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Abstract

We live in the era of big data, nowadays, many companies face data of massive size that, in most

cases, cannot be stored and processed on a single computer. Often such data has to be distributed

over multiple computers which then makes the storage, pre-processing, and data analysis possible

in practice. In the age of big data, distributed learning has gained popularity as a method to

manage enormous datasets. In this thesis, we focus on distributed supervised statistical learning

where sparse linear regression analysis is performed in a distributed framework. These methods

are frequently applied in a variety of disciplines tackling large scale datasets analysis, including

engineering, economics, and finance. In distributed learning, one key question is, for example,

how to efficiently aggregate multiple estimators that are obtained based on data subsets stored on

multiple computers. We investigate recent studies on distributed statistical inferences. There has

been many efforts to propose efficient ways of aggregating local estimates, most popular methods

are discussed in this thesis. Recently, an important question about the number of machines to

deploy is addressed for several estimation methods, notable answers to the question are reviewed

in this literature. We have considered a specific class of Liu-type shrinkage estimation methods

for distributed statistical inference. We also conduct a Monte Carlo simulation study to assess

performance of the Liu-type shrinkage estimation methods in a distributed computing environment.
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Chapter 1

Introduction

1.1 Linear regression analysis

Often, we are interested in studying (potential) relationship between variables. More specifically,
we would like to study how one variable (or a vector of variables) depends on other variables.
A statistical technique for examining the relationship between two continuous variables is linear
regression analysis. It is a widely used method for modelling the relationship between a dependent
variable (also known as the response or outcome variable) and one or more independent variables in
data analysis (also called predictor or explanatory variables). Finding the optimum linear equation
to describe the relationship between the variables is the aim of linear regression. Consider the
following equation

y = β0 + β1x+ ε.

This is called simple linear regression or straight line regression, where y is dependent variable
and x is independent variable. Term β0 + β1x is the systematic component and ε is the random
component (error term). In this context, error does not mean mistake but is a statistical term rep-
resenting random fluctuations, measurement errors, or the effect of factors outside of our control.
Given a collection of observed data points, the linear regression procedure entails predicting the
values of β0 and β1 that best match the data. To achieve this, the sum of the squared differences
between the dependent variable’s anticipated values and actual values must be minimized(Rencher
and Schaalje (2008)).

Linear regression can be used for both simple and multiple regression analysis. Simple linear
regression involves modelling the relationship between two variables, while multiple regression
involves modelling the relationship between the dependent variable and two or more independent
variables. As for multiple regression, a linear relationship between yi’s and xij’s for i = 1, . . . , N
and j = 1, . . . , p has the matrix form of

Y = Xβ + ε,

where YN×1 is the response vector, XN×p is the design matrix (matrix of predictor variables), βp×1

is the vector of coefficients, and εN×1 is the vector of errors.
Linear regression analysis is based on certain assumptions that must hold true for the results of the
analysis to be valid and reliable. Violation of these assumptions may lead to incorrect conclusions
or biased estimates. The key assumptions of linear regression analysis are:
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1. Linearity: The relationship between the dependent variable and the independent variable(s)
is linear. That is, the change in the dependent variable for a unit change in the independent
variable(s) is constant.

2. Independence: The observations are independent of each other. That is, the value of one
observation does not affect the value of another observation.

3. Homoscedasticity: The variance of the errors (residuals) is constant across all levels of
the independent variable(s). That is, the spread of the residuals is the same at all values of
the independent variable(s).

4. Normality: The residuals are normally distributed. That is, the errors follow a normal
distribution.

5. No or little multicollinearity: There is no perfect (strong) linear relationship among
the independent variables. That is, the independent variables are not highly correlated with
each other.

6. No influential outliers: There are no extreme observations that have a large influence on
the results of the analysis.

Violation of these assumptions can lead to biased estimates, incorrect confidence intervals, and
incorrect hypothesis tests. Therefore, it is important to assess the assumptions of linear regression
before conducting the analysis. Also to take appropriate measures to combat negative impacts
caused by any violation of the assumptions.

Linear regression is a useful tool for making predictions and understanding the relationship
between variables in a dataset. It has many applications in various fields such as economics,
finance, marketing, and science.

1.2 Shrinkage estimation

Shrinkage methods (also known as regularization methods) are a class of linear regression esti-
mation methods that start with the least-squares estimates and shrink the magnitude of some
parameters towards zero. By doing so, we accept some bias in the estimation, but the hope is
that we see a reduction in variance that outweighs the increase in bias and results in an overall
reduction of mean-squared error. As an example, Least Absolute Shrinkage and Selection Oper-
ator (LASSO) shrinks the parameter estimates β̂ by imposing an l1 penalty (absolute value) on
their size. Shrinkage estimation is frequently used to model high-dimensional data or to increase
robustness of the estimates in a variety of disciplines, including biology, economics, and finance.
It is a potent strategy that can greatly increase the accuracy of parameter estimates and decrease
the risk of overfitting. However, it requires careful tuning of the penalty parameter and selection of
the appropriate method for the specific problem at hand. In section 1.6, we introduce a new class
of shrinkage estimations proposed in Ahmed et al. (2023), Yüzbaşı et al. (2022) and Liu (2003).

1.3 Sparse linear regression

The idea of sparse linear regression analysis has been around for a long time. Sparsity has been a
hot topic in statistics and machine learning since the LASSO was proposed in 1996. When there
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are many predictors and many of them are unnecessary or redundant, sparse linear regression is
a regression approach used to describe the relationship between a response variable and a set of
predictor variables. The aim of sparse linear regression is to estimate the regression coefficients of
the subset of relevant predictors while setting the regression coefficients of the irrelevant predictors
to zero. To conduct this analysis, shrinkage estimation methods including Shrinkage methods such
as LASSO, Ridge and Elastic net regression are used. Advantages to sparse coefficients vector are
that for example, it prevents over-fitting, there are fewer parameters to estimate, and it makes
interpreting the underlying phenomenon easier. Sparse linear regression has numerous applications
in various fields, including genetics, finance, and image processing, where the number of predictors
is often much larger than the sample size.

1.4 Analysis of big data

Big data often refers to data that is too big, chaotic, or dynamic for conventional databases or
software packages to handle. Large, complex, and diversified data sets that are challenging to
process and analyze using conventional data processing tools and techniques are referred to as big
data. Using technology has resulted in the production of data; as a result, massively large amounts
of data have been emerging. Many e-commerce businesses must analyse billions of transactions,
social media support services must deal with datasets containing billions of user records, compa-
nies employing artificial intelligence (AI) to develop their products must deal with big data issues.
To analyse such data, using one single computer is no longer efficient. Regarding the large num-
ber of observations to be handled, there are a number of challenges including limited processing
power, and limited memory. Splitting big data into smaller subsets is a common technique used
to process large volumes of data efficiently. This technique involves dividing the data into smaller
partitions or subsets that can be processed on multiple machines or nodes simultaneously. Accord-
ingly, distributed computing setup have become popular to tackle big data problems. Generally,
for distributed learning in terms of statistical applications, there are primarily three directions:
divide-and-conquer, online updating and subsampling.

Inspired by the idea of divide-and-conquer, parallel computing on a single machine and dis-
tributed computing have been executed. Both methods are dividing large tasks into smaller and
more manageable tasks so that the process can be performed simultaneously on multiple CPUs
or machines. The results are then aggregated as a final estimator by merging local estimates. In
the parallel computing setting, the same memory is shared among the processors, and this causes
a superefficient way to exchange the information, however the constraint on the memory limit is
still effective. In distributed data processing (distributed computing), distinct machines are physi-
cally separated and connected to a central machine through a network, and there is no connection
between local machines. Many studies of the issue have been done using the divide-and-conquer
strategy. The review paper Gao et al. (2022), reviewed distributed statistical inferences and merg-
ing methods of finalizing the estimates gained by local computers. Furthermore, Zhao et al. (2016)
considered a partially linear framework for modelling massive heterogeneous data. Battey et al.
(2018) studied the topic on hypothesis testing and parameter estimation with a divide and conquer
algorithm. Jordan et al. (2018) presented a communication-efficient surrogate likelihood frame-
work for distributed statistical inference problems. The divide and conquer method for cubic-rate
estimators under massive data framework was studied in Shi et al. (2018). Furthermore, Volgushev
et al. (2019) proposed a two-step distributed method for quantile regression with data of massive
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size.

As it was mentioned above, there is also online updating approach to conquer big-data prob-
lems. It focuses on big-data problems that observations are not available all at once. Online
updating, which involves processing data in real-time or almost real-time as it becomes avail-
able, is a common method for handling big data. This method works especially well in real-time
analytics, fraud detection, and recommendation systems, all of which require processing data of
massive size rapidly and effectively. The observations come from a data stream in which the data
is given in chunks sequentially. Some common techniques used for online updating in big data are:
Stream Processing, Online Learning, Incremental Processing, and Approximate Computing. Dif-
ferent estimation strategies have been developed to be used in the framework of online updating
approach. Schifano et al. (2016) developed some iterative estimating algorithms and statistical
inference procedures for linear models and estimating equations with streaming data. Wang et al.
(2018a) proposed an online updating method that could incorporate new variables for big data
streams. Xue et al. (2020) proposed an online updating approach for testing the proportional
hazards assumption with big survival data. Online updating, in general, is essential for many
real-time and near real-time applications.

Another popular method is the subsampling approach, where the basic idea is to draw subsam-
ple for the purpose of statistical inferences. Ma et al. (2014) proposed an algorithmic leveraging-
based sampling procedure. Wang et al. (2018b) and Wang (2019) developed some optimal sub-
sampling methods for logistic regression with massive data. Wang et al. (2019) provided a novel
information-based optimal subdata selection approach. Ai et al. (2021) studied the optimal sub-
sampling algorithms for big data generalized linear models.Wang and Ma (2021) considered the
optimal subsampling for quantile regression in big data. All these works have studied the case where
the whole data is stored in one location. However, massive data are often distributed across multi-
ple servers due to privacy, the storage burden, and computation abilities. For this problem, Zhang
and Wang (2021) proposed a distributed subdata selection method for big data linear regression
model. Particularly, they developed a two-step subsampling strategy with optimal subsampling
probabilities and optimal allocation sizes. The subsample-based estimator effectively approximates
the ordinary least squares estimator from the full data. Furthermore, the convergence rate and
asymptotic normality of their proposed estimator were established.

1.5 Distributed learning

The study of distributed learning, which is a fast developing discipline, has the potential to com-
pletely alter how we handle and interpret massive datasets. Distributed learning has evolved into
a crucial tool for data scientists and academics as a result of the emergence of big data and the
rise in demand for sophisticated machine learning models. Leveraging the idea of divide and con-
quer, distributed learning is a powerful method for processing and analysing massive datasets.
Distributed learning involves breaking a large and complex task down into smaller subtasks and
distributing them over a number of computers or devices. As opposed to depending on a single, it
is a powerful equipment to complete the task. After then, each device can complete the work that
is assigned to it, and the final output can be created by combining the results.

Faster processing rates, increased accuracy, and the capacity to deal with bigger datasets than
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would be possible on a single device are just a few advantages that distributed learning can pro-
vide. To guarantee that the results are precise and reliable, it also calls for careful control of data
distribution and communication between equipment. Therefore, the idea of devide and conquer
and distributed learning are two interconnected concepts that can be used to facilitate the process
and analysis of enormous datasets. This combination offers a strong strategy which accelerates the
workflows of data scientists and analysts, extracts insights from big data, and derives innovation
in various industries.

In the context of statistical learning, distributed learning is referred by distributed statistical
inference. A technique of doing statistical analysis on data that is split across several computing
nodes or machines (local analyzer). Over the years, researchers have explored various aspects of
this approach, including its theoretical foundations, algorithmic design, and applications in diverse
domains. One of the most popular examples of distributed statistical learning is distributed sparse
linear regression which refers to the process of performing the sparse linear regression analysis on
local machines or nodes on their portion of data, and aggregate the results on a central machine.

1.5.1 Previous works

Distributed linear regression schemes refers to algorithms and methods that let many computing
nodes work together to accomplish linear regression analysis after distributing datasets and even
the data which is already distributed to be analyzed. These methods have been used in a variety
of contexts, such as sensor networks, statistics, and machine learning. There has been a significant
amount of research on distributed linear regression analysis under various settings, not necessarily
sparsity, in recent years. As it is referred in Fonseca and Nadler (2023), see for example, Guestrin
et al. (2004), Predd et al. (2006), Boyd et al. (2011), Duchi et al. (2014), McWilliams et al. (2014),
Rosenblatt and Nadler (2016), Duchi et al. (2014), Chen et al. (2020), Dobriban and Sheng (2019),
Zhu et al. (2021), and Dobriban and Sheng (2021).

For linear regression analysis under the sparsity assumption, Mateos et al. (2010), was among
the first studies. They developed algorithms to perform LASSO estimation strategy when the
training data is distributed across multiple agents and their communication to a central processing
unit is prohibited due to some constraints such as communication costs or privacy. A motivating
application mentioned in their paper is in the context of wireless communications: sensing cog-
nitive radios collaborate to estimate the radio-frequency power spectrum density. The proposed
algorithms aim to achieve a balance between complexity and convergence speed while minimizing
inter-agent communication overhead. The algorithms use a separable form of the Lasso and the
alternating-direction method of multipliers (ADMM) to iteratively minimize the objective func-
tion. The per agent estimate updates are given by simple soft-thresholding operations, and the
inter-agent communication overhead is kept at an affordable level. The local estimates from each
agent converge to the global lasso solution, which would be obtained if the entire data set were
centrally available.

Numerical studies using both simulated and actual data showed that the proposed algorithms
are successful. According to their work, the concepts can be expanded to match similar models,
like the adaptive lasso, elastic net, fused lasso, and non-negative garrote, in a distributed man-
ner. They considered a general setting where the local machines are not connected to a fusion
center, however, they are connected and communicate with each other. Later efforts considered
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the setting which we also consider in our work, where machines are connected only to a center
machine and they are not allowed to communicate with each other but allowed to have one or
more communication rounds with the center unit (known as iterative approach).

In the context of generalized sparse linear models, Chen and Xie (2014) proposed a divide
(split)-and-conquer approach, where they distribute data over different machines to be analyzed
by penalized estimation strategies. Each machine provides the fusion centre its sparse estimate,
and the fusion centre estimates the support by voting on the indices of each machine’s individual
estimate. Finally, the central machine merges the estimates by weighted averaging as the final
estimate. Under the sparsity assumption which tells each machine to use sparse linear regression,
they used lasso strategy in each machine to compute local estimates. However, their method suffers
from the well known bias of the lasso which is not reduced by averaging as an aggregation tool.
Zhang and Zhang (2012); Javanmard and Montanari (2014), derived several debiasing techniques
for the lasso and studied them theoretically. For distributed learning setup, debiased estimators
have been used under various settings such as hypothesis testing, quantile regression and more,
see for example Lee et al. (2017); Battey et al. (2018).

More specifically, under the high-dimensional setting, Lee et al. (2017) devised a distributed
sparse regression method that is communication-efficient. In this method, ”debiased” or ”despar-
sified” lasso estimators are averaged. They demonstrate that, as long as the dataset is not split
across too many machines, the method converges at the same rate as the lasso. In comparison
to the lasso, the technique consistently predicts the support under weaker conditions. When the
dataset is divided among samples, the authors suggest a new parallel and computationally effective
algorithm to compute the approximate inverse covariance needed in the debiasing strategy. The
approach is also expanded by the authors to include generalised linear models. Fonseca and Nadler
(2023), studied distributed sparse linear regression under communication constraints, they consid-
ered two-round distributed schemes. After two rounds of communication, each machine computes
a debiased lasso estimator and sends just a small subset of values to the fusion center. Their
theoretical analysis demonstrates that the technique successfully recovers the exact support at low
signal-to-noise ratios, where individual computers are unable to do so. Conducting simulations
demonstrate that the method outperforms more communication-intensive techniques, sometimes
even better. A related work to their study is Barghi et al. (2021).

According to their methodology, each machine computes a debiased lasso estimator but only
sends the indices for which the absolute value of the estimate is greater than a certain threshold
to the fusion centre. Any indices that were submitted by at least half of the machines, or indices
that earned at least K/2 (K denotes the number of machines) votes, are included in the support
set that the fusion centre estimates. In the context of feature selection, they derive bounds on
the type-I and type-II errors of the estimated support set. The multiplicative constants are not
specified by the authors, however, they do provide rates for these errors. However, Fonseca and
Nadler (2023) showed that both theoretically and empirically, consistent support estimation is
possible with a much lower voting threshold.

6



1.6 Liu-type shrinkage estimations in linear models

In a multiple linear regression model under sparsity assumption, it is usually assumed that the
predictor variables are independent of each other. But, when the predictor variables are closed
to be dependent, the multicollinearity could emerge. The Least Squares Estimator (LSE) is very
sensitive if any of the considered assumptions in the model are violated. In this case, some biased
estimators have been proposed. Proposed estimations to improve the least squares estimation are
for example shrinkage estimation, principal components estimation, ridge estimation Hoerl and
Kennard (1970), partial least squares estimation, Liu estimation Kejian (1993) and Liu-type es-
timation Liu (2003). To overcome multicollinearity, Yüzbaşı and Ejaz Ahmed (2016); Yüzbaşı
et al. (2017) proposed the pretest and Stein-type ridge regression estimators for linear and par-
tially linear models. Norouzirad and Arashi (2018) considered the preliminary test and Stein-rule
Liu estimators for the ill-conditioned elliptical linear regression model. Alheety and Golam Kibria
(2013) considered the modified Liu-type estimator for the linear regression model. Norouzirad and
Arashi (2018) suggested a new rank-based Liu estimator as well as its shrinkage estimators. In
this section we introduce methods proposed in Yüzbaşı et al. (2022) and Ahmed et al. (2023).

Consider the linear regression model (1.1) under the sparsity assumption. Under this assump-
tion, vector of coefficients can be partitioned into two parts including a vector of main coefficients
and a vector of insignificant coefficients. The method is estimating the main coefficients when
insignificant coefficients are assumed to be close to zero. Accordingly, full-model and sub-model
estimations can be considered; full-model estimation can incur high variability and sub-model es-
timation may cause underfitting with large bias. To combat these consequences, they consider
pretest and shrinkage strategy to control magnitude of the bias. Consider a sparse linear model

Y = Xβ + ε, (1.1)

where YN×1 is the vector of responses, XN×p is the design matrix or observation points, βp×1

is the vector of unknown regression coefficients, and εN×1 is the vector of unobservable random
errors. Additionally, assume that ε has a cumulative distribution function F(.); E(ε) = 0 and
V ar(ε) = σ2IN , where σ2 is finite and IN is identity matrix of dimension N × N . Furthermore,
assume that the design matrix has rank p (p ≤ N).

1.6.1 Estimation strategies

The ridge estimator firstly proposed by Hoerl and Kennard (1970), shrinks the parameter estimates

β̂ by imposing a penalty on their size. It includes a quadratic penalty term on the magnitude of
β̂ to the least-squares equation. Ridge Regression (RR) is a method for stabilizing regression
estimates in the presence of extreme collinearity Frank and Friedman (1993). For model (1.1), the
full-model ridge estimator is a solution to the following function

arg min
β

(Y− Xβ)T (Y− Xβ) + λRβTβ, (1.2)

where the hyperparameter λR is the ridge parameter that controls the amount of shrinkage. The
larger the value of λR the more shrinkage. Solving (1.2) yields

β̂RFM = (XTX+ λRIp)
−1XTY,
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where β̂RFM is called ridge full-model estimator. Obviously, if λR = 0, then β̂RFM is the LSE
estimator, and λR = ∞, then β̂RFM = 0. Kejian (1993) proposed a new class of estimators
to combat multicollinearity. It was motivated by an interpretation of ridge estimate where they
augmented dβ̂LSE = β + εT to (1.1) and used least squares estimate to propose their estimate
which has the form of

β̂LFM = (XTX+ Ip)
−1(XTX+ dLIp)β̂LSE,

where 0 < dL < 1 and β̂LFM is called Liu full-model estimator. The estimator is linear in dL which
is its advantage over β̂RFM . Their theory and simulation results showed that β̂LFM has similar
good properties as β̂RFM .

Now let X = (X1,X2), where X1 is an N × p1 sub-matrix including regressors of interest and
X2 is an N × p2 sub-matrix including regressors which may or may not be relavent in the analysis
of the main regressors. Similarly let β = (β1,β2)

T , where β1 and β2 are column vectors of length
p1 and p2 respectively, with p1 + p2 = p. Accordingly, the sub-model or restricted model is defined
as

Y = Xβ + ε subject to β2 = 0,

subsequently, we have the following regression model as restricted or sub-model

Y = X1β1 + ε. (1.3)

The full-model or unrestricted ridge estimator of β1 is given by

β̂RFM
1 = (XT

1MR
2 X1 + λRIp1)

−1XT
1Y,

where MR
2 = IN − X2(XT

2X2 + λRIp2)
−1XT

2 and λR is the ridge parameter for full-model estimator

β̂RFM
1 . The sub-model or restricted estimator of β1 is given by

β̂RSM
1 = (XT

1X1 + λR
1 Ip1)

−1XT
1Y,

where λR
1 is ridge parameter for sub-model estimator β̂RSM

1 .

Similar to Ridge estimators, let us introduce the full-model or unrestricted Liu estimator that
Liu proposed in Kejian (1993) for sub model. It is as follows

β̂LFM
1 = (XT

1ML
2X1 + Ip1)

−1(XT
1ML

2X1 + dLIp1)β̂
LSE
1 ,

where ML
2 = IN −X2(XT

2X2+Ip2)
−1(XT

2X2+dLIp2)XT
2 and β̂LSE

1 = (XT
1X1)

−1XT
1Y. The sub-model

or restricted Liu estimator is defined as

β̂LSM
1 = (XT

1X1 + Ip1)
−1(XT

1X1 + dL1 Ip1)β̂
LSE
1 ,

where 0 < dL1 < 1.

In general terms, β̂LSM
1 performs better than β̂LFM

1 when β2 is close to zero. But, when β2 is

not close to zero, β̂LSM
1 can be inefficient. However, β̂LFM

1 is consistent for β2 away from zero.

The idea of penalized estimation Chemometrics is a branch of chemistry that examines the use
of statistical techniques in the study of chemical data. In addition to adopting numerous methods
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from engineering and statistics literature, chemometrics itself has produced a number of unique
data-analytical methods. Frank and Friedman (1993), examined principal components regression
and partial least squares, two techniques that are frequently used in chemometrics for predictive
modelling.

They aimed to comprehend the reasons behind their apparent successes, the circumstances in
which they may be relied upon to perform well, and to contrast them with other statistical tech-
niques designed for those circumstances. These techniques include ridge regression, variable subset
selection, and ordinary least squares. Indeed, they introduced the idea of penalized estimation. In
order to lessen the influence of the insignificant predictors on the result variable, they suggested a
novel approach to regression analysis termed bridge regression, which entailed including a penalty
term in the equation of standard regression.
This penalty term, known as the bridge penalty, controlled the degree of shrinkage of the regres-
sion coefficients towards zero, effectively limiting the impact of predictors that were not strongly
related to the outcome variable. This method was eventually expanded to include other regression
techniques, such ridge regression and lasso regression, and it has become a popular technique to
used in a variety of domains, including statistics, machine learning, and data science, when dealing
with high-dimensional data.

The notion of bridge regression they suggested is given in (1.4). For a given penalty function
π(.) and tuning parameter that controls the amount of shrinkage, λ, bridge estimators are estimated
by minimizing the following penalized least square criterion,

N∑
i=1

(yi − xT
i β)

2 + λπ(β), (1.4)

where π(β) =
p∑

j=1

|βj|γ and γ > 0. This penalty function bounds the Lγ norm of the parameters.

The preliminary test, Stein-type and positive part Liu estimators in the linear models to minimize
(1.4) were proposed and investigated in Ahmed et al. (2023) and Yüzbaşı et al. (2022).

A combination of β̂LFM
1 and β̂LSM

1 through an indicator function I(LN ≤ cN,α) is pretest estimator
where LN is an appropriate test statistic to test H0 : β2 = 0 versus HA : β2 ̸= 0. Furthermore,
cN,α is an α-level critical value according to the distribution of LN . The test statistic is defined
as follows:

LN =
N

σ̂2
(β̂LSE

2 )−1XT
2M1X2(β̂

LSE
2 ),

where σ̂2 =
1

N − p
(Y−Xβ̂LFM)T (Y−Xβ̂LFM),M1 = IN−X1(XT

1X1)
−1XT

1 and β̂LSE
2 = (XT

2M1X2)
−1XT

2M1Y.

Under H0, the test statistic LN follows chi-square distribution with p2 degrees of freedom for large
N values. The pretest Liu estimator is then defined by

β̂LPT
1 = β̂LFM

1 − (β̂LFM
1 − β̂LSM

1 ) I(LN ≤ cN,α).

The shrinkage or Stein-type Liu regression estimator β̂LS
1 of β1 is

β̂LS
1 = β̂LSM

1 + (β̂LFM
1 − β̂LSM

1 )(1− (p2 − 2)L −1
N ), p2 ≥ 3.
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The estimator β̂LS
1 is general form of the Stein-rule family of estimators where shrinkage of the base

estimator is towards the restricted estimator β̂LSM
1 . The Shrinkage estimator is pulled towards

the restricted estimator when the variance of the unrestricted estimator is large. Also, we can say
that β̂LS

1 is the smooth version of β̂LPT
1 . The positive part of shrinkage Liu regression estimator

is given by
β̂LPS
1 = β̂LSM

1 + (β̂LFM
1 − β̂LSM

1 )(1− (p2 − 2)L −1
N )+,

where z+ = max(0, z).
Furthermore, Yüzbaşı et al. (2022) and Ahmed et al. (2023) investigated the asymptotic properties

of the estimators for γ = 2. The asymptotic bias of an estimator β̂∗
1 is defined as

B(β̂∗
1) = E

[
lim

N→∞

{√
N(β̂∗

1 − β1)
}]

,

where β̂∗
1 is one of the suggested estimators. They showed that under some regularity conditions

β̂LFM , is
√
N -consistent. Furthermore, let ϑ1 =

√
N(β̂LFM

1 − β1), ϑ2 =
√
N(β̂LSM

1 − β1), and

ϑ3 =
√
N(β̂LFM

1 − β̂LSM
1 ). Under similar regularity conditions, it was shown that

(
ϑ1

ϑ3

)
and

(
ϑ3

ϑ2

)
both asymptotically follow multivariate normal distribution and root N consistent.

The estimators introduced in this section, are to be used in the context of distributed learning.
As we mentioned according to the results obtained in both Ahmed et al. (2023) and Yüzbaşı
et al. (2022), their estimation strategies and their developed version of Liu-type estimators can be
used for big data problems when the entire dataset is stored and processed by one single machine
(centralized estimation). However, we aim to apply their estimation strategies for the case where
the data has to be distributed across multiple machines. The hope is to see a comparable efficiency
of their performance in the framework of distributed learning against that of an estimator based
on all N samples.
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Chapter 2

Distributed Statistical Inference

2.1 Distributed statistical inference setting

Consider a big-data setting where the sample size is large. Assume a large sample of size N
denoted as Zi = (XT

i , Yi)
T ∈ Rp+1, 1 ≤ i ≤ N . Define {Pθ : θ ∈ Θ} to be a family of statistical

models parameterized by θ ∈ Θ. Let the parameter space Θ ⊂ Rp to be an open convex subset of
Euclidian space. Additionally, assume that Zi’s have identical and independent Pθ∗ distributions,
where θ∗ = (θ∗1, · · · , θ∗p)T is the true parameter. Consider a standard architecture for a distributed
computing system such that there are K local machines and a central machine denoted as Mj, j =
1, ..., K and Mcenter respectively. Central machine is connected to every Mk and no connections
are allowed among local machines. For a fixed N , split N sample units across K local machines
randomly and evenly so that each local machine has n = N/K observations. It should be noted
that spliting is only done along observations not along variables. Write S = {1, ..., N} as the index
set of whole sample. Then, let Sj denote the index set of local sample on Mj with Sj1 ∩ Sj2 = ∅
for any j1 ̸= j2. Let L : Θ × Rp+1 7→ R be the loss function. Assume that the true parameter θ∗

minimizes the population risk R(θ) = E[L(θ;Z)], where E stands for expectation with respect to
Pθ∗ . Define the local loss on the jth machine as

Lj(θ) = n−1
∑
i∈Sk

L(θ;Zi).

Correspondingly, define the global loss function based on the whole sample as

L(θ) = N−1
∑
i∈S

L(θ;Zi) = K−1

K∑
j=1

Lj(θ),

whose minimizer is θ̂ = arg minθ∈ΘL(θ).

In most cases, the whole sample estimator θ̂ is
√
N -consistent and asymptotically normal.

Remember that an estimator is said to be consistent if it converges to the true value in probability.
Additionally, once we know the estimator θ̂, it would be nice to know how quickly it converges to the
true value θ∗, this is where

√
N -consistency comes to the business. The estimator is

√
N -consistent

if |θ∗ − θ̂| = Op(1/
√
N). Therefore, the efforts should be towards approaching this consistency

when using distributed setting. As N is too large, it is very difficult (or even impossible in practice)
to compute the whole sample estimator θ̂ on one single machine. Hence, the distributed system
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setting must be used. When the local estimators are all unbiased, it is clear that the simple average
algorithm will yield an estimate that is as good as that of an estimator based on all N samples.
Thus, the less bias in each local machine the less bias for the whole sample estimator. We have
selected some estimation methods to be used in local machines (all local machines use the same
method). Next we need to aggregate the estimates obtained from local computers to have a final
estimate of the parameter of interest. All efforts have been made to reach an estimator as good
as that of an estimator based on all N samples. Therefore, there are three major steps to take,
splitting the whole dataset into smaller subsets, method of estimation that each single computer
should use on its fraction of the data and an approach to aggregate local estimates on the central
machine. Inspired by the idea of divide-and-conquer, various methods have been proposed that
can be divided into two classes: One-shot and iterative approaches. One-shot method is to be
discussed and is the method we use in the literature; iterative method is to be reviewed only.

2.2 Aggregation Strategies

As it was mentioned above, various methods have been proposed to solve the problem that can
be roughly divided into one-shot and iterative classes. For both of them, different aggregator
tools exist that have been introduced considering, for instance, MSE criterion and also based on
the algorithm a practitioner chooses. Following sections will review the most popular merging
strategies, however for our work, we focus on the simplest merging strategy, which is averaging the
K local machine’s estimates. The method is denoted as the Mixture Weight Method in Mcdonald
et al. (2009). On the optimality of averaging in distributed statistical learning, a comprehensive
study was accomplished by Rosenblatt and Nadler (2016), in section (2.4) we mention their results
and use them to obtain our results.

2.2.1 One-shot approach

Basically, the idea of one-shot, also called simple average approach is to compute relevant statistics
on each local machine, and send them to the central machine as the final stage. To do aggregation
on Mcenter, the most popular and naive way is simple average. Local machines, Mj’s, use their

allocated sample and give us estimates, θ̂j’s. Then the estimates will be transferred to the center

machine wherein θ̂ = θ̄ = K−1
K∑
j=1

θ̂j will be computed as a final answer (see figure (2.1)). Clearly,

the one-shot setting is extremely communication-efficient. Because in this style each Mj commu-
nicates with Mcenter only once (there is only one single round of communication). Accordingly, the
communication cost is of the order O(Kp), where p is the dimension of θ̂.

Properties of simple average as an algorithm to aggregate local results have been investigated
by Zhang et al. (2012). We mention their results concisely in the subsection below.

2.2.2 Averaging methods

Duchi et al. (2014) introduced the simplest algorithm for distributed statistical inference called
average mixture (AVGM) or simple average. In the AVGM algorithm, given a data set of size N
and K local machines, first allocate a (distinct) data set of size n = N

K
randomly to each local

machine, each machine gives us an estimate θ̂j, and finally average all local estimates as a final

12



Fig. 2.1 The illustration of the one-shot approach in distributed learning (taken from Gao et al.
(2022)).

answer (estimate). This method was used in Mcdonald et al. (2009), McDonald et al. (2010), and
Zinkevich et al. (2010) as well. It is crucial to understand how effective the simple average estima-
tor is. It is obvious that the simple average approach will produce an estimator that is as good as
one based on all N samples when the local estimators are all unbiased. However, many estimators
used in practice are biased. In Duchi et al. (2014) it was shown that, the mean squared error upper
bound for simple average technique decays as O(N−1 + n−2). If the number of machines is less
than the size of sample per machine (i.e.,K < n), the simple average estimator reaches the best
achievable rate which is possible in the case of centralized estimation or gold standard (i.e, where
we use one single machine having access to the whole sample). One other contribution of their
work was developing a novel extension of simple averaging, it is based on the idea of resampling
proposed by Hastie et al. (2015); Hall (2013); Politis et al. (1999).

Duchi et al. (2014) referred to the algorithm as the subsampled average mixture (SAVGM). In
the SAVGM algorithm similar to AVGM algorithm, it involves distributing the whole sample evenly
and randomly across K local machines. However, instead of directly returning local estimates,
each machine subsamples its own data to correct its estimate and provides a subsample-corrected
estimate. The upper bound for its mean squared error was obtained by Duchi et al. (2014)
and is of order O(N−1 + n−3). When K < n2, the method is first order equivalent with the
centralized estimation and its second order term is smaller than the standard averaging approach.
Furthermore, Duchi et al. (2014) studied sensitivity of the AVGM algorithm with respect to the
number of local machines (K) and the SAVGM algorithm with respect to the amount of resampling.
Their simulations showed that both methods have appropriate performance even when compared
to the unattainable centralized approach that has access to the whole sample units. In Duchi et al.
(2014), Corollary 2, it was shown that, under appropriate regularity conditions,

E∥θ̄ − θ∗∥22 ≤
C1

N
+

C2

n2
+O(

1

nN
) +O(

1

n3
), (2.1)

where C1 and C2 are positive constants. The boundary in (2.1) brings to our notice that, if n is
large enough such that n−2 = o(N−1), then the dominant term becomes C1/N and is of the order
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O(N−1). This is the same as that of the whole sample estimator θ̂. It implies that, to obtain the
global convergence rate we should not divide the whole sample into too many parts. (Duchi et al.
(2014))

Remark 2.2.1 In order to relax the constraint imposed on the number machines which is
equivalent to not splitting the whole sample across too many machines, it was suggested one may
increase the number of resampling rounds per machine. It is somehow performing like increasing
the number of samples per machine. There is constraint on the number machines, because using too
many machines causes smaller amount of sample units in each machine, thus we suggest increase in
the number of machines but perform more resampling per machine to compensate lack of enough
sample size in each machine. This is stated as a proposition below based on our understanding
from the reviewing several literature working on the subject.

2.2.3 KL-divergence based combination method

Another technique to aggregate local estimates was proposed by Liu and Ihler in Liu and Ihler
(2014) which is based on Kullback-Leibler divergence. In order to combine all the estimates as a
final answer they used

θ̂KL = argmin
θ∈Θ

K∑
j=1

KL(p(x|θ̂j) ∥ p(x|θ)),

where p(x|θ) is the probability density function of Pθ with respect to some proper measure µ,
and KL-divergence is defined by KL(p(x)∥q(x)) =

∫
X p(x) log{p(x)/q(x)}dµx. KL-divergence is

basically a statistical distance that measures how two probability distributions are different from
each other when one is the actual probability and the other one is an approximation of the actual
probability. In the formula given above, p(x) represents the actual and q(x) the approximated

probability distribution. In their paper, it was shown that θ̂KL is exactly the MLE estimate θ̂ for
the whole sample.

There are many cases where the samples allocated to each machine are of poor quality which
could affect local estimates and subsequently an inefficient final estimate. In this case, even the best
possible estimators to be used per machine would fail. Therefore, a robust method to aggregate
could help to tackle the problem. Minsker (2019) proposed a robust assembling method, where
they compute the estimator by minimizing the following objective function

θ̂robust = arg min
θ∈Θ

K∑
j=1

ρ(|θ̂j − θ|),

where the robust loss function ρ(.) must satisfy some conditions mentioned in their paper. As an

example in univariate case, where p = 1, when we have ρ(x) = x, the robust estimator θ̂robust is the

median of θ̂j’s. As we know, the median is more robust against outliers compare with the simple

average. Under some regularity conditions, they showed that θ̂robust achieves the same convergence
rate as the whole sample estimator provided K ≤ O(

√
N).
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2.2.4 Iterative approach

The one-shot approach benefits from low communication cost, simplicity and many other useful
properties that are investigated in the literature have used the method so far. However, it has
some drawbacks. First, the local machines need to have adequate amount of data, otherwise the
local estimators would not be efficient, and the aggregated estimator cannot reach the convergence
rate as the global estimator. This imposes limit on the number of machines that we can deploy,
while we are interested in splitting the data across many machines (Duchi et al. (2014); Wang
et al. (2017)). Second, the simple average to aggregate estimates is not suitable for nonlinear
models Huang and Huo (2019); Jordan et al. (2018); Rosenblatt and Nadler (2016)). Third, when
p diverges with N , some other failures could happen again, see Lee et al. (2017); Rosenblatt and
Nadler (2016). It seems that some adjustment and rewinds of local estimators and the aggregator
can come to the business as a remedy. As per iterative approach suggestions, a carefully designed
iterative algorithm which uses a reasonable number of iterations could be useful for distributed
systems. Inspired by the one-shot method in the M-estimator technique, Huang and Huo (2019)
proposed a one-shot refinement of the simple averaging estimator (see figure(2.2)).

Recall the simple average estimator θ̄ computed in the central machine for the one-shot ap-
proach, as we mentioned above, in order to improve the statistical efficiency of the final estimate,
the modifications should be broadcast to each local machine. To do so, local gradient ∇Lj(θ̄)
and local Hessian ∇2Lj(θ̄) are computed on each local machine Mj. Next, they are transferred to

Mcenter where they are aggregated by forming the whole sample gradient ∇L(θ̄) = K−1
K∑
j=1

∇Lj(θ̄)

and Hessian ∇2L(θ̄) = K−1
K∑
j=1

∇2Lj(θ̄). Then, the first round to update the aggregated estimate

θ̄ is as follows
First iteration: θ̂(1) = θ̄ − [∇2L(θ̄)]−1∇L(θ̄). (2.2)

So far one more round of communication cost is added compared with the one-shot approach.
Nevertheless, the statistical proficiency is well improved. Huang and Huo (2019) showed that

E∥θ̂(1) − θ∗∥22 ≤
C1

N
+O(

1

n4
) +O(

1

N2
),

where C1 > 0 some constant. This is a lower upper bound for mean squared error than that
in (2.1). It seems that even one additional round of communication has decreased the difference
between the estimate and the true value of θ. To reach the convergence rate of the global estimator,
size of the sample per machine need to satisfy n−4 = o(N−1). The condition on the number local
machines has become much milder. Therefore, we can roughly say that the first round of update in
the iterative approach is equivalent to decreasing the number machines in the one-shot approach.
Hence, the iterative method compared with the one-shot method, benefits from using more local
process and more statistical efficiency simultaneously. Although, it has more communication cost
which is getting more and more per each round of update. The idea is to allow the iteration
(2.2) to be executed many times as long as the estimate is being improved. To generate the next
step estimator, replace the updated estimator with its previous estimator, for instance, the second
iteration

Second iteration: θ̂(2) = θ̂(1) − [∇2L(θ̂(1))]−1∇L(θ̂(1)).
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Fig. 2.2 The illustration of the iterative approach in distributed learning (taken from Gao et al.
(2022)).

Similarly, for the tth iteration let θ̂(t) be the estimator such that

(t+ 1)th iteration: θ̂(t+1) = θ̂(t) − [∇2L(θ̂(t))]−1∇L(θ̂(t)).

As it is obvious, this requires a large number of Hessian matrices to be computed and transferred.
When the dimension of parameter p is high, there will be a large volume of computation which
is infeasible or at least difficult in practice to be executed. Cost of the process will be of the
order O(Kp2) that is significantly large when the p is relatively large. To fix the posed problem,
Shamir et al. (2014) proposed an approximate Newton method, it applies the Newton-type iteration
distributedly to the distributed system but without transferring the Hessian matrices. According
to this strategy, an approximate likelihood approach was developed by Jordan et al. (2018), the
idea was to update Hesian matrix on only one machine (e.g., Mcenter). Following their idea, the
iteration can be modified to be

θ̂(t+1) = θ̂(t) − [∇2Lcenter(θ̂
(t))]−1∇L(θ̂(t)),

where ∇2Lcenter is the Hessian matrix computed on the central machine. The strategy involves
less communication cost as it is not transferring the Hessian matrices anymore. In Jordan et al.
(2018), it was shown that under some conditions

∥θ̂(t+1) − θ̂∥2 ≤
C1√
n
∥θ̂(t) − θ̂∥2, for t ≥ 0, (2.3)

where C1 > 0 is constant and θ̂ is the whole sample estimator. Obviously, there must be a limit
on the number iterations. From the linear convergence formula (2.3), we can see that it requires

[logK/ log n] iterations to achieve the
√
N -consistency as the whole sample estimator θ̂, provided

θ̂(0) is
√
n-consistent. If n = K =

√
N , one iteration suffices to attain the optimal convergence

rate Gao et al. (2022).

However, the effective selection of the machine on which the Hessian matrix is to be updated
is crucial for the procedure to work as intended Fan et al. (2021). In Fan et al. (2021), they added
an extra regularization term to the likelihood used in Jordan et al. (2018) to improve the solution.
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2.2.5 Popular shrinkage methods

Shrinkage methods are used for sparse estimation. For a high-dimensional problem, especially
when the dimension of θ∗ is larger than the sample size N , it is difficult to estimate θ∗ without
any additional assumptions Hastie et al. (2015). A popular constraint to be considered is sparsity,
where θ∗ is partitioned into two parts: zero and non-zero entries. The index of non-zero entries is
called the support of θ∗, that is

supp(θ∗) = A∗ = {1 ≤ j ≤ p : θ∗
j ̸= 0}.

The specific shrinkage regression problem to be solved can be given by

min
θ∈Θ

{L(θ) +
p∑

j=1

ρλ(|θj|)},

where ρλ(.) is a penalty function with a regularization hyperparameter λ > 0. Popular choices
as a penalty function are LASSO (least absolute shrinkage and selection operator) proposed in
Tibshirani (1996), SCAD (smoothly clipped absolute deviation) proposed in Fan et al. (2021) and
others discussed in Zhang and Zhang (2012). In this literature in chapter two we use a new class
of shrinkage estimators introduced by Yüzbaşı et al. (2022).

Consider the LASSO estimator for the linear regression problem. The whole sample estimator
is an argument in the parameter space which minimizes the function given below

θ̂λ = arg minθ∈Θ
{ 1

N

∥∥Y − Xθ
∥∥2
2
+ λ∥θ∥1

}
,

where Y = (y1, . . . , yN)
T ∈ RN is the vector of response and X ∈ RN×p is the design matrix, and

∥θ∥1 =
∑p

j=1 |θj| is the l1-norm of θ. For large coefficients, it has been observed that the LASSO
procedure may produce biased estimators. On the other hand, the simple average techniques to
aggregate local estimators, often, do not perform efficiently to eliminate and alleviate the system-
atic bias. A debiasing technique was proposed by Javanmard and Montanari (2014) which is given
by

θ̂
(d)
λ = θ̂λ +

1

N
MXT (Y − Xθ̂λ), (2.4)

where M ∈ Rp×p is an approximation to the inverse of Σ̂ = XTX/N . When Σ̂ is invertible (e.g.,

N ≫ p), setting M = (Σ̂)−1 gives θ̂
(d)
λ = (XTX)−1XTY which is the ordinary least squares esti-

mator and unbiased. Therefore, the debiasing technique (2.4), compensates the bias caused by l1
regularization in some sense. For distributed setting, the debiasing procedure could be used on
each local machine, and averaging estimator can be constructed on the central machine Mcenter.
The procedure was used by Lee et al. (2017), they developed a one-shot type estimator for the

LASSO problem. Each local machine gives the estimator θ̂
(d)
k,λ then an averaging estimator on the

central machine is given as θ̄λ =
K∑
k=1

θ̂
(d)
k,λ .

Shrinkage methods are considered under the sparsity assumption, however, averaging can de-
grade the level of sparsity dramatically. To handle this problem, a hard threshold step often can
come as a remedy. Additionally, the debiasing step mentioned above, is computationally expensive.
To alleviate the computational cost of this step, Lee et al. (2017) proposed an improved algorithm.
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They showed that, under some conditions, the resulting estimator reaches the same convergence
rate as the whole sample estimator. As mentioned before, the one-shot approach needs a stringent
constraint on per-machine sample size and accordingly on the number of processors due to the lim-
ited communication, which is undesirable. For sparse linear model, averaging estimator requires
n ≥ O(Ks2 log p) to approach the efficiency of the whole sample estimator (Lee et al. (2017)),
where s = |A∗| is the number of non-zero entries of θ∗.

For this problem, Wang et al. (2017) and Jordan et al. (2018) proposed communication-efficient
iterative algorithm which constructs a regularized likelihood by using local Hessian matrix. Wang
et al. (2017) showed that even if n ≥ O(Ks2 log p), one iteration is enough to have the convergence

rate of θ̂(1) close to the global convergence rate. However, if multi-round communication is allowed,
θ̂(t+1) is equivalent with the whole sample estimator as long as n ≥ O(s2 log p) and t > O(log p),
under some conditions. Hence, their method can relax the constraint on the number machines
while it tells us that number iterations has a lower bound, that is, it must be greater than the
order O(log p). One may start from a number pretty close to the lower bound they provided so
that the costs of communication and computation do not grow.

2.3 Distributed Liu-type shrinkage estimations

for sparse linear models

In previous sections, the methodology for distributed statistical inference was investigated, and
aggregating strategies were reviewed. In section (2.2.5), the distributed setting was discussed for
debiased shrinkage estimation strategies. Shrinkage methods are a family of statistical techniques
used to reduce the complexity of models and prevent overfitting. In the context of distributed
learning, shrinkage methods can be used to improve the performance of distributed sparse linear
regression algorithms. Yüzbaşı et al. (2017), showed that their estimation strategies have compa-
rable performance with other efficient methods, however, it was studied for centralized estimation.
Furthermore, Pretest and other discussed shrinkage estimators were proposed to combat multi-
collinearity. Negative effects of multicollinearity are magnified at smaller sample sizes. On the
other side, we split the data across multiple machines, thus, the sample size in each machine would
obviously be small. Subsequently, local machines suffer from the magnified multicollinearity nega-
tive effects due to smaller sample sizes. The ability of these estimators to handle multicollinearity
motivated us to use them on each local machine. Now, let us consider their methods of shrinkage
estimations introduced in section (1.6) to be used in a distributed framework.

2.3.1 Problem setup

Consider a linear regression model
Y = Xβ + ε, (2.5)

where Y is the response vector of length N , X is the design matrix of dimension N × p which
includes observation points, β = (β1, β2, ..., βp)

T is the vector of unknown regression coefficients,
and ε is the vector of unobservable random errors. We also assume that the design matrix X has
rank p (p ≤ N) and ε = (ε1, ..., εN)

T has a cumulative distribution function F (.); E(ε) = 0 and
V ar(ε) = σ2IN , where σ2 is finite and I is an identity matrix of dimension N ×N . Furthermore,
consider the sparsity assumption for the linear regression model (2.5). Under this assumption, the
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vector of coefficients β can be partitioned as (β1,β2)
T where β1 is the vector of coefficients for

main effects, and β2 is the vector for nuisance effects or insignificant coefficients, i.e, the regression
coefficients are p1-sparse. Our interest is to divide the dataset into smaller chunks, and apply
the shrinkage methods discussed in section (1.6) on each portion of sample. For a fixed N , split
N sample units across K local machines randomly and evenly so that each local machine has
n = N/K observations. It should be noted that splitting is only done along observations not along
variables.

Hence, given the number of machines, K, the design matrix X is split into K submatrices
randomly and evenly. Therefore, in each local machine Mj, we have

Yj = Xjβ + εj, j = 1, . . . , K, (2.6)

where Xj is an n× p local design matrix, Yj is the vector of local responses with length n, and the
vector of local random error εj with length n. Obviously, model (2.6) is still under the sparsity
and all other assumptions mentioned above.

2.3.2 Estimation strategies

Now, for each local machine Mj (j = 1, . . . , K), let us define the estimators using distributed
setting notations. The local ridge full model estimator is given by

β̂RFM
j = (XT

j Xj + λR
j Ip)

−1XjYj, (2.7)

where 0 < λR
j < 1 is the ridge parameter in machine j for the dataset Xj,Yj. Liu full model biased

estimator (LFM), is defined as

β̂LFM
j = (XT

j Xj + Ip)
−1(XT

j Xj + dLj Ip)β̂
LSE
j , (2.8)

where 0 < dLj < 1 is the local Liu parameter and β̂LSE
j = (XT

j Xj)
−1XT

j Yj.

For local machines, under the sparsity assumption, let us partition the design matrix in each
machine as Xj = (X1j,X2j), where X1j is an n× p1 sub-matrix containing the regressors of interest
and X2j is an n × p2 sub-matrix that may or may not be relevant in the analysis of the main
regressors. Similarly, β = (β1,β2)

T be the vector of parameters, where β1 and β2 have dimensions
p1 and p2, respectively, with p1 + p2 = p.

The sub-model or restricted model in each local machine Mj is defined as:

Yj = Xjβ + εj subject to β2 = 0,

then we have the following restricted linear regression model in machine Mj,

Yj = X1jβ1 + εj. (2.9)

β̂RFM
1j denoted as the full model or unrestricted ridge estimator of β1 is given by

β̂RFM
1j = (XT

1jMR
2jX1j + λR

j Ip1)
−1XT

1jMR
2jYj,
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where MR
2j = In−X2j(XT

2jX2j+λR
j Ip2)

−1XT
2j. For model (2.9), the sub-model or restricted estimator

β̂RSM
1j of β1 has the form

β̂RSM
1j = (XT

1jX1j + λR
1jIp1)

−1XT
1jYj,

where λR
1j is ridge parameter for the sub-model estimator β̂RSM

j1 in machine j.

Introduced full model or unrestricted Liu estimator β̂LFM
1j to be used by each machine is given by

β̂LFM
1j = (XT

1jML
2jX1j + Ip1)

−1(XT
1jML

2jX1j + dLj Ip1)β̂
LSE
1j ,

where ML
2j = In − X2j(XT

2jX2j + Ip2)
−1(XT

2jX2j + dLj Ip2)XT
2j and β̂LSE

1j = (XT
1jX1j)

−1XT
1jY.

The sub-model Liu estimator will be

β̂LSM
1j = (XT

1jX1j + Ip1)
−1(XT

1jX1j + dL1jIp1)β̂
LSE
1j ,

where 0 < dL1j < 1 and β̂LSE
1j = (XT

1jX1j)
−1XT

1jY.

Similar to the centralized estimation, as it was mentioned before, when β2 is close to zero,
β̂LSM
1j performs better than β̂LFM

1j . However, for β2 away from zero, β̂LSM
1j can be inefficient. But,

β̂LFM
1j is consistent for departure of β2 from zero Yüzbaşı et al. (2017).

Pretest and Shrinkage Liu estimation

The pretest is a combination of β̂LFM
1j and β̂LSM

1j through an indicator function I(Lj ≤ cj,α), where
Lj is an appropriate test statistic to test H0 : β2 = 0 versus HA : β2 ̸= 0. Moreover, cj,α is an
α-level critical value using the distribution of Lj. The test statistic is defined as follows:

Lj =
n

σ̂2
j

(β̂LSE
2j )TXT

2jM1jX2j(β̂
LSE
2j ),

where σ̂2
j = 1

n−p
(Yj − Xjβ̂

LFM
j )T (Yj − Xjβ̂

LFM
j ) is consistent estimator of σ2, M1j = Inj −

X1j(XT
1jX1j)

−1XT
1j and β̂LSE

2j = (XT
2jM1jX2j)

−1XT
2jM1jYj. Under H0, the test statistic Lj follows

chi-squared distribution with p2 degrees of freedom for large n values. Now, the pretest Liu
regression estimator β̂LPT

1j of β1 is defined by

β̂LPT
1j = β̂LFM

1j − (β̂LFM
1j − β̂LSM

1j )I(Lj ≤ cj,α),

where cj,α is an α-level critical value. The Shrinkage or Stein-type Liu regression estimator β̂LS
1j of

β1 is defined by

β̂LS
1j = β̂LSM

1j +
(
β̂LFM
1j − β̂LSM

1j

)(
1− (p2 − 2)L −1

j

)
, p2 ≥ 3.

The positive part of the shrinkage Liu regression estimator of β1 denoted by β̂LPS
1j is given by

β̂LPS
1j = β̂LSM

1j +
(
β̂LFM
1j − β̂LSM

1j

)(
1− (p2 − 2)L −1

j

)+
,

where z+ = max(0, z).
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2.3.3 Aggregation

So far, we have defined the local shrinkage methods to perform local estimation in each local
machine, however, to obtain the final answer (estimate) we need to aggregate them in the center
machine. As it was mentioned before, simple average is the aggregation method which is used in
this literature. The aggregated estimator (the whole sample estimator) for introduced estimation
strategies is given by:

β̂ =
1

K

K∑
j=1

β̂▲
j , (2.10)

where β̂▲
j is one of the discussed shrinkage estimators: RFM, LFM, RFM1, RSM1, LFM1, LSM1,

LPT1, LS1, LPS1.

Remark 2.3.1 It is required to understand if the setting under which the averaging technique is
efficient, matches the setting for the estimators we intend to apply in each machine. Furthermore,
it assists us to obtain a boundary for the number of machines to deploy (according to the estima-
tion strategies).

As we consider averaging technique as the aggregation strategy, it is required to provide more
detail on the optimality of averaging. In the next section, simple average aggregation technique
and its properties are reviewed.

2.4 On the optimality of averaging

Content of this section is derived from the work of Rosenblatt and Nadler (2016) on the optimality
of averaging.

2.4.1 Introduction

The focus of Rosenblatt and Nadler (2016) is on the statistical properties of the split-and-merge
approach, under the assumption that the observations are split uniformly at random among the
K machines. In the context of simple average method which is the approach we follow in our
work, they addressed following questions: (i) What is the estimation error of simple averaging as
compared with a centralized solution? (ii) What is its distribution? (iii) Under which criteria, if
any, is averaging optimal? and (iv) How many machines to deploy? They also referred to some
other works such as McDonald et al. (2010)(Theorem 3) that were among the first to study some
of these issues for multinomial regression, deriving finite sample bounds on the expected error of
the averaged estimator. Zinkevich et al. (2010) compared the statistical properties of the averaged
estimator to the centralized estimation for more general learning tasks, assuming each machine
estimates the model parameters by stochastic gradient descent. More recently, under appropriate
conditions and for a large class of loss functions, Duchi et al. (2014) derived bounds for the leading
order term in the mean squared error (MSE) of the averaged estimator and provided the rates of
higher-order terms. They further proposed several improvements to the simple averaging strategy
that reduce the second-order term in the MSE, and reduce the machine-wise run time via modified
optimization algorithms.

21



Rosenblatt and Nadler (2016) extended and generalized these previous studies in several as-
pects. Studying the statistical properties of the averaged (merged) estimator, when the number of
parameters p is fixed under some conditions. Using the theory of M-estimators Rieder (2012) and
Van der Vaart (2000) provided not only asymptotic bounds on the MSE, but rather an asymptotic
expansion of the error itself. This allows them to derive the exact constants in the MSE expan-
sion, and prove that as n → ∞, the MSE of the averaging strategy in fact equals to that of the
centralized solution. In other words, when the number of machines K and their available memory
are such that in each machine there are many observations per parameter (n ≫ p), then averaging
machine-wise estimates is as accurate as the centralized solution. Furthermore, if the centralized
estimator possesses first-order statistical properties such as efficiency and robustness, then so will
the estimator obtained from the distributed setting (averaged estimator). It is remarkable that,
the first-order equivalence between averaged and centralized estimators seems to be a good deal
as we are deploying more than one machine to decrease the run-time without loss of accuracy.
However, distributed estimation via split-and-average does incur an accuracy loss captured in the
higher-order error terms Rosenblatt and Nadler (2016). In the following sections we will go through
more details on these statistical properties towards our goal which is applying the new class of
shrinkage estimations proposed in Yüzbaşı et al. (2022).

Consider the setting in section (2.1), where we let θ∗ ∈ Θ be the minimizer of the population
risk defined as follows

R(θ) := EZ [L(θ;Z)] =
∫

L(θ;Z)dPZ(z). (2.11)

Similar to previous setting, assume that θ∗ exists in Θ and is unique. Given N i.i.d. samples
{zi}Ni=1 of the random variable Z, a standard approach, known as M-estimation or empirical risk
minimization (ERM), is to calculate the estimator θ̂N ∈ Θ that minimizes the empirical risk

R̂N(θ) :=
1

N

N∑
i=1

L(zi,θ). (2.12)

2.4.2 Fixed-p setting

Similar to Rosenblatt and Nadler (2016), in the distributed learning setup, let us first consider the
regime where p is fixed. First, they consider the error of the split-and-average estimator θ̄. In this
regime, the model dimension p and number of machines K are both fixed. Instead of focusing on
the MSE, they derive an exact asymptotic representation of the first two terms in the error θ̄−θ∗

itself.

First-order statistical properties of averaging

Starting by analysis of the exact asymptotic expression for the dominant error term, we consider
the following standard assumptions made in Rosenblatt and Nadler (2016). In this section we
follow their notations that θn denotes local estimators.

Assumption Set 1

(A1) Machine-wise estimators, θ̂n’s, are consistent: θ̂n = θ∗ + oP (1),
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(A2) R(θ) admits a second-order Taylor expansion at θ∗ with non-singular Hessian Vθ∗ ,

(A3) L(Z,θ) is differentiable at θ∗ almost surely (a.s.) or in probability,

(A4) L(Z,θ) is Lipschitz near θ∗: |L(Z,θ1) − L(Z,θ2)| ≤ M(Z)∥θ1 − θ2∥ with Lipschitz co-
efficient M(Z) bounded in squared expectation, E[M(Z)2] < ∞.

Their first theorem states that under Assumption set 1, the machine-wise averaged estimator
enjoys the same first-order statistical properties as the centralized solution.

Theorem 1 (Rosenblatt and Nadler (2016)) Under Assumption set 1, as n → ∞ with p fixed,
and any norm

∥θ̄ − θ∗∥
∥θ̂N − θ∗∥

= 1 + oP (1). (2.13)

Definition 2.5.1 Two estimators are said to be first-order equivalent if their leading error terms
converge to the same limit at the same rate, with the same limiting distribution.

Assumption set 1 implies that θ̂n converges to θ∗ at rate O(n−1/2) (Van der Vaart (2000), Corollary
5.53). Theorem 1 thus directly implies following corollary.

Corollary 1 (Rosenblatt and Nadler (2016)) The averaged estimator θ̄ is first-order equivalent to
the centralized solution θ̂N .

Remark 3.5.1 In practice, equation (2.12) is minimized approximately, typically by iterative
approaches such as gradient descent (GD), stochastic gradient descent (SGD), etc. It is of great
importance that Theorem 1 holds not only for the exact empirical minimizer θ̂n but also for any
approximate minimizer θ̃n satisfying R̂n(θ̃n) ≤ R̂n(θ̂n)+ oP (n

−1) (Van der Vaart (2000), Theorem
5.23). In other words, for the averaged minimizer to be first-order equivalent to the centralized
solution, oP (n

−1) precision is enough in minimizing R̂N(θ).
Optimality and robustness of θ̄ are implications of Theorem 1 on its statistical properties. These
properties are discussed by Rosenblatt and Nadler (2016), and we state them below. However,
first let us point out the scope they claim Theorem 1 covers.

Scope. The learning tasks covered by Theorem 1 include: linear or nonlinear regression with
l2, Huber, or log likelihood loss; linear or nonlinear quantile regression with continuous predic-
tors; binary regression; binary hinge loss regression (i.e. SVM) with continuous predictors, and
unsupervised learning of location and scale. More significantly, it also covers regularized risk min-
imization θ∗ := argminθ{R(θ) + J(θ)} with a fixed regularization term J(θ), provided that the
new loss function L̃(Z,θ) = L(Z,θ) + J(θ) satisfies the required assumptions. For further detail
see Rosenblatt and Nadler (2016).

Some learning problems which are not covered by this theorem include: non-uniform allocation
of samples to machines; non-convex parameter spaces; non-differentiable loss function with discrete
predictors; the n < p regime. In our setup from very first in this literature, we considered the
linear regression model under the sparsity assumption. In this setup (under the assumptions we
have made so far), Lee et al. (2017) showed that, it is still possible to devise a distributed scheme
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that converges at the same rate as the centralized M-estimator. This is achievable by averaging
de-biased machine-wise M-estimators not by simple average technique. On the other side, as shown
by Shamir et al. (2014), in some cases the simple averaging may not be better than the estimator
obtained from a single machine with n samples. However, since our problem setup satisfies all the
assumptions required by theorem 1, it covers our problem, and we can use the theorem and its
result in this study. Furthermore we will show that the estimation strategies we have used in our
work, are both

√
n and

√
N - consistent.

Optimality of averaging. Some notions of asymptotic optimality, such as Best Regular and Lo-
cal Minimax depend only on leading order error term (Van der Vaart (2000), Chapter 8). Thus,
if θ̂N is optimal with respect to any of these criteria, equation (2.13) implies that so is θ̄. Duchi
et al. (2014) (Corollary 3) and in Liu and Ihler (2014), discussed an example when the loss function
is negative log likelihood of the generative model. The centralized solution, being the maximum-
likelihood estimate of θ∗, is optimal in several distinct senses. Given this, Theorem 1 implies that
θ̄ is optimal as well, and the the factor 1 cannot be improved.

Robustness. As it was discussed in section 2.2.3, there exist some cases where local machines
suffer from potential outliers, therefore, it is required to be handled at the machine-level, aggrega-
tion level or both. Several methods to manage the issue have been proposed, a notable example
was stated in section 2.2.3, and involved tackling the problem at the aggregation level. Hence,
dealing with outliers at the machine level alone is sufficient if the possibility of a high proportion
of outliers in any machine is small and machine failure is not a problem. Other scenarios call for
the consideration of robust aggregation functions Minsker (2019).

Asymptotic Linearity. Asymptotic linearity of the estimator in some nonlinear transformation of
the samples is essential in the proof of Theorem 1. This is known as the Asymptotic Linearity
property, and the related transformation is the Influence Function. There are several other estima-
tors with asymptotic linearity property, including L, R and Minimum Distance. Hence, first-order
equivalence of averaging to the centralized solution is rather general. It typically holds for asymp-
totically Gaussian estimators (Rieder (2012), chapters 1 and 6) and has also been observed in other
contexts, such as that of particle filters Achutegui et al. (2014).

Limiting distribution. The following limiting Gaussian distribution is provided right away by the
asymptotic linearity of θ̄ in the influence function.

Corollary 2 (Rosenblatt and Nadler (2016)) (Asymptotic Normality) Under the assumptions
of Theorem 1, when n → ∞ with p fixed,

√
N(θ̄ − θ∗) converges in distribution to

N (0, V −1
θ∗ E[∇L(θ∗)∇L(θ∗)′]V −1

θ∗ ).

Corollary 2 enables us to construct confidence intervals and test hypotheses on the unknown θ∗.
Furthermore, we need to estimate the asymptotic covariance matrix. To do this, any OP (N

−1/2)
consistent estimator of the covariance matrix will conserve the asymptotic normality according to
Slutsky’s theorem.

Second-order terms

Rosenblatt and Nadler (2016) empirically showed that, relatively little accuracy is lost when paral-
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lelizing a linear model. However, much can be lost when the model is nonlinear. One reason is that
the second-order error term may not be negligible. In our work, we have only focused on linear
model, therefore, at first one would think that it is not necessary to discuss the second-order error
term. But, Rosenblatt and Nadler (2016) showed that the second-order error term is imperative
when deciding how many machines to deploy, as the first-order approximation of the error does
not depend on K when N is fixed. The number of local machines to deploy is one of our major
questions in the context of distributed learning when N is fixed. Subsequently, we bring the results
obtained in Rosenblatt and Nadler (2016) to our work in order to address the question. Intuitively,
the first-order term captures estimation variance which is reduced by averaging. The second-order
term captures also bias, which is not reduced by averaging.
To study the second-order error term of θ̄, they make suitable assumptions that ensure that the
machine-wise M-estimator admits the following higher-order expansion:

θ̂n = θ∗ + ξ−1/2(θ̂n) + ξ−1(θ̂n) + ξ−3/2(θ̂n) +OP (n
−2), (2.14)

where ξ−α(θ̂n) denotes the OP (n
−α) error term in θ̂n and α = {1/2, 1, 3/2, . . . }. It should be

noted that ξ−α(.) are data dependent themselves. Also note that this expansion is not specific
for M-estimators, and they used this expansion for θ̄ as well. For equation (2.14) to hold, the
following set of assumptions with s = 4 is sufficient, see Rilstone et al. (1996).

Assumption set 2. There exist a neighborhood of θ∗ in which all of the following conditions hold:

(B1) Local differentiability: ∇sL(θ, Z) up to order s, exist a.s. and E[∥∇sL(θ∗, Z)∥] < ∞.

(B2) Bounded empirical information: (∇2R̂n(θ))
−1 = OP (1).

(B3) Lipschitz derivatives of order s:

∥∇sL(θ, Z)−∇sL(θ∗, Z)∥ ≤ M∥θ − θ∗∥,

where E[|M |] ≤ C < ∞.

Let us consider the notation used by Rosenblatt and Nadler (2016) and following Rilstone et al.
(1996). Define a (p× 1) column vector δ, and (p× p) matrices γ0, . . . , γ4 as follows

E[ξ−1(θ̂n)] = n−1δ; E[ξ−1(θ̂n)]E[ξ′−1(θ̂n)] = n−2γ0 = n−2δδ′;

E[ξ−1/2(θ̂n)ξ
′
−1/2(θ̂n)] = n−1γ1; E[ξ−1(θ̂n)ξ

′
−1/2(θ̂n)] = n−2γ2; (2.15)

E[ξ−1(θ̂n)ξ
′
−1(θ̂n)] = n−2γ3 + o(n−2); E[ξ−3/2(θ̂n)ξ

′
−1/2(θ̂n)] = n−2γ4 + o(n−2).

2.4.3 Number of machines to deploy

As it was mentioned before, a key problem to be addressed in distributed setting is: How many
local machines should the practitioner split the data over? to tackle the problem, two regimes can
be considered: N fixed or n fixed. In Rosenblatt and Nadler (2016), section 6, both regimes are
investigated. Let us point out their results and explore some detail.
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Fixed n captures the local machine storage constraint: The total number of observations N is too
large and there is always constraint on the memory limit for each machine. Hence, the practitioner
needs to deploy more machines which allows processing more data at an obvious financial cost.

Fixed N captures either sampling or computational constraints: Sampling of a massive size
N , obviously has cost on the operation in several senses. After collecting the sample data and
tackling all the problems in the sampling step, the practitioner needs to distribute the observations
across local computers in which there are computational constraints. The total sample size N is
fixed, and it might take too long to process it on a single system. Splitting the data hence reduces
run-time but also decreases the accuracy. In other words, by distributed setup, we trade accuracy
for speed.

As per our problem setup, we consider fixed N . Interestingly, when N is fixed, by using the
approximations and varying the number of machines K, we are able to see the accuracy-complexity
tradeoff. A bound onK can be the solution to an optimization problem on the number of machines,
with choosing either a desirable run-time or a desired error level as constraints for the problem.
Rosenblatt and Nadler (2016) formulated the target functions for choosing the number of machines
in two regimes mentioned above, however, we consider only the fixed N regime. To address the
problem on the number of machines, when N is fixed, we wish to minimize runtime. Inspired by
Shalev-Shwartz and Srebro (2008), we ask what is the maximal number of machines to minimize
the runtime while a desired level of accuracy is maintained. According to Rosenblatt and Nadler
(2016), the problem to be solved in order to choose the maximal value for K is given by

max
{
K s.t. E(K) ≤ ϵ,N/K samples per machine

}
, (2.16)

where E(K) := E[∥θ̄ − θ∗∥2], is the accuracy measure. Since in general there is no explicit or
closed form for this quantity, we need to approximate it. As we are in the fixed-p regime, approx-
imating the MSE by the asymptotic leading error term yields that this quantity is independent of
K(Rosenblatt and Nadler (2016)). As it was shown in Rosenblatt and Nadler (2016), meaningful
and interesting solutions to this optimization problem arise when we approximate E(K) by the
second-order expression in the fixed-p regime. They provided the final form of the problem which
is as follows

max
{
K s.t. ((K − 1)K/N2)Tr(γ0) + (1/N)Tr(γ1) + (K/N2)Tr(γ2 + γ′

2 + γ3 + γ4 + γ′
4) ≤ ϵ

}
.

To derive this formula for more complicated models, it takes formidable mathematical exer-
cise. As a first application, let us consider using these formulas to the OLS estimator as an example.

Example(OLS). Given the standard generative linear model Y = X′β0 + ε, with the explanatory
variables satisfying E[X] = 0 and V ar[X] = Σ, and the noise ε independent of X with mean zero
and V ar[ε] = σ2. The loss is L(Y,X;β) = 1

2
(Y − X′β)2, whose risk minimizer is the generative

parameter, β∗ = β0. The following proposition, proved in Rosenblatt and Nadler (2016), provides
explicit expressions for the second-order MSE matrix.

Proposition (Rosenblatt and Nadler (2016)) For the OLS problem, under the above generative
linear model,

γ0 = 0, γ1 = σ2Σ−1, γ2 = −(1 + p)σ2Σ−1, γ3 = (1 + p)σ2Σ−1, γ4 = (1 + p)σ2Σ−1
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Considering the example where they solved the optimization problem to obtain the maximal num-
ber of machines to deploy, let N = 106,p = 103, σ2 = 10 and for simplicity Σ = I we have

γ0 = 0, γ1 = 10I, γ2 = −(1 + 103)10I, γ3 = (1 + 103)10I, γ4 = (1 + 103)10I,

substituting these values in the objective function max{K; E(K) ≤ ϵ} mentioned before, the
maximal number of machines to keep the MSE under 0.1 is K ≤ 8991.

2.5 Averaging technique to be used for distributed Liu-

type shrinkage estimation

Optimality of averaging is investigated by the studies to which we referred in previous sections.
The problem setting for which the averaging is efficient covers the setting which is considered for
the new class of shrinkage estimators introduced by Yüzbaşı et al. (2022). More importantly, as it
was mentioned in section (1.6), Yüzbaşı et al. (2022) showed not only good asymptotic properties
of these estimators, but also their efficiency using the MSE criteria. On the other side, in section
(2.4), we noticed how averaging is efficient and optimal considering the MSE of estimators and
investigating the optimality of averaging based on MSE of averaged answer. For these shrinkage
estimators, the discussion, leads to make a straightforward decision that averaging can be used as
an aggregation strategy in the central machine when the local machines use Liu-type shrinkage
estimations. That is

β̂ = K−1

K∑
j=1

β̂j

where β̂j is the local estimate computed by machine j (j = 1, . . . , K) using listed estimators in
section (1.6). There may be better strategies to merge local estimators in the central machine
when a practitioner chooses the new class of shrinkage estimators for local machines. However,
to be conservative, in our numerical study, we average the local estimates to compute the final
estimate in the central machine. Furthermore, for this setup, Lee et al. (2017) showed that, it is
still possible to devise a distributed scheme that converges at the same rate as the centralized M-
estimator, and this is achievable by averaging de-biased machine-wise M-estimators not by simple
average technique.

2.5.1 Asymptotic analysis of the Liu-type averaged estimator

In section (2.3), we defined the per-machine version of Liu-type shrinkage estimations introduced in
section (1.6) for distributed sparse linear regression. Consistency of these estimators where they are
used for global estimation, were investigated in Yüzbaşı et al. (2022). As it was determined before,
in this study we use averaging technique to aggregate local estimators. Optimality of averaging
was discussed in Liu and Ihler (2014), they also studied consistency of the averaged estimator. We
mentioned their results in sections (1.6) and (2.4). In this section, we focus on asymptotic analy-
sis of the averaged estimator when Liu-type shrinkage estimations are performed by local machines.

For
√
n and

√
N -consistency of the averaged estimator, we desire the whole sample estimator

to be
√
N -consistent. However, the whole sample is split into many (K) subsets, and the final

answer is the average of local estimators. Hence, in order to investigate asymptotic properties
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of the averaged estimator (the whole sample estimator), it is required to begin from asymptotic
analysis of the local estimators. The asymptotic bias of an estimator for a sample of size N is
defined as

B(β̂∗) = E
[
lim

N→∞
{
√
N(β̂∗ − β)}

]
,

and its asymptotic covariance is given by

Γ(β̂∗) = E
[
lim

N→∞
{N(β̂∗ − β)(β̂∗ − β)T}

]
.

Consider Liu full model biased estimator (LFM)

β̂LFM = (XTX+ Ip)
−1(XTX+ dIp)β̂

LSE,

where 0 < d < 1 is the biasing parameter. Furthermore, consider the following regularity condi-
tions mentioned in Yüzbaşı et al. (2022) to evaluate the asymptotic properties of the estimators.

Regularity conditions

1. 1
N

max
1≤i≤N

xT
i (XTX)−1xi → 0 as N → ∞, where xT

i is the ith row of X.

2. lim
N→∞

N−1(XTX) = lim
N→∞

CN = C, where C is a finite and positive definite matrix.

3. lim
N→∞

FN(d) = Fd, for finite Fd where FN(d) = (CN+Ip)
−1(CN+dIp) and Fd = (C+Ip)

−1(C+

dIp).

If the whole dataset were to be analysed by a single computer, the global estimator would possess
the property stated in the following theorem under the above regularity conditions.

Theorem 3.9(Yüzbaşı et al. (2022)) If the data is not distributed, C is non-singular, and 0 < d <
1, then as N → ∞ we have

√
N
(
β̂LFM − β

)
d−→ Np

(
− (1− d)(C+ Ip)

−1β, σ2S
)
,

where S = FdC−1FT
d , β̂

LFM is the global estimator, N (., .) denotes multivariate normal distribu-

tion, subscript p is the length of β, and (
d−→) means convergence in distribution.

Now for the local estimators, similar to the whole sample estimator (global estimator), the
asymptotic bias and covariance of the local estimators can be defined as follows,

B(β̂∗
j ) = E

[
lim
n→∞

{
√
n(β̂∗

j − β)}
]

and Γ(β̂∗
j ) = E

[
lim
n→∞

{n(β̂∗
j − β)(β̂∗

j − β)T}
]
.

In our problem, rows of the design matrix XN×p are split into K distinct submatrices randomly
and evenly. Therefore, dimensions of each submatrix Xj is (n × p) and it is obvious that n = N

K
.

In order to perform asymptotic analysis of the local estimators, it is required to restate regularity
conditions. Prior to that, as n = N

K
, when N → ∞, for K fixed it implies that n → ∞ as well.

Now, for an arbitrary subsample Sj, given that N → ∞ implies n → ∞, one may immediately
consider the following regularity conditions as a result of conditions mentioned before,
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Local regularity conditions

1. 1
n
max
1≤i≤n

xT
i (XT

j Xj)
−1xi → 0 as n → ∞, where Xj is the design matrix in machine j, j ∈

{1, . . . , K}, and xT
i is the ith row of Xj.

2. lim
n→∞

n−1(XT
j Xj) = lim

n→∞
Cn = C, where C is a finite and positive definite matrix.

3. lim
n→∞

Fn(d) = Fd, for finite Fd where Fn(d) = (Cn + Ip)
−1(Cn + dIp) and Fd = (C+ Ip)

−1(C+

dIp).

Corollary 2.5.1 Under the local regularity conditions, theorem (3.9) implies that for each local

estimator, β̂LFM
j , as n → ∞ we have,

∀j ∈ {1, . . . , K},
√
n
(
β̂LFM
j − β

)
d−→ Np

(
− (1− d)(C+ Ip)

−1β, σ2S
)
.

Moreover, consider forming asymptotic bias of the averaged estimator β̂LFM ,

1

K

(
E
[
lim
n→∞

√
n(β̂LFM

1 − β)
]
+ E

[
lim
n→∞

√
n(β̂LFM

2 − β)
]
+ · · ·+ E

[
lim
n→∞

√
n(β̂LFM

K − β)
])

= E
[
lim
n→∞

√
n
1

K

(
(β̂LFM

1 − β) + (β̂LFM
2 − β) + · · ·+ (β̂LFM

K − β)
)]

= E
[
lim
n→∞

√
n
(
(
1

K

K∑
j=1

β̂LFM
j )− β

)]

= E
[
lim
n→∞

√
n(β̂LFM − β)

]
where β̂LFM =

1

K

K∑
j=1

β̂LFM
j is the averaged estimator. This leads us to investigate

√
n-consistency

of the averaged estimator.

Theorem 2.5.1 If 0 < d < 1 and C is non-singular, then as n → ∞

√
n
(
β̂LFM − β

)
d−→ N

(
− (1− d)(C+ Ip)

−1β,
1

K
σ2S
)
,

where β̂LFM =
1

K

K∑
j=1

β̂LFM
j .

Proof. Since β̂LFM is a linear function of β̂LFM
j (j = 1, . . . , K), according to Conclusion (1),

β̂LFM is asymptotically normally distributed.
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The asymptotic bias of β̂LFM is obtained as

E
[
lim
n→∞

√
n(β̂LFM − β)

]
= E

[
lim
n→∞

√
n
(
(
1

K

K∑
j=1

β̂LFM
j )− β

)]

=
1

K
E
[ K∑

j=1

lim
n→∞

√
n(β̂LFM

j − β)
]

=
1

K

K∑
j=1

−(1− d)(C+ Ip)
−1β

= −(1− d)(C+ Ip)
−1β,

since local estimators are independent, the asymptotic covariance is

Γ(β̂LFM) = Γ
( 1

K

K∑
j=1

β̂LFM
j

)

=
1

K2

K∑
j=1

Γ(β̂LFM
j )

=
1

K2

K∑
j=1

σ2S

=
1

K
σ2S.

Moreover, let us see if
√
N
(
β̂LFM − β

)
is bounded in probability as well. Subsequently, see

how closer the estimate can be to the true value of β. Therefore,
√
N -consistency of the averaged

estimator can be investigated.

Proposition 2.5.2 If K is fixed, 0 < d < 1 and C is non-singular, then as N → ∞
√
N
(
β̂LFM − β

)
d−→ N

(
−
√
K(1− d)(C+ Ip)

−1β,
1

K
σ2S
)
,

where β̂LFM =
1

K

K∑
j=1

β̂LFM
j .
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Proof. First, it should be noted that,

N → ∞ =⇒ (nK) → ∞ K is a fixed number
============⇒ n → ∞ s.t.

n

N
→ 1

K
, (2.17)

thus, n → ∞ allows us to use Conclusion (1) in our proof as it was for
√
n-consistency.

As the averaged estimator β̂LFM , is a linear function of β̂LFM
j (j = 1, . . . , K), it is asymptotically

normally distributed by making use of (2.17) and Conclusion (1). The asymptotic bias is obtained
as follows

E
[
lim

N→∞

√
N(β̂LFM − β)

]
(2.17)
= E

[
lim
n→∞

√
nK
(
(
1

K

K∑
j=1

β̂LFM
j )− β

)]

=

√
K

K
E
[ K∑

j=1

lim
n→∞

√
n(β̂LFM

j − β)
]

=
1√
K

K∑
j=1

−(1− d)(C+ Ip)
−1β

= −
√
K(1− d)(C+ Ip)

−1β,

and asymptotic covariance

Γ(β̂LFM) = Γ
( 1

K

K∑
j=1

β̂LFM
j

)

=
1

K2

K∑
j=1

Γ(β̂LFM
j )

=
1

K2

K∑
j=1

σ2S

=
1

K
σ2S.

It is of great importance to mention that in the above expressions for the asymptotic covariance,

we used the the fact that, when K is fixed, N → ∞ implies n → ∞ such that
n

N
→ 1

K
. This is

the reason why we could make use of Γ(β̂LFM
j ) = σ2S which was true when n → ∞ in Theorem

1.

To verify our results on the asymptotic analysis of the β̂LFM estimator, a simulation study is
conducted in Chapter (3). Furthermore, as for the asymptotic analysis of β̂RFM , β̂RFM

1 , β̂RSM
1 ,

β̂LFM
1 , β̂LSM

1 , β̂LPT
1 , β̂LS

1 , and β̂LPS
1 we have shown the results through the simulation study.
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Chapter 3

Simulation study

3.1 Introduction

To implement distributed statistical learning (inference), particularly, evaluate performance of the
shrinkage estimators discussed throughout this literature, we conduct a Monte Carlo simulation
study using the statistical software R. We illustrate performance of the new class of shrinkage
estimators proposed in Yüzbaşı et al. (2022) and discussed in section (2.3.2) in the context of
distributed sparse linear regression analysis.

Consider following sparse linear model to generate the response vector Y,

Y = Xβ + ε,

where the design matrix XN×p is generated from a multivariate normal distribution with mean
zero and covariance Σp×p, and εN×1 follows i.i.d. N (0, 1). Condition number (CN) of a matrix is
defined as the ratio of its largest eigen value to its smallest eigenvalue. CN of XTX is considered
to assess multicollinearity of independent variables. Therefore, in each machine the condition
number of XT

j Xj is used for multicollinearity of the allocated data to the local machine Mj. It
was suggested by Fan and Li (2001) that the data has multicollinearity if the CN value is larger
than 30. The total sample size is fixed to be N = 104, and elements of the covariance matrix are
σi,j = ρ|i−j| where ρ ∈ {0.3, 0.6}. Regression coefficients are set as β = (βT

1 ,β
T
2 )

T = (βT
1 ,0

T
p2
)T with

β1 = (1, . . . , 1︸ ︷︷ ︸
p1

)T . Number of predictor variables are (p1, p2) = (5, 15). Generated training dataset

under above mentioned assumptions is distributed acrossK machines randomly and evenly. As per
our suggestion, the estimators β̂LFM , β̂RFM , β̂RFM

1 , β̂RSM
1 , β̂LFM

1 , β̂LSM
1 , β̂LPT

1 , β̂LS
1 , and β̂LPS

1

are considered to be used by local machines. Performance of the estimators is illustrated as the
number of machines, K, varies in {1, 10, 20, 50, 100, 200, 500} for a fixed N . MSE is the evaluation
criteria when these estimators are used for distributed analysis. Moreover, to see boundedness of√
n(β̄ − β) when n → ∞ and

√
N(β̄ − β) when N → ∞, we conduct a numerical experiment

to evaluate respective theoretical results. We have also considered a real data example to assess
performance of the shrinkage estimations mentioned in this literature.
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3.2 Performance of the aggregated estimator with respect

to the number of machines

The experiment is repeated 100 times to see the result over several replications. The final result
is the average taken over all those replications. In each replication, the whole dataset is generated
with the setting mentioned above, and is split into K subsets (local samples) randomly and evenly.
Let S = {1, . . . , N} be the index set of whole sample and Sj(j = 1, . . . , K) denote the index set of
local samples with Si ∩Sj = ∅ for any i ̸= j. Next, for each Sj, an estimate β▲

j is computed where
β▲
j is one of the estimation strategies discussed before. Thus, there would be K local estimates

β▲
j ’s to be aggregated as a final estimate. To do this, as it was determined before, we use averaging

technique i.e.,

β̂ = β̄ =
1

K

K∑
j=1

β▲
j

Lastly, we need to observe performance of each estimation strategy with respect to the number
of data partitions (machines), K. In each replication for different values ofK, MSE of the estimates
are saved in rows of a matrix. First row of the matrix is considered to include MSE of the estimator
when K = 1 (global estimator). For K = 10 the dataset (observations) is divided into ten subsets,
based on each subset a local estimate is computed and the final estimate is the average of these
ten local estimates. MSE of the final estimate is saved in a row of the matrix, next row contains
MSE of the final estimate when K = 20, and we continue this to the last row which is for
K = 500. Columns of the matrix are considered to save results in each replication. As there
are 100 replications, it is clear that the matrix has 7 rows containing MSE’s for each K and 100
columns containing the results from each replication.

3.2.1 Observations and result

In order to see the performance of the aggregated estimators, we have plotted MSE of the ag-
gregated estimators with respect to the number of machines. Figures (3.1) and (3.2) are the
illustrations of MSE values based on the generated data with ρ = 0.6 and ρ = 0.3 respectively.
To be more clear about the plots, let us provide more detail about the simulation steps toward
creating the plots. For example when K = 20 its respective point is obtained as follows

M1 → β▲
1

M2 → β▲
2

...
M20 → β▲

20

 −→ 1

20

20∑
j=1

β▲
j = β̂ : final estimate −→

MSE1(β̂)

MSE2(β̂)

...

MSE100(β̂)


−→ 1

100

100∑
s=1

MSEs(β̂) = MSE(β̂) : averaged mse over 100 replications
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and MSE(β̂) is MSE of the respective estimator indicated by a point in the plots for K = 20 on
the K axis. It is obvious that MSE of any estimation strategy should grow when the number of
machines (K) increases. This is the trend which is observable when we look at the plots, and it
shows that the way we implemented the distributed analysis has worked properly.

From figure (3.2) and (3.1) we can see that,

1. The results when ρ = 0.3 are more satisfactory than those when ρ = 0.6, which is due to
the less correlation among the covariates when ρ = 0.3. However, the difference in their
performance is not significant and this shows that the local estimators have been able to
combat multicollinearty even though they have only access to subsets of the data.

2. MSE of the aggregated estimators as it is illustrated in (3.2) and (3.1) does not increase
significantly even when the data is split up to many chunks.

We have also considered Ridge estimator in our simulation study to be compared with the other
shrinkage estimators we have used in this literature. A notable work on performing distributed
ridge regression was conducted by Dobriban and Sheng (2020). They showed that the ridge
estimator is affected very little even though the data is split up into many parts. Following
their algorithm, we have performed the ridge regression on our generated dataset to visualize a
comparison with the new class of Liu-type shrinkage estimators. As it is shown in the plots, this
class of shrinkage estimators have comparable performance with ridge on the same dataset and
under the same conditions in terms of distributed regression. In their paper, they proposed an
optimal weighted average algorithm to aggregate local estimates. However, we have used simple
average method in our study because we have considered a standard architecture of distributed
learning in which the data is distributed evenly and randomly. Its asymptotic properties was also
investigated in previous chapters. Moreover, the simple average method is the simplest way in
terms of computation complexity, communication costs and algorithm run-time.
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Fig. 3.1 MSE of the aggregated estimators when ρ = 0.6.

Fig. 3.2 MSE of the aggregated estimators when ρ = 0.3.
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In our simulation, as we are considering a problem which is not a real one, significant and
insignificant covariates are already set. For example, in our simulation we set them as β =
(βT

1 ,β
T
2 )

T = (βT
1 ,0

T
p2
)T with β1 = (1, . . . , 1︸ ︷︷ ︸

p1

)T . Hence, we have prior knowledge that tells us to fit

a sub-model, with first five covariates that are significantly important in explaining the response
and other fifteen are insignificant. However, in application, if we do not have prior knowledge on
data, one can perform stepwise or other variable selection techniques to select the best subset.
This is what we have done when we study a real dataset in section (3.4).

3.3 Consistency and asymptotic normality of the aggre-

gated estimator

In the following sections we have studied consistency and asymptotic normality of the aggregated
estimators for the beforementioned Liu-type shrinkage strategies. The data is generated under the
same setting we considered in the introduction section (3.1).

3.3.1 Consistency

In order to show that the aggregated estimator β̂ is
√
n and

√
N -consistent, it must be that,√

n(β̂ − β) = Op(1) and
√
N(β̂ − β) = Op(1) respectively. That is, in our numerical study, we

need to illustrate that,
√
n(β̂−β) and

√
N(β̂−β) are bounded in probability. They should thus

be bounded when n and N grow.
Therefore, let us consider N to choose its values in {2000, 4000, 7000, 10000, 15000}, for fixed
K = 50, and n subsequently, to vary in {40, 80, 140, 200, 300}. In the box plots we have illustrated

behaviour of the abovementioned expressions over 50 replications. In figure (3.3), ∥
√
n(β̂▲ −β)∥2

values are plotted versus n ∈ {40, 80, 140, 200, 300}, where β̂▲ is one of the before listed aggregated
estimators, and n is the sample size in each machine. Thus, for a given n on the x axis, each
box along with its whiskers and outer data points represent ∥

√
n(β̂▲ − β)∥2 for the respective

aggregated estimator over 50 replications. As it evident from the plots, the values do not explode
and ∥

√
n(β̂▲ − β)∥2 are bounded when n grows. This shows approximate

√
n-consistency of the

aggregated estimators.
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Fig. 3.3 Behaviour of
√
n(β̂ − β) when n grows.

Fig. 3.4 Behaviour of
√
N(β̂ − β) when N grows.
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Similarly, for the N -consistency, in figure (3.4) we have plotted ∥
√
N(β̂▲ − β)∥2 values versus

N ∈ {2000, 4000, 7000, 10000, 15000}, where N is the total sample size. For a given N on the x

axis, each box along with its whiskers and outer data points represent ∥
√
N(β̂▲ − β)∥2 for the

respective aggregated estimator over 50 replications. Again, the values are in a bounded range,
and this illustrates approximate

√
N -consistency of the aggregated estimators which is a stronger

result than that of
√
n-consistency.

3.3.2 Asymptotic normality

In order to show asymptotic normality, first let us mention a property of a random vector X having
a multivariate normal distribution which is proved in Johnson et al. (2002).

Result 4.2.(Johnson et al. (2002)) If X is distributed as Np(µ,Σ) (multivariate normal dis-
tribution), then any linear combination of variables a′X = a1X1+a2X2+ · · ·+apXp is distributed
as N(a′µ, a′Σa) (univariate normal distribution). Also, if a′X is distributed as N(a′µ, a′Σa) for
every a, then X must be Np(µ,Σ).

Remark 3.3.2.1. An immediate implication of the abovementioned result is that, X ∼ N (µ,Σ),
if every linear combination of the components of X follows univariate normal distribution.

Hence, in order to investigate asymptotic normality of V = (v1, v2, . . . , vp)
T =

√
n(β̂▲ − β),

with p = p1 + p2 = 20, we need to study univariate normality of any linear combination of this
vector. For example, we have considered three linear combinations that extract v1, v3 and v5
elements of the vector V. This setting is considered for V = (v1, v2, . . . , vp)

T =
√
N(β̂▲ − β) as

well. Followings are Q-Q plots to illustrate normality of v1, v3, and v5 for n = 40, n = 140, and
n = 300 over 50 replications.
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Fig. 3.5 Normality of v1, v2, v3 when V =
√
n(β̂LFM

1 − β) and n grows.

Fig. 3.6 Normality of v1, v2, v3 when V =
√
n(β̂LFM − β) and n grows.
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Fig. 3.7 Normality of v1, v2, v3 when V =
√
n(β̂LPS

1 − β) and n grows.

Fig. 3.8 Normality of v1, v2, v3 when V =
√
n(β̂LPT

1 − β) and n grows.
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Fig. 3.9 Normality of v1, v2, v3 when V =
√
n(β̂LS

1 − β) and n grows.

Fig. 3.10 Normality of v1, v2, v3 when V =
√
n(β̂LSM

1 − β) and n grows.
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Fig. 3.11 Normality of v1, v2, v3 when V =
√
n(β̂RFM

1 − β) and n grows.

Fig. 3.12 Normality of v1, v2, v3 when V =
√
n(β̂RFM − β) and n grows.
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Fig. 3.13 Normality of v1, v2, v3 when V =
√
n(β̂Ridge − β) and n grows.

Fig. 3.14 Normality of v1, v2, v3 when V =
√
n(β̂RSM

1 − β) and n grows.
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Looking at the quantile-quantile plots above, we see the points match up along a straight line.
While the line plotted is not a necessary component of the Q-Q plot, it allows us to visualize where
the points should line up should the sample match the base distribution. Therefore from the plots
above and according to the result (4.2), the aggregated estimators are approximately normal when
n grows.

For asymptotic normality of V = (v1, v2, . . . , vp)
T =

√
N(β̂▲ − β), again three linear combina-

tions are considered that extract v1, v3 and v5 elements of the vector V. Followings are the Q-Q
plots to illustrate normality of v1, v3, and v5 for N = 2000, N = 7000, and N = 15000 over 50
replications.
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Fig. 3.15 Normality of v1, v2, v3 when V =
√
N(β̂LFM

1 − β) and N grows.

Fig. 3.16 Normality of v1, v2, v3 when V =
√
N(β̂LFM − β) and N grows.
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Fig. 3.17 Normality of v1, v2, v3 when V =
√
N(β̂LPS

1 − β) and N grows.

Fig. 3.18 Normality of v1, v2, v3 when V =
√
N(β̂LPT

1 − β) and N grows.
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Fig. 3.19 Normality of v1, v2, v3 when V =
√
N(β̂LS

1 − β) and N grows.

Fig. 3.20 Normality of v1, v2, v3 when V =
√
N(β̂LSM

1 − β) and N grows.

47



Fig. 3.21 Normality of v1, v2, v3 when V =
√
N(β̂RFM

1 − β) and N grows.

Fig. 3.22 Normality of v1, v2, v3 when V =
√
N(β̂RFM − β) and N grows.
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Fig. 3.23 Normality of v1, v2, v3 when V =
√
N(β̂RSM

1 − β) and N grows.

Fig. 3.24 Normality of v1, v2, v3 when V =
√
N(β̂Ridge − β) and N grows.
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Again, looking at the Q-Q plots for the aggregated estimators when N grows, we realize that
the points are normally distributed.

Hence, through our simulation study in this section we illustrated that
√
n(β̂▲ − β) and√

N(β̂▲ − β) are bounded and follow multivariate normal distribution when n and N grow. It
thus provided our desired result which was

√
n-consistency and

√
N -consistency of the aggregated

estimators where we used the new class of Liu-type shrinkage estimations proposed in Yüzbaşı
et al. (2022).

3.4 Experiments on Empirical Data

In this section, we assess performance (the accuracy) of the discussed estimation strategies using
an empirical data example. We have considered the Million Song Year Prediction Dataset (MSD)
Bertin-Mahieux et al. (2011). The dataset is downloaded from UC Irvine Machine Learning Repos-
itory. It has N = 515, 345 instances (the first 463, 715 for training and the last 51, 630 for testing)
with p = 90 features. The MSD dataset was studied by Dobriban and Sheng (2019) to be analyzed
in the framework of distributed ridge regression. Motivated by their work, we have considered the
MSD dataset to assess performance of the distributed Liu-type shrinkage estimations. Similar to
Dobriban and Sheng (2019), we try to predict the release year of a song from audio features. Figure
(3.25), shows mean squared prediction error of the aggregated estimates on the MSD dataset.

We repeat the experiment 100 times, for each experiment, we randomly choose Ntrain = 10, 000
samples from the training set and Ntest = 1, 000 from the test set. Next, we perform distributed
Liu-type shrinkage estimations. As it was mentioned before, in application, in order to perform
β̂RFM
1 , β̂RSM

1 , β̂LFM
1 , β̂LSM

1 , β̂LPT
1 , β̂LS

1 , and β̂LPS
1 estimation strategies we need to find significant

and insignificant covariates. In this study, we have used AIC method, and it found that p1 = 78
of covariates are significant and other p2 = 12 are insignificant covariates. The number of local
machines are chosen to be K = 1, 10, 20, 50, 100 that are displayed on the x axis of the plots.
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Fig. 3.25 Million Song Year Prediction Dataset (MSD).

It should be noted that, we have consideredK = 1 to be in the experiment to compare the global
estimation (i.e. K = 1) and the distributed estimation (i.e. K = 10, 20, 50, 100) methods. To do
comparison between centralized (global estimator) and distributed setup (aggregated estimator),
from the plots we can observe that,

1. Having a look at the plots, we see that prediction MSE of the discussed estimators grow
nearly at the same rate and their performance are very similar together; Ridge estimator
performs differently.

2. Comparing MSE of the aggregated estimators (or distributed estimation) with the global
estimator tells us that, the distributed setting still performs relatively well while increasing
the number of local machines.

3. The distributed Liu-type shrinkage estimators have smaller MSE’s than distributed Ridge
estimator even when we increase the number of machines.

To conclude, this example suggests a very positive outlook on using distributed Liu-type shrinkage
estimation: The accuracy is affected very little even though the data is split up into 100 parts.
Such datasets of large size cannot be analyzed on a single machine because there is always limits
for memories. Moreover, we save at least 100x in computation time while we have nearly no loss
in performance.
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Chapter 4

Conclusion and future work

In this thesis, we have explored the idea of distributed supervised statistical learning and discussed
the shrinkage methods proposed by Yüzbaşı et al. (2022) for distributed sparse linear regression
analysis. Our objective was to assess the performance of these methods compare to the popular
techniques such as ridge regression. After a review on distributed learning and the aggregation
strategies, we investigated a new class of Liu-type shrinkage estimators proposed in Yüzbaşı et al.
(2022). A simulation study was conducted to illustrate performance of the Liu-type shrinkage
methods in the framework of distributed analysis. A real data example was investigated method,
and also to applied the method. Through a simulation study, we have made several key findings
that contribute to the understanding and advancement of distributed estimation. In fact, in this
literature, we studied one-shot distributed Liu-type shrinkage in high dimensions.

First, we reviewed various aggregation strategies that are commonly used in distributed learn-
ing. We discussed the properties of averaging as an aggregation method and highlighted its ad-
vantages, such as simplicity and robustness against outliers. Furthermore, we discussed averaging
method to be used for the new class of shrinkage methods proposed in Yüzbaşı et al. (2022). These
shrinkage methods offer improved performance by combining the advantages of both variable se-
lection and shrinkage. We examined the theoretical properties and algorithmic implementations of
these shrinkage methods, highlighting their ability to handle high-dimensional datasets and pro-
vide more interpretable models in the framework of distributed learning.

To assess the performance of these shrinkage methods, we conducted a simulation study consid-
ering the mean squared error (MSE) criterion. Our results showed that the new class of shrinkage
methods have comparable performance with ridge estimator and even outperform the ridge regres-
sion. This indicates that these methods offer better accuracy and predictive performance, partic-
ularly for high-dimensional data and sparse parameters settings in the framework of distributed
regression analysis. These findings reinforce the importance of considering shrinkage methods as
viable alternatives in distributed estimation tasks.

The simulation study demonstrated the superior performance of the aforementioned shrinkage
methods compared to traditional techniques where the global estimation is used. It was addressed
through this study that the number of machines to deploy is also another important question.
However, according to the results from the simulation study, and also the properties we mentioned
about the new class of shrinkage estimators it should be noted that these estimators are efficient
even when the number of machines is provided by the nature of the problem of interest.
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As it was mentioned before, tackling high dimension data needs high performance computing
that is time and budget consuming. Despite the development in technology, it is still infeasible
in practice to analyse such big data problems on a single machine in terms of memory capacity
and computational power. Distributed analysis of big data problems is a bright idea that can be
developed as a more advanced tool than its present form. The most important elements in the
idea of distributed sparse linear regression are: first, using estimation strategies that can perform
very close to their global version when they are used under the distributed setup, second, an op-
timal aggregation technique that is both practical and efficient in terms of accuracy. This thesis
is an introductory work that has studied a specific class of estimation strategies to be used for
distributed analysis.

As the field of distributed supervised statistical learning continues to evolve, it holds tremen-
dous potential for various real-world applications, such as large-scale data analysis and predictive
modeling. The findings from this thesis and the review work can be considered for further re-
search and development, motivating the exploration of advanced distributed learning techniques
and their application in diverse domains. In a future study, iterative distributed Liu-type shrinkage
estimation can be performed which is a more consistent strategy as it was mentioned in the review
sections of this thesis. Distributed post shrinkage strategy is also another interesting problem in
the area of distributed learning. An important question is about the number of machines to deploy
in a distributed setup, this is an optimization problem that still can be considered to be studied for
different estimation strategies. Furthermore, it is of great importance to work on more aggregation
strategies that can make the shrinkage methods more compatible with the distributed scheme and
make the results even closer to the centralized estimation methods.
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