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In this dissertation we will examine questions related to two fields of mathematics,
topological data analysis (TDA) and optimal transport (OT). Both of these fields center on
complex data types to which one often needs to apply standard machine learning or statistical
methods. Such application will typically mandate that these data types are embedded into a
vector space. It has been shown that for many natural metrics such embeddings necessarily
have high distortion, i.e. are not even coarse embeddings. Whether coarse embeddings exist
with respect to the p-Wasserstein distance for 1 ≤ p ≤ 2 remains an open question, however,
both for persistence diagrams (from TDA) and planar distributions (from OT). In this first
part of this dissertation, we use coarse geometric techniques to show that the TDA and OT
sides of this open question are equivalent for p > 1. In the second, we study an embedding
of persistence diagrams, and show that under mild conditions it is injective, i.e. distinguishes
between distinct diagrams.



INJECTIVE AND COARSE EMBEDDINGS OF PERSISTENCE DIAGRAMS AND

WASSERSTEIN SPACE

by

Neil Pritchard

A Dissertation Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Doctor of Philosophy

Greensboro
2023

Approved by

Committee Chair Thomas Weighill



APPROVAL PAGE

This dissertation written by Neil Pritchard has been approved by the following committee
of the Faculty of The Graduate School at The University of North Carolina at Greensboro.

Committee Chair
Thomas Weighill

Committee Members
Greg Bell

Talia Fernós

Michael Hull

Alexander Wagner

Date of Acceptance by Committee

Date of Final Oral Examination

ii



ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Thomas Weighill and my committee members, Dr.
Greg Bell, Dr. Talia Fernós, Dr. Michael Hull, and Dr. Alexander Wagner for their assistance
and guidance towards the completion of my dissertation.

iii



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Topological Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4. Coarse Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Coarse Embeddability of Wasserstein Space and the Space of Persistence Dia-
grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1. Wasserstein Space . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2. The Space of Persistence Diagrams . . . . . . . . . . . . . . . . . 14
2.2.3. Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Past results on embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4. Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. Gaussian persistence curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Gaussian Persistence Curves . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3. Injectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



List of Figures

1.1. A 4× 4 gray-scale image (values range from 0 (black) to 255 (white)) and
its associated binary image from a filtration value of t = 1. . . . . . . . . . 3

1.2. Betti numbers associated to filtered cubical complex constructed from the
gray-scale image in Figure 1.1. Note the appearance of distinct connected
component across the filtration as well as the birth and death of a hole. . . 4

1.3. Two examples of partial matchings between two persistence diagrams
(red,blue). Note how the unmatched points in both cases are visualized
as being matched with the diagonal. . . . . . . . . . . . . . . . . . . . . . 5

1.4. One possible matching for two discrete measures (blue and red) in the
Monge assignment problem. Note that it is possible for the blue measure to
have more supported locations than the red measure but not vice versa. . . . 8

1.5. Two transport plans which are solutions to Monge’s assignment problem.
Here the measures (blue and red) are uniform measures of weight 1

2
and the

matching are denoted by the blue arrows. . . . . . . . . . . . . . . . . . . 8
1.6. An example of an admissible coupling between the two measures (blue and

red). Note how the mass located at x2 goes to two distinct location in the
red measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

v



Chapter 1: Introduction

1.1 Motivation
In this dissertation we will be primarily focused on spaces arising in two fields of mathemat-
ics, namely topological data analysis (TDA) and optimal transport (OT). Loosely speaking,
TDA seeks to answers questions about complex data sets by looking at their "shape". OT on
the other hand has its roots in answering questions about optimal resource allocation. In both
fields one often seeks to make use of standard machine learning and statistical techniques.
In order to do this it is first necessary to transform the objects that arise in these spaces into
real-valued vectors. For such a process to be effective one hopes that the mappings preserve
some of the original structure of the spaces.

The structure of the dissertation is as follows. In this chapter we will provide some of
the basic structure necessary to understand the scope of TDA, OT, and coarse geometry.
For a more in-depth background on these fields the interested reader can appeal to, [15] for
TDA, [21, 26] for OT, and [22] for coarse geometry. In Chapter 2 we connect the questions
of coarse embeddability for Wasserstein space and the space of persistence diagrams by
showing that if the space of persistence diagrams with the p-Wasserstein metric embeds into
Hilbert space, for 1 ≤ p <∞, then so does Wasserstein space on R2 with the p-Wasserstein
metric; the converse holds if p > 1 (Theorem 2.4.8). In Chapter 3 we show that unweighted
Gaussian persistence curves, a functional summary of persistence diagrams, are injective
under mild restrictions. We note that Gaussian persistence curves may be viewed as a map
into L2(R), notably a Hilbert space.

1.2 Topological Data Analysis
Topological data analysis is a field of mathematics which seeks to apply the power of
topology to certain data spaces. There are a number of techniques and spaces one might be
interested in. Of particular focus are point clouds, which are finite subsets of a Euclidean
space, and gray-scale images, which are functions I : [m] × [n] → [256], where ([n] =
{0, 1, · · · , n− 1}). In order to use topological techniques on these data spaces some work
needs to be done to transform these spaces into a "nice" sequence of topological spaces. We
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proceed by introducing some necessary definitions for this procedure.

Definition 1.2.1. Suppose that the k + 1 points {u0, u1, · · · , uk} are affinely independent,
i.e. u1 − u0, u2 − u0, · · · , uk − u0 are linearly independent. The k-simplex (simplex)
determined by these points is the set of points

S =

{
α0u0 + · · ·+ αkuk |

k∑
i=0

αi = 1 and αi ≥ 0 for i = 0, · · · , k

}
If s is a nonempty subset of the points {u0, u1, · · · , uk}, then the convex hull of s is called a
face of the simplex, S.

Note that a 0-simplex is simply a point, a 1-simplex is a line segment, and a 2-simplex is
a triangle. In general one commonly thinks of simplices as k-dimensional generalizations of
triangles.

Definition 1.2.2. A simplicial complex K is a set of simplices which satisfies the following
criterion:

1. Every face of a simplex in K is also in K

2. The nonempty intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and
σ2.

One manner in which point clouds can viewed as topological spaces is by constructing
a sequence of simplicial complexes from the point cloud. There are two common ways to
do this, both require an additional parameter ϵ > 0 to be chosen. For a point cloud X with
an associated metric d, the Čech complex, denoted Cϵ(X) is constructed in the following
manner. Let the elements of the point cloud X be the vertex set of Cϵ(X). Further, say
that for each subset σ ⊂ X let σ be a simplex of Cϵ(X) if ∩x∈σBϵ(x) ̸= ∅. Here Bϵ(X)
denotes the closed ball of radius ϵ centered at x. Note that checking all such intersections
can be quite computationally expensive. In light of this a relaxation of this idea called the
Vietoris-Rips complex, denoted Vϵ(X) is often used. Here, with the same notation and
vertex set as above, σ ∈ Vϵ(X) if d(xi, xj) ≤ ϵ for all xi, xj ∈ σ.

In either case, one transforms the data set into a family of simplicial complexes parame-
terized by ϵ. In addition, one should note that these constructions have the property that if
ϵ < ϵ′ then Cϵ(x) ⊆ Cϵ′(X) or Vϵ(x) ⊆ Vϵ′(X), in other word the family is in fact a nested
family of simplicial complexes.

Definition 1.2.3. A filtered complex, F , is an indexed family (Fi)i∈I of subcomplexes
satisfying Fi ⊆ Fj whenever i < j. Here I is some totally ordered indexing set.

So in fact both the Čech complex and the Vietoris-Rips complex create filtered simplicial
complexes parameterized by ϵ > 0. To obtain such a filtered sequence of complexes for
gray-scale images, which preserves the structure in some manner, one must appeal to a
different type of complex.
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Figure 1.1. A 4× 4 gray-scale image (values range from 0 (black) to 255 (white)) and its
associated binary image from a filtration value of t = 1.

Definition 1.2.4. A set X ⊆ Rn is said to be a cubical complex if it can be written as a
union of elementary cubes. Here an elementary cube is a finite product of intervals of the
form [l, l + 1] or [l, l] for some l ∈ Z.

In order to construct the filtration for gray-scale images we must first consider binary
images, which are defined as a functions I : [m]× [n] → {0, 1}. Note the only difference
here is the codomain is restricted for binary images to that of only two possibilities. The
output value of 1 represents a white pixel and the output value of 0 represents a black pixel.
While gray-scale images have some additional complexity it is quite natural to consider
a binary image as a cubical complex on the white pixels. Namely, the cubical complex
associated to a binary image is the union of elementary cubes and their boundary elements
for each white pixel. To proceed, for a gray-scale image I , let F ′

t denote the binary image
obtained by setting I(x, y) = 1 if I(x, y) ≤ t and I(x, y) = 0 if I(x, y) > t. Then the
family (Ft)t∈[256] of cubical complexes associated to F ′

t is a filtered cubical complex. This
is in fact a special case of a sublevel set filtration.

Definition 1.2.5. Let f : X → R be a function then the family (Ft)t∈R, where Ft =
f−1((−∞, t]) is a filtration called the sublevel set filtration.

Given a filtered complex (Ft)t∈I there are natural inclusion maps for each i ≤ j. These
maps induce homomorphisms on the homology groups Hk(Fi) for each dimension k. The
images of these maps are defined to be the k-th persistent homology groups and the ranks
of these groups are defined to be the k-th persistent Betti numbers. Informally, one may
think of the k-th persistent Betti number as tracking the number of k-dimensional holes (or
in dimension 0, the number of connected components) which persistent along the filtration
from Fi to Fj . For more details on the persistent homology see [15]

The appearance of a topological feature in a persistence homology group is referred to
as the birth of that feature and the disappearance of a feature or the merging with an older
feature is referred to as the death of that feature. It is beneficial to have a concise tool to
represent the entirety of this information.
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β0 = 1, β1 = 0, t=1

β0 = 2, β1 = 0, t=2

β0 = 1, β1 = 1, t=4

β0 = 1, β1 = 0, t=5

Figure 1.2. Betti numbers associated to filtered cubical complex constructed from the
gray-scale image in Figure 1.1. Note the appearance of distinct connected component across
the filtration as well as the birth and death of a hole.

Definition 1.2.6. Denote by R2
< the set {(b, d) ∈ R2 | b < d}. A persistence diagram is a

finite multiset D ⊆ R2
<.

It is of course obvious that a topological feature must be born before it can die and
hence persistence diagrams are natural ways to store the information obtained by the above
procedure. In reality, there are a number of different ways in which persistence diagrams
are defined in the literature. However, the main variances are normally in the number of
points that one allows (e.g finite, bounded, countable) or some restriction on the domain of
the points. One may assume the above definition going forward unless otherwise stated.

Definition 1.2.7. A partial matching between two persistence diagrams D1 and D2 is a
triple (B1, B2, f) where B1 ⊂ D1, B2 ⊂ D2 and f : B1 → B2 is a bijection.

Definition 1.2.8. For 1 ≤ p < ∞ The p-cost of a partial matching (B1, B2, f) between
diagrams D1 and D2 is defined as,

costp(f) =

 ∑
(b,d)∈B1

d((b, d), f((b, d)))p +
∑

(b,d)∈D1\B1

d((b, d),∆R)
p

+
∑

(b,d)∈D2\B2

d((b, d),∆R)
p

 1
p

and for p = ∞ is defined as,

cost∞(f) = max{ sup
(b,d)∈B1)

d((b, d), f((b, d))), sup
(b,d)∈D1\B1

d((b, d),∆R),

sup
(b,d)∈D2\B2

d((b, d),∆R)}

where ∆R = {(x, x) ∈ R2} is the diagonal.
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Figure 1.3. Two examples of partial matchings between two persistence diagrams (red,blue).
Note how the unmatched points in both cases are visualized as being matched with the
diagonal.

Definition 1.2.9. Let 1 ≤ p ≤ ∞ and D1, D2 be persistence diagrams. Define,

Wp(D1, D2) = inf
f
{costp(f)}.

Wp is a metric called the Wasserstein metric on persistence diagrams. Let (D,Wp) denote
the space of persistence diagrams under this metric.

In applications, one often wishes to use the information stored in a persistence diagram
by plugging it into some machine learning algorithm. In order to do this one must seek a
map f : D → Rn for some n, or more generally to a normed vector space such as a (real)
Hilbert space. Such a map is often called a vectorization. Some choices of vectorizations of
persistence diagrams are persistence landscapes, persistence images, and persistence curves
[1, 6, 12]. We will provide a brief description of the development of the persistence curve
from [12]. Note that [·] denotes a multiset.

Lemma 1.2.10 (Fundamental Lemma of Persistence Homology [15]). Let D be the k-
dimensional diagram with respect to a filtration {Fi}i. Then,

βk(Ft) = # [(b, d) ∈ D | b ≤ t < d] = #(Bt ∩D) = #Dt.

Here Bt = [(x, y) | x ≤ t < y ∈ R multiplicity (x, y) = ∞] and Dt = Ft ∩D.

So, the fundamental lemma states the the k-th persistent Betti number can be computed
from the persistence diagram associated to the filtration by simply counting the number
of points in the so called fundamental box, Bt, with multiplicity. In fact one can already
see that this will yield a vectorization of the persistence diagram where the output at t is
the k-th persistent Betti number. This is often refered to as the Betti curve. Chung and
Lawson generalize this as follows: Let F be the set of all function ψ : D × R3 → R and
let T represent the set of all summary statistics on multi sets, and R represent the set of
functions on R.
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Definition 1.2.11. Define a map P : D ×F × T → R by

P (D,ψ, T )(t) = T ([ψ(D, b, d, t) | (b, d) ∈ Dt]), t ∈ R

The function P (D,ψ, T ) is called the persistence curve of D with respect to ψ and T .

In other words the persistence curve framework provides a general class of vectorizations.
One simply makes choices of summary statistic, applies this statistic to points in the
fundamental box, and accumulates the information.

1.3 Optimal Transport
In this section we will give a brief overview of the field of optimal transport which, simply
put, seeks to find the most efficient way to move one mass to another. We will follow the
development and notation in [21] unless otherwise stated. We begin with the introduction of
some simple definitions and notation. Let

Σn =

{
a ∈ Rn |

n∑
i=1

ai = 1 and ai ≥ 0 for all i = 1, . . . , n

}
.

Σn is called the probability simplex (standard simplex) and an element a ∈ Σn is referred
to as a probability vector. Note that Σn is a simplex (Definition 1.2.1) with the vertices in
question being the standard unit vectors in Rn.

Definition 1.3.1. A discrete measure with weights a ∈ Rn and locations x1, . . . , xn in a
space X is denoted,

α =
n∑
i=1

aiδxi .

If a is in fact an element of the probability simplex Σn then the measure is called a proba-
bility measure.

We will begin with a brief example of a type of optimization problem called the assign-
ment problem.

Example 1.3.2 (Assignment Problem). Let A and B be two sets such that |A| = |B| and let
C : A×B → R denote a function (typically thought of as representing a cost of movement).
Then the assignment problem is an optimization problem of the form:

min
f : A→B, f a bijection

1

n

∑
a∈A

C(a, f(a)).
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One natural analogy for such problems is to consider the sets A and B as representing
the locations of warehouses and stores respectively. With this in mind the cost function
represents the cost of travel between an individual warehouse and a store and the problem
seek a transportation plan which seeks to provide each store with a necessary good while
minimizing cost. Of course one should note that the requirement that f is a bijection here
is already a strong requirement given this analogy. It would be quite reasonable to allow
goods from multiple warehouse to go to a single store and yet this would not be allowed in
the assignment problem.

With this in mind we consider a relaxation of this bijection condition as considered by
Monge in 1781.

Example 1.3.3 (Monge Assignment Problem Between Discrete Measures). Let

α =
n∑
i=1

aiδxi and β =
m∑
j=1

bjδyj

be two discrete measure with weights a ∈ Rn, b ∈ Rm and locations x1, . . . , xn ∈ X and
y1, . . . , ym ∈ Y . Let C : X × Y → R denote a cost function. One wishes to consider maps
T : {x1, . . . , xn} → {y1, . . . , ym} that satisfy:

∀ j ∈ [m], bj =
∑

i : T (xi)=yj

ai. (1.1)

One might recognize that Equation (1.1) requires that the pushforward of the measure α is
equal to β. In light of this the notation T#α = β is used to represent this criterion. Finally,
Monge’s assignment problem can be stated as:

min
T

{∑
i

C(xi, T (xi)) | T#α = β

}
.

Note that Monge’s problem can in fact be seen as a generalization of the assignment
problem. In the case when the measures are uniform probability measures of weight 1

n
the

constraint T#α = β implies that T is a bijection. Thus Monge’s assignment problem is the
assignment problem with the same cost function.

As is often the case neither the assignment problem or Monge’s assignment problem
necessarily have unique solutions (see Figure 1.5).

Again we should note that even with the relaxation provided in the Monge problem there
are still some issues in light of our analogue as a transport plan. In this case, while it is
possible to send the goods from different warehouses to a single store, it is still impossible to
send goods from one warehouse to distinct stores. Such a condition in regards to measures
is often called "mass splitting".
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x5
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x7

x8

y2

y3

y4

y1

x1

x2

x3

x4

Figure 1.4. One possible matching for two discrete measures (blue and red) in the Monge
assignment problem. Note that it is possible for the blue measure to have more supported
locations than the red measure but not vice versa.

Figure 1.5. Two transport plans which are solutions to Monge’s assignment problem. Here
the measures (blue and red) are uniform measures of weight 1

2
and the matching are denoted

by the blue arrows.

Example 1.3.4 (Kantorovich’s relaxation). Let

U(a, b) =
{
P ∈ Rn×m+ | P1m = a and P T1n = b

}
.

Then, for a given cost matrix C, Kantorovich’s relaxation is the optimization problem:

LC(a, b) = min
P∈U(a,b)

∑
i,j

Ci,jPi,j.

Technically, this is not formulated as a problem between discrete measures. However,
it is easy to make the translation. If α and β are discrete measures with weights a and b
respectively andC denotes a cost matrix defined on their supports then one has Kantorovich’s
problem between discrete measures:

LC(α, β) = LC(a, b).

Note that so far we have restricted our attention to the discrete versions of these prob-
lems. There are of course analogues that can be stated for arbitrary measures. We will be
particularly focused on restricting to the case of discrete measures in Chapter 2 though, so
we have chosen this path for some consistency. Nevertheless, we will conclude this section
with the necessary definition to introduce the formal statement of Wasserstein space.

Definition 1.3.5. Let X be a set. A σ-algebra on X is a collection B of subsets of X that
satisfy the following:

8



y1

y2

x1

x2

Figure 1.6. An example of an admissible coupling between the two measures (blue and red).
Note how the mass located at x2 goes to two distinct location in the red measures.

1. ∅ ∈ B.

2. If E ∈ B, then EC ∈ B.

3. If E1, E2, · · · ∈ B, then ∪∞
n=1En ∈ B.

Definition 1.3.6. Let X be a metric space. The Borel-σ-algebra of X , denoted B[X], is
defined to be the σ-algebra generated by the open subsets of X .

Note here that the σ-algebra generated by a family of sets can equivalently be thought of
as the coarsest σ-algebra that contains the family or the intersection of all σ-algebras that
contain the family.

Definition 1.3.7. Let (X,B) be a measurable space. A measure µ on B is a map µ : B →
[0,∞] that satisfies,

1. µ(∅) = 0.

2. Whenever E1, E2, · · · ∈ B are a countable sequence of disjoint measurable sets, then

µ(∪∞
n=1En) =

∞∑
n=1

µ(En).

A triplet (X,B, µ), where (X,B) is a measurable space and µ : B → [0,∞] is a measure
is known as a measure space. Moreover, if the total measure of the space is one, e.g.
µ(X) = 1, then the space is said to be a probability space and the measure a probability
measure.

With this we can define Wasserstein space. We say that a probability distribution α has
finite p-th moment if for every x0∫

d(x0, x)
pdα(x) <∞.

9



Definition 1.3.8. Let (X, dx) be a complete separable metric space and for p ≥ 1 let Pp(x)
denote the space of all Borel probability measures on X with finite p-th moments. Further,
let U(a, b) denote the set of Borel probability measures γ on X2 with marginals α and β (i.e.
the pushforwards of γ along the projections are α and β respectively). Then the Wasserstein
p distance between α, β ∈ Pp(X) is

Wp(α, β)
p = inf

γ∈U(α,β)

∫
d(x, y)pdγ(x, y)

The metric space (Pp(X),Wp) is called the Wasserstein p-space over X .

We call an element of U(α, β) a coupling from α to β. The connection to see here is
that the distance plays the role of the cost function and the coupling γ plays the role of the
transportation map.

1.4 Coarse Geometry
In coarse geometry one seeks to study the large scale structure of metric spaces. More specif-
ically one seeks to study properties of spaces which are invariant under coarse equivalences.
Historically this has developed out of work of Gromov in geometric group theory, [17], and
Roe in index theory, [23]. We begin by recalling the notion of coarse equivalence before
mentioning two coarse invariants.

Definition 1.4.1. Let X and Y be metric spaces and let f : X → Y be a map. f is said to be

1. bornologous if for all R > 0 there exists an S > 0 such that d(x, x′) < R implies
d(f(x), f(x′)) < S.

2. proper if for each x ∈ X and eachR > 0 there exists S > 0 such that f−1(BR(f(x)))
⊆ BS(x).

Moreover if f is both bornologous and proper f is said to be coarse.

Definition 1.4.2. Two metric spaces X and Y are said to be coarsely equivalent if there
exist two coarse maps f : X → Y and g : Y → X such that gf and fg are each close to the
identity map. Here two maps h, i are said to be close if the set {d(h(x), i(x)) | x ∈ X} is
bounded.

Note in this formulation a coarse embedding, f : X → Y is a coarse equivalence of X
and f(X).

Definition 1.4.3 ([28]). A (discrete) metric space X is said to have property A if for all
R > 0 and all ϵ > 0, there exists a family {Ax}x∈X of finite, non-empty subsets of X ×Z≥1

such that

10



1. for all x, y ∈ X with d(x, y) ≤ R, we have |(Ax∆Ay)|
|(Ax∩Ay)| ≤ ϵ, and

2. there exists a B > 0 such that for every x ∈ X , if (y, n) ∈ Ax, then d(x, y) ≤ B.

One should also recall the following results of Yu which connect spaces with property A
to the coarse Baum-Connes conjecture.

Theorem 1.4.4 ([28]). If a discrete metric space Γ has property A, then Γ admits a coarse
embedding into Hilbert space.

Theorem 1.4.5 ([28]). Let Γ be a discrete metric space with bounded geometry. If Γ admits
a coarse embedding into Hilbert space, then the coarse Baum-Connes conjecture holds for
Γ.

Of course in light of this it is perhaps interesting to ask if the space of persistence
diagrams has Yu’s property A. This question was answered in the negative in joint work of
the author and Bell et. al., [4].
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Chapter 2: Coarse Embeddability of
Wasserstein Space and the Space of

Persistence Diagrams

2.1 Introduction
In this chapter, we consider vectorizations of two kinds of non-linear data: persistence
diagrams, and probability distributions. A persistence diagram is an unordered set of points
in the plane which arises as a summary of the topological information in a dataset (e.g. a
point cloud or a grayscale image). Persistence diagrams have proven to capture important
information in applications using image data [10], geospatial data [16], time series data [24],
and more. The set of persistence diagrams is endowed with a family of natural metrics called
Wasserstein distances (see Section 2.2). The analysis of persistence diagrams is hampered
by the fact that the set of persistence diagrams is not readily identifiable with a subset of
Euclidean space. Hence, many vectorizations (i.e. embeddings from the set of persistence
diagrams to a Hilbert space) have been introduced in recent years. Examples of embeddings
for persistence diagrams include persistence landscapes [6], persistence images [1] and
persistence curves [12]. Ideally one would like such embeddings to be isometric; however,
not only are these embeddings not so, it can be shown that no isometric embedding of
persistence diagrams into Hilbert space exists. Even worse, even if one relaxes the isometric
condition (say, to that of a coarse embedding), such an embedding is still theoretically
proven not to exist in most cases (see Section 2.3 for a survey of such results).

This chapter also studies probability distributions as objects. The space of all (Borel)
probability distributions on Rn is equipped with a family of metrics, also called Wasserstein
distances. Indeed, the persistence diagram distance metrics inherited the name from these
distances, which come from the field of optimal transport, due to the similarity between
their definitions. Optimal transport and Wasserstein distances have been applied in a variety
of areas including economics, machine learning, computer graphics and fluid dynamics.
Probability distributions, with Wasserstein metrics, are also difficult to embed in Euclidean
space (see Section 2.3).
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Despite the large number of negative results regarding embeddings, some important
cases remain open. In the case of persistence diagrams, it is not known whether the set
of persistence diagrams with the p-Wasserstein metric coarsely embeds into Hilbert space
for 1 ≤ p ≤ 2. In the case of probability distributions, it is not known whether the set of
probability distributions on R2 with the p-Wasserstein metric coarsely embeds into Hilbert
space for the same range of p values. These spaces are somewhat similar in that persistence
diagrams can be thought of as discrete distributions, and one might expect that the answers
to these two open questions should be related. In this paper, we confirm this by leveraging a
result of Nowak on coarse embeddings of finite subsets [19].

In particular, we show that all finite sets of distributions with the p-Wasserstein metric
uniformly coarsely embed into the space of persistence diagrams with the p-Wasserstein
metric (Proposition 2.4.2). If p > 1, we obtain the other direction: that finite sets of
persistence diagrams embed into Wasserstein space (Proposition 2.4.5). As a corollary,
we obtain that if the space of persistence diagrams with the p-Wasserstein metric embeds
into Hilbert space, for 1 ≤ p < ∞, then so does the space of distributions (with finite pth

moment) in R2 with the p-Wasserstein metric; the converse holds if p > 1 (Theorem 2.4.8).

2.2 Preliminaries

2.2.1 Wasserstein Space
We recall the following basic notions in optimal transport from [21].

Definition 2.2.1. Let (X, dX) be a complete separable metric space and let Pp(X) denote
the space of all Borel probability measures on X with finite p-th moments, for 1 ≤ p <∞.
The p-Wasserstein distance between α, β ∈ Pp(X) is given by,

(Wp(α, β))
p = infγ∈U(α,β)

∫
d(x, y)pdγ(x, y),

Where U(α, β) is the set of Borel probability measures on X2 with marginals α and β. The
metric space (Pp(X),Wp) is called the Wasserstein p space over (X, dX).

While the p-Wassertein distance is defined over all measures, in this paper we will be
particularly focused on discrete measures. In this case there is an equivalent formulation
of the distance which will be useful. Let α =

∑m
j=1 ajδxj and β =

∑n
j=1 bjδyj be discrete

measures then,

(Wp(α, β))
p = minP∈U(a,b)

∑
i,j

d(xi, xj)
pPij.

Here U(a, b) is the set of n ×m matrices such that P1m = a and P T1n = b. Moreover,
if one additionally assumes that α and β have rational coefficients then by rewriting α =
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∑N
j=1

1
N
δx′j and β =

∑N
j=1

1
N
δy′j it follows from the Birkhoff von Neumann theorem that

the distance can be re-expressed as,

(Wp(α, β))
p = minσ∈P (N)

1

N

N∑
j=1

d(x′j, y
′
σ(j))

p (2.1)

where P (N) is the set of permutations on {1, . . . , N} [21].

2.2.2 The Space of Persistence Diagrams
Persistence diagrams typically appear in topological data analysis as a way to store topologi-
cal information from a sequence of complexes.

Definition 2.2.2. Denote by R2
< the set {(b, d) ∈ R2 | b < d}. A persistence diagram is

finite multiset D ⊆ R2
<.

Definition 2.2.3. A partial matching between two persistence diagrams D1 and D2 is a
triple (B1, B2, f) where B1 ⊆ D1, B2 ⊆ D2 and f : B1 → B2 is a bijection.

Definition 2.2.4. For 1 ≤ p < ∞ The p-cost of a partial matching (B1, B2, f) between
diagrams D1 and D2 is defined as,

costp(f) =

 ∑
(b,d)∈B1

d((b, d), f((b, d)))p
∑

(b,d)∈D1\B1

d((b, d),∆R)
p

+
∑

(b,d)∈D2\B2

d((b, d),∆R)
p

 1
p

where ∆R = {(x, x) ∈ R2 is the diagonal.

The distance d in the above definition is a distance between points in the plane. Common
choices are an ℓq distance, for q ≥ 1, or ℓ∞ distance. Since all ℓq distances on R2 are bi-
Lipschitz equivalent, our results do not depend on the particular choice of d; when necessary
we assume the ℓ∞ distance.

Now, for two persistence diagrams D1, D2 we define the possibly infinite distance
function

Wp(D1, D2) = inf{costp(f) | f is a partial matching between D1 and D2}.

Note that Wp is a metric on persistence diagrams, which we call the p-Wasserstein metric
on persistence diagrams.
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Definition 2.2.5. For 1 ≤ p < ∞, let D denote the collection of persistence diagrams D
that satisfy Wp(D,∅) < ∞ modulo the relation D1 ∼ D2 if Wp(D1, D2) = 0. Here ∅
represents the empty diagram. The metric space (D,Wp) is called the space of persistence
diagrams in the p-Wasserstein distance.

We use Wp to denote both the Wasserstein distance between probability distributions and
the Wasserstein distance between persistence diagrams; the meaning will always be clear
from the arguments. Note that the Wasserstein distance between persistence diagrams is
not the same as the Wasserstein distance between the corresponding empirical distributions
supported on the points in each diagram as a result of the partial matchings and the use of
the diagonal as a universal point to match to. In addition we will assume that the ground
norms for both the Wasserstein metric on diagrams and distributions is the infinity norm
unless otherwise stated. While other options are available the equivalence of norms makes
the choice somewhat superfluous for our arguments.

2.2.3 Embeddings
A metric embedding is a map between metric spaces which preserves distances in some
manner. We will consider a number of different types of embeddings.

Definition 2.2.6. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a map.
We say that f is

• an isometric embedding if d(x, y) = d(f(x), f(y))∀x, y ∈ X;

• a bi-Lipschitz embedding if there exists a constant A ≥ 1 such that A−1d(x, y) ≤
d(f(x), f(y)) ≤ Ad(x, y);

• ϵ-quasi-isometric embedding if there exists an ϵ > 0 such that d(x, y) − ϵ ≤
d(f(x), f(y)) ≤ d(x, y) + ϵ;

• a coarse embedding if there exist non-decreasing functions ρ1, ρ2 : [0,∞) → [0,∞)
satisfying ρ1(d(x, y)) ≤ d(f(x), f(y)) ≤ ρ2(d(x, y)) ∀x, y ∈ X and limt→∞ ρ1(t)
= +∞.

Suppose now that D ∈ [1,∞), then f is said to have distortion at most D if there exists
an s ∈ (0,∞) such that

∀x, y ∈ X sd(x, y) ≤ d(f(x), f(y)) ≤ Dsd(x, y).

Moreover, the distortion of f , denoted dist(f) is the infimum over all D such that the
inequality above holds. If a map f : X → Y with distortion D exists, then X is said to
embed into Y with distortion D. We introduce the notation

cY (X) = inf
f : X→Y

dist(f).

15



If θ ∈ (0, 1], then the θ-snowflake of a metric space (X, d) is the metric space (X, dθ),
where the metric is the obtained by raising d to the θ power. Following [2], a metric space X
is said to be θ-snowflake universal if for every finite metric space (Y, dY ), cX(Y, dθY ) = 1.

2.3 Past results on embeddings
In this section we will give an overview of some embedding results for p-Wasserstein space
and the space of persistence diagrams. In general, most of these spaces do not embed into
Hilbert or Euclidean spaces except under severe restrictions.

Theorem 2.3.1 (Turner et al., 2014 [25]). (D,Wp) does not admit an isometric embedding
into Hilbert space for any 1 ≤ p ≤ ∞

Theorem 2.3.2 (Carrière and Bauer, 2018 [8]). Let n ∈ N. Then for any N ∈ N and L > 0
(DL

N ,Wp) does not bi-Lipschitz embed into Rn for p ∈ N ∪∞

Note here the DL
N denotes a restricted space of persistence diagrams; namely the space of

all diagrams which have fewer than N points and whose points all lie in the region [−L,L]2.
To obtain a positive result, we need not only a cardinality restriction, but a relaxation of the
embedding type.

Theorem 2.3.3 (Mitra and Virk, 2018 [18]). (DN ,Wp) coarsely embeds into Hilbert space
for 1 ≤ p ≤ ∞.

Without the cardinality restriction, even coarse embeddability is not possible in many
natural cases. A first result in this direction showed that the space of all persistence diagrams
fails to have Yu’s Property A [28], a sufficient but not necessary condition for embeddability
in Hilbert space originally introduced in Yu’s work on the coarse Baum-Connes and Novikov
Conjectures.

Theorem 2.3.4 (Bell et al., 2019 [4]). (D,Wp) does not have property A for 1 ≤ p <∞.

Later it was shown for all p > 2 that the space of persistence diagrams fails to coarsely
embed into Hilbert space.

Theorem 2.3.5 (Bubenik and Wagner, 2020 [7]). (D,W∞) does not coarsely embed into
Hilbert space.

Theorem 2.3.6 (Wagner, 2021 [27]). (D,Wp) does not coarsely embed into Hilbert space
for 2 < p <∞.

Turning to Wasserstein space, Andoni, Naor, and Neiman show that p-Wasserstein space
on R3 is 1

p
-snowflake universal. The proof of this result relies on an explicit embedding of

any snowflake of a finite metric space into p-Wasserstein space on R3 as a uniform measure.

16



Theorem 2.3.7 (Andoni-Naor-Neiman, 2018 [2]). If p ∈ (1,∞) then for every finite metric
space (X, dX) we have

cPp(R3)

(
X, d

1
p

X

)
= 1.

As a corollary, Andoni-Naor-Neiman prove that p-Wasserstein space on R3 fails to
coarsely embed into Hilbert space for p > 1. The case for R2 and p = 1 remains open.

Theorem 2.3.8 (Andoni-Naor-Neiman, 2018 [2]). If p > 1 then Pp(R3) does not admit a
coarse embedding into any Banach space of nontrivial type. In particular, for p > 1, Pp(R3)
does not admit a coarse embedding into Hilbert space.

To summarize, coarse embeddability in Hilbert space remains an open question for
persistence diagrams when 1 ≤ p ≤ 2 and for Wasserstein space when the underlying space
is the plane (the most closely related context to that of persistence diagrams). Our main
results prove that these two questions are equivalent.

2.4 Main Results

For convenience, we will use the notation d(·, ·) for distances in (D,Wp) and Pp(R2).
The following characterization, by Nowak, of coarse embedabilty into Hilbert space by

way of finite subsets will prove quite useful.

Theorem 2.4.1 (Nowak, 2005 [19]). A metric space X admits a coarse embedding into a
Hilbert space if and only if there exists non-decreasing functions ρ−, ρ+ : [0,∞) → [0,∞)
such that limt→∞ ρ−(t) = ∞ and for every finite subset A ⊂ X there exists a map
fA : A→ ℓ2 satisfying,

ρ−(d(x, y)) ≤ ∥fA(x)− fA(y)∥ ≤ ρ+(d(x, y))

for every x, y ∈ A.

Nowak’s characterization of coarse embeddings into Hilbert space allows one to restrict
one’s attention to maps on finite subsets. In light of this the proofs of Theorems 2.4.8 and
2.4.9 rely on finding low distortion maps between finite subsets in these spaces. We now
proceed to show the existence of such a map from any finite subset of measures in Pp(R2).

Proposition 2.4.2. Suppose A = {α1, · · · , αn} ⊆ Pp(R2). Then for all ϵ > 0 there exists
an ϵ-quasi-isometric embedding f : A→ (D,Wp).
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Proof. Let A = {α1, · · · , αn} ⊆ Pp(R2) and ϵ > 0 be given. It follows [26] that there
exists a collection B = {β1, · · · , βn} ⊆ Pp(R2) of rational discrete measures (i.e. discrete
measures with rational weights) such that d(αi, βi) < ϵ

2
. By Lemma (2.4.3) below there

exists an isometry f : B → D. Define f̄ : A→ D by αi 7→ f(βi). We check that this is an
ϵ-quasi-isometry. Indeed:

d(f̄(αi), f̄(αj)) = d(f(βi), f(βj))

= d(βi, βj)

≤ d(βi, αi) + d(αi, αj) + d(αj, βj)

< d(αi, αj) + ϵ

and

d(αi, αj) ≤ d(αi, βi) + d(βi, βj) + d(βj, αj)

< ϵ+ d(f̄(αi), f̄(αj)).

The proof of Proposistion 2.4.2 relied on the existence of an isometry from finite subsets
of rational measures in Pp(R2) to Dp. The desired map is simply a translation of points, but
the details are included in Lemma 2.4.3 for completeness.

Lemma 2.4.3. Suppose A = {α1, · · · , αn} is a finite subset of discrete rational measures
in Pp(R2). Then there exists an isometry f : A→ D

Proof. LetN denote the common denominator of all coefficients in the measures α1, · · · , αn.
We write each αi as a sum of uniformly weighted Dirac measures (possibly with duplication):

αi =
N∑
j=1

1

N
δxij .

Let D denote the diameter of the set { 1
N
xij}i,j in R2. Note that there exists an x ∈ R2 such

that

{ 1

N
xij + x} ⊂ {(a, b) ∈ R2 | a < b}and

d∞({ 1

N
xij + x},∆R2) > 2D.

Define f : A→ D by αi 7→ { 1
N
xij + x}. From (2.1) we have that

(Wp(α, β))
p = min

σ∈P (N)

1

N

N∑
j=1

∥x′j − y′σ(j)∥p∞.
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Now, since the diagrams are sufficiently far from the diagonal, we must have that the distance
between f(α) and f(β) is achieved by a perfect matching, which proves the result.

We now consider the other direction, namely embedding persistence diagrams into
Wasserstein space. The main obstacle here is the existence of matchings to the diagonal.

Lemma 2.4.4. Suppose D = {D1, D2, · · · , Dn} ⊂ (D,Wp) is a finite subset of diagrams
whose points all have multiplicity one. Let p > 1, then for all ϵ > 0 there exists an N ∈ N
and map f : D → Pp(R2) satisfying the following for sufficiently large s:

1

N + s+ 1
d(Di, Dj) ≤ d(f(Di), f(Dj)) ≤

1

N + s+ 1
d(Di, Dj) +

1

N + s
ϵ (2.2)

Proof. Let D be as above and let ϵ > 0 be given. We want to define f to be the map that
sends each diagram to a uniform measure on the same number of points. To this end we
will first map each diagram to subsets of the plane with the same cardinalities. We begin
by fixing some notation. Let πij denote the optimal partial matching between Di and Dj ,
Uij denote those points in Di that are unmatched under this partial matching, Ni = |Di|,
N = maxiNi. Furthermore, define the following:

M = max
(x,y)∈∪iDi

x+ y

2

m = min
(x,y)∈∪iDi

x+ y

2

ρx = argmin
x

{d(x, y) | y ∈ ∆R}

I = {(m+
t(M −m)

s
,m+

t(M −m)

s
)}st=0

Ii = {(m+
t(M −m)

s
,m+

t(M −m)

s
)}s+N−Ni
t=s+1 .

Here s > N is taken so large so that M−m
s

< ϵp

3N
and (s+1+N−Nj−|Uij|)(N(M−m)

s
)p <

ϵp

3
. We note that |I| = s + 1 and |Ii| = N − Ni. Define D̄i = Di ∪ I ∪ Ii and note

|D̄i| = Ni +N −Ni + s+ 1 = N + s+ 1 for all i. Finally, define f : D → Pp by sending
each Di to the uniform measure on D̄i. We first check that f has the desired upper bound.
Let σij : Uij → σij(Uij) be an optimal matching from Uij to a subset of I and τji denote an
optimal matching from Uji to a (possibly different) subset of I . Now, note that,

|I ∪ Ii \ τji(Uji)| = s+ 1 +N −Ni − |Uji|
= s+ 1 +N −Nj − |Uij|
= |I ∪ Ij \ σij(Uij)|.

Assume that these sets have been ordered as {xi} and {yi} with the order induced from the
standard order on R and let ω denote the matching which sends xi ∈ I ∪ Ii \ τji(Uji) to
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yi ∈ I ∪ Ij \ σij(Uij). We define a coupling,π, between the uniform measures f(Di) and
f(Dj) by,

π =
1

N + s+ 1

 ∑
x∈Di\Uij

δ(x,πij(x)) +
∑
x∈Uij

δ(x,σij(x)) +
∑

x∈τji(Uji)

δ(x,τ−1
ji (x)) +

∑
x∈I∪Ii\Uij

δ(x,ω(x))

 .
With x =

(
m+ t1(M−m)

s
,m+ t1(M−m)

s

)
and ω(x) =

(
m+ t2(M−m)

s
,m+ t2(M−m)

s

)
we note that,

∥x− ω(x)∥∞ =
|t1 − t2|(M −m)

s

≤ N(M −m)

s
.

Thus, ∑
x∈I∪Ii\Uij

∥x− ω(x)∥p∞ ≤ (s+ 1 +N −Nj − |Uij|)(
N(M −m)

s
)p <

ϵp

3
.

Putting it together,
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d(f(Di), f(Dj))

≤(

∫
R2×R2

∥x− y∥p∞dπ(x, y))
1
p

=
1

N + s+ 1

 ∑
x∈Di\Uij

∥x− πij(x)∥p∞ +
∑
x∈Uij

∥x− σij(x)∥p∞+

∑
x∈τji(Uji)

∥x− τ−1
ji (x)∥p∞ +

∑
x∈I∪Ii\Uij

∥x− ω(x)∥p∞

 1
p

≤ 1

N + s+ 1

 ∑
x∈Di\Uij

∥x− πij(x)∥p∞ +
∑
x∈Uij

[∥x− ρx∥∞ + ∥ρx − σij(x)∥∞]p+

∑
x∈τji(Uji)

[
∥x− ρx∥∞ + ∥ρx − τ−1

ji (x)∥∞
]p

+
∑

x∈I∪Ii\Uij

∥x− ω(x)∥p∞

 1
p

≤ 1

N + s+ 1

 ∑
x∈Di\Uij

∥x− πij(x)∥p∞ +
∑
x∈Uij

∥x− ρx∥p∞ +
∑

x∈τji(Uji)

∥x− ρx∥p∞

 1
p

+

1

N + s+ 1

∑
x∈Uij

∥ρx − σij(x)∥p∞ +
∑

x∈τji(Uji)

∥ρx − τ−1
ji (x)∥p∞ +

∑
x∈I∪Ii\Uij

∥x− ω(x)∥p∞

 1
p

≤ 1

N + s+ 1
[d(Di, Dj) + ϵ] .

This completes the proof of the upper bound. For the lower bound, note that any bijective
coupling of uniform measures f(Di) and f(Dj) induces a partial matching on the diagrams
Di and Dj . Let π denote the optimal coupling and πij the induced partial matching between
diagrams Di and Dj , further let Uij denote those points unmatched under πij . Then we have,

d(Di, Dj)
p ≤

∑
x∈Di\Uij

∥x− πij(x)∥p∞ +
∑
x∈Uij

∥x− ρx∥p∞ +
∑
x∈Uji

∥x− ρx∥p∞

≤
∑

x∈Di\Uij

∥x− π(x)∥p∞ +
∑
x∈Uij

∥x− π(x)∥p∞

+
∑
x∈Uji

∥x− π−1(x)∥p∞ +
∑

x∈I∪Ii\Uij

∥x− π(x)∥p∞

= (N + s+ 1)d(f(Di), f(Dj))
p
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For a discrete measure α =
∑
aiδxi and a real number r denote by λr(α) the dilated

measure λr(α) =
∑
aiδrxi . Note that by defining f̄ = λN+s+1(f) we may obtain a map on

finite subsets of diagrams where the coefficients in the inequality in Lemma 2.4.4 become
1. Moreover, for any diagram there exists a diagram whose points have multiplicity one
and which is within ϵ of the original diagram. Thus, one may relax the restriction that each
diagram has multiplicity one simply at the cost of a −ϵ on the lower bound after scaling.
This results in the following form of Lemma 2.4.4 which will be more useful.

Proposition 2.4.5. Suppose D = {D1, D2, · · · , Dn} ⊂ (D,Wp) is a finite subset of di-
agrams. Let p > 1, then for all ϵ > 0 there exists an ϵ-quasi-isometric embedding
f : D → Pp(R2).

Proposition 2.4.6. Let X and Y be metric spaces and suppose for all ϵ > 0 and all finite
subsets A ⊂ X there exists a map f : A→ Y satisfying

d(xi, xj)− ϵ ≤ d(f(xi), f(xj)) ≤ d(xi, xj) + ϵ (2.3)

for all xi, xj ∈ A. If Y coarsely embeds into a Hilbert space, then X coarsely embeds into
a Hilbert space.

Proof. We proceed by applying Theorem (2.4.1). Let A be a finite subset of X . Then by
assumption and (2.4.1) there exists ρ−, ρ+ : [0,∞) → [0,∞) with limt→∞ ρ−(t) = ∞ and
g : f(A) → ℓ2 satisfying

ρ−(d(f(xi), f(xj))) ≤ ∥g(f(xi))− g(f(xj))∥ ≤ ρ+(d(f(xi), f(xj))).

Define ḡ = g ◦ f , ρ̄+(t) = ρ+(t+ ϵ) and

ρ̄−(t) =

{
ρ−(t− ϵ) t > ϵ

0 otherwise

Then we have,

ρ̄−(d(xi, xj)) ≤ ρ−(d(f(xi), f(xj))) ≤ ∥g(f(xi))− g(f(xj))∥ ≤ρ+(d(f(xi), f(xj)))
≤ρ̄+(d(xi, xj))

Lemma 2.4.7. Let X and Y be metric spaces and suppose for all ϵ > 0 and all finite subsets
A ⊂ X there exists a map f : A→ Y satisfying,

d(xi, xj)− ϵ ≤ d(f(xi), f(xj)) ≤ d(xi, xj) + ϵ (2.4)

for all xi, xj ∈ A. Then X being 1
p
-snowflake universal implies Y is 1

p
-snowflake universal.
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Proof. Let θ ∈ (0, 1) and (W,dθW ) be the θ-snowflake of a finite metric space (W,dW ).
Let ϵ > 0 be given and take δ < 1 so small so that 1+δ

1−δ < 1 + ϵ. Take ϵ1 < δ
2
. Then by

assumption there exists a map g : W → X and a constant k1 such that,

k1d(xi, xj) ≤ d(g(xi), g(xj)) ≤ k1(1 + ϵ1)d(xi, xj).

Let M = minxi ̸=xj d(xi, xj) and take ϵ2 < δk1M
2

. Let f : g(W ) → Y be a map satisfying
(2.4) with respect to ϵ2. We claim that f ◦ g is the desired map. Indeed,

d(f(g(xi)), f(g(xj))) ≤ d(g(xi), g(xj)) + ϵ2

≤ k1(1 + ϵ1)d(xi, xj) + ϵ2

≤ k1(1 + δ)d(xi, xj)

≤ k1(1− δ)(1 + ϵ)d(xi, xj).

Further,

d(f(g(xi)), f(g(xj))) ≥ d(g(xi), g(xj))− ϵ2

≥ k1d(xi, xj)− ϵ2

= k1d(xi.xj)

[
1− ϵ2

k1d(xi, xj)

]
≥ k1(1− δ)d(xi, xj)

Together, Proposition 2.4.2, Theorem 2.4.5 and Proposition 2.4.6 complete the proof
our main result, which connects the embeddability questions for persistence diagrams and
Wasserstein space.

Theorem 2.4.8 (A). If (D,Wp) coarsely embeds into Hilbert space, for 1 ≤ p <∞, then
so does Pp(R2). The converse holds if p > 1.

Since snowflake universality depends only on finite subsets, Lemma 2.4.7 and Proposi-
tions 2.4.2, 2.4.5 yield the following.

Theorem 2.4.9 (B). If Pp(R2) is 1
p
-snowflake universal, for 1 ≤ p <∞, then so is (D,Wp).

The converse holds if p > 1.

We conclude this section with a corollary which follows from Theorems 2.3.5, 2.3.6, and
2.4.8. We note that a direct proof is also possible adapting techniques from Wagner [27].

Corollary 2.4.10. The space Pp(R2) does not admit a coarse embedding into a Hilbert
space if p > 2.
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2.5 Concluding remarks
Wasserstein space and the space of persistence diagrams have many similarities, especially
when viewing persistence diagrams as discrete distributions; this similarity has been explored
elsewhere using partial optimal transport [13]. The main difference between the spaces is the
presence of the diagonal as a sink for unmatched points. Our results suggest that, for p > 1,
this difference does not affect the coarse embeddability of these spaces. Obstructions to
embeddability developed in either case will therefore work just as well for the other. On the
other hand, for p = 1, our construction degenerates in a similar way to that in [2] and so we
do not obtain an equivalence. The p = 1 case is important since it appears in many stability
results for vectorizations [1, 12]. Note that stability is one half of coarse (or bi-Lipschitz)
embeddability, as it bounds the distortion in Hilbert space in terms of the distance between
diagrams. Our hope is that our results motivate the use of techniques for Wasserstein space
to be used to resolve the question of embeddability of persistence diagrams for 1 ≤ p ≤ 2.
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Chapter 3: Gaussian persistence curves

This chapter is adapted from the preprint “Gaussian Persistence Curves” by Yu-Min Chung,
Michael Hull, Austin Lawson and Neil Pritchard [11].

3.1 Introduction
One of the main tools of topological data analysis (TDA) is persistent homology, which
measures how certain topological features of a data set appear and disappear at different
scales. This information can be stored and visualized in a concise format called a persistence
diagram.

Functional summaries play an important role in topological data analysis, as they allow
one to apply machine and deep learning techniques to analyze topological information
contained in persistence diagrams. In [10] a new class of one-dimensional smooth functional
summaries was introduced called Gaussian persistence curves (GPC’s). These functional
summaries were built by combining (a slight variation of) the persistence curve framework
from [12] with the persistence surfaces construction from [1], and they were used to study
the texture classification of grey-scale images [10].

In this paper, we investigate the injectivity of both persistence surfaces and GPC’s.
Loosely speaking the injectivity of a summary implies that the summary can distinguish
between distinct diagrams. We show that under mild conditions unweighted GPC’s are
almost injective (Theorem 3.3.4). Furthermore we show that unweighted persistence surfaces
are injective (Theorem 3.3.3).

Other summaries in topological data analysis include persistence landscapes [6], the
persistent entropy summary function [3], persistence silhouettes [9], persistence surfaces
and persistence images [1]. We refer to [5] for a review of the properties and applications
of these summaries. All of these other summaries are known to be stable, but among them
only the persistence landscapes are known to be injective. Note that persistence landscapes
can be viewed as a sequences of one-dimensional functions and for any n ≥ 1 injectivity
will fail if only the first n terms of the sequences are considered.

The outline of this chapter is as follows. In Section 3.2 we introduce Gaussian persistence
curves and derive some basic properties and useful formulas. In Section 3.3 we investigate
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the extent to which the functional summaries produced by persistence surfaces and GPC’s
are injective.

3.2 Gaussian Persistence Curves
Here we describe the construction of Gaussian persistence curves which can be viewed as a
combination of the persistence surfaces introduced in [1] and the persistence curve frame-
work from [12]. We refer to [14] for background on persistent homology and persistence
diagrams.

The input to our construction is a persistence diagram, by which we mean a finite multi-
set D of points in the plane that lie above the main diagonal y = x. Let Σ be a symmetric,
positive semi-definite 2× 2 matrix. For a point µ ∈ R2, Let gµ,Σ be the probability density
function (PDF) of a bivariate normal distribution with mean µ and covariance matrix Σ.
That is,

gµ,Σ(x) =
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
2π|Σ|1/2

.

Let κ : R2 → R be a function with κ(b, b) = 0 for all b ∈ R. We refer to any such κ as a
weighting function.

Definition 3.2.1. [1] The persistence surface associated to the diagram D with weight κ is
the function

ρD,κ(x, y) =
∑

(b,d)∈D

κ(b, d)g(b,d),Σ(x, y).

We will assume that σ is fixed in advance and so do not include it in the notation for the
persistence surface or curve.

In [1] the authors choose a grid on the plane, integrate the persistence surface over each
box in the grid, and then use these values to produce a vector summary of the original
diagram. Instead, we look at this surface from the perspective of the persistence curve
framework from [12]. This framework produces a function G : R → R such that the value
of G(t) depends on measuring some property of the diagram inside the fundamental box
Ft = {(x, y) | x < t, y > t}.

Definition 3.2.2. Let ρD,κ be a persistence surface. The corresponding Gaussian persis-
tence curve is the function

GD,κ(t) =

∫
Ft

ρD,κ(x, y)dxdy.

If κ(x, y) = 1 for all (x, y), then we drop κ from the notation and denote the corre-
sponding surface and curve by ρD(t) and GD(t) respectively. We refer to this curve as the
unweighted Gaussian persistence curve on D.
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We will always consider Σ to be fixed ahead of time and do not include it in the notation
for the curve GD,κ(t). While the definition makes sense for more general Σ, in this chapter
we fix Σ to be a multiple of the identity matrix by a scalar σ2. This allows us to split gµ,Σ as

gµ,Σ(x, y) = ϕ(
y − d

σ
)ϕ(

x− b

σ
)

where ϕ is the PDF of the standard normal distribution. This assumption allows one to
easily preform the integration over the fundamental box and obtain the CDF realization of
GD,κ(t) as

GD,κ(t) =
∑

(b,d)∈D

κD(b, d)Φ(
t− b

σ
)Φ(

d− t

σ
),

where Φ denotes the CDF of the standard normal distribution.
Gaussian persistence curves fit into (a slight modification of) the persistence curve

framework from [12] in the following way. Let D be the set of all persistence diagrams,
Ψ be the set of all functions ψ : D × R3 → R with ψ(D;x, x, t) = 0 for all (x, x) ∈ R2

and D ∈ D. Let R represent the set of functions from R to R. Let T be a set of operators
T (S, f) that read in a multi-set S and real-valued function f and returns a scalar. Given
D ∈ D, ψ ∈ Ψ, and T ∈ T , the corresponding persistence curve is the function

PD,ψ,T (t) := T (Ft, ψ(D;x, y, t)), t ∈ R.

The function PD,ψ,T (t) is called a persistence curve on D with respect to ψ and T .
In this notation, choosing ψ(D;x, y, t) = ρD,κ(x, y) and T (f, S) =

∫
S
f(x, y)dxdy, we

obtainPD,ψ,T (t) = GD,κ(t).
We start with a few examples of Gaussian persistence curves, which are smooth versions

of persistence curves appearing in [12].

Example 3.2.3. When κD(b, d) = 1 for all (b, d), the resulting unweighted Gaussian
persistence curve can be viewed as a smooth version of the Betti curve from [12]. For this
reason we also refer to the unweighted Gaussian persistence curve GD(t) as the Gaussian
Betti Curve.

Example 3.2.4. Let ℓD(x, y) := (y − x) · χD(x, y), where χ denotes the characteristic
function, and let ℓsum =

∑
(b,d)∈D ℓ(b, d). Define κD(x, y) = ℓ(x,y)

ℓsum
. The corresponding

Gaussian persistence curve is a smooth version of the life curve from [12] which we call the
Gaussian Life Curve.

Example 3.2.5. Let msum =
∑

(b,d)∈D(b+d) and define κD(x, y) = x+y
msum

. The correspond-
ing Gaussian persistence curve is a smooth version of the midlife curve from [12] which we
call the Gaussian midlife Curve.
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With this set up, generating new Gaussian persistence curves is only a matter of selecting
a covariance matrix Σ, which controls the smoothness of the curve and a function κ, which
is a weighting function. For example, by using weight functions such as the entropy function
(- d−b∑

(b,d)∈D d−b log
d−b∑

(b,d)∈D d−b) and multiplicative life function (d
b
), we can obtain Gaussian

versions of the life entropy and multiplicative life persistence curves. In general, we can
produce a Gaussian version of any function in the persistence curve framework.

The next two lemmas will be used to compute the L1–norm of a Gaussian persistence
curve. Their proofs are elementary exercises in Calculus. We include their elementary
proofs for completeness.

Lemma 3.2.6. Given b > 0 ∈ R,∫ ∞

−∞
Φ(
b− t

σ
)Φ(

t− b

σ
)dt =

σ√
π
. (3.1)

Proof. We will first prove the result for b = 0 and σ = 1. By integration by parts (by letting
u = Φ(−t) and dv = Φ(t)dt), we obtain∫ ∞

−∞
Φ(−t)Φ(t)dt = [tΦ(−t)Φ(t) + Φ(−t)ϕ(t)]∞−∞︸ ︷︷ ︸

I

+

∫ ∞

−∞
tϕ(t)Φ(t) + ϕ2(t)dt︸ ︷︷ ︸

II

.

For I , by the elementary facts Φ(t) → 1 as t→ ∞ and L’Hopital’s rule, one can evaluate
that I = 0.

For the II , we consider each integral separately. By [20],
we have that

∫∞
∞ tΦ(a+ bt)ϕ(t)dt = b√

1+b2
ϕ( a√

1+b2
). Since in our case a = 0 and b = 1,∫ ∞

−∞
tΦ(t)ϕ(t)dt =

1√
2
ϕ(0) =

1

2
√
π
.

By [20] again, we know that∫ ∞

−∞
ϕ2(t)dt =

1

2
√
π
Φ(

√
2t)

∣∣∣∣∞
−∞

=
1

2
√
π
.

Thus, sum over them to obtain the desired result. To obtain the final result simply apply the
substitution, s = t−b

σ
then ds = 1

σ
dt.∫ ∞

−∞
Φ(
b− t

σ
)Φ(

t− b

σ
)dt =

∫ ∞

−∞
Φ(−s)Φ(s)σds = σ√

π
.
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Lemma 3.2.7.∫ ∞

−∞
Φ(at+ b1)(Φ(at+ b2)− Φ(at+ b3))dt (3.2)

=
−
√
2

a

[
b1 − b2√

2
Φ(
b1 − b2√

2
) + ϕ(

b1 − b2√
2

)− b1 − b3√
2

Φ(
b1 − b3√

2
)− ϕ(

b1 − b3√
2

)

]
(3.3)

Proof. Let s = u+ (at+ b3). Then ds = du.∫ ∞

−∞
Φ(at+ b1)(Φ(at+ b2)− Φ(at+ b3))dt

=

∫ ∞

−∞
Φ(at+ b1)

∫ at+b2

at+b3

ϕ(s) dsdt

=

∫ ∞

−∞

∫ at+b2

at+b3

Φ(at+ b1)ϕ(s) dsdt

=

∫ ∞

−∞

∫ b2−b3

0

Φ(at+ b1)ϕ(at+ b3 + u) dudt

=

∫ b2−b3

0

∫ ∞

−∞
Φ(at+ b1)ϕ(at+ b3 + u) dtdu.

To evaluate the integral, we recall that
∫∞
−∞ Φ(x+ ϵ)ϕ(x) dx = Φ( ϵ√

2
). Consider another

substitution: x = at+ b3 + u, so dx = adt.∫ ∞

−∞
Φ(at+ b1)ϕ(at+ b3 + u) dt

=

∫ ∞

−∞
Φ(x− u− b3 + b1)ϕ(x)

1

a
dx =

1

a
Φ(
b1 − b3 − u√

2
).

Let v = b1−b3−u√
2

. Then dv = −1√
2
du. Finally, we obtain∫ b2−b3

0

∫ ∞

−∞
Φ(at+ b1)ϕ(at+ b3 + u) dtdu

=

∫ b2−b3

0

1

a
Φ(
b1 − b3 − u√

2
) du.

=

∫ b1−b2√
2

b1−b3√
2

−1

a

√
2Φ(v)dv =

−
√
2

a
[vΦ(v) + ϕ(v)]

b1−b2√
2

b1−b3√
2

=
−
√
2

a

[
b1 − b2√

2
Φ(
b1 − b2√

2
) + ϕ(

b1 − b2√
2

)− b1 − b3√
2

Φ(
b1 − b3√

2
)− ϕ(

b1 − b3√
2

)

]
.
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Proposition 3.2.8. Let GD(t) be an unweighted Gaussian persistence curve on a diagram
D. Then

∥GD(t)∥1 =
∑

(b,d)∈D

[
(d− b)Φ(

d− b√
2σ

) +
√
2σϕ(

d− b√
2σ

)

]
. (3.4)

Proof.

∥GD∥1 =
∫ ∞

−∞

∣∣∣∣∣∣
∑

(b,d)∈D

Φ(
t− b

σ
)Φ(

d− t

σ
)

∣∣∣∣∣∣ dt (3.5)

=

∫ ∞

−∞

∑
(b,d)∈D

Φ(
t− b

σ
)Φ(

d− t

σ
)dt (3.6)

=
∑

(b,d)∈D

∫ ∞

−∞
Φ(
t− b

σ
)Φ(

d− t

σ
)dt. (3.7)

By adding and subtracting Φ( t−b
σ
)+Φ2( t−b

σ
) and using the CDF property Φ(−t) = 1−Φ(t)

we obtain,

=
∑

(b,d)∈D

∫ ∞

−∞
Φ(
t− b

σ
)Φ(

b− t

σ
) + Φ(

t− b

σ
)

(
Φ(
t− b

σ
)− Φ(

t− d

σ
)

)
dt (3.8)

=
∑

(b,d)∈D

σ√
π
+ (d− b)Φ(

d− b√
2σ

) +
√
2σϕ(

d− b√
2σ

)− σ√
π

(3.9)

=
∑

(b,d)∈D

[
(d− b)Φ(

d− b√
2σ

) +
√
2σϕ(

d− b√
2σ

)

]
. (3.10)

where (9) follows from Lemmas 3.2.6 and 3.2.7.

Let LD =
∑

{(b,d)∈D} d− b. We refer to LD as the total lifespan of D. We also define
δD = min(b,d)∈D d− b, that is δD is the minimum lifespan of a point in D. We note that by
convention, min ∅ = ∞ and 1

min ∅ = 0.

Corollary 3.2.9. For any persistence diagram D,

∥GD(t)∥1 ≤
∑

(b,d)∈D

[
(d− b) +

σ√
π

]
≤ (1 +

σ√
πδD

)LD.

Apply the same argument as above gives a bound for the weighted case as well. Let
MD,κ = max(b,d)∈D |κ(b, d)|.
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Corollary 3.2.10.

∥GD,κ(t)∥1 =
∑

(b,d)∈D

|κ(b, d)|
[
(d− b)Φ(

d− b√
2σ

) +
√
2σϕ(

d− b√
2σ

)

]
.

≤
∑

(b,d)∈D

|κ(b, d)|
[
(d− b) +

σ√
π

]
≤ (1 +

σ√
πδD

)MD,κLD

As long as the diagram D is finite, then the Gaussian persistence curve given by Defini-
tion 3.2.2 will be a Lipschitz function with respect to the input t ∈ R (see [10]). Together
with some mild assumptions on the weight functions κ, this implies that whenever there is is
a process for randomly sampling persistence diagrams the associated Gaussian persistence
curves will satisfy a version of the central limit theorem. See [10] for details, or [5] for more
general results about statistical properties of functional summaries.

3.3 Injectivity
In this section we study the injectivity of the transformation from a persistence diagram
to either the persistence surface or the corresponding Gaussian persistence curve. By
injectivity here we mean that distinct diagrams produce distinct persistence surfaces or
curves. In general, this notion depends on the choice of weight functions, see example 3.3.5.
However, we show the injectivity of unweighted persistence surfaces and (in most cases)
unweighted Gaussian persistence curves. We also conjecture that any weight functions
defined independently of the diagrams will produce injective persistence surfaces and curves.

We first show injectivity for unweighted persistence surfaces. Given two diagrams C
and D, this amounts to showing that the multi-set of means in the corresponding surfaces
is equal. We achieve this by setting up an infinite system of equations, which can only be
solved when the multi-sets of means are exactly equal. We now proceed to some techinical
lemmas, but, first recall that for a positive integer n, n!! = Π

⌈n
2
⌉−1

k=0 (n− 2k).

Lemma 3.3.1. Let A,B ⊂ R be finite sets of equal cardinality. Suppose∑
a∈A

ϕ

(
x− a

σ

)
=

∑
b∈B

ϕ

(
x− b

σ

)
.

Then for every n ∈ N, ∑
a∈A

an =
∑
b∈B

bn

Proof. Let n ∈ N and suppose∑
a∈A

ϕ

(
x− a

σ

)
=

∑
b∈B

ϕ

(
x− b

σ

)
.
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Multiplying by xn

σ
and integrating over R with respect to x gives∑

a∈A

∫
R
xn

1

σ
ϕ(
x− a

σ
)dx =

∑
b∈B

∫
R
xn

1

σ
ϕ(
x− b

σ
)dx (3.11)

∑
a∈A

n∑
k even

(
n

k

)
an−kσk(k − 1)!! =

∑
b∈B

n∑
k even

(
n

k

)
bn−kσk(k − 1)!!. (3.12)

Here (3.12) follows from computing the nth moment of the normal distribution. We will
now prove that

∑
a∈A a

n =
∑

b∈B b
n for all n ∈ N by induction. When n = 1 this follows

immediately from equation (3.12) above. Now assume that
∑

a∈A a
m =

∑
b∈B b

m for all
m < n. Then again by equation (3.12) we have,

∑
a∈A

n∑
k even

(
n

k

)
an−kσk(k − 1)!! =

∑
b∈B

n∑
k even

(
n

k

)
bn−kσk(k − 1)!!

n∑
k even

(
n

k

)
σk(k − 1)!!

∑
a∈A

an−k =
n∑

k even

(
n

k

)
σk(k − 1)!!

∑
b∈B

bn−k∑
a∈A

an =
∑
b∈B

bn,

where the last step follows by our inductive hypothesis.

Lemma 3.3.2. Let A,B ⊂ R2 be finite sets of equal cardinality. Suppose∑
(a,b)∈A

ϕ

(
x− a

σ

)
ϕ

(
y − b

σ

)
=

∑
(α,β)∈B

ϕ

(
x− α

σ

)
ϕ

(
y − β

σ

)
.

Then for any m1,m2 ∈ N, ∑
(a,b)∈A

am1bm2 =
∑

(α,β)∈B

αm1βm2 .

Proof. Let m1,m2 ∈ N and suppose∑
(a,b)∈A

ϕ

(
x− a

σ

)
ϕ

(
y − b

σ

)
=

∑
(α,β)∈B

ϕ

(
x− α

σ

)
ϕ

(
y − β

σ

)
.
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Multiplying by xm1ym2 and integrating over R with respect to x and y yields,∑
(a,b)∈A

∫
R
xm1ϕ

(
x− a

σ

)
dx

∫
R
ym2ϕ

(
y − b

σ

)
dy

=
∑

(α,β)∈B

∫
R
xm1ϕ

(
x− α

σ

)
dx

∫
R
ym2ϕ

(
y − β

σ

)
dy (3.13)

∑
(a,b)∈A

m1∑
k even

(
m1

k

)
am1−kσk(k − 1)!!

m2∑
l even

(
m2

l

)
bm2−lσl(l − 1)!!

=
∑

(α,β)∈B

m1∑
k even

(
m1

k

)
αm1−kσk(k − 1)!!

m2∑
l even

(
m2

l

)
βm2−lσl(l − 1)!!. (3.14)

Now when m1 = m2 = 1, equation 3.14 yields∑
(a,b)∈A

ab =
∑

(α,β)∈B

αβ.

We proceed by proving that the claim is true for all m1 +m2 = n ∈ N by strong induction
on n. The base case has been proven above so assume that the statement is true for all
m1 +m2 = j < n ∈ N. Note that m1 − k +m2 − l = j where j ∈ N and j < n for all
k, l ∈ 2N with k ≤ m1, l ≤ m2. Then the inductive hypothesis and equation 3.14 yields∑

(a,b)∈A

am1bm2 =
∑

(α,β)∈B

αm1βm2

as desired.

Theorem 3.3.3. Let C and D be persistence diagrams and let ρC and ρD be the correspond-
ing unweighted persistence surfaces. If ρC ≡ ρD, then C = D.

Proof. We will denote the points of C by (bCi , d
C
i ) and analogously the points of D will be

denoted (bDi , d
D
i ). Assume that ρC = ρD. We first note that

∫
R2 ρC = |C|. Thus, we must

have |C| = |D|. We will assign N = |C|. Thus, we have

N∑
i=1

ϕ

(
x− bCi
σ

)
ϕ

(
y − dCi
σ

)
=

N∑
i=1

ϕ

(
x− bDi
σ

)
ϕ

(
y − dDi
σ

)
.

Integrating over R with respect to y and dividing by σ yields

N∑
i=1

ϕ

(
x− bCi
σ

)
=

N∑
i=1

ϕ

(
x− bDi
σ

)
.
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An application of Lemma 3.3.1 yields
∑N

i=1(b
C
i )

n =
∑N

i=1(b
D
i )

n for all n ∈ N. A similar
method yields

∑N
i=1(d

C
i )

n =
∑N

i=1(d
D
i )

n. Next, an application of Lemma 3.3.2 yields that
for each m1,m2 ∈ N we have

∑N
i=1(b

C
i )

m1(dCi )
m2 =

∑N
i=1(b

D
i )

m1(dDi )
m2 .

Before proceeding we recall the following basic fact: suppose a1, ..., ak are non-negative
real numbers and c1, ..., ck are positive real numbers such that ak > ai for all 1 ≤ i < k.
Then there exists m ∈ N such that

cka
m
k >

k−1∑
i=1

cia
m
i .

Now, label the points in C such that bC1 ≤ bC2 ... ≤ bCN and whenever bCi = bCi+1,
dCi ≤ dCi+1. Label the points in D in the same way.

Suppose that some bCk ̸= bDk . Choosing k to be the largest such index, it follows from
above that for all n ≥ 1.

k∑
i=1

(bCi )
n =

k∑
i=1

(bDi )
n.

Without loss of generality, we assume that bCk > bDk . Since bDk ≥ bDk−1 ≥ ... ≥ bD1 , we
can find an m such that

k∑
i=1

(bCi )
m ≥ (bCk )

m >
k∑
i=1

(bDi )
m

which is a contradiction. Hence we have that bCi = bDi for all 1 ≤ i ≤ N .
Now suppose that for some k, dCk ̸= dDk . Again we choose k to be largest such index

and assume without loss of generality that dCk > dDk . Now we choose m1 such that
(bCk )

m1dCk > (bDi )
m1dDi for all 1 ≤ i < k. m1 exists since for all 1 ≤ i ≤ k, either

bCk = bDk > bDi , or bCk = bDk = bDi and dCk > dDk ≥ dDi .
Given this m1, we can apply the above fact again to find m2 such that

k∑
i=1

((bCi )
m1dCi )

m2 ≥ ((bCk )
m1dCk )

m2 >

k∑
i=1

((bDi )
m1dDi )

m2

which is another contradiction. Hence, we must have that dCi = dDi for all 1 ≤ i ≤ N which
means we have shown that C = D.

We prove a partial result for the unweighted Gaussian Persistence Curve.

Theorem 3.3.4. Let C and D be two persistence diagrams with maximum death values
dCmax, d

D
max and minimum birth values bCmin, b

D
min respectively. Suppose that either dCmax ̸=

dDmax or bCmin ̸= bDmin. Then GC ̸= GD.
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Proof. Let (b1, d1) be a point of C and (b2, d2) a point of D. We first show that if d1 > d2
then,

lim
t→∞

Φ( t−b2
σ

)Φ(d2−t
σ

)

Φ( t−b1
σ

)Φ(d1−t
σ

)
= 0. (3.15)

We will proceed by cases. If b1 = b2 then with L’Hopital’s rule we have,

lim
t→∞

Φ( t−b2
σ

)Φ(d2−t
σ

)

Φ( t−b1
σ

)Φ(d1−t
σ

)
= lim

t→∞

ϕ(d2−t
σ

)

ϕ(d1−t
σ

)
= lim

t→∞
e(

d2+d1−2t
σ

)(
d1−d2

σ
) = 0. (3.16)

Now if b1 < b2 we note that Φ( t−b1
σ

) > Φ( t−b2
σ

) for any sufficiently large value of t.
Applying this inequality to the limit we reduce back to the first case. Finally if b1 > b2 we
have,

lim
t→∞

Φ( t−b2
σ

)Φ(d2−t
σ

)

Φ( t−b1
σ

)Φ(d1−t
σ

)
= lim

t→∞

Φ( t−b2
σ

)

Φ( t−b1
σ

)
lim
t→∞

Φ(d2−t
σ

)

Φ(d1−t
σ

)
= 0. (3.17)

Assume that dCmax > dDmax, and hence dCmax is larger then the death value of any point of
D. Let (bC , dCmax) be a point of C. Then

lim
t→∞

GD(t)

GC(t)
= lim

t→∞

∑
(b,d)∈D

Φ(
t− b

σ
)Φ(

d− t

σ
)

∑
(b,d)∈C

Φ(
t− b

σ
)Φ(

d− t

σ
)

≤ lim
t→∞

∑
(b,d)∈D

Φ(
t− b

σ
)Φ(

d− t

σ
)

Φ( t−b
C

σ
)Φ(d

C
max−t
σ

)

=
∑

(b,d)∈D

lim
t→∞

Φ( t−b
σ
)Φ(d−t

σ
)

Φ( t−b
C

σ
)Φ(d

C
max−t
σ

)
= 0

Hence, for any sufficiently large value of t, GC(t) > GD(t). A similar argument applied
when assuming distinct minimum birth values, one simply needs to look at the limit as t
approaches negative infinity instead.

Obtaining a result for general surfaces or curves may prove to be challenging. The
next example shows that the injectivity of persistence surfaces (hence Gaussian persistence
curves) cannot be generalized to arbitrary weight functions.

Example 3.3.5. Let κD(b, d) = d−b
LD

where Ld =
∑

(b,d)∈D d− b is the total lifespan of D.
Take C = {(b, d)} and D = {(b, d), (b, d)}. That is, C is a diagram with a single point and
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D is a diagram with two points both at the same place as C. Then D ̸= C but

ρC,κC (x, y) = ϕ

(
x− b

σ

)
ϕ

(
y − d

σ

)
=

1

2
ϕ

(
x− b

σ

)
ϕ

(
y − d

σ

)
+

1

2
ϕ

(
x− b

σ

)
ϕ

(
y − d

σ

)
= ρD,κD(x, y).

Note that the weight function in the above example is a natural one to consider in practice
as it produced a strong stability result in the original persistence curve setting and also
performed well in computer experiments [12]. However, in this example at least the failure
of injectivity of the persistence surface is clearly tied to the fact that different diagrams
produce different weighting functions. We conjecture that this is the only way for injectivity
to fail.

Conjecture. Let κ : R2 → R+ be a weighting function and let C and D be persistence
diagrams. Suppose that ρC,κ = ρD,κ. Then C = D.

Since ρC,κC = ρD,κD implies that GC,κC = GD,κD , example 3.3.5 also shows that it is
possible for distinct diagrams to produce the same Gaussian persistence curve. However,
as with persistence surfaces we conjecture that this cannot happen for weighting functions
which are independent of the diagrams.

Conjecture. Let κ : R2 → R+ be a weighting function and let C and D be persistence
diagrams. Suppose that GC,κ = GD,κ. Then C = D.
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