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The focus of this dissertation is to study positive solutions for classes of nonlin-

ear steady state reaction diffusion equations and systems. In particular, we consider

four focuses. In Focus 1, we establish sufficient conditions on the reaction term for

which the bifurcation diagram for positive solutions for a nonlinear reaction diffusion

equation is Σ−shaped. In Focus 2, we extend the study in Focus 1 for classes of

coupled reaction diffusion equations. In Focus 3, we analyze the classes of diffusive

Lotka-Volterra competition models in fragmented patches. Finally, in Focus 4, we

use the finite element method for the numerical computation of bifurcation diagrams

in dimension N = 2 for examples in Focus 1 and Focus 3.

We establish analytical results in any dimension, namely, we establish exis-

tence, nonexistence, multiplicity, and uniqueness results. Our existence and multi-

plicity results are achieved by the method of sub-supersolutions. Via computational

methods we also obtain approximate bifurcation diagrams describing the structure

of the steady states. Namely, we obtain these bifurcation diagrams via a quadrature

method and Mathematica computations in the one-dimensional case, and via the use

of finite element methods and nonlinear solvers in Matlab in the two-dimensional

case.

This dissertation aims to significantly enrich the mathematical and computa-

tional analysis of steady states to classes of reaction diffusion equations and systems.
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CHAPTER I

INTRODUCTION

The study of steady state reaction diffusion equations is of great importance

in many applications such as population dynamics, combustion theory, nonlinear heat

generation and chemical reactor theory (see [Ari69], [BIS81], [CC03], [CL70], [Fif79],

[FK69], [KC67], [KJD+79], [Mur03], [OL01], [Par61], [Par74], [Sat75], [Sem35], [Ske51],

[Tam79], [Tur52] and [ZBLM85]). The time dependent models that arise are of the

form:
ut = d∆u+ f(u); x ∈ Ω0, t > 0,

u(x, 0) = u0(x); x ∈ Ω0,

Bu ≡ u = 0; x ∈ ∂Ω0, t > 0 or Bu ≡ ∂u
∂η

+ γu = 0; γ > 0, x ∈ ∂Ω0, t > 0,

(1.A)

where ∆u := div(∇u) is the Laplacian operator of u, d > 0 is the diffusion coefficient,

Ω0 ⊂ RN with N > 1, is a bounded domain with smooth boundary ∂Ω0 or Ω0 = (0, 1),

f : [0,∞) → R is the reaction term, and ∂u
∂η

is the outward normal derivative of

u. In the applications mentioned above, u describes a population density, a mass

concentration or a temperature distribution, and in these cases, only non-negative

solutions (u ≥ 0 in Ω0) are relevant. The steady states of (1.A) (if they exist) are

needed to understand the dynamics of the solutions of (1.A). For the case when u = 0;

x ∈ ∂Ω0 (Dirichlet or hostile boundary condition), mathematicians have developed a
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rich literature, namely, for nonlinear elliptic partial differential equations of the form:


−∆u = λf(u); x ∈ Ω0,

u = 0; x ∈ ∂Ω0.

(1.B)

In recent history there has been a lot of interest in models where a parameter influ-

ences the equation as well as the boundary conditions, namely of the form:


−∆u = λf(u); x ∈ Ω0,

∂u
∂η

+
√
λu = 0; x ∈ ∂Ω0.

(1.C)

In particular, see [AFS21], [CGS19], [FSSS19], [FMS20] and [GMRS18]. Also, see

Focus 3 where it is shown how the steady state equations for an ecological model take

this form. In [GMRS18], authors obtain the exact bifurcation diagram (see Figure

1) for the case when f(s) = s(1 − s). In [FSSS19], for classes of f(s), the authors

establish S-shaped bifurcation diagrams. An example, satisfying their hypothesis is

f(s) = e
βs
β+s ; β ≫ 1 (see Figure 2).

Figure 1. Exact bifurcation diagram of (1.C) when f(s) = s(1− s).

2



Figure 2. Bifurcation diagram of (1.C) when f(s) = e
βs
β+s ; β ≫ 1.

In [AFS21], authors extend the study in [FSSS19] to classes of systems of the form:



−∆u = λf(v); Ω

−∆v = λg(u); Ω

∂u
∂η

+
√
λu = 0; ∂Ω

∂v
∂η

+
√
λv = 0; ∂Ω,

(1.D)

and establish an S-shaped bifurcation diagram when f and g satisfy certain hypothe-

ses. An example satisfying these hypotheses is:

f = fα,k(s) =

 e
s

s+1 − 1; s < k

[e
αs
α+s − e

αk
α+k ] + [e

k
k+1 − 1]; s ≥ k

g = gk(s) =

 2(1 + s)
1
2 − 2; s < k

[1
2
(1 + s)2 − 1

2
(1 + k)2] + [2(1 + k)

1
2 − 2]; s ≥ k,

when the parameters α and k are large.
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In this research we enrich the literature on multiplicity results for (1.C) and (1.D)

and study an ecological model (system) where a parameter (related to the patch size)

arises in the reaction term and the boundary condition. Namely, the dissertation has

the following focuses:

Focus 1: Establish sufficient conditions on f for which the bifurcation

. diagram for positive solutions to (1.C) is Σ−shaped.

Focus 2: Extend the study in Focus 1 for classes of coupled reaction

. diffusion equations.

Focus 3: Analysis of classes of diffusive Lotka-Volterra competition models

. in fragmented patches.

Focus 4: Numerical computation of bifurcation diagrams in dimension

. N = 2 for examples in Focus 1 and Focus 3.

1.1 Focus 1: Establish sufficient conditions on f for which the bifurcation

diagram for positive solutions to (1.C) is Σ−shaped

We study positive solutions to the steady state reaction diffusion equation of the form:

 −∆u = λf(u); Ω

∂u
∂η

+
√
λu = 0; ∂Ω,

(1.1)

where λ > 0 is a positive parameter, Ω is a bounded domain in RN when N > 1 (with

smooth boundary ∂Ω) or Ω = (0, 1), and ∂u
∂η

is the outward normal derivative of u.

Here f(s) = ms + g(s) where m ≥ 0 (constant) and g ∈ C2[0, r) ∩ C[0,∞) for some

4



r > 0.

Part I: Motivational example in the dimension N = 1 case.

First, we consider the 1-dimensional form of (1.1) with Ω = (0, 1):


−u′′ = λf(u); (0, 1)

−u′(0) +
√
λu(0) = 0

u′(1) +
√
λu(1) = 0,

(1.2)

and we take the function f as follows:

f(s) = ms+ g(s) where

g(s) = gα,k(s) =

 e
cs
c+s − 1; s ≤ k

[e
αs
α+s − e

αk
α+k ] + [e

ck
c+k − 1]; s > k.

(1.3)

Here c > 2 is a fixed number, m ≥ 0, α > 0 and k > 0 are parameters. We use the

Quadrature method (discussed in Chapter II) to obtain the bifurcation diagrams. We

obtained the following approximate Σ-shaped bifurcation diagrams for the positive

solutions of (1.2) for certain combinations of α and k (see Figures 3, 4).

Remark: See also [LSS12], where for an ecological model involving logistic growth,

grazing, constant yield harvesting, and Dirichlet boundary condition, it was estab-

lished that the bifurcation diagram for positive solutions is at least Σ-shaped.

Part II: Analytical results for the general domain case.

Here, we consider (1.1) and analyze the positive solutions in any dimension N ≥ 1.

In particular, we discuss the existence of multiple positive solutions for certain ranges

5



(a) α = 5.5, k = 5, c = 2.5 (b) α = 3.1, k = 3, c = 2.5

Figure 3. Approximate bifurcation diagrams for (1.2) when m = 0.

of λ leading to the occurrence of Σ-shaped bifurcation diagrams. We establish our

existence and multiplicity results via the method of sub-supersolutions.

We first introduce some hypotheses that we use.

(H1) g(0) = 0, g′(0) = 1, g′′(0) > 0, g′(s) > 0; s ≥ 0, and lim
s→∞

g(s)
s

= 0.

First, we recall E1(m, k) from [GMRS18]. Namely, E1(m, k) is the principal eigenvalue

of:

 −∆z = Emz; Ω

∂z
∂η

+ k
√
Ez = 0; ∂Ω

(1.4)

for m ∈ (0,∞) and k ∈ [0,∞). Note that E1(m, k) is increasing in k and decreasing

in m.
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(a) α = 5.5, k = 5, c = 2.5 (b) α = 3.1, k = 3, c = 2.5

Figure 4. Approximate bifurcation diagrams for (1.2) when m = 1.

Let Am = E1(m, 1). Then Am is a strictly decreasing function of m with:

lim
m→0

Am = ∞. (1.5)

Further, for a fixed λ > 0, let σλ,m be the principal eigenvalue and θλ,m > 0 on Ω be

the corresponding normalized eigenfunction of:

−∆θ = (σ + λ)mθ; Ω

∂θ
∂η

+
√
λθ = 0; ∂Ω.

(1.6)

We note that σλ,m > 0 when λ < Am, σλ,m < 0 when λ > Am, and σλ,m → 0 as

λ→ Am.

Next, let v be the unique solution of:

 −∆v = 1; Ω

∂v
∂η

+ v = 0; ∂Ω,
(1.7)
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and let w be the unique solution of:

 −∆w = 1; Ω

∂w
∂η

+
√

A1

2
w = 0; ∂Ω.

(1.8)

Now, we introduce additional hypotheses (H2) and (H3):

(H2) There exist a1 > 0, b1 > 0 such that a1 < b1 and

min{Am, a1

f(a1)
1

∥v∥∞} > max{ b1

f(b1)
2NCN

R2 , Am+1, 1}.

(H3) There exist a2 > 0, b2 > 0 such that a2 < b2 and

a2

f(a2)
1

∥w∥∞ ≥ Am+1 > max { b2

f(b2)
2NCN

R2 , A1

2
}, where

CN = (N+1)N+1

2NN and R is the radius of the largest

inscribed ball in Ω.

We believe a typical f which is likely to produce such a Σ−shaped bifurcation dia-

gram is as follows:

Figure 5. Shape of f producing multiplicity.
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Convex on (0, α) for some α > 0 driving the bifurcation curve initially to the left,

a strong concavity on (α, β) with β > α making the bifurcation curve go back to

the right, a strong convexity on (β, γ) with γ > β driving the bifurcation curve back

again to the left, and then a strong concavity on (γ,∞) bringing the curve eventually

to the right (see Figure 5).

In this case we expect the shape of s
f(s)

to be of the form in Figure 6, and when ℓ1
ℓ2

≫ 1

our hypotheses are satisfied.

Figure 6. Shape of s
f(s)

.

We establish the following results:

Existence and Multiplicity Results:

Theorem 1.1.

a) Let (H1) hold. Then (1.1) has a positive solution for λ ∈ [Am+1, Am). In particular,

(1.1) has a positive solution uλ for λ < Am and λ ≈ Am such that uλ → ∞ as λ→ A−
m.

Further, there exists λ < Am+1 such that (1.1) has at least two positive solutions for

9



λ ∈ [λ,Am+1). (Here, by λ ≈ Am, we mean λ is close to Am.)

b) Let (H1) and (H2) hold. Then (1.1) has at least three positive solutions for

λ ∈
(
max{ b1

f(b1)
2NCN

R2 , Am+1, 1},min{Am, a1
f(a1)

1
∥v∥∞}

)
.

(a) m = 0 (b) m > 0

Figure 7. Expected bifurcation diagrams for (1.1) when the hypotheses of Theorem

1.1(b) are satisfied.

Theorem 1.2. Let (H1) and (H3) hold. Then there exists λ∗ ∈
(
max{ b2

f(b2)
2NCN

R2 ,

A1

2
}, Am+1

)
such that (1.1) has at least four positive solutions for λ ∈ [λ∗, Am+1).

Corollary 1.3. Let (H1) - (H3) hold. Then there exists λ∗ such that (1.1) has a

positive solution for λ ∈ [λ∗, Am), a positive solution uλ for λ < Am and λ ≈ Am such

that uλ → ∞ as λ → A−
m, at least four positive solutions for λ ∈ [λ∗, Am+1) and at

least three positive solutions for λ ∈
(
max{ b1

f(b1)
2NCN

R2 , Am+1, 1},min{Am, a1
f(a1)

1
∥v∥∞}

)
.

Nonexistence Results:

We also prove the following:

Theorem 1.4. (1.1) has no positive solutions for λ ≈ 0 and when m > 0 for λ > Am.
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(a) m = 0 (b) m > 0

Figure 8. Expected bifurcation diagrams for (1.1) when the hypotheses of Corollary

1.3 are satisfied.

Remark: Focus 1 results are now published in [AFQS21].

1.2 Focus 2: Extend the study in Focus 1 for classes of coupled reaction

diffusion equations

We study positive solutions to classes of steady state reaction diffusion systems of the

form: 

−∆u = λf(v); Ω

−∆v = λg(u); Ω

∂u
∂η

+
√
λu = 0; ∂Ω

∂v
∂η

+
√
λv = 0; ∂Ω,

(1.9)

where λ > 0 is a positive parameter, Ω is a bounded domain in RN with smooth

boundary ∂Ω for N > 1 or Ω = (0, 1), and ∂z
∂η

is the outward normal derivative of z.

Here f, g ∈ C2[0, r)∩C[0,∞) for some r > 0. Further, we assume that f and g are in-
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creasing functions such that f(0) = 0 = g(0), f ′(0) = g′(0) = 1, f ′′(0) > 0, g′′(0) > 0,

and lim
s→∞

f(Mg(s))
s

= 0 for all M > 0. Under certain additional assumptions on f and g

we prove that the bifurcation diagram for positive solutions of this system is at least

Σ−shaped.

This study extends the results of Focus 1. In this study, our focus is to show that in

the case of a system like (1.9), both the reaction terms f and g do not have to exhibit

similar alternating convexity concavity properties to produce a Σ−shaped bifurcation

curve, and, in fact, they both do not have to be sub-linear at infinity. We establish

that Σ−shaped bifurcation curves occur when f and g satisfy a combined sublinear

condition at ∞ ( lim
s→∞

f(Mg(s))
s

= 0; ∀M > 0). In particular, one of the nonlinearities

can be superlinear at ∞ (see Figure 9).

Figure 9. Prototypical shapes of f and g producing a Σ−shaped bifurcation diagram.

Recall (1.4) and let A1 = E1(1, 1). Next, recall (1.6) for a fixed λ > 0, let σλ = σλ,1

be the principal eigenvalue and θλ = θλ,1 on Ω be the corresponding eigenfunction

such that ∥θλ∥∞ = 1. We note that σλ > 0 when λ < A1, σλ < 0 when λ > A1, and

12



σλ → 0 as λ→ A1.

Next, recall v from (1.7) and w from (1.8). Now, we introduce our hypotheses (H4)−

(H7) which we use to establish our results. Assume that f, g are increasing and satisfy:

(H4) f(0) = g(0) = 0, f ′(0) = g′(0) = 1, f ′′(0) > 0, g′′(0) > 0.

(H5) lim
s→∞

f(Mg(s))
s

= 0 for all M > 0.

(H6) There exist a1 > 0, b1 > 0 such that a1 < b1 and

Q1(a1)
1

∥v∥∞ > max
{
Q2(b1)

2NCN

R2 , A1, 1
}
, where CN = (N+1)N+1

2NN and R is the

radius of the largest inscribed ball in Ω.

Here, for 0 < a < b,

Q1(a) := min

{
a

f(a)
,
a

g(a)

}
(1.10)

and

Q2(b) := max

{
b

f(b)
,
b

g(b)

}
. (1.11)

(H7) There exist a2 > 0, b2 > 0 such that a2 < b2 and

Q1(a2)
1

∥w∥∞ ≥ A1 > Q2(b2)
2NCN

R2 .

Then we establish the following results:

Theorem 1.5.

a) Let (H4) − (H5) hold. Then there exists λ < A1 such that (1.9) has a positive

solution for λ ≥ λ, at least two positive solutions for λ ∈ [λ,A1), and a positive

13



solution (uλ, vλ) for λ≫ 1 such that ∥uλ∥∞, ∥vλ∥∞ → ∞ as λ→ ∞.

b) Let (H4)− (H6) hold. Then (1.9) has at least three positive solutions for

λ ∈
(
max{A1, Q2(b1)

2NCN
R2

, 1}, Q1(a1)

∥v∥∞

)
:= I.

Figure 10. Bifurcation diagram for (1.9) when the hypotheses of Theorem 1.5(b)

(H4 −H6) hold.

Theorem 1.6. Let (H4)− (H5), and (H7) hold. Then there exists

λ∗ ∈
(
max{Q2(b2)

2NCN

R2 , A1

2
}, A1

)
such that (1.9) has at least four positive solutions

for λ ∈ [λ∗, A1).

Corollary 1.7. Let (H4)− (H7) hold. Then there exist λ(< A1) and λ∗(< A1) such

that (1.9) has a positive solution for λ ≥ λ, a positive solution (uλ, vλ) for λ≫ 1 such

that ∥uλ∥∞, ∥vλ∥∞ → ∞ as λ → ∞, at least four positive solutions for λ ∈ [λ∗, A1),

and at least three positive solutions for λ ∈
(
max{A1, Q2(b1)

2NCN

R2 , 1}, Q1(a1)
∥v∥∞

)
.

Remark: Focus 2 results are now published in [ASF22].
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Figure 11. Bifurcation diagram for (1.9) when the hypotheses of Corollary 1.3 (H4 −

H7) hold.

1.3 Focus 3: Analysis of classes of diffusive Lotka-Volterra competition

models in fragmented patches.

We study the diffusive Lotka-Volterra (L-V) two species competition model coupled

with boundary conditions that allow for the study of the effects of habitat fragmen-

tation on the system. The model is built upon the reaction diffusion framework

which has seen tremendous success in the study of spatially structured systems in the

literature, see [CC03], [Fif79], [HLV94], [Lev74], [Lev81], [Mur03], [Oku81] and ref-

erences therein for a detailed history of the framework. We assume that two species

are dwelling in a single focal patch Ω0 = {lx | x ∈ Ω} with patch size l > 0 and

Ω = (0, 1) or Ω ⊂ RN having unit measure (e.g. if N = 2 then the area of Ω is one)

and smooth boundary with N = 2, 3, that is surrounded by a hostile matrix, denoted

by Ωc
0 = RN\Ω0, where it is assumed that organisms experience exponential decay at

fixed rate, say S0 > 0 (see Figure 12).

We also denote the boundary of Ω0 by ∂Ω0. The two organisms follow an unbiased

random walk inside both the patch and matrix, while on the patch/matrix interface a
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Figure 12. Habitat Ω0 and the exterior matrix Ωc
0

discontinuity between the density in the patch and matrix is allowed at the interface

(via a biased random walk), while maintaining continuity in the flux (see e.g. [ML86],

[Ova04], [OC03]). Here organisms recognize the patch/matrix interface and modify

their random walk movement probability (i.e. probability of an organism moving at a

given time step in the random walk process), random walk step length (i.e. distance

that an organism moves during a given time step), and/or probability of remaining

in the patch (say α). In this patch-level setting, we equate dispersal from the patch

to organisms reaching the patch/matrix interface, leaving the patch with probability

1 − α (taken to be constant), and entering the matrix, where they still have the

opportunity to re-enter the patch at the interface. Following the derivation given in

[CGS19], the diffusive competitive Lotka-Volterra system becomes:
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

ut = D1∆u+ r1u(1− 1
K1
u− a1

K1
v); t > 0, x ∈ Ω0

vt = D2∆v + r2v(1− 1
K2
v − a2

K2
u); t > 0, x ∈ Ω0

u(0, x) = u0(x);x ∈ Ω0

v(0, x) = v0(x);x ∈ Ω0

D1α1
∂u
∂η

+ S∗
1 [1− α1]u = 0; t > 0, x ∈ ∂Ω0

D2α2
∂v
∂η

+ S∗
2 [1− α2]v = 0; t > 0, x ∈ ∂Ω0,

(1.12)

and it will exactly model the study system in the case of a one-dimensional patch in

the sense that steady states of (1.12) and their stability properties will be exactly the

same as those of the study system (see [CGS19] and references therein) while provid-

ing a reasonable approximation of the study system in the case of a simply connected,

convex patch in two- or three-dimensions. In this model, Di > 0 represents the patch

diffusion rate, ri > 0 represents the patch intrinsic growth rate, Ki > 0 represents

the patch carrying capacity, ai > 0 represents the scale of competitive effect from the

other competitor, u0(x), v0(x) represent the initial population density distributions in

the patch, and αi represents the probability of an individual remaining in the patch

upon reaching the boundary (i = 1 for u and i = 2 for v). The term ∂
∂η

denotes

the outward normal derivative operator. Note that the parameter S∗
i ≥ 0 represents

the matrix hostility towards an organism, has units of length by time, and can as-

sume different forms depending upon the patch/matrix interface assumptions (see

[CGS19]). The boundary is absorbing, i.e., all individuals that reach the boundary

will emigrate, when αi ≡ 0, whereas the boundary is reflecting, i.e. the emigration
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rate is zero, when αi ≡ 1.

We now introduce a standard scaling:

x̃ =
x

l
& t̃ = r1t.

After applying this scaling and dropping the tilde, (1.12) becomes:



ut =
1
λ
∆u+ u(1− u− b1v); t > 0, x ∈ Ω

vt =
1
λ
∆v + r0v(1− v − b2u); t > 0, x ∈ Ω

u(0, x) = u0(x); x ∈ Ω

v(0, x) = v0(x); x ∈ Ω

∂u
∂η

+
√
λγ1u = 0; t > 0, x ∈ ∂Ω

∂v
∂η

+
√
λγ2v = 0; t > 0, x ∈ ∂Ω

(1.13)

with the corresponding steady state equation:



−∆u = λu(1− u− b1v); Ω

−∆v = λrv(1− v − b2u); Ω

∂u
∂η

+
√
λγ1u = 0; ∂Ω

∂v
∂η

+
√
λγ2v = 0; ∂Ω,

(1.14)

where λ = r1l2

D1
, r0 = r2

r1
, D0 = D2

D1
, r = r0

D0
, bi = ai

Ki
; i = 1, 2, γ1 =

S∗
1√

r1D1

1−α1

α1
, and

γ2 =
S∗
2√

r1D1D0

1−α2

α2
are all unitless. Also, recall that Ω has a length, area, or volume of

one. Hence, for fixed r1, r2, D1, D2, the composite parameter λ is proportional to the

patch size squared, γ1 is proportional to the effective matrix hostility towards u, and
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γ2 is proportional to the effective matrix hostility towards v. The composite parame-

ter bi denotes the scale of the competitive effect of one organism onto the other, e.g.,

b1 measures the competitive effect of v on u. We will denote b1, b2 ∈ (0, 1) as weak

competition, b1 = 1 = b2 as neutral competition, either 0 < b1 ≤ b2 or 0 < b2 ≤ b1 as

semistrong competition, and b1, b2 ∈ [1,∞) as strong competition.

In the case that γ1 = 0 = γ2, (1.13) becomes the classical diffusive homogeneous

Lotka-Volterra competition model whose dynamics have been studied extensively (see

[Bro80], [Has78] and [HN16]).

Part I: Study in the dimension N = 1 the case and when b1 = 0.

Here, we consider a case when the species u does not have a competitor and consider

the case when Ω = (0, 1). Namely, we analyze positive solutions for:


−v′′ = λrv(1− v − b2u); (0, 1)

−v′(0) +
√
λγ2v(0) = 0

v′(1) +
√
λγ2v(1) = 0,

(1.15)

where u is the positive solution of:


−u′′ = λu(1− u); (0, 1)

−u′(0) +
√
λγ1u(0) = 0

u′(1) +
√
λγ1u(1) = 0.

(1.16)

First, using the Quadrature method (which will be discussed in Chapter II) and Math-

ematica computations, we numerically approximate the unique positive solution u of

(1.16). Then using this approximation, we employ the Shooting method (will be
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discussed in Chapter II) to numerically approximate positive solutions of (1.15) and

generate bifurcation diagrams of the positive solutions of (1.15). We choose values of

r, γ1, γ2 to obtain results for three different cases: E1(r, γ2) < E1(1, γ1), E1(r, γ2) >

E1(1, γ1) and E1(r, γ2) = E1(1, γ1), where E1(m, k) is as in (1.4). Further, the prob-

lem: −∆z = λmz(1− z); Ω

∂z
∂η

+
√
λkz = 0; ∂Ω

(1.17)

has a unique positive solution for λ > E1(m, k) and has the exact bifurcation diagram

for positive solutions given in Figure 13 (see [GMRS18]).

Figure 13. Exact bifurcation diagram for positive solutions of model (1.17).

Here we provide the bifurcation curves we obtained for the positive solution v of

(1.15). The blue and red curves represent the bifurcation curves corresponding to

the independent solutions u and v respectively, and the green curves represent the

bifurcation curves for the solution v when it is affected by u with competition strength

b2.
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𝐸1(𝑟, 𝛾2) 𝐸1(1, 𝛾1)

∞

𝑏2 = 0.0

𝑏2 = 0.1

𝑏2 = 0.2

𝑏2 = 0.3

𝑏2 = 0.4

𝑏2 = 0.5

𝑏2 = 0.6

𝑏2 = 0.728074

𝑏2 = 0.8
𝑏2 = 0.9

𝑏2 = 1.0

(a) Approximate bifurcation diagrams for

different values of b2 ≤ 1.

(b) Approximate bifurcation diagrams

when b2 = 1.1.

Figure 14. Approximate bifurcation diagrams for (1.15) when E1(r, γ2) < E1(1, γ1)

and b2 varies.

Figure 15. Approximate bifurcation diagrams for (1.15) when E1(1, γ1) < E1(r, γ2)

and b2 varies.

Part II: Dimension N ≥ 1 case when both b1, b2 ̸= 0.

Motivated by our study in Part I, here we consider the case when both of the species

have competition inside the domain in any dimension (N ≥ 1). Namely, we consider
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(a) Approximate bifurcation diagrams for

different values of b2 ≤ 1.

(b) Approximate bifurcation diagram

when b2 = 1.1.

Figure 16. Approximate bifurcation diagrams for (1.15) when E1(r, γ2) = E1(1, γ1)

and b2 varies.

the following problem:



−∆u = λu(1− u− b1v); Ω

−∆v = λrv(1− v − b2u); Ω

∂u
∂η

+
√
λγ1u = 0; ∂Ω

∂v
∂η

+
√
λγ2v = 0; ∂Ω.

(1.18)

Now, we recall the dynamics of the following single species model and discuss some

important eigenvalue problems for which our coexistence results will be built upon:


Wt =

1
λR

∆W +W (1− b−W ); t > 0, x ∈ Ω

W (0, x) = W0(x); x ∈ Ω

∂W
∂η

+
√
λγW = 0; t > 0, x ∈ ∂Ω

(1.19)
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with corresponding steady state equation:

−∆W = λRW (1− b−W ); Ω

∂W
∂η

+
√
λγW = 0; ∂Ω,

(1.20)

where R > 0, b, γ ≥ 0, and W0 is a smooth non-negative function. From [GMRS18],

the complete dynamics of (1.19) can be determined via the sign of the principal

eigenvalue σ0 = σ0(λ,R, b, γ) of:

−∆ϕ0 − λR(1− b)ϕ0 = σ0ϕ0; Ω

∂ϕ0
∂η

+
√
λγϕ0 = 0; ∂Ω

(1.21)

with corresponding eigenfunction ϕ0 which can be chosen such that ϕ0 > 0; ∂Ω. Also,

we recall from [GMRS18] the eigenvalue problem:

−∆ϕ = R(1− b)Eϕ; Ω

∂ϕ
∂η

+
√
λγϕ = 0; ∂Ω.

(1.22)

For fixed R, b, and γ, let E1(R, b, γ) denote the principal eigenvalue of (1.22) with

corresponding eigenfunction ϕ which can be chosen such that ϕ > 0; Ω.

See Figure 17 for an exact bifurcation curve of positive solutions of (1.20). Note that

we will denote WR,γ,0 as WR,γ or simply WR and E1(R, 0, γ) as E1(R, γ) when there

is no confusion regarding the context.

We establish Theorems 1.8-1.11 stated below.
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Figure 17. Exact bifurcation diagram for positive solutions of (1.20).

Theorem 1.8. (Nonexistence). For r > 0, b1, b2 ≥ 0 and γ1, γ2 ≥ 0, if any of the

following hold then (1.18) has no positive solution.

(A) λ ≤ max{E1(1, γ1), E1(r, γ2)};

(B) γ1 = γ2, and either of the following hold:

(i) b2 ≤ 1 ≤ b1 and 1 ≤ r ≤ b1
b2

, with at least one inequality being strict;

(ii) b1 ≤ 1 ≤ b2 and b1
b2

≤ r ≤ 1, with at least one inequality being strict;

(C) γ1 > γ2, b2 ≤ 1 ≤ b1, and 1 ≤ r ≤ b1
b2

;

(D) γ1 < γ2, b1 ≤ 1 ≤ b2, and b1
b2

≤ r ≤ 1;

(E) b1 > 1, b2 <
b1−1
b1

and λ≫ 1;

(F) b2 > 1, b1 <
b2−1
b2

and λ≫ 1;

(G) E1(1, γ1) < E1(r, γ2), b2 > 0 and λ < E1(r, γ2) + δ(b2), for δ(b2) > 0;

(H) E1(1, γ1) > E1(r, γ2), b1 > 0 and λ < E1(1, γ1) + δ(b1), for δ(b1) > 0.
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Theorem 1.9. (Existence). Let r∗ = E1(1,γ2)
E1(1,γ1)

. For r > 0, b1, b2 ≥ 0, and γ1, γ2 ≥ 0

the following hold:

(A) If b1, b2 < 1, then (1.18) has at least one positive solution, (u, v), for λ >

max
{
E1(1,γ1)
1−b1 , E1(r,γ2)

1−b2

}
. Furthermore, every positive solution (u, v) of (1.18)

will satisfy:

(i) for λ > max{E1(1, γ1), E1(r, γ2)},

0 < u(x, λ) ≤ W1,γ1,0(x, λ); Ω,

0 < v(x, λ) ≤ Wr,γ2,0(x, λ); Ω.

(ii) for λ > max
{
E1(1,γ1)
1−b1 , E1(r,γ2)

1−b2

}

W1,γ1,b1(x, λ) < u(x, λ) ≤ W1,γ1,0(x, λ); Ω,

Wr,γ2,b2(x, λ) < v(x, λ) ≤ Wr,γ2,0(x, λ); Ω.

(iii) if r = 1 and γ1 = γ2 (implying that E1(1, γ1) = E1(r, γ2)) then for λ >

E1(1, γ1),

u(x, λ) =
1− b1
1− b1b2

W1,γ1,0(x, λ); Ω,
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v(x, λ) =
1− b2
1− b1b2

W1,γ1,0(x, λ); Ω.

(B) If b1 = b2 = 1, γ1 = γ2, and r = 1 (implying that E1(1, γ1) = E1(r, γ2)), then

(1.18) has infinitely many solutions for λ > E1(1, γ1) of the form:

(u(x, λ), v(x, λ)) = (sW1,γ1,0(x, λ), (1− s)W1,γ1,0(x, λ)); Ω, s ∈ (0, 1).

(C) If b1 < 1 ≤ b2, γ1 > 0, and r > r∗ (implying E1(r, γ2) < E1(1, γ1)), then for

b1 ≈ 0 there exist λ1(r, b1, b2, γ1, γ2), λ2(r, b2, γ1, γ2) > E1(1, γ1) such that (1.18)

has at least one positive solution, (u, v), for λ ∈ (λ1, λ2). Furthermore, (u, v)

will satisfy:

W1,γ1,b1(x, λ) < u(x, λ) < W1,γ1,0(x, λ); Ω

0 < v(x, λ) < Wr,γ2,0(x, λ); Ω.

(D) If b2 < 1 ≤ b1, γ2 > 0, and r < r∗ (implying E1(r, γ2) > E1(1, γ1)), then for

b2 ≈ 0 there exist λ1(r, b1, b2, γ1, γ2), λ2(r, b2, γ1, γ2) > E1(r, γ2) such that (1.18)

has at least one positive solution, (u, v), for λ ∈ (λ1, λ2). Furthermore, (u, v)

will satisfy:

0 < u(x, λ) < W1,γ1,0(x, λ); Ω,
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Wr,γ2,b2(x, λ) < v(x, λ) < Wr,γ2,0(x, λ); Ω.

(E) If b1, b2 > 1, γ1 = γ2, and r = 1 (implying that E1(r, γ2) = E1(1, γ1)), then

(1.18) has at least one positive solution for λ > E1(1, γ1), given by:

(u(x, λ), v(x, λ)) =

(
1− b1
1− b1b2

W1,γ1,0(x, λ),
1− b2
1− b1b2

W1,γ1,0(x, λ)

)
; Ω.

Theorem 1.10. (Uniqueness). For r > 0, b1, b2 < 1, and γ1, γ2 ≥ 0 the following

hold:

(A) If b1, b2 < 1, r = 1, and γ1 = γ2, then (1.18) has at most one positive solution

for any λ > 0.

(B) For λ > max{E1, 1, γ1), E1(r, γ2)} if

4 >
b21
r
sup
Ω

{
W1,γ1(x, λ)

Wr,γ2(x, λ)

}
+ 2b1b2 + rb22 sup

Ω

{
Wr,γ2(x, λ)

W1,γ1(x, λ)

}
, (1.23)

then (1.18) has at most one positive solution. In particular, if b1, b2 ≈ 0, then

(1.23) holds and (1.18) has a unique positive solution for

λ > max
{
E1(1,γ1)
1−b1 , E1(r,γ2)

1−b2

}
.

Theorem 1.11. (Stability). Suppose that r > 0, b1, b2 ≥ 0, γ1, γ2 ≥ 0, and λ > 0 are

such that σ1, σ2 < 0. The following hold:

(A) If σ3 > 0 or σ4 > 0, then (W1,γ1 , 0) or (0,Wr,γ2) is asymptotically stable, respec-

tively.

(B) If σ3 < 0 or σ4 < 0, then (W1,γ1 , 0) or (0,Wr,γ2) is unstable, respectively.
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(C) If σ3, σ4 < 0, then there exist a max-min (u, v) and a min-max (u, v) positive

solution of (1.18) with 0 ≤ u ≤ u ≤ W1,γ1 and 0 ≤ v ≤ v ≤ Wr,γ2 on Ω such

that:

(i) if u(x) ≤ u(0, x) ≤ W1,γ1(x); Ω and 0 < v(0, x) ≤ v(x); Ω, then the unique

positive solution of (1.13), (u(t, x), v(t, x)), converges to (u, v) as t→ ∞.

(ii) if 0 < u(0, x) ≤ u(x); Ω and v(x) ≤ v(0, x) ≤ Wr,γ2(x); Ω, then the unique

positive solution of (1.13), (u(t, x), v(t, x)), converges to (u, v) as t→ ∞.

(iii) (u, v) = (u, v) if and only if there is a unique positive solution of (1.18).

Moreover, this coexistence state is globally asymptotically stable.

(iv) There does not exist an asymptotically stable positive solution of (1.18)

arbitrarily close to (W1,γ1 , 0) or (0,Wr,γ2).

Remark: Focus 3 results are now published in [ABC+23].

1.4 Focus 4: Numerical computation of bifurcation diagrams in dimen-

sion N = 2 for examples in Focus 1 and Focus 3.

1.4.1 Study in dimension N = 2 of an elliptic boundary value problem where a

parameter influences the differential equation as well as the boundary

Here we obtain the bifurcation diagrams using the finite element method for positive

solutions (numerically) to:


−∆u = λf(u); x ∈ Ω,

∂u
∂η

+
√
λu = 0; x ∈ ∂Ω,

(1.24)
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where Ω = (0, 1)× (0, 1) and the reaction term f is given as:

f(s) = fα,k(s) =

 e
cs
c+s − 1; s ≤ k

[e
αs
α+s − e

αk
α+k ] + [e

ck
c+k − 1]; s > k.

(1.25)

Here c > 2 is a fixed number, α > 0 and k > 0 are parameters. We obtain approximate

bifurcation diagrams, as in the N = 1 case, which are Σ-shaped when α, k ≫ 1.

1.4.2 Study in dimension N = 2 of an ecological problem

Here we obtain the numerical bifurcation diagrams using the finite element method

([LB13]) to the following problem:



−∆u = λu(1− u− b1v); Ω

−∆v = λrv(1− v − b2u); Ω

∂u
∂η

+
√
λγ1u = 0; ∂Ω

∂v
∂η

+
√
λγ2v = 0; ∂Ω,

(1.26)

where λ, γ1, γ2 > 0, b1, b2 ≥ 0, and Ω = (0, 1)× (0, 1).

We obtain bifurcation diagrams for positive solutions to (1.26) and explore how they

evolve as b1, b2 vary.

We now describe the plan for the rest of this dissertation. In Chapter II, we state

some preliminaries that we use in the proofs of our results. In Chapter III, we provide

the proofs of results stated in Focus 1. Namely, we provide proofs of Theorems 1.1

- 1.2, Theorem 1.4, and Corollary 1.3 in Chapter III. Chapter IV is devoted to the

proofs of results stated in Focus 2. Namely, we provide proofs of Theorem 1.5 - 1.6
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and Corollary 1.7. In Chapter V, we provide proofs of Theorems 1.8- 1.11 stated in

Focus 3. Chapter VI is dedicated to computational results for examples in Focus 4.

Finally, in Chapter VII, we provide conclusions and future directions.

30



CHAPTER II

PRELIMINARIES

2.1 Method of Sub and Supersolutions

Consider the boundary value problem:

 −∆u = λf(u); Ω

∂u
∂η

+ γ
√
λu = 0; ∂Ω

(2.1)

where λ, γ are positive parameters and f is a smooth function. We first introduce

definitions of a (strict) subsoultion and a (strict) supersolution of (2.1), and state

a sub-supersolution theorem and a three solution theorem that are used to prove

existence and multiplicity results for position solutions. By a subsolution of (2.1), we

mean a function ψ ∈ C2(Ω) ∩ C1(Ω) that satisfies:

 −∆ψ ≤ λf(ψ); Ω

∂ψ
∂η

+ γ
√
λψ ≤ 0; ∂Ω.

By a supersolution of (2.1), we mean a function z ∈ C2(Ω) ∩ C1(Ω) that satisfies:

 −∆z ≥ λf(z); Ω

∂z
∂η

+ γ
√
λz ≥ 0; ∂Ω.
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By a strict subsolution (supersolution) of (2.1) we mean a subsolution (supersolution)

which is not a solution. Then the following results hold:

Lemma 2.1. (see [Sat72], [Ama72]) Let ψ and z be a subsolution and a supersolution

of (2.1) respectively such that ψ ≤ z. Then (2.1) has a solution u ∈ C2(Ω) ∩ C1(Ω)

such that ψ ≤ u ≤ z.

Lemma 2.2. (see [Ama72], [Shi87]) Let u1 and u2 be a subsolution and a supersolu-

tion of (2.1) respectively such that u1 ≤ u2 in Ω. Let u2 and u1 be a strict subsolution

and a strict supersolution of (2.1) respectively such that u2, u1 ∈ [u1, u2] and u2 ≰ u1.

Then (2.1) has at least three solutions u1, u2 and u3 where ui ∈ [ui, ui] for i = 1, 2

and u3 ∈ [u1, u2]\([u1, u1] ∪ [u2, u2]).

Similarly, by a subsolution of (1.9) we mean (ψ, ψ) ∈ [C2(Ω)∩C1(Ω̄)]×[C2(Ω)∩C1(Ω̄)]

that satisfies: 

−∆ψ ≤ λf(ψ); Ω

−∆ψ ≤ λg(ψ); Ω

∂ψ
∂η

+
√
λψ ≤ 0; ∂Ω

∂ψ
∂η

+
√
λ ψ ≤ 0; ∂Ω,

and by a supersolution of (1.9) we mean (Z,Z) ∈ [C2(Ω)∩C1(Ω̄)]× [C2(Ω)∩C1(Ω̄)]

that satisfies: 

−∆Z ≥ λf(Z); Ω

−∆Z ≥ λg(Z); Ω

∂Z
∂η

+
√
λZ ≥ 0; ∂Ω

∂Z
∂η

+
√
λ Z ≥ 0; ∂Ω.
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By a strict subsolution (strict supersolution) of (1.9) we mean a subsolution (super-

solution) which is not a solution.

Now we state two results that we will use later.

Lemma 2.3. Let (ψ, ψ) and (Z,Z) be a subsolution and a supersolution of (1.9)

respectively such that (ψ, ψ) ≤ (Z,Z). Then (1.9) has a solution (u, v) ∈ [C2(Ω) ∩

C1(Ω̄)]× [C2(Ω) ∩ C1(Ω̄)] such that (u, v) ∈ [(ψ, ψ), (Z,Z)].

Lemma 2.4. Let (ψ1, ψ1) be a subsolution, (ϕ2, ϕ2) a strict supersolution, (ψ2, ψ2) a

strict subsolution, and (ϕ1, ϕ1) a supersolution for (1.9) such that (ψ1, ψ1) ≤ (ψ2, ψ2) ≤

(ϕ1, ϕ1), (ψ1, ψ1) ≤ (ϕ2, ϕ2) ≤ (ϕ1, ϕ1), and (ψ2, ψ2) ≰ (ϕ2, ϕ2). Then (1.9) has at

least three positive solutions (ui, vi), i = 1, 2, 3, such that (u1, v1) ∈ [(ψ1, ψ1), (ϕ2, ϕ2)],

(u2, v2) ∈ [(ψ2, ψ2), (ϕ1, ϕ1)], and (u3, v3) ∈ [(ψ1, ψ1), (ϕ1, ϕ1)]\([(ψ1, ψ1), (ϕ2, ϕ2)] ∪

[(ψ2, ψ2), (ϕ1, ϕ1)]).

2.2 Quadrature method

Let us consider the problem:


−u′′ = λf(u); (0, 1)

−u′(0) +
√
λγu(0) = 0

u′(1) +
√
λγu(1) = 0,

(2.2)

where λ, γ are positive parameters and f ∈ C1[0, r); r > 0 is non-negative. We use

the Quadrature method used in [GMRS18] which was first introduced for Dirichlet

boundary conditions in [Lae71]. Let u(x) be a positive solution to (2.2). Since (2.2)

is autonomous, any positive solution u of (2.2) must be symmetric about x = 1
2
,
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increasing on (0, 1
2
), and decreasing on (1

2
, 1). Let u(0) = u(1) = q and ∥u∥∞ =

u(1
2
) = ρ. Note that u′(1

2
) = 0.

Figure 18. Shape of a positive solution to (1.16).

Then multiplying the differential equation (2.2) by u′ we get

−u′′u′ = λf(u)u′. (2.3)

By integrating both sides, we obtain

− [u′(x)]2

2
= λF (u(x)) + C, (2.4)

where F (s) =
∫ s
0
f(t)dt. Now, applying u′(1

2
) = 0 and u(1

2
) = ρ, we get C = −λF (ρ).

Thus

u′(x) =
√

2λ(F (ρ)− F (u(x))); x ∈
[
0,

1

2

]
.
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Further integration from 0 to x; x ∈ [0, 1
2
), yields

∫ x

0

u′(x)ds√
F (ρ)− F (u(s))

=
√
2λx. (2.5)

Through a change of variables and using the fact that u(0) = q we have

∫ u(x)

q

ds√
F (ρ)− F (s)

=
√
2λx; x ∈

[
0,

1

2

)
. (2.6)

Now, letting x→ 1
2
, we get

√
2

∫ ρ

q

ds√
F (ρ)− F (s)

=
√
λ. (2.7)

For the improper integral in (2.7) to exist, we must have f(ρ) > 0 and

F (ρ) > F (s); s ∈ [0, ρ). Using the boundary conditions we note that ρ and q must

satisfy

F (ρ) =
2F (q) + γ2q2

2
. (2.8)

It is easy to verify that given ρ ∈ (0, r), there exists a unique q = q(ρ) ∈ (0, ρ)

satisfying (2.8). Also,

G(ρ) =
√
2

∫ ρ

q(ρ)

ds√
F (ρ)− F (s)
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is well defined and continuous on (0, 1). Further, if λ, ρ and q(ρ) satisfy

√
λ = G(ρ) =

√
2

∫ ρ

q(ρ)

ds√
F (ρ)− F (s)

, (2.9)

it can be proven that for each x ∈ [0, 1
2
) there is a unique u(x) ∈ [0, ρ) that satisfies

the equation

∫ u(x)

q(ρ)

ds√
F (ρ)− F (s)

=
√
2λx. (2.10)

Now defining u(1
2
) = ρ, and, for x ∈ (1

2
, 1] defining u(x) = u(1− x), it can be shown

that u ∈ C2[0, 1] and satisfies (1.16).

Hence (2.9), namely, S = {(λ, ρ)|ρ ∈ (0, r), G(ρ) =
√
λ} describes the bifurcation

diagram for positive solutions of (1.16). For given λ, ρ and q satisfying (2.8) and

(2.9), we use (2.10) with the Mathematica nonlinear solver to approximate u = uλ.

2.3 Shooting method

To find the solutions of (1.15), we use the Shooting method. Recall that in the

Quadrature method we discussed how to approximate the positive solution u(= uλ)

of (1.16). Now we discuss a numerical Shooting method which is employed to ap-

proximate the positive solution v of (1.15) in the asymmetric competition case when

b1 = 0. Namely we approximate the solution v of:


−v′′ = λrv[1− v − buλ]; (0, 1)

−v′(0) +
√
λγ2v(0) = 0

v′(1) +
√
λγ2v(1) = 0.

(2.11)
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Figure 19. Shooting from x = 0 to x = 1.

Let v(0) = δ and v′ = z. Then we obtain the following system of ordinary differential

equations:



v′ = z; (0, 1)

−z′ = λrv(1− v − buλ); (0, 1)

z(1) = −
√
λγ2v(1)

v(0) = δ, z(0) =
√
λγ2δ.

(2.12)

For a given value of δ > 0, we use the ParametricNDSolve method in Mathemat-

ica to approximate solutions of (2.12). This process can be explained as a shooting

from x = 0 (where v(0) = δ and z(0) =
√
λγ2δ) and checking at x = 1 to see if

z(1) = −
√
λγ1v(1).

2.4 Finite element method

Shooting and Quadrature methods do not work for N ≥ 2 in general. Here, we discuss

the variational formulation and a finite element method (see [LB13]) that we will be

using to obtain the numerical solutions of (1.24) and (1.26) when Ω = (0, 1)× (0, 1)
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in R2. For the discussion, let us consider the following problem:

 −∆u = λf(u); Ω

∂u
∂η

+ γ
√
λu = 0; ∂Ω,

(2.13)

where λ, γ > 0, Ω = (0, 1)× (0, 1), and f is continuous.

2.4.1 Variational Formulation

Let

V := H1(Ω) = {v ∈ L2(Ω)|∇v ∈ L2(Ω)},

where Ω = (0, 1)× (0, 1) ∈ R2. Then we take v ∈ V and multiply equation (2.13) by

v to obtain:

(−∆u)v = λf(u)v.

Using integration by parts, we obtain:

∫
Ω

∇u · ∇vdx−
∫
∂Ω

∂u

∂η
vds = λ

∫
Ω

f(u)vdx.

Now, using the boundary condition, we obtain:

∫
Ω

∇u · ∇vdx+ γ
√
λ

∫
∂Ω

uvds = λ

∫
Ω

f(u)vdx. (2.14)

In general, the solution of (2.14) is not known and the numerical solution is important

to analyze. Here, we take Ω = (0, 1)× (0, 1) in R2, and for a given triangulation of Ω
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(see Figure 20), we find a finite dimensional approximation for u by using the finite

element method.

2.4.2 Finite Element Method Formulation

Let

Vh := {v ∈ C0(Ω) : v|K ∈ P1(K) ∀K ∈ Kh},

where Kh is a shape-regular triangulation of Ω with mesh size parameter h (see Figure

20).

Figure 20. Triangulation (Kh) of the domain.

Note that Vh is conforming in the sense that Vh ⊂ V . The finite element method for

(2.13) is to find uh ∈ Vh such that

∫
Ω

∇uh∇vhdx− λ

∫
Ω

f(uh)vhdx+

∫
∂Ω

γ
√
λuhvhds = 0 for all vh ∈ Vh. (2.15)
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Then we derive nonlinear system of equations by the following way:

Let nh := dim(Vh) such that Vh = Span{φi}nh
i=1 with the following property:

φj(xi) = δij =

1; i = j

0; i ̸= j.

Now, using this basis, we note that the finite element formulation (2.15) is equivalent

to

∫
Ω

∇uh∇φidx− λ

∫
Ω

f(uh)φidx+

∫
∂Ω

γ
√
λuhφids = 0; i = 1, 2, ..., nh.

Since uh ∈ Vh, we can write uh as the linear combination of φj (j = 1, 2, ...nh). That is,

uh =

nh∑
j=1

ξjφj.

Now, (2.15) can be written as

∫
Ω

∇

(
nh∑
j=1

ξjφj

)
∇φidx− λ

∫
Ω

f(

nh∑
j=1

ξjφj)φidx+ γ
√
λ

∫
∂Ω

nh∑
j=1

ξjφjφids = 0

=⇒
nh∑
j=1

ξj

∫
Ω

∇φj∇φidx− λ

∫
Ω

f(

nh∑
j=1

ξjφj)φidx+ γ
√
λ

nh∑
j=1

ξj

∫
∂Ω

φjφids = 0

(2.16)
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for all i = 1, 2, ... ... ... nh, which leads to a system of nonlinear equations of the

form F (u) = 0, where F is a nonlinear function and u is the solution vector which

represents the coefficients of the expansion of uh in terms of basis functions. The

nonlinear system can be solved by Newton’s method.
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CHAPTER III

PROOFS OF THEOREMS 1.1 - 1.2, THEOREM 1.4, AND COROLLARY 1.3

STATED IN FOCUS 1

First we construct sub-super solutions for certain λ ranges. Recall θλ,m and σλ,m (see

(1.6)).

Construction of a small strict subsolution ψ1 for λ < Am+1 and λ ≈ Am+1

when (H1) is satisfied.

We first note that f ′′(s) > 0 for s ≈ 0 since g′′(0) > 0. Hence there exists

A∗ > 0 and s1 > 0 such that f ′′(s) > A∗ for s < s1. Let ψ1 = δλθλ,m+1 where δλ =

2(m+1)σλ,m+1

λA∗ min
Ω

θλ,m+1
. We note that σλ,m+1 > 0, σλ,m+1 → 0 as λ→ A−

m+1, and min
Ω
θλ,m+1 ̸→ 0

as λ → A−
m+1. Thus δλ → 0+ as λ → A−

m+1. Now by Taylor’s Theorem, we have

f(ψ1) = f(0) + f ′(0)ψ1 +
f ′′(ζ)

2
ψ1

2 = (m+ 1)ψ1 +
f ′′(ζ)

2
ψ1

2 for some ζ ∈ [0, ψ1]. Then

we have

−∆ψ1 − λf(ψ1)

= δλ(σλ,m+1 + λ)(m+ 1)θλ,m+1 − λ
[
(m+ 1)δλθλ,m+1 +

f ′′(ζ)

2
(δλθλ,m+1)

2
]

< δλθλ,m+1

[
(m+ 1)σλ,m+1 −

λA∗

2
δλmin

Ω
θλ,m+1

]
= 0; Ω

by our choice of δλ, for λ < Am+1 and λ ≈ Am+1 such that ψ1 < s1. Also,
∂ψ1

∂η
+

√
λψ1 = 0 on ∂Ω since θλ,m+1 satisfies this boundary condition. Thus, there

exists λ < Am+1 such that ψ1 is a strict subsolution of (1.1) for λ ∈ [λ,Am+1).
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Construction of a small subsolution ψ2 for λ ∈ [Am+1, Am) when

and (H1) is satisfied.

We note that f ′(0) = m + 1, σλ,m+1 ≤ 0 for λ ∈ [Am+1, Am) and σλ,m+1 → 0

as λ → Am+1. Let ψ2 = nλθλ,m+1 with nλ > 0. Now, consider H(s) = (σλ,m+1 +

λ)(m + 1)s − λf(s). Then we have H(0) = 0, H ′(0) = σλ,m+1(m + 1) ≤ 0 and

H ′′(0) = −λf ′′(0) < 0 since f ′′(0) > 0. This implies that −∆ψ2 = nλ(σλ,m+1+λ)(m+

1)θλ,m+1 < λf(nλθλ,m+1) = λf(ψ2) in Ω for nλ ≈ 0. We also have ∂ψ2

∂η
+
√
λψ2 = 0 on

∂Ω since θλ,m+1 satisfies this boundary condition. Thus ψ2 is a subsolution of (1.1)

for nλ ≈ 0 when λ ∈ [Am+1, Am).

Construction of a subsolution ψ3 for λ < Am and λ ≈ Am such that

∥ψ3∥∞ → ∞ as λ → A−
m when (H1) is satisfied

Let m > 0 and ψ3 = ϵλθλ,m where ϵλ =
λg
(
min
Ω

θλ,m

)
mσλ,m∥θλ,m∥∞ . We note that ϵλ > 0

since σλ,m > 0 for λ < Am. Further, ϵλ → ∞ as λ→ A−
m since σλ,m → 0+ as λ→ A−

m

and min
Ω
θλ,m ̸→ 0. This implies that ∥ψ3∥∞ → ∞ as λ→ A−

m. Now we have

−∆ψ3 − λf(ψ3) = ϵλ[(λ+ σλ,m)mθλ,m]− λ[mϵλθλ,m + g(ϵλθλ,m)]

= ϵλmσλ,mθλ,m − λg(ϵλθλ,m)

≤ ϵλmσλ,m∥θλ,m∥∞ − λg(ϵλθλ,m)

= λ[g
(
min
Ω
θλ,m

)
− g(ϵλθλ,m)]

≤ 0; Ω

for λ ≈ Am, since ϵλ > 1 for λ ≈ Am and g is increasing. Hence, we have −∆ψ3 ≤

λf(ψ3) in Ω. Also, on the boundary we have ∂ψ3

∂η
+
√
λψ3 = 0 since θλ,m satisfies this
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boundary condition. Consequently ψ3 is a subsolution of (1.1) such that ∥ψ3∥∞ → ∞

as λ→ A−
m.

Next, let m = 0. Here we can show (1.1) has a subsolution ψ3 such that

∥ψ3∥∞ → ∞ as λ → ∞ by using a well known result in [CGS93] for semipositone

problems. Namely, define h ∈ C2([0,∞)) such that h(0) < 0, h(s) ≤ f(s) for

s ∈ (0,∞) and lim
s→∞

h(s) > 0. Then the boundary value problem

−∆w = λh(w); Ω,

w = 0; ∂Ω,

has a solution wλ > 0 for λ≫ 1 such that ∥wλ∥∞ → ∞ as λ→ ∞. Since by the Hopf

maximum principle ∂wλ

∂η
< 0 on ∂Ω, it is easy to show that ψ3 = wλ is a subsolution

of (1.1) for λ≫ 1 such that ∥ψ3∥∞ → ∞ as λ→ ∞.

Construction of a strict subsolution ψ4 for λ > b
f(b)

2NCN

R2 where b = b1

when (H2) is satisfied and b = b2 when (H3) is satisfied

Here we construct a strict subsolution ψ4 for λ > b
f(b)

2NCN

R2 using the iteration

of a subsolution ψ̃ created originally in [RS04] and later also used in [LSS11]. Namely,

the authors in [LSS11] take ψ to be the solution of:

−ψ′′(r)− N−1
r
ψ′(r) = λf(w(r)); r ∈ (0, R)

ψ′(0) = 0 = ψ(R),
(3.1)

where R is the radius of the largest inscribed ball, BR, in Ω (see Figure 21) and
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Figure 21. Largest inscribed ball in Ω.

w(r) = bρ(r) with

ρ(r) =

 1; r ∈ [0, ϵ]

1−
[
1−

(
R−r
R−ϵ

)β]α
; r ∈ (ϵ, R], α, β > 1.

When λ > b
f(b)

2NCN

R2 for certain choices of α > 1, β > 1, and ϵ ∈ (0, 1), it was proven

that (see [RS04] for details) ψ ≥ w on [0, R] and, hence, is a subsolution of (3.1) since

f is increasing. Now since f(0) = 0 it follows that

ψ̃ =

 ψ; BR

0; Ω\BR

is a strict subsolution of:

−∆u = λf(u); Ω

u = 0; ∂Ω

for λ > b
f(b)

2NCN

R2 such that ∥ψ̃∥∞ ≥ b.
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Now let ψ4 be the first iteration of ψ̃, namely, ψ4 be the solution to the problem:

 −∆ψ4 = λf(ψ̃); Ω

∂ψ4

∂η
+
√
λψ4 = 0; ∂Ω.

Then we have −∆(ψ4 − ψ̃) ≥ 0 and ∂(ψ4−ψ̃)
∂η

+
√
λ(ψ4 − ψ̃) = −∂ψ̃

∂η
> 0 by the Hopf

maximum principle. This implies that ψ4 > ψ̃ in Ω. Hence, ψ4 is a strict subsolution

of (1.1) for λ > b
f(b)

2NCN

R2 .

Construction of a large supersolution Z1 for λ < Am when (H1)

is satisfied

Let m > 0. Choose Z1 = Mθλ,m for M > 0. Then −∆Z1 − λf(Z1) =

M(σλ,m + λ)mθλ,m − λ[mMθλ,m + g(Mθλ,m)] = mMθλ,m

[
σλ,m − λg(Mθλ,m)

mMθλ,m

]
> 0 in

Ω for M ≫ 1 since σλ,m > 0 for λ < Am and g(s)
s

→ 0 as s → ∞. Further,

∂Z1

∂η
+

√
λZ1 = 0 on ∂Ω since θλ,m satisfies this boundary condition. Hence, Z1 is a

supersolution of (1.1) for M ≫ 1.

Next, let m = 0. Here we choose Z1 = Meλ, where eλ is the unique so-

lution of −∆e = 1 in Ω and ∂e
∂η

+
√
λe = 0 on ∂Ω. Note eλ > 0 on Ω. Then

−∆Z1 − λf(Z1) = M − λg(Meλ) ≥ M
[
1− λg(M∥eλ∥∞)

M∥eλ∥∞
∥eλ∥∞

]
> 0 for M ≫ 1 since

g is increasing and g(s)
s

→ 0 as s→ ∞. Also, ∂Z1

∂η
+
√
λZ1 = 0 on ∂Ω since eλ satisfies

this boundary condition. Hence, Z1 is a supersolution of (1.1) for M ≫ 1.

Construction of a strict supersolution Z2 for λ < Am+1 when (H1)

is satisfied
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Let Z2 = mλθλ,m+1 and l(s) = (σλ,m+1 + λ)(m + 1)s − λf(s). We note

that σλ,m+1 > 0 for λ < Am+1. Then we have l(0) = 0 and l′(0) = (σλ,m+1 +

λ)(m + 1) − λf ′(0) = σλ,m+1(m + 1) > 0 since f ′(0) = m + 1. This implies that

−∆Z2 = mλ(σλ,m+1 + λ)(m + 1)θλ,m+1 > λf(mλθλ,m+1) = λf(Z2) in Ω for mλ ≈ 0.

On the boundary, we have ∂Z2

∂η
+
√
λZ2 = 0 since θλ,m+1 satisfies this boundary con-

dition. Thus Z2 with mλ ≈ 0 is a strict supersolution of (1.1) for λ < Am+1.

Construction of a strict supersolution Z3 for λ ∈
(
1, a1

f(a1)
1

∥v∥∞

)
when

(H2) is satisfied

Let Z3 =
a1v
∥v∥∞ where v is as in (1.7). Then −∆Z3 =

a1
∥v∥∞ > λf(a1) ≥ λf(Z3)

since λ < a1
f(a1)

1
∥v∥∞ and f is increasing. Further, Z3 satisfies ∂Z3

∂η
+
√
λZ3 =

a1
∥v∥∞

∂v
∂η

+
√
λ a1v

∥v∥∞ > a1
∥v∥∞ [∂v

∂η
+ v] = 0 on ∂Ω since λ > 1. Thus Z3 is a strict supersolution of

(1.1) for λ ∈
(
1, a1

f(a1)
1

∥v∥∞

)
.

Construction of a strict supersolution Z4 for λ ∈
(

A1

2
, a2

f(a2)
1

∥w∥∞

)
when

(H3) is satisfied

Let Z4 =
a2w
∥w∥∞ where w is as in (1.8). Then −∆Z4 =

a2
∥w∥∞ > λf(a2) ≥ λf(Z4)

since λ < a2
f(a2)

1
∥w∥∞ and f is increasing. Further, Z4 satisfies ∂Z4

∂η
+
√
λZ4 =

a2
∥w∥∞

∂w
∂η

+
√
λ a2w

∥w∥∞ > a2
∥w∥∞ [∂w

∂η
+
√

A1

2
w] = 0 on ∂Ω since λ > A1

2
. Thus Z4 is a strict supersolu-

tion of (1.1) for λ ∈
(
A1

2
, a2
f(a2)

1
∥w∥∞

)
.

Now we prove Theorems 1.1-1.2, Corollary 1.3 and Theorem 1.4.
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3.1 Proof of Theorem 1.1

a) Let M be as in the construction of the supersolution Z1 and nλ be as in the

construction of the subsolution ψ2. We choose M ≫ 1 and nλ ≈ 0 such that Z1 ≥ ψ2.

By Lemma 2.1, (1.1) has a positive solution uλ ∈ [ψ2, Z1] for λ ∈ [Am+1, Am).

Recall the subsolution ψ3 of (1.1). Now we choose M ≫ 1 such that ψ3 ≤ Z1.

Hence, recalling that ∥ψ3∥∞ → ∞ as λ → A−
m, by Lemma 2.1, (1.1) has a positive

solution uλ ∈ [ψ3, Z1] such that ∥uλ∥∞ → ∞ as λ→ A−
m.

Next, let λ ∈ [λ,Am+1) where λ is as in the construction of the strict sub-

solution ψ1. We note that ψ0 = 0 is a solution and hence a subsolution of (1.1).

Recall the strict supersolution Z2 of (1.1). Now we choose mλ small enough such

that ∥Z2∥∞ < ∥ψ1∥∞. Next, we choose M ≫ 1 such that ψ1 ≤ Z1 and Z2 ≤ Z1 (see

Figure 22). By Lemma 2.2, (1.1) has at least two positive solutions u1 ∈ [ψ1, Z1] and

Figure 22. Subsolutions ψ0, ψ1 and supersolutions Z1, Z2.

u2 ∈ [ψ0, Z1]\([ψ0, Z2] ∪ [ψ1, Z1]) for λ ∈ [λ,Am+1).

b) Recall the strict subsolution ψ4 when b = b1 and the strict supersolution Z3 of

(1.1). Now we choose nλ small enough such that ψ2 ≤ ψ4 and ψ2 ≤ Z3. Next
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we choose M ≫ 1 such that ψ4 ≤ Z1 and Z3 ≤ Z1 (see Figure 23). We note

that ∥ψ4∥∞ ≥ b1 > a1 = ∥Z3∥∞. By Lemma 2.2, (1.1) has at least three pos-

itive solutions for λ ∈
(
max{ b1

f(b1)
2NCN

R2 , Am+1, 1},min{Am, a1
f(a1)

1
∥v∥∞}

)
. We note

that in the construction of ψ2, ψ4, Z1, and Z3, the intersection of intervals of λ

is
(
max{ b1

f(b1)
2NCN

R2 , Am+1, 1},min{Am, a1
f(a1)

1
∥v∥∞}

)
. This completes the proof.

Figure 23. Subsolutions ψ2, ψ4 and supersolutions Z1, Z3.

3.2 Proof of Theorem 1.2

Let λ∗ = λ and ψ0 be as in the proof of Theorem 1.1. Recall the strict supersolution Z4

and the strict subsolution ψ4 when b = b2. First we choose λ∗ > max{ b2
f(b2)

2NCN

R2 , A1

2
},

λ∗ < Am+1, and λ∗ ≈ Am+1 (making δλ ≈ 0) such that ψ1 < ψ4 and ψ1 < Z4 for λ ∈

[λ∗, Am+1). Next, we choose mλ small enough such that ∥Z2∥∞ < ∥ψ1∥∞. Further, we

can choose M ≫ 1 such that ψ1 ≤ Z1 and Z2 ≤ Z1 (see Figure (24)). By Lemma 2.1,

(1.1) has a positive solution u1 ∈ [ψ0, Z1]\([ψ0, Z2] ∪ [ψ1, Z1]) for λ ∈ [λ∗, Am+1). We

also have ψ4 ≤ Z1, Z4 ≤ Z1 for M ≫ 1 and ∥ψ4∥∞ ≥ b2 > a2 = ∥Z4∥∞ (see Figure

24). Again, by Lemma 2.2, (1.1) has at least three positive solutions u2 ∈ [ψ1, Z4],
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Figure 24. Subsolutions ψ0, ψ1, ψ4 and supersolutions Z1, Z2, Z4.

u3 ∈ [ψ4, Z1], and u4 ∈ [ψ1, Z1]\([ψ1, Z4] ∪ [ψ4, Z1]) for λ ∈ [λ∗, Am+1). Hence (1.1)

has at least four positive solutions for λ ∈ [λ∗, Am+1). This completes the proof.

3.3 Proof of Corollary 1.3

We note that the proof of Corollary 1.3 is an immediate consequence of the proof of

Theorem 1.1 and Theorem 1.2.

3.4 Proof of Theorem 1.4

First, we show the non-existence of positive solutions for λ ≈ 0. Let u be a positive

solution of (1.1). Then by the Green’s second identity we obtain:

0 =

∫
Ω

[θλ,m+1∆u− u∆θλ,m+1]dx

=

∫
Ω

[−λf(u) + u(σλ,m+1 + λ)(m+ 1)]θλ,m+1dx

≥
∫
Ω

[−λMu+ u(σλ,m+1 + λ)(m+ 1)]θλ,m+1dx

=

∫
Ω

λ

{
(m+ 1)σλ,m+1

λ
− [M − (m+ 1)]

}
uθλ,m+1dx, (3.2)
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where M > (m + 1) is such that f(s) ≤ Ms for all s ∈ [0,∞). Now for λ < Am+1,

σλ,m+1 > 0, and lim
λ→0

σλ,m+1

λ
= ∞ (see [FMSS]). This contradicts (3.2) for λ ≈ 0 and

hence (1.1) has no positive solution for λ ≈ 0.

Next, when m > 0, if u is a positive solution of (1.1), then again by the Green’s

second identity we obtain:

0 =

∫
Ω

[θλ,m∆u− u∆θλ,m]dx

=

∫
Ω

[−λf(u) + u(σλ,m + λ)m]θλ,mdx

≤
∫
Ω

[−λmu+ u(σλ,m + λ)m]θλ,mdx

=

∫
Ω

mσλ,muθλ,mdx (3.3)

since f(s) ≥ ms on [0,∞). Now if λ > Am then σλ,m < 0 which contradicts (3.3).

Hence (1.1) has no positive solution for λ > Am.
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CHAPTER IV

PROOFS THEOREMS 1.5 - 1.6 AND COROLLARY 1.7 STATED IN FOCUS 2

First we construct sub-super solutions for certain λ ranges. Here we extend the ideas

used in Chapter III appropriately for the systems case to construct sub-super solu-

tions for (1.9) when f and g satisfy a combined sub-linear condition at infinity. Recall

θλ and σλ (see (1.6)).

Construction of a small strict subsolution (ψ1, ψ1) for λ < A1 and λ ≈ A1

when (H4) is satisfied. In particular, here we will construct this

subsolution so that ψ1 = ψ1

We first note that f ′′(s) > 0 and g′′(s) > 0 for s ≈ 0. Hence there exists A∗ > 0

and s1 > 0 such that f ′′(s), g′′(s) > A∗ for s < s1. Let (ψ1, ψ1) = (δλθλ, δλθλ) where

δλ =
2σλ

λA∗ min
Ω

θλ
. We note that σλ > 0; λ < A1, σλ → 0 as λ→ A−

1 , and min
Ω
θλ ̸→ 0 as

λ→ A−
1 . Thus δλ → 0 as λ→ A−

1 since 1
2
δλλA

∗min
Ω
θλ = σλ. Now by Taylor’s Theo-

rem, we have f(ψ1) = f(0) + f ′(0)ψ1 +
f ′′(ζ)

2
ψ2
1 = ψ1 +

f ′′(ζ)
2
ψ1

2 for some ζ ∈ [0, ψ1].

Then we have:

−∆ψ1 − λf(ψ1) = δλ(σλ + λ)θλ − λ
[
δλθλ +

f ′′(ζ)

2
(δλθλ)

2
]

< δλθλ

[
σλ −

λA∗

2
δλmin

Ω
θλ

]
= 0; Ω

for λ < A1 and λ ≈ A1 (so that δλ ≈ 0 and hence ψ1 < s1). Similarly, −∆ψ1 < λg(ψ1)

for λ < A1 and λ ≈ A1. Also, ∂ψ1

∂η
+
√
λψ1 = 0 on ∂Ω since θλ satisfies this boundary

condition. Thus, there exists λ < A1 such that (ψ1, ψ1) is a strict subsolution of (1.9)
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for λ ∈ [λ,A1).

Construction of a small subsolution (ψ2, ψ2) for λ ≥ A1 when (H4) is

satisfied. In particular, here we will construct this subsolution so that ψ2 = ψ2

We have f ′(0) = g′(0) = 1, and σλ ≤ 0 for λ ≥ A1. Let (ψ2, ψ2) = (nλθλ, nλθλ)

with nλ > 0. Now, consider H(s) = (σλ + λ)s − λf(s). Then we have H(0) = 0,

H ′(0) = σλ ≤ 0 and H ′′(0) = −λf ′′(0) < 0 since f ′′(0) > 0. This implies that

−∆ψ2 = nλ(σλ + λ)θλ < λf(nλθλ) = λf(ψ2) in Ω for nλ ≈ 0. Similarly, −∆ψ2 <

λg(ψ2) for λ ≥ A1 and nλ ≈ 0. We also have ∂ψ2

∂η
+
√
λψ2 = 0 on ∂Ω since θλ satisfies

this boundary condition. Thus (ψ2, ψ2) is a subsolution of (1.9) for nλ ≈ 0 when

λ ≥ A1.

Construction of a subsolution (ψ3, ψ3) for λ ≫ 1 such that ∥ψ3∥∞ → ∞

as λ → ∞ when (H4) is satisfied. In particular, here we will construct

this subsolution so that ψ3 = ψ3

Noting that f(0) = g(0) = 0 and both f, g are increasing, define h ∈ C2([0,∞)) such

that h(0) < 0, h(s) ≤ f(s), and h(s) ≤ g(s) for s ∈ (0,∞) and lim
s→∞

h(s) = γ for some

γ > 0. Then the Dirichlet boundary value problem:

−∆w = λh(w); Ω

w = 0; ∂Ω,

has a positive solution wλ for λ≫ 1 such that ∥wλ∥∞ → ∞ as λ→ ∞ (see [CGS93]).

It is easy to see that (wλ, wλ) is a subsolution of (1.9) for λ ≫ 1 since h ≤ f, h ≤ g

and ∂wλ

∂η
< 0; ∂Ω. Consequently (ψ3, ψ3) = (wλ, wλ) is a subsolution of (1.9) for λ≫ 1
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such that ∥ψ3∥∞ → ∞ as λ→ ∞.

Construction of a strict subsolution (ψ4, ψ4) for λ > Q2(b)
2NCN

R2 where

b = b1 when (H4) − (H6) are satisfied and b = b2 when (H4), (H5),

and (H7) are satisfied

Here we construct a strict subsolution (ψ4, ψ4) for λ > Q2(b)
2NCN

R2 . We note that in

[ASR06], the authors showed that the boundary value problem:



−∆u = λf(v); Ω

−∆v = λg(u); Ω

u = 0; ∂Ω

v = 0; ∂Ω,

has a strict subsolution (u0, v0) for λ ≥ Q2(b)
2NCN

R2 such that ||u0||∞ ≥ b and ||v0||∞ ≥

b. Let (ψ4, ψ4) be the first iteration of (u0, v0), namely, (ψ4, ψ4) be the solution to

the problem:



−∆ψ4 = λf(v0); Ω

−∆ψ4 = λg(u0); Ω

∂ψ4

∂η
+
√
λψ4 = 0; ∂Ω

∂ψ4

∂η
+
√
λ ψ4 = 0; ∂Ω.

Then by the comparison principle (ψ4, ψ4) > (u0, v0); Ω̄. Hence (ψ4, ψ4) is a strict

subsolution of (1.9) such that ||ψ4||∞ ≥ b and ||ψ4||∞ ≥ b.
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Construction of a large supersolution (Z1, Z1) for any λ > 0 when

(H4) − (H5) are satisfied

Let eλ be the positive solution of:

 −∆e = 1; Ω

∂e
∂η

+
√
λe = 0; ∂Ω.

(4.1)

We consider three different cases.

Case I: Assume both f and g are bounded. Let λ > 0. Take (Z1, Z1) =

(λMλ
eλ

∥eλ∥∞
, λMλ

eλ
∥eλ∥∞

) and choose Mλ large such that Mλλ
∥eλ∥∞

≥ λf(λMλeλ
∥eλ∥∞

). This

implies −∆Z1 − λf(Z1) ≥ 0 for Mλ ≫ 1, and, by a similar argument, we see that

−∆Z1 − λg(Z1) ≥ 0 for Mλ ≫ 1. Also on the boundary we have ∂Z1

∂η
+

√
λZ1 = 0

and ∂Z1

∂η
+
√
λ Z1 = 0. Hence (Z1, Z1) is a supersolution for Mλ ≫ 1.

Case II: Assume g(s) → ∞ as s → ∞. Let λ > 0. Take (Z1, Z1) =

(Mλeλ, λg(Mλ∥eλ∥∞)eλ) with Mλ > 0. Then by choosing Mλ large we obtain

1

λ∥eλ∥∞
≥ f(λ∥eλ∥∞g(Mλ∥eλ∥∞))

Mλ∥eλ∥∞

which implies that Mλ − λf(λg(Mλ∥eλ∥∞)eλ) ≥ 0 since f is increasing. Hence

−∆Z1 − λf(Z1) ≥ 0. We also have λg(Mλ∥eλ∥∞) − λg(Mλeλ) ≥ 0 since g is in-

creasing. This implies that −∆Z1 − λg(Z1) ≥ 0. Further, on the boundary we have

∂Z1

∂η
+

√
λZ1 = ∂Z1

∂η
+

√
λ Z1 = 0 since eλ satisfies this boundary condition. Hence

(Z1, Z1) is a supersolution of (1.9) for Mλ ≫ 1.

Case III: Assume f(s) → ∞ as s → ∞ and g is bounded. Let λ > 0.

Take (Z1, Z1) = (λf(Mλ∥eλ∥∞)eλ,Mλeλ) with Mλ > 0. Then since f is increasing,
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λf(Mλ∥eλ∥∞) − λf(Mλeλ) ≥ 0 which implies that −∆Z1 − λf(Z1) ≥ 0. Also we

have Mλ ≥ λg(λf(Mλ∥eλ∥∞)eλ) for Mλ ≫ 1. This implies that −∆Z1 − λg(Z1) ≥ 0.

Further, on the boundary we have ∂Z1

∂η
+
√
λZ1 =

∂Z1

∂η
+
√
λ Z1 = 0 since eλ satisfies

this boundary condition. Hence (Z1, Z1) is a supersolution of (1.9) for Mλ ≫ 1.

Construction of a strict supersolution (Z2, Z2) for λ < A1 when (H4)−

(H5) are satisfied. In particular, here we will construct this supersolution

so that Z2 = Z2.

Let λ < A1. Take (Z2, Z2) = (mλθλ,mλθλ) with mλ > 0 and l(s) = (σλ+λ)s−λf(s).

We note that σλ > 0 for λ < A1. Then we have l(0) = 0 and l′(0) = (σλ+λ)−λf ′(0) =

σλ > 0 since f(0) = 0 and f ′(0) = 1. This implies that −∆Z2 = (σλ + λ)mλθλ >

λf(mλθλ) = λf(Z2) in Ω for mλ ≈ 0. Similarly, −∆Z2 > λg(Z2) for λ < A1 and

mλ ≈ 0. On the boundary, we have ∂Z2

∂η
+
√
λZ2 = 0 since θλ satisfies this boundary

condition. Thus (Z2, Z2) with mλ > 0 and mλ ≈ 0 is a strict supersolution of (1.9).

Construction of a strict supersolution (Z3, Z3) for λ ∈
(
1, Q1(a1)

1
∥v∥∞

)
when (H4) and (H6) are satisfied. In particular, here we will construct

this supersolution so that Z3 = Z3

Let (Z3, Z3) = ( a1v
∥v∥∞ ,

a1v
∥v∥∞ ) where v is as in (1.7). Then −∆Z3 = a1

∥v∥∞ > λf(a1) ≥

λf(Z3) since λ < Q1(a1)
1

∥v∥∞ ≤ a1
f(a1)

1
∥v∥∞ and f is increasing. Similarly, −∆Z3 >

λg(Z3). Further, Z3 satisfies ∂Z3

∂η
+
√
λZ3 =

a1
∥v∥∞

∂v
∂η
+
√
λ a1v

∥v∥∞ > a1
∥v∥∞ [∂v

∂η
+v] = 0 on ∂Ω

since λ > 1. Thus (Z3, Z3) is a strict supersolution of (1.9) for λ ∈
(
1, Q1(a1)

1
∥v∥∞

)
.
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Construction of a strict supersolution (Z4, Z4) for λ ∈
(

A1

2
, Q1(a2)

1
∥w∥∞

)
when (H4) and (H7) are satisfied. In particular, here we will construct

this supersolution so that Z4 = Z4

Let (Z4, Z4) = ( a2w
∥w∥∞ ,

a2w
∥w∥∞ ) where w is as in (1.8). Then −∆Z4 =

a2
∥w∥∞ > λf(a2) ≥

λf(Z4) since λ < Q1(a2)
1

∥w∥∞ ≤ a2
f(a2)

1
∥w∥∞ and f is increasing. Similarly, −∆Z4 >

λg(Z4). Further, Z4 satisfies ∂Z4

∂η
+
√
λZ4 =

a2
∥w∥∞

∂w
∂η
+
√
λ a2w

∥w∥∞ > a2
∥w∥∞ [∂w

∂η
+
√

A1

2
w] = 0

on ∂Ω since λ > A1

2
. Thus (Z4, Z4) is a strict supersolution of (1.9) for λ ∈(

A1

2
, Q1(a2)

1
∥w∥∞

)
.

4.1 Proof of Theorem 1.5

a) Recall the construction of the supersolution (Z1, Z1) and the subsolution (ψ2, ψ2)

(for λ ≥ A1). Choose Mλ ≫ 1 and nλ ≈ 0 such that (Z1, Z1) ≥ (ψ2, ψ2). By Lemma

2.1, (1.9) has a positive solution (uλ, vλ) ∈ [(ψ2, ψ2), (Z1, Z1)] for λ ≥ A1.

Now, recall the subsolution (ψ3, ψ3) of (1.9) and choose Mλ ≫ 1 such that (ψ3, ψ3) ≤

(Z1, Z1). Also, recall that ∥ψ3∥∞ → ∞ as λ → ∞. Hence by Lemma 2.1, (1.9)

has a positive solution (uλ, vλ) ∈ [(ψ3, ψ3), (Z1, Z1)] such that ∥uλ∥∞, ∥vλ∥∞ → ∞ as

λ→ ∞.

Next, let λ ∈ [λ,A1) where λ is as in the construction of the strict subsolution

(ψ1, ψ1). Note that (ψ0, ψ0) = (0, 0) is a solution and hence a subsolution of (1.9).

Recalling the strict supersolution (Z2, Z2) of (1.9), choose mλ small enough such

that ∥Z2∥∞ < ∥ψ1∥∞. Next, choose Mλ ≫ 1 such that (ψ1, ψ1) ≤ (Z1, Z1) and

(Z2, Z2) ≤ (Z1, Z1). Hence by Lemma 2.2, (1.9) has at least two positive solutions
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(u1, v1) ∈ [(ψ1, ψ1), (Z1, Z1)] and (u2, v2) ∈ [(ψ0, ψ0), (Z1, Z1)]\([(ψ0, ψ0), (Z2, Z2)] ∪

[(ψ1, ψ1), (Z1, Z1]) for λ ∈ [λ,A1). Since (ψ0, ψ0) = (0, 0) is a solution, by using

Lemma 2.2, we can guaranty here only two positive solutions.

b) Recall the strict subsolution (ψ4, ψ4) with b = b1 and the strict supersolution

(Z3, Z3) of (1.9). Choose nλ small enough such that (ψ2, ψ2) ≤ (ψ4, ψ4) and (ψ2, ψ2) ≤

(Z3, Z3). Next, choose Mλ ≫ 1 such that (ψ4, ψ4) ≤ (Z1, Z1) and (Z3, Z3) ≤ (Z1, Z1).

We note that ∥ψ4∥∞, ∥ψ4∥∞ ≥ b1 > a1 = ∥Z3∥∞. By Lemma 2.2, (1.9) has at

least three positive solutions for λ ∈
(
max{A1, Q2(b1)

2NCN

R2 , 1}, Q1(a1)
∥v∥∞

)
which is the

intersection of intervals of λ in the construction of (ψ2, ψ2), (ψ4, ψ4), (Z1, Z1), and

(Z3, Z3). This completes the proof.

4.2 Proof of Theorem 1.6

Note that (ψ0, ψ0) = (0, 0) is a solution and hence a subsolution of (1.9). Recall

the strict supersolution (Z4, Z4) and the strict subsolution (ψ4, ψ4) with b = b2.

First, choose λ∗ > max{Q2(b2)
2NCN

R2 , A1

2
}, λ∗ < A1, and λ∗ ≈ A1 (making δλ ≈

0 in the construction of strict subsolution (ψ1, ψ1)) such that (ψ1, ψ1) < (ψ4, ψ4)

and (ψ1, ψ1) < (Z4, Z4) for λ ∈ [λ∗, A1). Recall (Z2, Z2) and choose mλ small

enough such that ∥Z2∥∞ < ∥ψ1∥∞. Further, we can choose Mλ ≫ 1 such that

(ψ1, ψ1) ≤ (Z1, Z1) and (Z2, Z2) ≤ (Z1, Z1). Hence by Lemma 2.2, (1.9) has a pos-

itive solution (u1, v1) ∈ [(ψ0, ψ0), (Z1, Z1)]\([(ψ0, ψ0), (Z2, Z2)] ∪ [(ψ1, ψ1), (Z1, Z1)])

for λ ∈ [λ∗, A1). We also have (ψ4, ψ4) ≤ (Z1, Z1), (Z4, Z4) ≤ (Z1, Z1) for Mλ ≫ 1

and ∥ψ4∥∞ ≥ b2 > a2 = ∥Z4∥∞, ∥ψ4∥∞ ≥ b2 > a2 = ∥Z4∥∞. Again, by Lemma

2.2, (1.9) has at least three positive solutions (u2, v2) ∈ [(ψ1, ψ1), (Z4, Z4)], (u3, v3) ∈

[(ψ4, ψ4), (Z1, Z1)], and (u4, v4) ∈ [(ψ1, ψ1), (Z1, Z1)]\([(ψ1, ψ1), (Z4, Z4)] ∪ [(ψ4, ψ4),
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(Z1, Z1)]) for λ ∈ [λ∗, A1). Noting that (u1, v1) ̸∈ [(ψ1, ψ1), (Z1, Z1)] while (ui, vi) ∈

[(ψ1, ψ1), (Z1, Z1)]; i = 2, 3, 4, (1.9) has at least four positive solutions for λ ∈ [λ∗, A1).

This completes the proof

4.3 Proof of Corollary 1.7

We note that the proof of Corollary 1.7 is an immediate consequence of the

proofs of Theorem 1.5 and Theorem 1.6.
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CHAPTER V

PROOFS OF THEOREMS 1.8 - 1.11 STATED IN FOCUS 3

First, we recall (1.20) and consider either (1) b = 0 and define (i) W1,γ1 = W1,γ1,0

and E1(1, γ1) = E1(1, 0, γ1) and (ii) Wr,γ2 = Wr,γ2,0 and E1(r, γ2) = E1(r, 0, γ2),

(2) b = b1, R = 1, and γ = γ1 and employW1,γ1,b1 and E1(1, b1, γ1), or (3) b = b2, R = r

and γ = γ2 and employ Wr,γ2,b2 and E1(r, b2, γ2).

Now, we consider the semitrivial steady states of (1.13) in which one population is

present and the other is absent, namely:

−∆W = λW (1−W ); Ω

∂W
∂η

+
√
λγ1W = 0; ∂Ω

(5.1)

and −∆W = λrW (1−W ); Ω

∂W
∂η

+
√
λγ2W = 0; ∂Ω.

(5.2)

Hence, (5.1) is (1.20) with R = 1, b = 0 and γ = γ1, and it represents the

governing steady state equation for species u in the absence of v. Then it has a

unique positive solution W ≡ W1,γ1 whenever λ > E1(1, γ1). Also (5.2) is (1.20) with

R = r, b = 0 and γ = γ2, and it represents the governing steady state equation for

species v in the absence of u. Thus it has a unique positive solution W ≡ Wr,γ2

whenever λ > E1(r, γ2) (see (1.17)).
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Let σ1 = σ1(λ, γ1) and σ2 = σ2(λ, r, γ2) be the principal eigenvalues of:

−∆ϕ1 − λϕ1 = σ1ϕ1; Ω

∂ϕ1
∂η

+
√
λγ1ϕ1 = 0; ∂Ω

(5.3)

and −∆ϕ2 − λrϕ2 = σ2ϕ2; Ω

∂ϕ2
∂η

+
√
λγ2ϕ2 = 0; ∂Ω

(5.4)

with corresponding eigenfunctions ϕ1, ϕ2 which can be chosen such that ϕ1, ϕ2 > 0; Ω,

respectively. The sign of these principal eigenvalues will determine whether or not a

species can colonize the patch.

Finally, we consider two eigenvalue problems involving W1,γ1 and Wr,γ2 :

−∆ϕ3 − λr(1− b2W1,γ1)ϕ3 = σ3ϕ3; Ω

∂ϕ3
∂η

+
√
λγ2ϕ3 = 0; ∂Ω

(5.5)

and −∆ϕ4 − λ(1− b1Wr,γ2)ϕ4 = σ4ϕ4; Ω

∂ϕ4
∂η

+
√
λγ1ϕ4 = 0; ∂Ω.

(5.6)

Let σ3 = σ3(λ, r, γ2), σ4 = σ4(λ, γ1) be the principal eigenvalues and ϕ3, ϕ4 > 0; Ω be

the corresponding eigenfunctions of (5.5) and (5.6), respectively. The sign of σ3(σ4)

will ultimately determine if v(u) can invade the patch when rare if u(v) is near its
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equilibrium.

In the absence of competition (i.e., b1 = 0 = b2) the principal eigenvalues,

E1(1, γ1) and E1(r, γ2), can be employed to determine when one species has an ad-

vantage over the other in the sense that the species has a smaller minimum patch size

allowing it to invade and colonize smaller patches than the other species. To see this,

from the definition of λ we obtain the minimum patch size for u, ℓ∗1 =
√

D1E1(1,γ1)
r1

,

and for v, ℓ∗2 =
√

D1E1(r,γ2)
r1

. Fixing r1 and D1, there are then three cases: 1)

E1(1, γ1) = E1(r, γ2) implying that ℓ∗1 = ℓ∗2: neither species has an advantage as their

minimum patch sizes are the same; 2) E1(1, γ1) < E1(r, γ2) implying that ℓ∗1 < ℓ∗2: u

has an advantage being able to invade and colonize smaller patches than v; and 3)

E1(1, γ1) > E1(r, γ2) implying that ℓ∗1 > ℓ∗2: v has an advantage being able to invade

and colonize smaller patches than u. Crucial to this determination of advantage are

the composite parameters, r, γ1, γ2, which encapsulate several biological mechanisms,

i.e., r measures differences in the organisms in the patch and γ1, γ2 measure the com-

bined effect of a hostile matrix on the respective organisms. To see this, we first

assume that the matrix affects both species the same and there is no competition,

i.e., γ1 = γ2 and b1 = 0 = b2. Note that r can be written as r =
r2
D2
r1
D1

and interpreted

as a means to compare the two species by their patch growth-to-diffusion (G-D) ratio

which is defined as the ratio of patch intrinsic growth rate to patch diffusion rate. We

explore three cases: 1) if r = 1, then both growth to diffusion ratios are the same,

E1(1, γ1) = E1(r, γ2) implying that ℓ∗1 = ℓ∗2, and neither species has a G-D advantage;

2) if r > 1 then v’s growth to diffusion ratio is greater than u’s, E1(1, γ1) > E1(r, γ2)

implying that ℓ∗1 > ℓ∗2, and v has a G-D advantage in having a smaller minimum patch
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size; and 3) if r < 1 then u’s ratio is greater than v’s, E1(1, γ1) < E1(r, γ2) implying

that ℓ∗1 < ℓ∗2, and u has a G-D advantage in having a smaller minimum patch size.

Secondly, we assume there is no overall difference in G-D ratios of the organisms and

no competition, i.e., r = 1 and b1 = 0 = b2. The combined effect of matrix hostility

and behavior response to detecting a patch edge is measured in the respective γi-

value. For example, a large γ1-value could indicate a high matrix mortality rate (i.e.

S∗
1 ≫ 1) and / or a propensity of organisms to recognize the patch edge, bias their

movement, and leave the patch with a high probability (i.e., α1 ≈ 0). We notice three

cases: 1) if γ1 = γ2 then E1(1, γ1) = E1(1, γ2), ℓ∗1 = ℓ∗2, and the combined matrix effect

benefits neither species over the other; 2) if γ1 > γ2 then E1(1, γ1) > E1(1, γ2), ℓ
∗
1 > ℓ∗2,

and the combined matrix effect causes more mortality in u through interactions with

the hostile matrix, and thus, gives v a smaller minimum patch size and a matrix

advantage; and 3) if γ1 < γ2, then E1(1, γ1) < E1(1, γ2), ℓ∗1 < ℓ∗2, and the combined

matrix effect causes more mortality in v through interactions with the hostile matrix,

and thus, gives u a smaller minimum patch size and a matrix advantage. Since larger

patches have a correspondingly larger core area within the patch where organisms

have little chance of encountering mortality at the patch/matrix interface, any dif-

ferential matrix effect acting on the system will be more pronounced for small patch

sizes and diminish as the patch size goes to infinity. As we will see in the sections

that follow, advantage in growth-to-diffusion ratio and combined matrix effect will

play vital roles in predicting the outcome of this competition system.

Now, we state some results that we will use in the proofs of our main results.

Theorem 5.1. [Pao92], [Pao81] Let r > 0, γ1 = 0 = γ2, and b1, b2 ≥ 0. Then for all

λ > 0 the following hold:
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(A) If b1, b2 < 1 (weak competition) then (1.13) has a globally asymptotically stable

coexistence state given by:

(
1− b1
1− b1b2

,
1− b2
1− b1b2

)
.

(B) If b1 < 1 ≤ b2 or b2 < 1 ≤ b1 (semistrong competition), then no coexistence

state of (1.13) exists.

(C) If b1 = 1 = b2 (neutral competition), then (1.13) has infinitely many asymptot-

ically stable coexistence states of the form:

(c, 1− c), c > 0.

Theorem 5.2. [GMRS18] Let R > 0, b ∈ [0, 1), and γ ≥ 0.

(a) If σ0 ≥ 0
(
λ ≤ E1(R,b,γ)

1−b

)
, then W ≡ 0 is globally asymptotically stable and no

positive solution exists for (1.20).

(b) If σ0 < 0
(
λ > E1(R,b,γ)

1−b

)
, then W ≡ 0 is unstable and there exists a unique

globally asymptotically stable positive solution WR,γ,b for (1.20). Moreover, the

following properties of WR,γ,b hold:

(i) −σ(R,b,γ,λ)
λr

ϕ0 ≤ WR,γ,b ≤ 1.

(ii) For fixed x and λ:

(1) WR,γ,b is increasing in R for fixed b and γ.

(2) WR,γ,b is decreasing in b for fixed R and γ.

(3) WR,γ,b is decreasing in γ for fixed R and b.
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(iii) WR,γ,b → (1 − b) uniformly on every closed subset of Ω as λ → ∞ (see

Figure 17).

Next, we state and prove some results that will be used in the proofs of our main

theorems.

Lemma 5.3. If λ > max{E1(1, γ1), E1(r, γ2)} and σ3, σ4 < 0, then (1.18) has a

positive solution, (u, v), which, for m ≈ 0, satisfies:

(mϕ4,mϕ3) < (u, v) < (W1,γ1 ,Wr,γ2); Ω

where σ3, σ4 are the principal eigenvalues with corresponding eigenfunctions ϕ3, ϕ4 of

(5.5), (5.6), respectively.

Proof. Let m > 0 and define ψ = (mϕ4,mϕ3) and Z = (W1,γ1 ,Wr,γ2). By our choice

of λ, we have σ1, σ2 < 0 ensuring that both W1,γ1 and Wr,γ2 exist. We will now show

that ψ and Z are a sub-supersolution pair for (1.18). First, we check (ψ1, Z2) :

−∆ψ1 − λψ1(1− ψ1 − b1Z2) = mσ4ϕ4 +mλϕ4 −mλb1Wr,γ2ϕ4 − λmϕ4

+ λm2ϕ2
4 +mλb1Wr,γ2ϕ4

= mϕ4[σ4 + λmϕ4]

< 0 (5.7)
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for m ≈ 0 since σ4 < 0. Also, we have

−∆Z2 − λrZ2(1− Z2 − b2ψ1) = λrWr,γ2 − λrW 2
r,γ2

− λrWr,γ2 + λrW 2
r,γ2

+ λrb2Wr,γ2mϕ4

= λrb2Wr,γ2mϕ4

≥ 0 (5.8)

since Wr,γ2 , ϕ4 > 0; Ω, λ, r > 0, and b2 ≥ 0. It is easy to see that

∂ψ1

∂η
+
√
λγ1ψ1 = 0 =

∂Z2

∂η
+
√
λγ2Z2. (5.9)

Next, we check (Z1, ψ2):

−∆Z1 − λZ1(1− Z1 − b1ψ2) = λW1,γ1 − λW 2
1,γ1

− λW1,γ1 + λW 2
1,γ1

+ λb1W1,γ1mϕ3

= λb1W1,γ1mϕ3

≥ 0 (5.10)

since W1,γ1 , ϕ3 > 0; Ω, λ, r > 0, and b1 ≥ 0. Also, we have

−∆ψ2 − λrψ2(1− ψ2 − b2Z1) = mσ3ϕ3 +mλrϕ3 −mλrb2W1,γ1ϕ3 − λrmϕ3

+ λrm2ϕ2
3 +mλrb2W1,γ1ϕ3

= mϕ3[σ3 + λrmϕ3]

< 0 (5.11)
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for m ≈ 0 since σ3 < 0. It is easy to see that

∂ψ2

∂η
+
√
λγ2ψ2 = 0 =

∂Z1

∂η
+
√
λγ1Z1. (5.12)

Also, we can choose m ≈ 0 such that ψ < Z; Ω. Thus, ψ,Z are a strict sub-

supersolution pair and (1.18) has at least one solution, (u, v), with

(ψ1, ψ2) < (u, v) < (Z1, Z2); Ω. (5.13)

Lemma 5.4. If λ > max{E1(1, γ1), E1(r, γ2)} then the following hold:

(A) σ3
∫
Ω
Wr,γ2ϕ3dx = λr

∫
Ω
Wr,γ2ϕ3[b2W1,γ1 −Wr,γ2 ]dx

(B) σ4
∫
Ω
W1,γ1ϕ4dx = λ

∫
Ω
W1,γ1ϕ4[b1Wr,γ2 −W1,γ1 ]dx.

Proof. We only present a proof of (A) as the proof of (B) is similar. Using Green’s

Identity, we have:

∫
Ω

(−∆Wr,γ2ϕ3 +∆ϕ3Wr,γ2) dx =

∫
Ω

(
−∂Wr,γ2

∂η
ϕ3 +

∂ϕ3

∂η
Wr,γ2

)
ds. (5.14)

It is easy to see that the right-hand side of (5.14) is zero. Thus
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0 =

∫
Ω

(−∆Wr,γ2ϕ3 +∆ϕ3Wr,γ2) dx

=

∫
Ω

(
λrWr,γ2ϕ3 − λrW 2

r,γ2
ϕ3 − σ3Wr,γ2ϕ3 − λrWr,γ2ϕ3

+λrb2W1,γ1Wr,γ2ϕ3) dx

=

∫
Ω

(−σ3Wr,γ2ϕ3 + λrWr,γ2ϕ3[b2W1,γ1 −Wr,γ2 ])dx, (5.15)

or, equivalently,

σ3

∫
Ω

Wr,γ2ϕ3dx =

∫
Ω

λrWr,γ2ϕ3[b2W1,γ1 −Wr,γ2 ]dx. (5.16)

Lemma 5.5. Considering σ3, σ4 as functions of W1,γ1 ,Wr,γ2, respectively, the follow-

ing hold:

(A) σ3, σ4 is an increasing function of W1,γ1 ,Wr,γ2 , respectively

(B) if λ > E1(1, γ1), then σ3(0) < σ3(W1,γ1) < σ3(1)

(C) if λ > E1(r, γ2), then σ4(0) < σ4(Wr,γ2) < σ4(1).

The proof of Lemma 5.5 follows from Corollary 2.2 in [CC03].

Lemma 5.6. If (u, v) is a positive solution of (1.18), then the following holds:

λ

∫
Ω

uv[(1− r) + (rb2 − 1)u+ (r − b1)v]dx =
√
λ(γ1 − γ2)

∫
∂Ω

uvds. (5.17)

Proof. By Green’s Identity, we have that:
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∫
Ω

(−∆uv +∆vu) dx =

∫
∂Ω

(
−∂u
∂η
v +

∂v

∂η
u

)
ds. (5.18)

Thus, we have

∫
Ω

(−∆uv +∆vu)dx =

∫
Ω

[λu(1− u− b1v)v − λrv(1− v − b2u)u]dx

=

∫
Ω

[λuv − λu2v − λb1uv
2 − λruv + λruv2 + λrb2u

2v]dx

= λ

∫
Ω

uv[(1− r) + (rb2 − 1)u+ (r − b1)v]dx (5.19)

and

∫
Ω

(
−∂u
∂η
v +

∂v

∂η
u

)
ds =

√
λ(γ1 − γ2)

∫
∂Ω

uvds

as desired.

Lemma 5.7. Suppose that D(x) := 1 − r + (rb2 − 1)u(x) + (r − b1)v(x). If r >

0, b1, b2 ≥ 0, γ1, γ2 ≥ 0 and (u, v) is a positive solution of (1.18), then the following

hold:

(A) if b1 ≤ 1 ≤ b2 and b1
b2

≤ r ≤ 1, then D(x) ≥ 0.

(B) if b2 ≤ 1 ≤ b1 and 1 ≤ r ≤ b1
b2

, then D(x) ≤ 0.

Proof. To establish the result, we consider the following cases.

Case i: Assume that r ≤ min
{
b1,

1
b2

}
which implies that rb2− 1 ≤ 0 and r− b1 ≤ 0.

Since u, v > 0; Ω, if r ≥ 1, then we have that:
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D(x) = 1− r + (rb2 − 1)u(x) + (r − b1)v(x) ≤ 1− r ≤ 0; Ω. (5.20)

Also, since u, v ≤ 1; Ω, if r ≥ b1
b2

, then we have that:

D(x) = 1− r + (rb2 − 1)u(x) + (r − b1)v(x) ≥ 1− r + rb2 − 1 + r − b1

= rb2 − b1

≥ 0; Ω. (5.21)

Notice that for (5.20) to hold, it is necessary that b2 ≤ 1 ≤ b1 and for (5.21) to hold,

that b1 ≤ 1 ≤ b2. Also, D(x) < 0; Ω in (5.20) (D(x) > 0; Ω in (5.21)) if at least one

of the inequalities is strict.

Case ii: Assume that b1 ≤ r ≤ 1
b2

, which implies that rb2 − 1 ≤ 0 and r − b1 ≥ 0.

Since u > 0 and v ≤ 1; Ω, if b1 ≥ 1, then we have that:

D(x) = 1− r + (rb2 − 1)u(x) + (r − b1)v(x) ≤ 1− r + r − b1

≤ 1− b1

≤ 0; Ω. (5.22)
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Also, since u ≤ 1 and v > 0; Ω, if b2 ≥ 1, then we have that:

D(x) = 1− r + (rb2 − 1)u(x) + (r − b1)v(x) ≥ 1− r + rb2 − 1

= r(b2 − 1)

≥ 0; Ω. (5.23)

Again, notice that for (5.22) to hold, it is necessary that b2 ≤ 1 ≤ b1 and for (5.23)

to hold, that b1 ≤ 1 ≤ b2. Also, D(x) < 0; Ω in (5.22) (D(x) > 0; Ω in (5.23)) if at

least one of the inequalities is strict.

Case iii: Assume that 1
b2

≤ r ≤ b1, which implies that rb2 − 1 ≥ 0 and r − b1 ≤ 0.

Since u > 0 and v ≤ 1; Ω, if b1 ≤ 1, then we have that:

D(x) = 1− r + (rb2 − 1)u(x) + (r − b1)v(x) ≥ 1− r + r − b1

= 1− b1

≥ 0; Ω. (5.24)

Also, since u ≤ 1 and v > 0; Ω, if b2 ≤ 1, then we have that:

D(x) = 1− r + (rb2 − 1)u(x) + (r − b1)v(x) ≤ 1− r + rb2 − 1

= r(b2 − 1)

≤ 0; Ω. (5.25)

Again, notice that for (5.24) to hold, it is necessary that b1 ≤ 1 ≤ b2, and for (5.25)

to hold, that b2 ≤ 1 ≤ b1. Also, D(x) > 0; Ω in (5.24) (D(x) < 0; Ω in (5.25)) if at

least one of the inequalities is strict.
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Case iv: Assume that max
{

1
b2
, b1

}
≤ r ≤ 1, which implies that rb2 − 1 ≥ 0 and

r − b1 ≥ 0. Since u, v > 0; Ω, we have that:

D(x) = 1− r + (rb2 − 1)u(x) + (r − b1)v(x) ≥ 1− r

≥ 0; Ω. (5.26)

Also, since u, v ≤ 1; Ω, if r ≤ b1
b2

, then we have that:

D(x) = 1− r + (rb2 − 1)u(x) + (r − b1)v(x) ≤ 1− r + rb2 − 1 + r − b1

= rb2 − b1

≤ 0; Ω. (5.27)

Again, notice that for (5.26) to hold, it is necessary that b1 ≤ 1 ≤ b2, and for (5.27)

to hold, that b2 ≤ 1 ≤ b1. Also, D(x) > 0; Ω in (5.26) (D(x) < 0; Ω in (5.27)) if at

least one of the inequalities is strict.

The result now follows for (A) from (5.21). If 1
b2

≤ b1, then the result for (A) follows

from (5.24), and if 1
b2
> b1, then the result follows from (5.23), and (5.26). Also, for

(B), the result follows from (5.20). If 1
b2

≤ b1, then the result for (B) follows from

(5.25), and if 1
b2
> b1, then the result follows from (5.22) and (5.27).

Lemma 5.8. If b1, b2 < 1 and (u, v) is a positive solution of (1.18), then the following

hold:

(A) if z(x) is a smooth function that satisfies

−∆z = λz(1− u− v); Ω

∂z
∂η

+
√
λγ1z = 0; ∂Ω,

(5.28)
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then z(x) ≡ 0.

(B) if z(x) is a smooth function that satisfies

−∆z = λrz(1− u− v); Ω

∂z
∂η

+
√
λγ2z = 0; ∂Ω,

(5.29)

then z(x) ≡ 0.

Proof. We only provide a proof for (A) as the proof for (B) is similar. Note that when

µ = 0, w = u is a solution of

−∆w − λw(1− u− b1v) = µw; Ω

∂w
∂η

+
√
λγ1w = 0; ∂Ω.

(5.30)

Since u > 0; Ω, the principal eigenvalue µ1 of (5.30) is zero. But, for any ϕ ̸= 0

smooth, we must have:

µ1 = 0 ≤
∫
Ω
(|∇ϕ|2 − λ(1− u− b1v)ϕ

2) dx+
∫
∂Ω

√
λγ1ϕ

2ds∫
Ω
ϕ2dx

, (5.31)

as can be seen from page 97 of [CC03]. But, we also have

∫
Ω

−∆zzdx =

∫
Ω

−∂z
∂η
zds+

∫
Ω

|∇z|2dx,
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where

∫
Ω

−∆zzdx =

∫
Ω

λ(1− u− v)z2dx

and

∫
∂Ω

−∂z
∂η
zds =

∫
∂Ω

√
λγ1z

2ds

implying that

∫
Ω

|∇z|2dx−
∫
Ω

λ(1− u− v)z2dx+

∫
∂Ω

√
λγ1z

2ds = 0.

Now, using (5.31) we have

0 =

∫
Ω

|∇z|2dx−
∫
Ω

λ(1− u− b1v)z
2dx+

∫
∂Ω

√
λγ1z

2ds+

∫
Ω

λ(1− b1)vz
2dx

≥
∫
Ω

λ(1− b1)vz
2dx

implying that

∫
Ω

λ(1− b1)vz
2dx ≤ 0.

But, this is a contraction since λ > 0, b1 < 1, and v > 0. Hence, z ≡ 0 as desired.

Lemma 5.9. The principal eigenvalue, E1(r, γ), which is defined in (1.20) has the

following properties for all r > 0 and γ ≥ 0 (note that b = 0 throughout this result):

(A) For fixed γ > 0
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(i) E1(r, γ) is a decreasing function of r

(ii) E1(r, γ) → 0 as r → ∞

(iii) E1(r, γ) → ∞ as r → 0+

(B) For fixed r > 0

(i) E1(r, γ) is an increasing function of γ

(ii) E1(r, γ) → ED
1

r
as γ → ∞

(iii) E1(r, γ) → 0 as γ → 0+

(C) E1(r, γ) =
E1(1,γ)

r

(D) Fix γ1 > 0 and γ2 ≥ 0 and let r∗ = E1(1,γ2)
E1(1,γ1)

. Then

(i) if r < r∗ then E1(1, γ1) < E1(r, γ2)

(ii) if r = r∗ then E1(1, γ1) = E1(r, γ2)

(iii) if r > r∗ then E1(1, γ1) > E1(r, γ2)

(iv) if γ1 > γ2 then r∗ < 1

(v) if γ1 = γ2 then r∗ = 1

(vi) if γ1 < γ2 then r∗ > 1.

The proof of (A) - (C) can be found in [CGMS20] and (D) follows immediately from

(C).

Now we prove our main theorems.
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5.1 Proof of Theorem 1.8

Assume that (u, v) is a positive solution of (1.18) for a fixed λ > 0.

(A) First, assume that λ ≤ E1(1, γ1) which implies that σ1 ≥ 0 (see Theorem 5.2).

Using Green’s Identity and the eigenfunction corresponding to σ1, we have that:

∫
Ω

(−∆uϕ1 +∆ϕ1u) dx =

∫
Ω

(
−∂u
∂η
ϕ1 +

∂ϕ1

∂η
u

)
ds. (5.32)

But, the right-hand-side of (5.32) is clearly equal to zero, and we also have:

∫
Ω

(−∆uϕ1 +∆ϕ1u) dx =

∫
Ω

[λuϕ1(1− u− b1v)− u(σ1ϕ1 + λϕ1)] dx

=

∫
Ω

(λuϕ1 − λu2ϕ1 − λb1uvϕ1 − uσ1ϕ1 − λϕ1u)dx

=

∫
Ω

−uϕ1(u+ b1v + σ1)dx

< 0 (5.33)

since u, v, ϕ1 > 0; Ω and σ1 ≥ 0. This contradiction ensures that no positive solution

of (1.18) exists when λ ≤ E1(1, γ1). An almost identical argument follows when

λ ≤ E1(r, γ2).

(B) - (D) Note that these parts follow immediately from Lemmas 5.6 and 5.7. For

example, we provide a proof of (C): Note that (A) implies that λ > max{E1(1, γ1),

E1(r, γ2)}. Now, assuming γ1 > γ2 ensures that the right-hand-side of (5.17) is strictly

positive, whereas the left-hand-side of (5.17) is nonpositive from Lemma 5.7 when

b2 ≤ 1 ≤ b1 and 1 ≤ r ≤ b1
b2

(since u, v > 0; Ω and λ > 0). This contradiction implies
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that no positive solution of (1.18) exists when b2 ≤ 1 ≤ b1 and 1 ≤ r ≤ b1
b2

.

(E) Assume that b1 > 1 and b2 < b1−1
b1

. Since we wish to prove nonexistence for large

λ-values, it suffices to show nonexistence for λ > E1(r,γ2)
1−b2 . Using Green’s Identity, we

have:

∫
Ω

(−∆uW1,γ1 +∆W1,γ1u) dx =

∫
∂Ω

(
−∂u
∂η
W1,γ1 +

∂W1,γ1

∂η
u

)
ds. (5.34)

But, the right-hand-side of (5.34) is clearly equal to zero and the left-hand-side be-

comes:

∫
Ω

(−∆uW1,γ1 +∆W1,γ1u) dx =

∫
Ω

[λu(1− u− b1v)W1,γ1 − λW1,γ1(1−W1,γ1)u]dx

=

∫
Ω

λuW1,γ1 [W1,γ1 − (u+ b1v)]dx

<

∫
Ω

λuW1,γ1 [W1,γ1 − b1Wr,γ2,b2 ]dx (5.35)

since u > 0; Ω and v ≥ Wr,γ2,b2 ; Ω (see proof of (D) in Theorem 1.9 and note that for

λ > E1(r,γ2)
1−b2 , Theorem 5.2 ensures that Wr,γ2,b2 exists). Also, Theorem 5.2 ensures

that:

W1,γ1 − b1Wr,γ2,b2 → 1− b1(1− b2) on all closed subsets of Ω as λ→ ∞.

Since b1 > 1 and b2 <
b1−1
b1

, we have that 1 − b1(1 − b2) < 0 and can choose λ ≫ 1

such that
∫
Ω
λuW1,γ1 [W1,γ1 − b1Wr,γ2,b2 ]dx < 0 which is a contradiction.

(F) We omit this proof as it is almost identical to the one for (E).

(G) Here, we show that there exists δ(b2) > 0 such that (1.18) has no positive so-

lution for λ < E1(r, γ2) + δ(b2). If λ ≤ E1(1, γ1), then from (A) (1.18) has no
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positive solution. Thus, we assume (u, v) is a positive solution of (1.18) for some

λ ∈ (E1(1, γ1), E1(r, γ2)) which implies that σ2 > 0. By Green’s Identity, we obtain:

∫
Ω

(−∆vϕ2 +∆ϕ2v) dx =

∫
∂Ω

(
−∂v
∂η
ϕ2 +

∂ϕ2

∂η
v

)
ds, (5.36)

and it is easy to see that the right-hand-side of (5.36) is zero. Now, we also have that:

∫
Ω

(−∆vϕ2 +∆ϕ2v) dx =

∫
Ω

(λrv(1− v − b2u)ϕ2 − (λr + σ2)ϕ2v) dx

=

∫
Ω

(−λr − σ2 + λr − λrv − λrb2u)ϕ2vdx

=

∫
Ω

(−σ2 − λrv − λrb2u)ϕ2vdx

= λr

∫
Ω

(
−σ2
λr

− v − b2u

)
ϕ2vdx (5.37)

≤ λr

∫
Ω

(
−σ2
λr

− v − b2min
Ω

{u}
)
ϕ2vdx

≤ λr

∫
Ω

(
−σ2
λr

− b2min
Ω

{u}
)
ϕ2vdx (5.38)

which gives rise to a contradiction since σ2 > 0. Further, from (5.37), we have

0 ≤ min
Ω

{u}
[

−σ2
λrmin

Ω
{u} − b2

]
, and we note that σ2 → 0 when λ→ E1(r, γ2) and σ2 < 0

when λ > E1(r, γ2). Since b2 > 0, there exists a δ(b2) > 0 such that (1.18) has no

positive solution for λ ∈ [E1(r, γ2), E1(r, γ2) + δ(b2)), and hence a positive solution

does not exist for λ < E1(r, γ2) + δ(b2). Furthermore, it is clear that a necessary

condition for existence of a positive solution is H(λ, r) = −σ2
λrmin

Ω
{u} ≥ b2, as desired.

(H) We omit this proof as it is almost identical to the one for (G).
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5.2 Proof of Theorem 1.9

(A) Assume that b1, b2 < 1 and λ > max
{
E1(r,γ2)
1−b2 , E1(1,γ1)

1−b1

}
. We first prove

existence of a positive solution of (1.18). Note that this implies σ1, σ2 < 0 ensuring

that W1,γ1 ,Wr,γ2 (the unique positive solution of (1.20) with R = 1 and R = r,

respectively) both exist. Now consider σ3(W1,γ1) with W1,γ1 ≡ 1 and σ4(Wr,γ2) with

Wr,γ2 ≡ 1, namely,

−∆ϕ3 − λr(1− b2)ϕ3 = σ3ϕ3; Ω

∂ϕ3
∂η

+
√
λγ2ϕ3 = 0; ∂Ω

(5.39)

and −∆ϕ4 − λr(1− b1)ϕ4 = σ4ϕ4; Ω

∂ϕ4
∂η

+
√
λγ1ϕ4 = 0; ∂Ω.

(5.40)

By Lemma 5.5, we have that σ3(W1,γ1) < σ3(1) and σ4(Wr,γ2) < σ4(1). Thus by

Lemma 5.3 it suffices to show that σ3(1), σ4(1) < 0 in order to prove existence.

Comparing (5.39) with (1.22), uniqueness of the principal eigenvalue ensures that

σ3(1) + λr(1− b2) = E1(R, γ)R

γ = γ2,

or equivalently,

σ3(1) = E1(R, γ)R− λr(1− b2). (5.41)

79



Taking σ3(1) = 0, we see that R = r(1 − b2) and λ = E1(r(1 − b2), γ2) =
E1(r,γ2)
1−b2 , by

Lemma 5.9. Also, using (5.41) we have that σ3(1) < 0 for λ > E1(r,γ2)
1−b2 .

Similarly, comparing (5.40) with (1.22), uniqueness of the principal eigenvalue ensures

that

σ4(1) + λ(1− b1) = E1(R, γ)R

γ = γ1

or, equivalently,

σ4(1) = E1(R, γ)R− λ(1− b1). (5.42)

Again, taking σ4(1) = 0, we see that R = (1− b1) and λ = E1((1− b1), γ1) =

E1(1,γ1)
1−b1 , by Lemma 5.9. Using (5.42), we have that σ4(1) < 0 for λ > E1(1,γ1)

1−b1 . Thus,

for λ > max
{
E1(r,γ2)
1−b2 , E1(1,γ1)

1−b1

}
, Lemma 5.3 ensures existence of a positive solution of

(1.18) with (mϕ4,mϕ3) ≤ (u, v) ≤ (W1,γ1 ,Wr,γ2); Ω for m ≈ 0.

(i) Now assume (u, v) is any positive solution of (1.18) with λ > max{E1(r, γ2),

E1(1, γ1)}. Then (u, v) also satisfies:

−∆u− λu(1− u) = −λb1uv; Ω
∂u
∂η

+
√
λγ1u = 0; ∂Ω,

(5.43)

implying that u is a strict subsolution of (5.1). Since Z ≡M > 1 is a supersolution of

(5.1) and u ≤M ; Ω, uniqueness of W1,γ1 gives that u ≤ W1,γ1 ; Ω. A similar argument
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gives that v ≤ Wr,γ2 ; Ω.

(ii) We assume (u, v) is any positive solution of (1.18) with λ > max
{
E1(1,γ1)
1−b1 , E1(r,γ2)

1−b2

}
,

which implies that W1,γ1,b1 ,Wr,γ2,b2 both exist. Now, since v ≤ Wr,γ2 ≤ 1; Ω, we have

that (u, v) satisfies:

−∆u− λu(1− u− b1) ≥ −∆u− λu(1− u− b1v) = 0;Ω

∂u
∂η

+
√
λγ1u = 0; ∂Ω

(5.44)

implying that u is a supersolution of (1.20) with R = 1, b = b1 and γ = γ1. Using

the principal eigenfunction, ϕ0, corresponding to σ1 (which is negative by our choice

of λ) gives that ψ = mϕ0 is a subsolution of (1.20) with R = 1, b = b1, and γ = γ1

and satisfies mϕ0 < u; Ω by choosing m ≈ 0. Uniqueness of W1,γ1,b1 (the positive

solution of (1.20) with R = 1, b = b1 and γ = γ1) gives that W1,γ1,b1 ≤ u; Ω. A similar

argument shows that Wr,γ2,b2 ≤ v; Ω.

(iii) Finally, assume that r = 1 and γ1 = γ2. We will show that
(

1−b1
1−b1b2W1,γ1 ,

1−b2
1−b1b2Wr,γ2

)
will satisfy (1.18). To that end, we see that:

−∆u− λu(1− u− b1v)

=
1− b1
1− b1b2

λW1,γ1(1−W1,γ1)

− λ

(
1− b1
1− b1b2

)
W1,γ1

(
1− 1− b1

1− b1b2
W1,γ1 −

b1(1− b2)

1− b1b2
W1,γ1

)
=

1− b1
1− b1b2

λW1,γ1

[
1−W1,γ1 − 1 +

1− b1
1− b1b2

W1,γ1 +
b1(1− b2)

1− b1b2
W1,γ1

]
+

1− b1
1− b1b2

λW 2
1,γ1

[
b1b2 − 1 + 1− b1 + b1 − b1b2

1− b1b2

]
= 0 (5.45)
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and

∂u

∂η
+
√
λγ1u = −

(
1− b1
1− b1b2

)
W1,γ1

√
λγ1 +

(
1− b1
1− b1b2

)
W1,γ1

√
λγ1 = 0; ∂Ω. (5.46)

A similar argument holds for v. Theorem 1.10 gives uniqueness of the solution in this

case.

(B) Assume that b1 = b2 = 1, γ1 = γ2, r = 1 and λ > E1(1, γ1). Notice that

σ1 < 0 in this case ensuring existence of W1,γ1 . Fix s ∈ (0, 1), and let (u, v) =

(sW1,γ1 , (1 − s)W1,γ1). We will first show that (u, v) is a solution of (1.18). To that

end, we see that:

−∆u− λu(1− u− v) = −∆sW1,γ1 − λsW1,γ1(1− sW1,γ1 − (1− s)W1,γ1)

= s[−∆W1,γ1 − λW1,γ1(1−W1,γ1)]

= 0 (5.47)

and

−∆v − λv(1− v − u) = −∆(1− s)W1,γ1 − λ(1− s)W1,γ1(1− (1− s)W1,γ1 − sW1,γ1)

= (1− s)[−∆W1,γ1 − λW1,γ1(1−W1,γ1)]

= 0 (5.48)
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with

∂u

∂η
+
√
λγ1u =

∂sW1,γ1

∂η
+
√
λγ1sW1,γ1

= s

[
∂W1,γ1

∂η
+
√
λγ1W1,γ1

]
= 0 (5.49)

and

∂v

∂η
+
√
λγ1v =

∂(1− s)W1,γ1

∂η
+
√
λγ1(1− s)W1,γ1

= (1− s)

[
∂W1,γ1

∂η
+
√
λγ1W1,γ1

]
= 0. (5.50)

Now, we will show that all positive solutions of (1.18) must have the form

(sW1,γ1 , (1 − s)W1,γ1). Assume that (u, v) is a positive solution of (1.18). Following

the same argument as in the proof of Lemma 5.8, the principal eigenvalue of (5.30)

with b1 = 1, must be µ1 = 0. But, both u and v satisfy (5.30), and since µ1 is simple,

we must have that u = cv where c > 0. Substituting (u, v) into (1.18) yields:

−∆u− λu(1− u− v) = −∆u− λu

(
1− u− 1

c
u

)
= −∆u− λu

(
1−

(
1 +

1

c
u

))
(5.51)

and
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−∆v − λv(1− v − u) = −∆v − λv (1− v − cv)

= −∆v − λv (1− (1 + c)u) . (5.52)

It is now easy to see that u = c
c+1

W1,γ1 and v = 1
1+c

Wr,γ2 . Let s = c
c+1

∈ (0, 1) which

gives that 1− s = 1
1+c

, as desired.

(C) In this case, we assume that b1 < 1 ≤ b2, γ1 > 0, and r > r∗ (note that if

γ2 = 0 then there is no restriction on r), for which Lemma 5.9 implies that E1(r, γ2) <

E1(1, γ1). Fix b2 ≥ 1. By Lemma 5.3, it suffices to show that σ3(W1,γ1), σ4(Wr,γ2) < 0.

Since E1(r, γ2) < E1(1, γ1), we have thatW1,γ1(x,E1(1, γ1)) ≡ 0 andWr,γ2(x,E1(1, γ1))

> 0; Ω. This implies that there exists a λ2(b2) > (≈)E1(1, γ1) such that b2W1,γ1(x, λ) <

Wr,γ2(x, λ); Ω for λ ∈ (E1(1, γ1), λ2(b2)). Now, fix λ0 ∈ (E1(1, γ1), λ2(b2)), and choose

b1 such that

b1 < n1(λ0) := min
Ω

{W1,γ1(x, λ0)}. (5.53)

Since Wr,γ2(x, λ) < 1; Ω, this choice ensures that b1 <
W1,γ1 (x,λ)

Wr,γ2 (x,λ)
; Ω for λ ∈ (λ1(b1, b2),

λ2(b2)), where λ1(b1, b2) := λ0 − δ1 for some δ1(b1, b2) > (≈)0. Thus, for λ ∈

(λ1(b1, b2), λ2(b2)) and b1 < n1(λ0), we must have

b2W1,γ1(x, λ)−Wr,γ2(x, λ) < 0; Ω,

b1Wr,γ2(x, λ)−W1,γ1(x, λ) < 0; Ω.
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Lemma 5.4 now gives that σ3(W1,γ1), σ4(Wr,γ2) < 0 for λ ∈ (λ1(b1, b2), λ2(b2)). The

furthermore statement follows from the proof of (A)(i)-(ii) for the bounds on u and

from Lemma 5.3 for the bounds on v, as desired.

(D) In this case, we assume that b2 < 1 ≤ b1, γ2 > 0 and r < r∗ (note that if γ1 = 0

then there is no restriction on r), for which Lemma 5.9 implies that E1(1, γ1) <

E1(r, γ2). Fix b1 ≥ 1. By Lemma 5.3, it suffices to show that σ3(W1, γ1), σ4(Wr,γ2) < 0.

Since E1(1, γ1) < E1(r, γ2), we have thatWr,γ2(x,E1(r, γ2)) ≡ 0 andW1,γ1(x,E1(r, γ2))

> 0; Ω. This implies that there exists a λ2(b1) > (≈)E1(r, γ2) such that b1Wr,γ2(x, λ) <

W1,γ1(x, λ); Ω for λ ∈ (E1(r, γ2), λ2(b1)). Now, fix λ0 ∈ (E1(r, γ2), λ2(b2)), and choose

b2 such that

b2 < n2(λ0) := min
Ω

{Wr,γ2(x, λ0)}. (5.54)

Since W1,γ1(x, λ) < 1; Ω, this choice ensures that

b2 <
Wr,γ2 (x,λ)

W1,γ1 (x,λ)
; Ω for λ ∈ (λ1(b1, b2), λ2(b2)), where λ1(b1, b2) := λ0 − δ2 for some

δ2(b1, b2) > (≈)0. Thus, for λ ∈ (λ1(b1, b2), λ2(b2)) and b2 < n2(λ0), we must have

b2W1,γ1(x, λ)−Wr,γ2(x, λ) < 0; Ω,

b1Wr,γ2(x, λ)−W1,γ1(x, λ) < 0; Ω.

Lemma 5.4 now gives that σ3(W1,γ1), σ4(Wr,γ2) < 0 for λ ∈ (λ1(b1, b2), λ2(b2)). The

furthermore statement follows from the proof of (A)(i) for the bounds on v and from
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Lemma 5.3 for the bounds on u, as desired.

(E) In the case of b1, b2 > 1, the argument in (A)(ii) gives existence of at least one

positive solution of the specified form. However, uniqueness is still open.

5.3 Proof of Theorem 1.10

(A) We assume that b1, b2 < 1, r = 1 and γ1 = γ2. Now, suppose that (u, v) is

any positive solution of (1.18), which we rewrite as:



−∆u− λu(1− u− v)− λ(1− b1)uv = 0; Ω

−∆v − λv(1− v − u)− λ(1− b2)uv = 0; Ω

∂u
∂η

+
√
λγ1u = 0; ∂Ω

∂v
∂η

+
√
λγ1v = 0; ∂Ω.

(5.55)

Now, multiply the first and third equations in (5.55) by (1− b2) and the second and

fourth equations by (1−b1) and subtract the second from the first and then the fourth

from the third giving:

−∆ψ − λψ(1− u− v) = 0; Ω

∂ψ
∂η

+
√
λγ1ψ = 0; ∂Ω,

(5.56)

where ψ = (1−b2)u−(1−b1)v. By Lemma 5.8, ψ ≡ 0 giving that (1−b2)u ≡ (1−b1)v.

In other words, we have that v = Ru and R = 1−b2
1−b1 . But, this gives

1 +Rb1 = 1 +
b1(1− b2)

1− b1
=

1− b1b2
1− b1

(5.57)
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and, hence,

0 = −∆u− λu(1− u− b1v)

= −∆u− λu(1− (1 +Rb1)u)

= −∆u− λu

(
1− 1− b1b2

1− b1
u

)
; Ω. (5.58)

Thus, u satisfies

−∆u− λu
(
1−

(
1−b1b2
1−b1

)
u
)
= 0; Ω

∂u
∂η

+
√
λγ1u = 0; ∂Ω.

(5.59)

From Theorem 5.2, it is now easy to see that u = 1−b1
1−b1b2W1,γ1 and, since v = Ru,

v = 1−b2
1−b1b2W1,γ1 . This fact combined with Theorem 1.9 (A) (ii) and (iii) gives the

result.

(B) Here, we assume that r > 0, γ1, γ2 > 0 and b1, b2 < 1 with (u1, v1) and (u2, v2)

both positive solutions of (1.18). Let p = u1 − u2 and q = v1 − v2. Then we must

have

−∆p

= λu1(1− u1 − b1v1)− λu2(1− u2 − b1v2)

= λu1 − λu21 − λb1u1v1 − λu2 + λu22 + λb1u2v2 + λu1u2 + λb1u2v1 − λu1u2 − λb1u2v1

= λ(u1 − u2)(1− u1 − b1v1)− λu2(u1 − u2)− λb1u2(v1 − v2)

= λp(1− u1 − b1v1)− λu2p− λb1u2q; Ω,

87



and, similarly,

−∆q = λrq(1− v2 − b2u2)− λrb2vp− λrv1q; Ω. (5.60)

Also,

∂p

∂η
+
√
λγ1p =

∂u1
∂η

− ∂u2
∂η

+
√
λγ1(u1 − u2) = 0; ∂Ω (5.61)

and, similarly,

∂q

∂η
+
√
λγ2q = 0; ∂Ω. (5.62)

Thus, (p, q) satisfies



−∆p− λp(1− u1 − b1v1) + λu2p+ λb1u2q = 0; Ω

−∆q − λrq(1− v2 − b2u2) + λrb2v1p+ λrv1q = 0

∂p
∂η

+
√
λγ1p = 0; ∂Ω

∂q
∂η

+
√
λγ1q = 0; ∂Ω.

(5.63)

From the proof of Lemma 5.8, if z is a smooth function that satisfies

−∆z = λz(1− u− b1v); Ω

∂z
∂η

+
√
λγ1z = 0; ∂Ω

(5.64)

then z also satisfies
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∫
Ω

|∇z|2dx−
∫
Ω

λ(1− u− b1v)z
2dx+

∫
Ω

√
λγ1z

2ds ≥ 0.

Similarly, if w satisfies

−∆w = λrw(1− v − b2u); Ω

∂w
∂η

+
√
λγ2w = 0; ∂Ω,

(5.65)

then w also satisfies

∫
Ω

|∇w|2dx−
∫
Ω

λ(1− v − b2u)w
2dx+

∫
Ω

√
λγ2w

2ds ≥ 0.

Hence, the following hold:

∫
Ω

z[−∆z − λz(1− u1 − b1v1)]dx ≥ 0 (5.66)

∫
Ω

w[−∆w − λrw(1− v2 − b2u2)]dx ≥ 0. (5.67)

Now, we multiplying the first equation in (5.63) by p and the second by

q and integrating both of them over Ω yields

∫
Ω

(
p[−∆p− λp(1− u1 − b1v1)] + λu2p

2 + λb1u2pq
)
dx = 0 (5.68)
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∫
Ω

(
q[−∆q − λrq(1− v2 − b2u2)] + λrb2v1pq + λrv1q

2
)
dx = 0. (5.69)

Adding (5.68) to (5.69) gives

∫
Ω

{p[−∆p− λp(1− u1 − b1v1)] + q[−∆q − λrq(1− v2 − b2u2)]

+λu2p
2 + λb1u2pq + λrb2v1pq + λrv1q

2
}
dx = 0. (5.70)

Employing (5.66) and (5.67) we further obtain

λ

∫
Ω

(u2p
2 + (b1u2 + rb2v1)pq + rv1q

2)dx ≤ 0.

Let Qx(s, t) := u2(x)s
2+[b1u2(x)+rb2v1(x)]st+rv1(x)t

2. If Qx(s, t) is positive definite

for all x ∈ Ω, then p, q ≡ 0 proving uniqueness. To that end, if the following holds,

then we are ensured the result:

(b1u2 + rb2v1)
2 − 4u2rv1 < 0, (5.71)

or, equivalently,

4 >
b21u2
rv1

+ 2b1b2 + rb22
v1
u1

; Ω.

It is now clear that if (1.23) holds, then so does (5.71), giving the result. The final

statement of the theorem follows immediately from the fact that both W1,γ1 and

Wr,γ2 are bounded above and below (and in this case, away from zero). Thus, taking
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b1, b2 ≈ 0 and λ > max
{
E1(1,γ1)
1−b1 , E1(r,γ2)

1−b2

}
, Theorem 1.8 and the previous argument

together ensure existence of a unique positive solution for (1.18).

5.4 Proof of Theorem 1.11

Here, we assume that r > 0, b1, b2 ≥ 0, γ1, γ2 ≥ 0 and λ > 0 are such that

σ1, σ2 < 0. We note that (A) and (B) are standard, omit their proofs, and direct

the interested reader to, e.g., [Smi08]. In particular, the author in [Smi08] proves in

Theorem 7.6.2 that if a positive solution, (u, v), of (1.18) is stable, then it is also

asymptotically stable. (Even though Theorem 7.6.2 specifically addresses a quasi-

monotone nondecreasing system, a change of variables as suggested in [Smi08] allows

the theorem to apply to our quasimonotone nonincreasing system, see also [Pao92]).

Also, note that (i)-(iii) of (C) follows immediately from our construction of sub- and

supersolutions of (1.18) in Lemma 5.3 and Theorem 5.2, Theorem 5.5 in Chapter 10

of [Pao92].

To prove (iv) of (C), fix λ > 0 such that σ3, σ4 < 0 and assume that there

exists a sequence of asymptotically stable positive solutions of (1.18), {(un, vn)}∞n=1,

converging to (0,Wr,γ2) as n→ ∞. Choose M > 1 such that for all n > M we have

−σ4
λ

> |un − b1(Wr,γ2 − vn)|; Ω.

Thus, there exists an ϵ > 0 such that

−σ4
λ

> ϵ > |un − b1(Wr,γ2 − vn)|; Ω.
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Now, we have that:

ut =
1

λ
∆u+ u(1− u− b1v)

=
1

λ
∆u+ u(1− b1Wr,γ2 − [u− b1(Wr,γ2 + v)])

≥ 1

λ
∆u+ u(1− b1Wr,γ2 − ϵ); t > 0, x ∈ Ω (5.72)

as long as ϵ > |u − b1(Wr,γ2 + v)|. Fix an n > M and u(0, x), v(0, x) > 0; Ω with

u(0, x) ≈ 0 and v(0, x) ≈ Wr,γ2 on Ω. There must exist a K > 0 such that u(0, x) >

Kϕ4(x); Ω, where ϕ4 is the eigenfunction corresponding to σ4 chosen such that ϕ4(x) >

0; Ω and ∥ϕ4∥∞ = 1. Also, we can choose t0 > 0 such that

−σ4
λ

> ϵ > |u(t, x)− b1(Wr,γ2 − v(t, x)|;x ∈ Ω

for all t > t0.

Define ψ(t, x) = Ke(
−σ4
λ

−ϵ)tϕ4(x) and h(x) = 1− b1Wr,γ2 . For all t > 0, we have that:

ψt −
1

λ
∆ψ − (h(x)− ϵ)ψ = K

(
−σ4
λ

− ϵ

)
e(

−σ4
λ

−ϵ)tϕ4(x) +
K

λ
e(

−σ4
λ

−ϵ)t[σ4

+ λh(x)]ϕ4(x)−Ke(
−σ4
λ

−ϵ)t[h(x)− ϵ]ϕ4(x)

= 0 (5.73)
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and, clearly,

∂ψ

∂η
+
√
λγ1ψ = 0; ∂Ω.

Thus, u(t, x) is a supersolution and ψ(t, x) is a solution of:


Wt =

1
λ
∆W + (h(x)− ϵ)W ; t > 0, x ∈ Ω

W (0, x) = Kϕ4(x);x ∈ Ω

∂W
∂η

+
√
λγ1W = 0; t > 0, x ∈ ∂Ω.

(5.74)

A standard argument now implies that u(t, x) ≥ ψ(t, x) = Ke(
−σ4
λ

−ϵ)ϕ4(x);x ∈ Ω for

t > t0. But, our choice of ϵ implies that −σ4
λ

− ϵ > 0 giving that u(t, x) is unbounded

as t→ ∞. This is a contradiction, and, hence, no such sequence can exist. An almost

identical argument holds for the case that (un, vn) converges to (W1,γ1 , 0) as t → ∞

and is omitted.
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CHAPTER VI

COMPUTATIONALLY GENERATED BIFURCATION CURVES AND

SOLUTIONS IN DIMENSION N = 2 FOR EXAMPLES IN FOCUS 4

6.1 Part 1

We have the system of equations to solve


−∆u = λf(u); Ω = (0, 1)× (0, 1)

∂u
∂n

+
√
λu = 0; ∂Ω,

(6.1)

where

f(u) =


e

cu
c+u − 1; u ≤ k[
e

αu
α+u − e

αk
α+k

]
+
[
e

ck
c+k − 1

]
; u > k.

(6.2)

Here c = 2.5 is a fixed number, α > 0 and k > 0 are parameters.

We build a regular mesh of triangular finite elements on Ω, as pictured in Figure 25
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Figure 25. Regular mesh of triangular finite elements on a unit square.

Applying standard finite element procedures as described in Section 2.4, we get a

system of nonlinear equations that can be written in the matrix form

AU +
√
λC U − λR(U) = 0, (6.3)

where

Ai,j =

∫
Ω

∇φi∇φjdx

is the stiffness matrix, {φi} is the basis finite element functions,

Ci,j =

∫
Ω

φjφids

is a matrix related to boundary condition, and
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Ri(U) =

∫
Ω

f

( n∑
k=1

ukφk

)
φi dx

is the nonlinear functional.

U =



u1

u2
...

un


is a vector of nodal values, n is the number of mesh nodes, The system (6.3) could

be written as

F(U) = 0⃗, (6.4)

where F : Rn → Rn is a nonlinear vector-valued function with dimension n. The vec-

tor equation is solved by Newton iterations starting from some initial approximation

U0:

Un+1 = Un −
(
∂F(Un)

∂U

)−1

F(Un),

where the Jacobian matrix is calculated by differentiating the left side of (6.3) by uj:

∂Fi

∂uj
= Ai,j +

√
λCi,j − λ

∫
Ω

∂f

(∑n
k=1 ukφk

)
∂uj

φi dx
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with

∂f

(∑n
k=1 ukφk

)
∂uj

=


e

c U
c+U c2 φj

(c+U)2
; U ≤ k

e
α U
α+U α2 φj

(α+U)2
; U > k,

(6.5)

where we have introduced the notation U =
∑n

k=1 ukφk.

6.1.1 Numerical results

We chose constant values for U0 as the initial approximations:

U0 =



u0

u0
...

u0


.

Our goal is to detect all branches of solutions U depending on the parameter λ. We

perform calculations for a grid of values for u0, λ. First, we use grid

λ = 1, 1.4, 1.8, ..., 9; δλ = 0.4,

u0 = 0.5, 0.8, 1.1, ..., 20; δu0 = 0.3.

The computations are performed with 20 × 20 mesh subdivisions. For parameters

k = 3, α = 3.1 we obtain the following points:
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Figure 26. Starting points for continuation process.

Each point corresponds to "good" solution for which U ≥ 0. Those points serve as

starting points for continuation processes to get the branches of the bifurcation curve.

During the simulation we observed that the Newton algorithm still works well despite

the discontinuity of (6.5). To resolve the turning points for the branches during the

continuation process, we used an adaptive refinement of the λ step when the derivative

of the branch curve became big or changed quickly. Continuation yielded the branches

presented in the Figure 27.

Observe that some part is seemingly absent. The reason is that our initial search

corresponding to the red crosses did not yield results in the corresponding sub-region.

Looking on the Figure 27, we tried to use a more dense grid for λ :

λ = 6.8, 6.9, 7.0, ..., 9; δλ = 0.1

which yielded the more complete diagram (see Figure 28).
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Figure 27. Discontinuous bifurcation curve when α = 3.1, k = 3, and mesh 20× 20.

Figure 28. Approximate bifurcation curve when α = 3.1, k = 3, and mesh 20× 20.

Since the computations on a finer mesh for λ took much more time, we chose to use

a non-uniform grid for λ :

λ = 6.0, 6.5, 7.0, 7.2, 7.3, 7.4, 7.5, 8.0, 8.5, 9

The λ values were inspired by Figure 27 and aim to resolve the segment 7.2 < λ < 7.4.

The process is a manual adjustment, and it is not suitable for automatic processing
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of arbitrary values of k, α.

We now provide more detailed figures for the example. The solution shape for branch

1 is pictured in Figure 29.

Figure 29. Solution shape for branch 1 when λ = 7, k = 3, α = 3.1.

A bifurcation diagram for parameters k = 5, α = 5.5 is given below (see Figure 30).

Figure 30. Approximate bifurcation diagram when k = 5, α = 5.5, and mesh 20× 20.
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6.1.2 Approximation consistency

We know the finite element method should converge by [NW76]. Note that the

asymptotic result should not change with change significantly due to changes in the

mesh dimensions. Our tests show good stability results for different meshes (including

non square e.g. 20 × 40). The result for parameters k = 3, α = 3.1 and a 40 × 40

mesh are given in Figure 31

Figure 31. Approximate bifurcation diagram when α = 3.1, k = 3, and mesh 40× 40.

We see close agreement with the 20× 20 results in Figure 28.

6.2 Part 2

We approximate the system of equations



−∆u = λu(1− u− b1v); Ω

−∆v = λrv(1− v − b2u); Ω

∂u
∂n

+
√
λγ1u = 0; ∂Ω

∂v
∂n

+
√
λγ2v = 0; ∂Ω.

(6.6)
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We divide Ω = (0, 1)× (0, 1) into triangular finite elements and seek approximations

of the form

u =
n∑
i

uiφi(x)

v =
n∑
i

viφi(x)

(6.7)

where n is the number of mesh nodes.

We again use a Galerkin formulation to project (6.6) onto a finite dimensional for-

mulation for (u, v). The weak formulation of the first equation of the system (6.6)

is:

∫
Ω

(−∆u)wdx =

∫
Ω

λu(1− u− b1v)wdx.

Integrating the left side by parts yields:

∫
Ω

∇u∇wdx−
∫
∂Ω

∂u

∂n
wds =

∫
Ω

λu(1− u− b1v)wdx.

Substituting the boundary condition for ∂u/∂n in (6.6) yields

∫
Ω

∇u∇w(x)dx+
√
λγ1

∫
∂Ω

uwds =

∫
Ω

λu(1− u− b1v)wdx.
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Substituting φi for weight function w and (6.7) for u we get n equations:

n∑
j=1

uj

∫
Ω

∇φj∇φidx+
√
λγ1

n∑
j=1

uj

∫
∂Ω

φjφids = λ

n∑
j=1

uj

∫
Ω

φjφidx −

− λ

∫
Ω

[( n∑
j=1

ujφj
)2

+ b1
( n∑
j=1

ujφj
)( n∑

j=1

vkφk
)]
φidx

(6.8)

for all i = 1, 2, ..., n. The equations can be written in matrix form as

AU +
√
λγ1C U − λB U

+ λ


...∫

Ω

[(∑n
j=1 ujφj

)2
+ b1

(∑n
j=1 ujφj

)(∑n
j=1 vkφk

)]
φidx

...

 = 0⃗,

(6.9)

where

U =



u1

u2
...

un


is the vector of nodal values;

A =

∫
Ω

∇φi∇φjdx
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is the stiffness matrix,

B =

∫
Ω

φiφjdx

is the mass matrix, and

C =

∫
∂Ω

φjφids

is the matrix related to the boundary conditions.

The last term in (6.9) contains the non-linear terms u2, u v.

The equation for v could be stated similarly:

AV +
√
λγ2C V − λrB V

+ λr


...∫

Ω

[(∑n
j=1 vjφj

)2
+ b2

(∑n
j=1 ujφj

)(∑n
j=1 vkφk

)]
φidx

...

 = 0⃗.

(6.10)

To formulate a united problem, we introduce the vector W that combines the vectors

U and V :
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W =



u1

u2
...

un

v1

v2
...

vn



.

The combined system is

KW + λ



...∫
Ω

[(∑n
j=1 ujφj

)2
+ b1

(∑n
j=1 ujφj

)(∑n
j=1 vkφk

)]
φidx

...

r
∫
Ω

[(∑n
j=1 vjφj

)2
+ b2

(∑n
j=1 ujφj

)(∑n
j=1 vkφk

)]
φidx

...


= 0 (6.11)

where K is a 2n× 2n matrix that can be written via n× n blocks:

K =


A+

√
λγ1C − λB 0

0 A+
√
λγ2C − λrB

 .

105



The system (6.11) can be written as

F(W ) = 0⃗,

where F(W ) is a non linear vector valued function with dimension 2n. The vector

equation is solved by Newton iterations starting from some initial approximation W 0:

W n+1 = W n −
(
∂F(W n)

∂W

)−1

F(W n).

The Jacobian matrix is calculated by differentiating the left side of (6.11) by wj:

∂F(W n)

∂W
=
∂Fi

∂wj
= K

+ λ


∫
Ω

(
n∑
k=1

k(2uk + b1vk)φk

)
φiφjdx b1

∫
Ω

(
n∑
k=1

kukφk

)
φiφjdx

rb2
∫
Ω

(
n∑
k=1

kvkφk

)
φiφjdx r

∫
Ω

(
n∑
k=1

k(2vk + b2uk)φk

)
φiφjdx

 .

(6.12)

We choose constant values for U0 = U0 and V 0 = V0 as initial approximations so that
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W 0 =



U0

U0

...

U0

V0

V0
...

V0


To detect as many branches of solutions as possible we performed calculations for

some grid of U0, V0 values (U0, V0 = 0.2 − 4.0 with step 0.2) for several values of

λ (20, 35, 50). Then, for each detected branch starting point U0, V0, λ is chosen and

the branch is calculated via continuation process with step dλ = 0.5 in both direc-

tions (decreasing and increasing λ) from the starting point. Approximation consis-

tency is verified as in Subsection 6.1.2 [NW76]. Results for some set of parameters

γ1, γ2, r, b1, b2 are presented in Figures 32-37.

Blue and red curves represent the bifurcation curves corresponding the independent

u and v solutions respectively. The bifurcation curves of the coupled solutions are

represented by green and purple curves where green corresponds to the u component

and purple corresponds to the v component.
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The diagrams show the exact results when the dimension N = 2 and domain Ω =

(0, 1)× (0, 1) supporting the results obtained in Focus 3 analytically.
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||U||  - independent

||V||  - independent

||U||  - coupled

||V||  - coupled

Figure 32. Approximate bifurcation curves for the positive solutions of (6.6) when

γ1 = 2, γ2 = 4, r = 1, b1 = 0.3 & b2 = 0.8.
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Figure 33. Approximate bifurcation curves for the positive solutions of (6.6) when

γ1 = 2, γ2 = 4, r = 1, b1 = 0.8 & b2 = 0.3.
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Figure 34. Approximate bifurcation curves for the positive solutions of (6.6) when

γ1 = 2, γ2 = 4, r = 1, b1 = 1.2 & b2 = 0.3.
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Figure 35. Approximate bifurcation curves for the positive solutions of (6.6) when

γ1 = 4, γ2 = 2, r = 1, b1 = 0.3 & b2 = 0.8.
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Figure 36. Approximate bifurcation curves for the positive solutions of (6.6) when

γ1 = 4, γ2 = 2, r = 1, b1 = 0.8 & b2 = 0.3.
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Figure 37. Approximate bifurcation curves for the positive solutions of (6.6) when

γ1 = 4, γ2 = 2, r = 1, b1 = 0.3 & b2 = 1.2.
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CHAPTER VII

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

In this dissertation, we analyze positive solutions for classes of steady state

nonlinear reaction diffusion equations and systems. First, we establish the occurrence

of a Σ-shaped bifurcation curve for certain classes of reaction terms. Then we ex-

tended the study to a coupled system. Next, we analyze a diffusive Lotka-Volterra

competition model with two species in fragmented patches. We analyze the minimum

patch size as well as the maximum patch size for the existence of non trivial coupled

solutions as the competition rates vary. Finally, we use the finite element method to

obtain the bifurcation diagrams when N = 2 for an example in Focus 1 and for the

model in Focus 3.

7.2 Future Directions

(1) Explore the uniqueness of the positive solution of the problem in Focus 1 for

λ≫ 1.

(2) Explore Σ−shaped bifurcation curves for the positive solutions for problems

with nonlinear boundary condition, namely, for the systems of the form:



−∆u = λf1(v); Ω

−∆v = λf2(u); Ω

∂u
∂η

+
√
λg(u, v)u = 0; ∂Ω

∂v
∂η

+
√
λh(u, v)v = 0; ∂Ω
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where λ > 0, f1, f2 are continuous increasing functions such that f1(0) = 0 =

f2(0), and lim
s→∞

f1(Mf2(s))
s

= 0 for all M > 0 (combined sublinearity), and g, h ∈

C1([0,∞)× [0,∞), (0,∞)).

(3) Extend the study in Focus 3 when the species interact at the boundary as well,

namely, study the systems of the form:



−∆u = λu(1− u− b1v); Ω

−∆v = λrv(1− v − b2u); Ω

∂u
∂η

+
√
λg(u, v)u = 0; ∂Ω

∂v
∂η

+
√
λh(u, v)v = 0; ∂Ω

λ > 0,γ1, γ2 > 0, r > 0, b1, b2 ≥ 0, and g, h ∈ C1([0,∞), (0,∞)).

(4) Explore the study in Focus 4 considering non-convex domains such as L shaped

domains in R2.
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