’s

run. The second component is the trace generator program written in Python which

is called using the Java ProcessBuilder API from the GP simulation. This allows for

the text-based trace file to be given to the trace generator program as a parameter

and used to create the image-based trace file. Once the image-based trace file is
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created, the CNN model labelled in purple is used to classify the behaviour of the

agent. This classification is then converted into the CNN portion of the fitness and

passed to back to the GP simulation to be used for agent evaluation.

Figure 7.2: GP System Architecture

Figure 7.2 details the isolated system architecture of the GP simulation. The first

step to running the simulation on its own is to set the combined fitness parameter to

use 100% of the traditional GP fitness. Since the CNN is not in use during an isolated

run, the CNN fitness portion of the combined fitness score must be set to 0%. Once

the remaining parameters are set such as the population size and crossover/mutation

rates, the simulation will run for a given number of generations. Inside the system, the

evaluate function is run at the end of each predator’s simulated hunt which determines

the fitness of the individual based on how many prey they caught. After the final

generation has run and all individuals have been evaluated, the best individual from

all generations is selected and used in the describe function. The describe function

runs the best performer through 30 new simulations in order to get an idea of their

performance over multiple runs. Once the agent is finished their 30 runs, 34 text files

are dumped as output which contains information about the agent’s performance. The

first 30 files are the text-based trace file from each run through the simulation. These

30 files can then be run through the trace generator individually to create the image-



CHAPTER 7. AUTOMATIC AGENT GENERATOR 67

based traces to view the type of behaviours the agent is exhibiting. The remaining 4

files are statistics files relating to the population of agents. These statistics include the

total prey caught by the best predator, the best GP tree at the end of each generation,

the average fitness of an individual across the entire population, and diversity scoring

from the CNN if using CNN fitness.

Figure 7.3: Trace System Architecture

Figure 7.3 details the isolated system architecture of the trace generator. In

this system, a text-based trace file is required as input which is then converted into

an image-based trace file. However, there are a few different methods available to

generate traces depending on what is needed. The first method is to pass in a single

text-based trace file which is converted into a single image-based trace file. This

method is useful when the goal is to classify a single agent which is ideal for generating

the input to the CNN. The second method is to take an array of text-based traces and
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convert them into an array of image-based traces. This method is useful when the

goal is to convert several trace files into images for experiments. The third method

is to pass in a single text-based trace file as input, which is converted into 8 text-

based trace files and 8 image-based trace files as seen in Figure 6.2. This method is

especially useful for creating large amounts of training data. When using the trace

generator in combination with the GP system and CNN classifier, the first method is

chosen as it allows for the agents to be classified one at a time.

Figure 7.4: CNN Classifier System Architecture

Figure 7.4 details the isolated system architecture of the CNN classifier. The pri-

mary purpose of this system is to provide an evaluation of the CNN fitness portion

of an agent’s combined fitness score. Input to this system is in the form of an image

passed in by the trace generator. The trained CNN model is then used to classify the

behaviour of the agent using the 6 behaviour categories ALR, CP, LCP, MCP, SCP,

and SLR. Once the image has been classified by the model, a customizable fitness

function is ran which converts the classification into a CNN fitness score based on

the goal of the overall system. For instance, the goal may be to generate agents that

exhibit a specific behaviour such as medium circle pursuit. This means that the CNN

fitness function would derive high fitness scores from traces that are high in MCP

and low in the remaining behaviours. Likewise, it is possible to combine multiple

behaviours into a single CNN fitness score. For example, if the goal was to generate

agents that exhibit both the small circle pursuit behaviour and the straight line rico-

chet behaviour. The CNN fitness function could base its evaluation on having equal

parts SCP and SLR in the behaviour classification. Overall there exist a multitude of

uses for the CNN classifier, especially when combined with GP. In Chapter 8, various

experiments will be conducted to test these methods and results are to be discussed.



Chapter 8

Experiment Series II: Automatic

Agent Generation

The goal of this series of experiments is to successfully combine the GP simulation and

trained CNN model in order to generate unique and interesting intelligent predator

agents without sacrificing performance. The chapter is split into 3 primary exper-

iments. The first experiment will determine the ideal combination of fitness and

diversity, as well as target unique and interesting agent behaviours. To target unique

and interesting behaviours, the diversity score will reward agents that equally split

their behaviours closest to 16.67% of each of the 6 categories. The ideal agent would

exhibit all 6 categories in some form, which in theory is an extremely complex and

difficult task to achieve. The second experiment will use the ideal combination of

fitness and diversity found in the first experiment in order to generate agents that ex-

hibit combined behaviours. The diversity score in this experiment will reward agents

that equally split their behaviours between two chosen categories closest to 50%. In

the final experiment, the combined score will be used to target a specific behaviour,

rewarding agents that exhibit 100% of the behaviour and penalizing agents that do

not exhibit the behaviour at all.

8.1 Experiment D - Unique Behaviour Generation

In the following experiment, the GP and CNN will be combined in order to generate

intelligent agents with the purpose of finding an ideal balance in combined score

weightings. There are 5 sets of weightings to be tested: 0F100N, 25F75N, 50F50N,

75F25N, and 100F0N. The 0F100N weighting means that fitness is not being used

at all, and the diversity score is being used for 100% of the evaluation process. On

69
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the contrary, the 100F0N weighting means that fitness is being used for the 100%

of the evaluation process, and diversity score is not used at all. The other 3 sets of

weightings combine both fitness and diversity to create a combined score in order to

evaluate the agents.

The section is split into three sets of evaluation techniques. The first set of evalua-

tions will determine how the population of predator agents perform relative to fitness

results across each of the 5 combined score weightings. This set of evaluations will

then be repeated, but use the diversity score to compare the results across each of

the 5 combined score weightings. Lastly, the categories of all agents will be evaluated

by the CNN and discussed in the final section. It is important to note that each

of the experiments were run 30 times and results are averaged to ensure statistical

significance. Furthermore, the Kruskal-Wallis Test will be used in the final section

to determine if there is a significant difference between the population of behaviours

across the 5 combined score weightings.

8.1.1 Fitness Results

This section presents the fitness scores seen across each set of experiments. The fitness

score is evaluated by dividing the number of prey caught by 25 and subtracting the

result from 1. An agent with a perfect fitness score that has caught all 25 prey in

their simulated hunt will have a fitness score of 0.

Figure 8.1: 0F100N Fitness Scores - Unique

Figure 8.1 shows the average mean fitness scores and average best fitness scores

across the 30 runs of 0F100N combined score. In these runs, only diversity score is
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used to evaluate the agents. As shown in the graph, the mean fitness and best fitness

of the agents is very poor due to the lack of incentive for the predators to catch prey.

Interestingly, the average best fitness gets slightly worse as time goes on. In order

to fully understand how these agents perform, data about their diversity score and

behaviours will need to be analyzed.

Figure 8.2: 25F75N Fitness Scores - Unique

Figure 8.2 shows the average mean fitness scores and average best fitness scores

across the 30 runs of 25F75N combined score. As shown in the graph, the mean

fitness and best fitness of the agents is improving, likely due to 25% of the combined

score now being comprised of fitness. The improvement from 0% fitness to 25% fitness

is quite substantial, so it will be interesting to see how the fitness changes as it is

targeted more in future runs.
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Figure 8.3: 50F50N Fitness Scores - Unique

Figure 8.3 shows the average mean fitness scores and average best fitness scores

across the 30 runs of 50F50N combined score. As shown in the graph, the mean

fitness and best fitness of the agents continues to improve, especially when compared

to the 0F100N and 25F75N experiments. The graph now resembles a descending curve

rather than a line and the average best individuals at generation 50 have near-perfect

fitness. A comparison can be made that the average mean fitness of this experiment

is similar to the average best fitness of the 0F100N experiment.

Figure 8.4: 75F25N Fitness Scores - Unique

Figure 8.4 shows the average mean fitness scores and average best fitness scores
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across the 30 runs of 75F25N combined score. As shown in the graph, the mean fitness

and best fitness continue to show a descending curve from their initial starting point

to the end of the 50 generations. The average mean fitness has improved significantly,

even when compared to the 50F50N experiment. Furthermore, the average best fitness

converges at a near-perfect score after only 30 generations.

Figure 8.5: 100F0N Fitness Scores - Unique

Figure 8.5 shows the average mean fitness scores and average best fitness scores

across the 30 runs of 100F0N combined score. As shown in the graph, the mean

fitness and best fitness behave similarly to the 75F25N experiment which shows a

descending curve from the initial starting point to the end of the 50 generations. The

average best fitness score converges at a near-perfect score after only 28 generations.

Overall it is unsurprising that the 100% fitness experiment has one of the highest

average fitness scores, but it will be interesting to compare all of the experiments at

once.

Avg. Mean

Fitness

Avg. Best

Fitness

Avg. Prey

Caught

# Fit

>10 Prey

# Unfit

<=10 Prey

0F100N 0.721976 0.361333 4.846667 123 777

25F75N 0.530902 0.117333 8.437778 333 567

50F50N 0.352421 0.022667 12.96889 679 221

75F25N 0.245768 0.005333 14.16111 713 187

100F0N 0.261294 0.010667 14.41 693 207

Table 8.1: Fitness Data - Unique
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Table 8.1 outlines several key indicators of fitness across all 5 experiments. The

first column represents the average mean fitness across all 30 experiments at the

50th generation. The second column represents the average best fitness across all

30 experiments at the 50th generation. For the final 3 columns, each of the best

performing agents from the 30 experiments were ran through the simulation 30 times.

The result of this is 900 runs that are used to determine the average prey caught,

the number of fit individuals (>10 prey caught), and the number of unfit individuals

(<=10 prey caught).

When looking at the average mean fitness and average best fitness columns, there

is a clear trend that shows the combined fitness scores with low fitness performing

significantly lower than the combined fitness scores with high fitness. There is im-

provements from 0F to 25F to 50F to 75F, but once the agents reach 100F there is an

unexpected decline in mean fitness. This means that the 75F individuals outperform

the 100F individuals, even though 25% of their fitness score comes from the CNN.

On the contrary, the average number of prey caught in the 100F experiment seem

to outperform the average number of prey caught in the 75F experiment. However,

the number of fit individuals in the 75F experiment outperforms the number of fit

individuals in the 100F experiment.

Overall, Table 8.1 concludes that increasing the amount of fitness used in a com-

bined score improves the number of prey caught during a simulation until 75F. Once

the individuals reach 75% fitness, there is no reason to continue adding fitness, and

instead the agents can benefit from using the diversity score as part of their fitness

instead.

8.1.2 Diversity Results

This section presents the diversity scores seen across each set of experiments. The

diversity score is evaluated using the following formula before being normalized:

Diversity = (Prediction− 16.67)/(100− 16.67) (8.1)

where Prediction represents the CNN’s highest categorical prediction from 16.67 to

100. When using this formula, the predator agent is encouraged to combine as many

of the 6 behaviours as possible, thus creating an equal number of each behaviour and

becoming a truly unique and interesting agent. If an agent exhibits only a single

behaviour, they will be heavily punished by the fitness function. On the contrary,

agents that exhibit a combination of all 6 behaviours should show a maximum CNN
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classification of 100/6 = 16.67%. Overall, this is an extremely difficult task for the

system to accomplish, and it will be interesting to see what kind of behaviours are

created.

Figure 8.6: 0F100N Diversity Scores - Unique

Figure 8.7: 25F75N Diversity Scores - Unique
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Figure 8.8: 50F50N Diversity Scores - Unique

Figure 8.9: 75F25N Diversity Scores - Unique
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Figure 8.10: 100F0N Diversity Scores - Unique

Figures 8.6, 8.7, 8.8, 8.9, 8.10 show the average mean diversity and average best

diversity across the 30 runs of all 5 experiments. Surprisingly, there are no signifi-

cant differences between any of the 5 graphs. They all begin with an average mean

diversity of approximately 0.9 and steadily improve until approximately 0.7. Simi-

larly, the average best diversity begins at approximately 0.25 and declines slightly to

approximately 0.20.

Avg. Mean

Diversity

Avg. Best

Diversity

0F100N 0.700692 0.191469

25F75N 0.683133 0.193751

50F50N 0.715925 0.214268

75F25N 0.717446 0.219904

0F100N 0.700692 0.191469

Table 8.2: Diversity Data - Unique

Table 8.2 outlines the average mean diversity and average best diversity of the 5

experiments at generation 50. As previously noted, there are no significant differences

between the 5 experimental parameters which is surprising. The reason for this could

be that the diversity function is too difficult for the system to optimize. Agents

are often seen only exhibiting one or two behaviours, so having an agent exhibit all

6 behaviours at once would be an exceptional outlier. In the future, the diversity
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function will be modified in ways that allow for targeted behaviours but with less

combinations and the results will be discussed in order to see if there is a limit to

what the system can produce.

(a) 0.870755 (b) 0.24205 (c) 0.947678 (d) 0.388216

(e) 0.977079 (f) 0.418817 (g) 0.847834 (h) 0.562462

(i) 0.964959 (j) 0.983439 (k) 0.74703 (l) 0.411496

Figure 8.11: Examples of Experiment D Behaviour Traces

Figure 8.11 gives an example of traces that depict interesting behaviours and some

that were close to successfully accomplishing the desired results of this experiment

by equally targeting all 6 behaviours in order to create unique and interesting high-

performing agents. The values associated with each of the images represent their

diversity scores, with values closest to 0 being best. The first thing noticeable about

these traces is that they are all very different from one another. This alludes to

the possibility of other behaviour types existing that have not been discovered yet.

Another noticeable part of these traces is that they vary in terms of arena coverage
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which could explain why the fitness scores are lower in the combined score experi-

ments with 0F100N and 25F75N. The diversity function is working against the fitness

function because the agent gets confused in its direction when trying to combine all

6 behaviours at once. Overall the experiment was somewhat successful at creating

unique intelligent agents but lacking in agents that are high-performing in terms of

fitness.

8.1.3 Behaviour Category Results

The following section presents the behaviour category results seen across each set of

experiments. The behaviour category is calculated by running the image-based trace

through the CNN for classification. Each experiment is run 30 times with the result

being the best individual from all generations. This individual is then run through

the simulation 30 more times for a combined total of 900 traces per experiment. The

purpose of this experiment is to test if changing the ratio of the combined score

produces a different number of each behaviour category.

Figure 8.12: Behaviour Analysis - Unique

Figure 8.12 shows the total of all behaviours seen across all 900 runs in each

experiment. At first glance there are noticeable differences between each of the ex-

periments. Starting with 0F100N the primary behaviour being exhibited is the classic

pursuit behaviour. This is unsurprising because the classic pursuit behaviour does

explore the search space so it may be getting stuck at local optima and have trouble

evolving into more advanced behaviours. As the amount of fitness increases across
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each of the experiments, the number of classic pursuit behaviours decreases up until

100F. This is an indicator that as more fitness is added, the predator agents are able

to find new behaviours that may increase their performance.

ALR CP LCP MCP SCP SLR

0F100N 17 563 4 30 119 167

25F75N 40 468 13 35 193 151

50F50N 13 354 5 42 327 159

75F25N 55 248 9 50 283 255

100F0N 6 461 55 81 217 80

Table 8.3: Categorical Data - Unique

Table 8.3 shows the number of each behaviour exhibited in each of the 900 traces

per experiment. The most popular behaviours are classic pursuit, small circle pursuit,

and straight line ricochet. The least popular behaviours are medium circle pursuit,

large circle pursuit, and arched line ricochet. It appears that the 75F25N experiment

produces the best spread of behaviours, with the amount of classic pursuit (248),

small circle pursuit (283), and straight line ricochet (255) behaviours being nearly

equal. However, the remaining behaviours are quite low. Overall the experiment did

not seem to produce an equal number of behaviours as hypothesized, likely due to

some behaviours being much more complex than others.

ALR CP LCP MCP SCP SLR

H 7.91 9.98 7.64 5.62 4.16 13.88

DF 4 4 4 4 4 4

P-Value 0.095 0.041 0.106 0.229 0.385 0.007

a 0.05 0.05 0.05 0.05 0.05 0.05

Sig No Yes No No No Yes

Table 8.4: Kruskal-Wallis Test - Unique

The Kruskal-Wallis Test is used in this experiment to determine whether or not

the group populations have equal dominance. In order to test this, a sample is taken

from each of the 30 runs from each of the 6 behaviours. The 6 behaviours are then

compared based on their combined score ratio. For example, this test will prove if

changing the combined score from 0F100 to 25F75N (or any of the other ratios) will

produce a significantly different number of ALR (or any of the other behaviours).
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Looking at the ALR, LCP, MCP, and SCP categories, the p-value is higher than

alpha which proves that there are no significant differences between any of the com-

bined score ratios when it comes to producing these behaviours. On the contrary, the

number of CP and SLR categories are significantly different between the combined

score ratios. Looking back at Figure 8.12 and Table 8.3 it can be seen that the CP

category has a low of 248 and a high of 563 which is quite substantial. Similarly, the

lowest number of SLR is 80 and the highest is 255 which is quite a large difference as

well.

To summarize this experiment, it was successful at generating a variety of agents

that exhibit different behaviours but it was unsuccessful at creating an equal number

of them. It is shown that when changing the combined score ratio of fitness and

diversity, it has a significant effect on performance (catching more prey), but does

not have any effect on the diversity (for this specific task). In the next experiment,

the diversity function will be simplified to allow for further testing.

8.2 Experiment E - Combined Behaviour Genera-

tion

In the following experiment, the GP and CNN will be combined in order to generate

intelligent agents with two combined behaviours. There are 2 sets of weightings

to be tested: 25F75N and 75F25N. The 75F25N weighting was chosen based on

its performance in Experiment D and the 25F75N weighting was chosen due to its

relationship to the first weighting. In the past experiment it was shown that the

medium circle pursuit and arched line ricochet behaviours were two of the most

difficult behaviours to create in an agent, most likely due to their high amount of

arena coverage and overall complexity. For that reason, these are the two behaviours

that are going to be targeted in the following experiment through use of the diversity

function.

The section is split into three sets of evaluation techniques. The first set of evalua-

tions will determine how the population of predator agents perform relative to fitness

results across both of the combined score weightings. This set of evaluations will

then be repeated, but use the diversity score to compare the results across both of

the combined score weightings. Lastly, the categories of all agents will be evaluated

by the CNN and discussed in the final section. It is important to note that each

of the experiments were run 30 times and results are averaged to ensure statistical
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significance. Furthermore, the Kruskal-Wallis Test will be used in the final section

to determine if there is a significant difference between the population of behaviours

across the combined fitness weightings.

8.2.1 Fitness Results

The following section presents the fitness scores seen across each set of experiments.

The fitness score is evaluated by dividing the number of prey caught by 25 and

subtracting the result from 1. An agent with a perfect fitness score that has caught

all 25 prey in their simulated hunt will have a fitness score of 0.

Figure 8.13: 25F75N Fitness Scores - Combined

Figure 8.13 shows the average mean fitness scores and average best fitness scores

across the 30 runs of 25F75N combined score. As shown in the graph, the mean

fitness and best fitness gradually improve over time and begin to flatten after the 40th

generation. The average fitness improves by approximately 0.5 and the best fitness

improves by approximately 0.3, both of which are significant improvements and show

that the agents are able learn over time, even with only 25% of their combined score

being represented by fitness.
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Figure 8.14: 75F25N Fitness Scores - Combined

Figure 8.14 shows the average mean fitness scores and average best fitness scores

across the 30 runs of 25F75N combined fitness. As shown in the graph, the mean

fitness and best fitness should a descending curve which continues to improve, even

possibly past the 50th generation. When compared to the 25F75N experiment, there

are noticeable enhancements to the fitness of the agents. One improvement to note

is that the best fitness score converges at 0 after 40 generations, meaning that the

average best agent has captured all 25 prey.

Avg. Mean

Fitness

Avg. Best

Fitness

Avg. Prey

Caught

# Fit

>10 Prey

# Unfit

<=10 Prey

25F75N 0.360371 0.021333 11.45444 558 342

75F25N 0.254158 0.006667 14.50111 685 215

Table 8.5: Fitness Data - Combined

Table 8.5 outlines several key indicators of fitness across both experiments. The

first column represents the average mean fitness across all 30 experiments at the

50th generation. The second column represents the average best fitness across all

30 experiments at the 50th generation. For the final 3 columns, each of the best

performing agents from the 30 experiments were run through the simulation 30 times.

The result of this is 900 runs that are used to determine the average prey caught,

the number of fit individuals (>10 prey caught), and the number of unfit individuals

(<=10 prey caught).
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When compared to the first experiment, the 25F75N population seems to have

improved significantly. The average mean fitness improved from 0.53 to 0.36, and

the number of fit individuals improved from 333 to 558. This indicates that the

new diversity function could be pushing the agents to improve. When comparing

the 75F25N data to the first experiment, the results are quite similar, although the

average number of prey caught increased slightly from 14.16 to 14.50.

Overall, Table 8.5 concludes that increasing the amount of fitness used in a com-

bined score continues to improve the number of prey caught during a simulation.

Furthermore, by changing the diversity function to combine 2 behaviours instead of

6, the predators are able to better accomplish their goal of catching prey.

8.2.2 Diversity Results

The following section presents the diversity scores seen across both experiments. The

diversity score is evaluated using the following formula before being normalized:

Diversity =
√
(ALR− 50)2 + (MCP − 50)2 (8.2)

ALR represents the CNN’s confidence level from 0 to 100 that the trace file is an

arched line ricochet behaviour, and MCP represents the CNN’s confidence level from

0 to 100 that the trace file is a medium circle pursuit behaviour. By using this formula,

the predator is only rewarded when combining the ALR and MCP behaviours, and

punished when this is not the case. A predator that exhibits a 100% ALR or 100%

MCP prediction is given the same diversity score as a predator that exhibits a 0%

ALR or 0% MCP prediction. Overall, this is a very difficult task for the system to

accomplish, albeit slightly easier than the unique behaviour experiment, and it will

be interesting to see what kind of behaviours are created.
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Figure 8.15: 25F75N Diversity Scores - Combined

Figure 8.16: 75F25N Diversity Scores - Combined

Figures 8.15 and 8.16 show the average mean diversity and average best diversity

across the 30 runs of both experiments. Again, there are no significant differences

between either of the experiments, indicating that the diversity function may be too

complex for the agents to learn from. Both graphs begin with an average diversity

of 1 and end at approximately 0.78 which does show some improvement, but even

when compared to the unique experiment, the agents seem to be having a difficult

time improving.
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Avg. Mean

Diversity

Avg. Best

Diversity

25F75N 0.77777 0.310684

75F25N 0.786728 0.362529

Table 8.6: Diversity Data - Combined

Table 8.6 outlines the average mean CNN fitness and average best CNN fitness

of both experiments at generation 50. As previously noted, there are no significant

differences between the two experiments which is surprising. Overall, it seems that

the CNN fitness function used is indicative of the performance of the agents.

(a) 0.6542 (b) 0.7062 (c) 0.7071 (d) 0.7029

(e) 0.7069 (f) 0.6923 (g) 0.7069 (h) 0.6084

(i) 0.7071 (j) 0.7069 (k) 0.5225 (l) 0.6966

Figure 8.17: Examples of Experiment E Behaviour Traces

Figure 8.17 gives an example of traces that were close to successfully accomplish-
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ing the desired results of this experiment by combining the medium circle pursuit

and arched line ricochet behaviour. The values associated with each of the images

represent their diversity scores, with values closest to 0 being best. When visually

inspecting these traces, it appears that the medium circle pursuit behaviour is much

more dominant over the arched line ricochet behaviour which may be a reason why

the agents have such a difficult time creating instances where both behaviours repre-

sent 50% of the trace. When compared to the unique experiment, these results are

successful because the traces are more consistent with what was expected. In the

next experiment, only a single behaviour will be targeted.

8.2.3 Behaviour Category Results

The following section presents the behaviour category results seen across each set of

experiments. The behaviour category is calculated by running the image-based trace

through the CNN for classification. Each experiment is run 30 times with the result

being the best individual from all generations. This individual is then run through

the simulation 30 more times for a combined total of 900 traces per experiment. The

purpose of this experiment is to test if changing the ratio of the combined fitness

score produces a different number of each category.

Figure 8.18: Behaviour Analysis - Combined

Figure 8.18 outlines the total of all behaviours seen across all 900 runs in each

experiment, including the counterpart experiments from the unique runs. The first

noticeable change is seen in the unique 25F75N experiment where a majority of traces
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were categorized as the classic pursuit behaviour. However, after changing the CNN

fitness function to target MCP and ALR, the number of classic pursuit traces has

dwindled, as seen in the combined 25F75N chart. Another interesting feature is

that the number of MCP traces has significantly improved in the combined 25F75N

experiment which shows that targeting 50% MCP could be rewarding the agents

who behave in this way. Unfortunately it does not appear that there was much

improvement in the ALR behaviours but this does make sense due to the fact that the

agents are punished if they are utilizing 100% ALR in their traces, so this benchmark

may not be completely indicative of what is going on beneath the surface. Fortunately,

there were plenty of successful traces seen previously that successfully combine the

two behaviours.

ALR CP LCP MCP SCP SLR

25F75N

Unique
40 468 13 35 193 151

75F25N

Unique
55 248 9 50 283 255

25F75N

Combined
19 277 7 126 259 212

75F25N

Combined
21 352 25 48 230 224

Table 8.7: Categorical Data - Combined

Table 8.7 shows the number of each behaviour exhibited in each of the 900 traces

per experiment. The most significant changes in this experiment are the increase in

MCP behaviours from 35 to 126 and decrease in CP behaviours from 468 to 277. On

the contrary, the number of ALR behaviours has decreased and the number of SLR

behaviours has slightly increased in the 25F75N category. This is unexpected because

the SLR category was not targeted, but it is similar to the targeted ALR behaviour.

There is also an increase in LCP behaviours from 9 to 25 in the 75F25N category.

What could be happening here is that by targeting behaviours with 50% MCP and

50% ALR, the result is that similar behaviours are created such as LCP due to the

similarities in their features and arena coverage.
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ALR MCP

H 1.932 1.006

DF 3 3

P-Value 0.587 0.790

a 0.05 0.05

Sig No No

Table 8.8: Kruskal-Wallis Test - Combined

The Kruskal-Wallis Test is used in this experiment to determine whether or not

the group of populations have equal dominance. In order to test this, a sample is

taken from each of the 30 runs from each of the 2 behaviours. The 2 behaviours

are then compared based on their combined score ratio. For example, this test will

prove if changing the diversity function or the combined score ratio will produce a

significantly different number of ALR or MCP behaviours.

Looking at both categories, the p-value is higher than alpha which proves that

there are no significant differences between the 4 sets of categorical data in both ALR

and MCP categories. As shown in Table 8.8, the number of ALR categories ranges

from 19 to 55 and the number of MCP categories ranges from 35 to 126. Based on

the samples taken from this data, there are no significant changes across the two

populations. Overall this experiment was successful in generating more MCP traces

as well as combining the MCP and ALR behaviours. In the next experiment, the

diversity function will be used to target a single behaviour.

8.3 Experiment F - Targeted Behaviour Genera-

tion

In the following experiment, the GP and CNN will be combined in order to generate

intelligent agents with a targeted behaviour of straight line ricochet. There are 2

sets of weightings to be tested: 25F75N and 75F25N. The 75F25N weighting was

chosen based on its performance in Experiments D and E and the 25F75N weighting

was chosen due to its relationship to the first weighting. In the past experiments

it was shown that the straight line ricochet behaviour was one of the most difficult

behaviours to evolve, especially when it came to generating training data for the

CNN. The reason for this is most likely due to the amount of GP operations that

allow for smooth turning. For this reason, the only behaviour that is going to be
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targeted in the following experiment is straight like ricochet, although it could be

possible to target any of the 6 (or more) behaviours in the future.

The section is split into three sets of evaluation techniques. The first set of eval-

uations will determine how the population of predator agents perform relative to

traditional results across both of the combined score weightings. This set of evalua-

tions will then be repeated, but use the diversity score to compare the results across

both of the combined score weightings. Lastly, the categories of all agents will be

evaluated by the CNN and discussed in the final section. It is important to note that

each of the experiments were run 30 times and results are averaged to ensure statisti-

cal significance. Furthermore, the Kruskal-Wallis Test will be used in the final section

to determine if there is a significant difference between the population of behaviours

across the combined fitness weightings.

8.3.1 Fitness Results

The following section presents the fitness scores seen across each set of experiments.

The fitness score is evaluated by dividing the number of prey caught by 25 and

subtracting the result by 1. An agent with a perfect fitness score that has caught all

25 prey in their simulated hunt will have a fitness score of 0.

Figure 8.19: 25F75N Fitness Scores - Targeted

Figure 8.19 shows the average mean fitness scores and average best fitness scores

across the 30 runs of 25F75N combined fitness. As shown in the graph, the mean

fitness and best fitness gradually improve over time, with the best fitness flattening
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after the 40th generation. The average fitness improves from 0.85 to 0.26 after 50

generations which is very significant, especially for only 25% of the agents fitness

coming from fitness.

Figure 8.20: 75F25N Fitness Scores - Targeted

Figure 8.20 shows the average mean fitness scores and average best fitness scores

across the 30 runs of 75F25N combined fitness. As shown in the graph, the mean

fitness and best fitness continuously improve over time, with little to no convergence

occurring by the 50th generation. When compared to the 25F75N experiment, the

shape of the graph’s curve is less steep which may be indicative of lesser performing

agents.

Avg. Mean

Fitness

Avg. Best

Fitness

Avg. Prey

Caught

# Fit

>10 Prey

# Unfit

<=10 Prey

25F75N 0.260933 0.008 13.95111 625 275

75F25N 0.328003 0.030667 13.47111 622 278

Table 8.9: Fitness Data - Targeted

Table 8.9 outlines several key indicators of fitness across both experiments. The

first column represents the average mean fitness across all 30 experiments at the

50th generation. The second column represents the average best fitness across all

30 experiments at the 50th generation. For the final 3 columns, each of the best

performing agents from the 30 experiments were run through the simulation 30 times.

The result of this is 900 runs that are used to determine the average prey caught,



CHAPTER 8. EXPERIMENT SERIES II: AUTOMATIC AGENTGENERATION92

the number of fit individuals (>10 prey caught), and the number of unfit individuals

(<=10 prey caught).

An interesting change in fitness is occurring in this experiment where the combined

score with less fitness is producing agents with better fitness scores. This result is

very surprising because the past experiments all had higher fitness scores up until the

75F25N experiments which means in this case, the diversity portion of the combined

score is heavily influencing the agents. In Table 8.9 it can be seen that every column on

the 25F75N experiment has better fitness values than its counterpart in the 75F25N

column. However, the results are very similar to one another.

Overall, Table 8.9 concludes that when targeting the straight line ricochet be-

haviour, increasing the amount of fitness used in a combined score may not improve

the number of prey caught and in some cases the number may even decrease. Further-

more, by changing the diversity function to target the straight line ricochet behaviour

rather than 2 or 6 behaviours at a time, the predators are able to better accomplish

their goal of catching prey.

8.3.2 Diversity Results

The following section presents the diversity scores seen across both experiments. The

diversity score is evaluated using the CNN’s ALR prediction for a given trace directly

and normalizing the value. Overall, this task is not as difficult as the 6 behaviour

unique task or the 2 behaviour combined task, and it will be interesting to see what

kind of behaviours are created.

Figure 8.21: 25F75N Diversity Scores - Targeted
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Figure 8.22: 75F25N Diversity Scores - Targeted

Figures 8.21 and 8.22 show the average mean diversity and average best diversity

across the 30 runs of both experiments. One similarity between both graphs is that

the best diversity scores are always 0 which means that there is at least one 100%

categorized ALR trace in all of the populations across every generation. Interestingly,

the diversity score in the 25F75N experiment seems to improve linearly whereas the

diversity score in the 75F25N experiment seems to show a smooth curve as the pop-

ulation improves over time. Both graphs begin with an average diversity of 0.75 and

end between 0.09 and 0.16 which indicates that the population is able to generate a

significant amount of ALR agents.

Avg. Mean

CNN Fitness

Avg. Best

CNN Fitness

25F75N 0.161707 0

75F25N 0.096449 0

Table 8.10: Diversity Data - Targeted

Table 8.10 outlines the average mean diversity and average best diversity of both

experiments at generation 50. As previously noted, the average best diversity remains

0 across all generations in both experiments, indicating that there is at least one 100%

categorized ALR trace to be found. Overall, it seems that the diversity function is

performing better than the previous two experiments and the agents are able to

complete their goals.
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(a) 0.0018 (b) 0 (c) 0.004 (d) 0

(e) 0 (f) 0 (g) 0 (h) 0.003

(i) 0 (j) 0.0015 (k) 0.0791 (l) 0

Figure 8.23: Examples of Experiment E Behaviour Traces

Figure 8.23 gives an example of traces that successfully accomplish the desired

results of this experiment by targeting the straight line ricochet behaviour. The

values associated with each of the images represent their diversity scores, with values

closest to 0 being best. When visually inspecting these traces, it appears that the

SLR behaviour could possibly be broken down into various sub-behaviours such as

spiraling ricochet, corner ricochet, or random ricochet. It is very interesting to see

the amount of variety in traces, even though the CNN would classify the majority of

these in the same way.
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8.3.3 Behaviour Category Results

The following section presents the behaviour category results seen across each set of

experiments. The behaviour category is calculated by running the image-based trace

through the CNN for classification. Each experiment is ran 30 times with the result

being the best individual from all generations. This individual is then ran through

the simulation 30 more times for a combined total of 900 traces per experiment. The

purpose of this experiment is to test if changing the ratio of the combined score

produces a different number of SLR or other behaviours.

Figure 8.24: Behaviour Analysis - Targeted

Figure 8.24 outlines the total of all behaviours seen across all 900 runs in each

experiment, including the counterpart experiments from the unique and combined

runs. The first noticeable change is that the number of small circle pursuit behaviours

has decreased significantly in the ricochet experiments, and the number of straight line

ricochet behaviours has increased. This is highly indicative of a successful experiment

because previous to targeting the straight line ricochet behaviour, the number of

traces in this category were very low. In the 25F75N experiment over half of the

traces are straight line ricochet which could be a reason why the fitness performance

was better than in the 75F25N group. Since the straight line ricochet behaviour

typically encourages the agent to travel across a large portion of the arena, it is

possible that by targeting this behaviour specifically, the number of prey caught will

increase.
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ALR CP LCP MCP SCP SLR

25F75N

Unique
40 468 13 35 193 151

75F25N

Unique
55 248 9 50 283 255

25F75N

Combined
19 277 7 126 259 212

75F25N

Combined
21 352 25 48 230 224

25F75N

Targeted
9 266 1 5 105 514

75F25N

Targeted
44 366 14 30 109 337

Table 8.11: Categorical Data - Targeted

Table 8.11 shows the number of each behaviour exhibited in each of the 900 traces

per experiment. The unique rows refer to the results from Section 8.1. The most

significant changes occur in the SCP and SLR columns which show a significant de-

crease in SCP behaviours by approximately 50% and an increase in SLR behaviours

by over 100%. The previous highest amount of SLR behaviours was in the 75F25N

unique experiment which produced 255 SLR agents. In the 25F75N targeted experi-

ment the number of SLR agents increased to 514 which is over 50% of the 900 runs.

In terms of the remaining categories, their counts remain relatively stable which in-

dicates that targeting a specific behaviour does not have negative effects on the rest

of the population.

SLR

H 11.524

DF 5

P-Value 0.042

a 0.05

Sig Yes

Table 8.12: Kruskal-Wallis Test - Targeted

The Kruskal-Wallis Test is used in this experiment to determine whether or not

the group of populations have equal dominance. In order to test this, a sample is
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taken from each of the 30 runs from the SLR behaviour. The behaviours are then

compared based on their combined fitness ratio. For example, this test will prove

if changing the CNN fitness function or the combined fitness ratio will produce a

significantly different number of SLR behaviours.

Looking at the results from the test, the p-value is lower than alpha which proves

that the population of SLR solutions is significantly different across experiments.

Looking back at Figure 8.24 and Table 8.11 it can be seen that the SLR category has

a low of 151 and a high of 514 which is quite substantial, so it makes sense that the

test confirms this hypothesis.

To summarize this experiment, it was successful at generating targeted behaviour

of straight line ricochet and proven with statistical significance. It was also shown

that increasing the fitness portion of the combined score does not always result in an

increased number of prey caught. The reason for this is that increasing the diversity

to target a specific high-performing behaviour can improve the number of prey caught

just as well. In the future, it will be interesting to target other behaviours and see if

the results are similar.



Chapter 9

Conclusion

This research explored pushing the boundaries of intelligent agent design by combin-

ing GP and CNN with the goal of creating intelligent agents capable of exhibiting

a wide range of emergent behaviours while maintaining high performance. The GP

played a role of controlling the adaptive game AI in a pursuit domain, with the pri-

mary task of capturing prey agents within their simulated environment. To assess

their performance, a traditional fitness score counts the number of prey captured dur-

ing a simulated hunt. This approach has its faults, particularly in terms of diversity,

which led to the emergence of repetitive and monotonous behaviours among evolved

agents. However, through the use of a CNN trained to recognize agent behaviours,

this can be remedied.

Diversity in agent behaviour is an important factor when dealing with uncertainty

and can be used to enhance the performance of computer opponents in video games.

Drawing inspiration from the works of Cowan [12] and Pozzuoli [41], who delved

into the realm of diversifying agent behaviour, and from Chen’s work in L-system

tree evaluation [9], this research introduced a CNN component. The CNN is used to

automatically model the behaviour of each intelligent agent, a task that was previously

performed manually. The data used to train the CNN consisted of 12,000 traces

representing agent behaviours in the form of images. The resulting CNN model

exhibited a high proficiency in detecting and categorizing emergent behaviours into

6 distinct categories.

The first set of experiments looked at the effectiveness of the CNN model. After

training the model for 20 epochs, the training accuracy converges at 98% and valida-

tion accuracy at 90%. The training loss minimized to 0.065, and the validation loss

to 0.37, indicating a robust and well-trained model. While the CNN is able to rec-

ognize several behaviour classes such as classic pursuit and three circling behaviours,

98
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it did face challenges in distinguishing between the arched line ricochet and straight

line ricochet classes due to their similar movement patterns. Lastly, comparing the

CNN’s classification of unique traces to the author’s classification showed that the

majority of traces had less than a 5% difference, reaffirming the CNN’s accuracy in

identifying behaviours.

One of the new features proposed in this research was to combine GP and CNN

for intelligent agent design. In the past, GP had been used to evolve predator con-

trollers, primarily guided by the traditional fitness measurement of prey capture or

through novelty search. While these approaches yielded high-performing agents, they

often exhibited repetitive and predictable behaviours. Guided by the need to in-

crease diversity in agent behaviour, this thesis introduced the CNN component to

the system which allowed for real-time analysis of each predator’s simulated hunt,

generating accurate depictions of their emergent behaviour. Through the combina-

tion of the two systems, an evolutionary pipeline capable of automatically generating

intelligent agents with distinct and emergent behaviours is created, all based on a set

of customizable user parameters.

The second set of experiments illustrated the potential of combining GP and CNN

to produce unique and interesting intelligent predator agents without sacrificing per-

formance. In the first experiment, the goal was to determine the ideal balance between

GP and CNN fitness, while also targeting a balanced distribution of behaviours across

the 6 categories. The 75F25N split emerged as the most successful approach as it

focused primarily on the fitness of the agent, with just enough diversity to encourage

the creation of unique and interesting agents without sacrificing performance.

Adding the CNN to the evolutionary process introduced some delay to the system,

but as a result it could be used as a powerful tool for targeting specific behaviours.

The most impressive results were achieved in the targeted experiment which focused

on the straight line ricochet behaviour. Over half of the 900 traces generated in the

25F75N split were classified as straight line ricochet by the CNN which highlights the

potential for tailored agent behaviour within this system.

To conclude, the unexpected findings and promising results presented in this re-

search presents a step forward in the field of intelligent agent design. By combining

GP and CNN, it not only addresses the concern of repetitive agent behaviour, but

also opens up new methods of generating diverse, innovative, and high-performing

agents.
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9.1 Future Work

In this section, a comprehensive list of future research topics is outlined, aiming to

enhance the capabilities and performance of intelligent agents. With these topics, a

roadmap is provided for researchers and practitioners seeking to push the boundaries

of intelligent agent design and behaviour modeling.

1. Exploring Different CNN Output Functions: The impact of various CNN

output functions on agent behaviour and performance could be explored. A

comparison of activation functions, such as ReLU, Sigmoid, and Tanh can de-

termine the most suitable function for certain tasks or behaviours.

2. Use of Feed-Forward Neural Networks: Aside from CNNs, the use of feed-

forward neural networks as an alternative architecture for emergent behaviour

classification could be promising.

3. Clustering for Trace Generation: Clustering can help identify patterns

and similarities within agent behaviours, potentially leading to more efficient

training and behaviour classification. This approach opens doors to automated

trace generation and behaviour categorization.

4. Automatic Labeling Processes: Streamlining the labeling process for agent

behaviours is critical for efficient training. The development of automated meth-

ods such as machine learning-based labeling could significantly reduce human

input and improve the scalability of intelligent agent design projects. Automa-

tion techniques may involve computer vision and natural language processing

for label generation.

5. Modifying the Agent’s Environment: Introducing environmental changes

such as obstacles or removing walls can help to assess the adaptability of intel-

ligent agents.

6. Expanding into New Domains: Expanding the research domain into similar

tasks such as food gathering or shepherding could introduce fresh challenges and

opportunities for intelligent agent design.

7. Behaviour-Performance Relationship: Analyzing the relationship between

emergent behaviours and fitness could uncover trade-offs involved when select-

ing various strategies. This could result in the development of more effective

intelligent agents.
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8. Sub-Behaviour Targeting: Breaking down high-level agent behaviours into

sub-behaviours could allow researchers to focus on optimizing specific aspects

of agent performance. For example, targeting spiraling straight line ricochet

behaviour separately from straight line ricochet could lead to more specialized

and efficient agents.

9. Dataset Expansion and Diversity: Expanding the dataset to include more

diverse training examples can enhance agent learning. Furthermore, introducing

new categories of behaviours to classify can enable agents to adapt to a wide

range of scenarios.
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Appendix A

Additional Population Data

Figure A.1: Fitness - Population of 250 Agents

Figure A.2: Fitness - Population of 500 Agents
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Figure A.3: Fitness - Population of 750 Agents

Figure A.4: Fitness - Population of 1000 Agents



Appendix B

Author & CNN Unique Traces

Classification

(a) Trace 1 (b) Trace 2 (c) Trace 3 (d) Trace 4 (e) Trace 5

Figure B.1: Unique Traces 1 - 5

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

CNN A CNN A CNN A CNN A CNN A

ALR 0 0 0.18 0 91.84 90 16.06 70 0.04 0

CP 99.9 90 74.75 80 0.05 5 1.11 10 3.38 70

LCP 0 0 0.18 0 0.26 0 5.23 0 0.04 0

MCP 0 0 0.18 0 0.07 0 0.87 0 0.09 0

SCP 0.08 10 16.75 20 0.05 0 5.3 5 96.41 30

SLR 0 0 7.97 0 7.72 5 71.42 15 0.04 0

Table B.1: CNN vs. Author Classification 1-5
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(a) Trace 6 (b) Trace 7 (c) Trace 8 (d) Trace 9 (e) Trace 10

Figure B.2: Unique Traces 6 - 10

Trace 6 Trace 7 Trace 8 Trace 9 Trace 10

CNN A CNN A CNN A CNN A CNN A

ALR 0.01 0 62.63 75 96.43 40 1.22 10 16.94 10

CP 0.01 0 0.17 0 0.12 10 0.34 5 0.05 0

LCP 0.32 0 34.09 20 0.8 0 6.83 10 82.69 85

MCP 60.49 70 2.21 0 0.22 0 76.58 50 0.23 5

SCP 39.16 30 0.17 5 0.09 0 2.82 10 0.05 0

SLR 0.01 0 0.73 0 2.35 50 12.21 15 0.05 0

Table B.2: CNN vs. Author Classification 6-10

(a) Trace 11 (b) Trace 12 (c) Trace 13 (d) Trace 14 (e) Trace 15

Figure B.3: Unique Traces 11 - 15

Trace 11 Trace 12 Trace 13 Trace 14 Trace 15

CNN A CNN A CNN A CNN A CNN A

ALR 8.06 5 0.01 10 11.12 60 0.65 0 68.61 25

CP 0.2 5 0.01 20 0.35 10 0.03 0 1.17 5

LCP 0.08 0 0.5 20 1.99 0 2.86 5 3.3 0

MCP 0.08 0 99.4 30 76.65 20 2.31 5 3 5

SCP 0.08 0 0.08 20 1.52 0 0.03 0 0.35 0

SLR 91.49 90 0.01 0 8.37 10 94.12 90 23.57 65

Table B.3: CNN vs. Author Classification 11-15
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(a) Trace 16 (b) Trace 17 (c) Trace 18 (d) Trace 19 (e) Trace 20

Figure B.4: Unique Traces 15 - 20

Trace 16 Trace 17 Trace 18 Trace 19 Trace 20

CNN A CNN A CNN A CNN A CNN A

ALR 0.18 0 0.27 0 83.57 35 12.43 50 0.02 0

CP 0.17 0 0.27 0 0.95 0 1.45 0 0 10

LCP 0.6 5 0.34 0 1.52 0 34.15 0 0.02 10

MCP 98.57 90 4.84 50 2.3 0 2.76 0 0.01 20

SCP 0.38 0 87.04 50 0.25 5 19.22 30 0 10

SLR 0.1 5 7.25 0 11.42 60 29.98 20 99.95 50

Table B.4: CNN vs. Author Classification 16-20

(a) Trace 21 (b) Trace 22 (c) Trace 23 (d) Trace 24 (e) Trace 25

Figure B.5: Unique Traces 21 - 25

Trace 21 Trace 22 Trace 23 Trace 24 Trace 25

CNN A CNN A CNN A CNN A CNN A

ALR 0.02 0 0.17 10 1.27 50 0 0 0.17 0

CP 89.58 90 0.02 0 0.24 0 0 30 47.62 50

LCP 0.02 0 2.3 0 0.05 0 0 0 0.17 0

MCP 0.02 0 2.97 10 0.05 20 0.01 0 0.69 0

SCP 10.32 10 0.02 0 0.09 0 99.99 70 51.17 50

SLR 0.02 0 94.52 80 98.3 30 0 0 0.17 0

Table B.5: CNN vs. Author Classification 21-25
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(a) Trace 26 (b) Trace 27 (c) Trace 28 (d) Trace 29 (e) Trace 30

Figure B.6: Unique Traces 26 - 30

Trace 26 Trace 27 Trace 28 Trace 29 Trace 30

CNN A CNN A CNN A CNN A CNN A

ALR 30.48 70 7.87 70 0.24 0 96.17 50 0 0

CP 0.14 0 6.94 10 0.29 0 0.09 0 0.01 10

LCP 0.4 0 0.53 0 7.47 10 1.18 0 0 0

MCP 1.36 10 0.53 0 58.81 60 0.08 20 0 0

SCP 0.14 10 9.88 0 32.95 30 0.08 10 99.97 90

SLR 67.47 10 74.24 20 0.24 0 2.39 30 0 0

Table B.6: CNN vs. Author Classification 26-30

(a) Trace 31 (b) Trace 32 (c) Trace 33 (d) Trace 34 (e) Trace 35

Figure B.7: Unique Traces 31 - 35

Trace 31 Trace 32 Trace 33 Trace 34 Trace 35

CNN A CNN A CNN A CNN A CNN A

ALR 4.14 10 56 20 0.3 0 0.01 0 0.01 0

CP 0 0 0.03 0 7.28 20 93.39 50 98.35 50

LCP 95.83 80 43.88 50 0.3 0 0.01 0 0.01 0

MCP 0.02 10 0.03 30 0.63 0 0.01 0 0.01 0

SCP 0 0 0.03 0 88.37 80 6.55 50 1.61 50

SLR 0 0 0.03 0 3.12 0 0.01 0 0.01 0

Table B.7: CNN vs. Author Classification 31-35
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(a) Trace 36 (b) Trace 37 (c) Trace 38 (d) Trace 39 (e) Trace 40

Figure B.8: Unique Traces 36 - 40

Trace 36 Trace 37 Trace 38 Trace 39 Trace 40

CNN A CNN A CNN A CNN A CNN A

ALR 0.1 0 0 0 0.02 0 0 0 0.01 0

CP 0.83 50 99.91 90 0.02 0 0 0 0.01 5

LCP 0.16 0 0 0 0.02 0 0.09 0 0.01 0

MCP 93.12 0 0 0 97.03 95 99.9 95 25.75 95

SCP 5.71 50 0.08 10 2.91 5 0.01 5 74.22 0

SLR 0.1 0 0 0 0.02 0 0 0 0.01 0

Table B.8: CNN vs. Author Classification 36-40

(a) Trace 41 (b) Trace 42 (c) Trace 43 (d) Trace 44 (e) Trace 45

Figure B.9: Unique Traces 41 - 45

Trace 41 Trace 42 Trace 43 Trace 44 Trace 45

CNN A CNN A CNN A CNN A CNN A

ALR 0.08 0 6.66 10 56.75 40 0.22 10 0.03 10

CP 0.08 0 0.09 0 0.08 0 0.01 0 0.02 0

LCP 0.08 0 0.07 0 0.08 0 0.01 0 0.01 0

MCP 78.92 95 0.07 0 0.08 0 0.01 0 0.01 0

SCP 20.58 5 0.07 0 0.08 0 0.01 0 0.02 0

SLR 0.27 0 93.06 90 42.94 60 99.74 90 99.91 90

Table B.9: CNN vs. Author Classification 41-45
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(a) Trace 46 (b) Trace 47 (c) Trace 48 (d) Trace 49 (e) Trace 50

Figure B.10: Unique Traces 46 - 50

Trace 46 Trace 47 Trace 48 Trace 49 Trace 50

CNN A CNN A CNN A CNN A CNN A

ALR 0 0 0 0 0.37 0 0.01 0 0.01 0

CP 0.01 0 0.1 0 1.73 0 0.65 20 0.01 5

LCP 0 0 0 0 0.37 0 0.01 0 0.01 0

MCP 0.02 10 0 5 65.05 70 0.01 0 98.51 95

SCP 99.97 90 99.9 95 25.82 20 99.33 80 1.46 0

SLR 0 0 0 0 6.66 10 0.01 0 0.01 0

Table B.10: CNN vs. Author Classification 46-50
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