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Generalized Pell’s equations and Weber’s class
number problem

par Hyuga YOSHIZAKI

Résumé. Nous étudions une généralisation de l’équation de Pell dont les co-
efficients sont certains entiers algébriques. Soient X0 = 0 et Xn =

√
2 + Xn−1

pour chaque n ∈ Z≥1. Nous étudions les solutions de l’équation x2−X2
ny2 = 1

dans Z[Xn−1]. En imitant la solution de l’équation de Pell classique, nous
introduisons de nouveaux développements en fraction continue de Xn sur
Z[Xn−1] et obtenons une solution explicite de l’équation de Pell généralisée.
De plus, nous montrons que notre solution explicite génère toutes les solutions
si et seulement si la réponse au problème du nombre de classes de Weber est
affirmative. Nous obtenons également une congruence pour le rapport entre
les nombres de classes dans la Z2-extension sur les rationnels et montrons la
convergence de la suite des nombres de classes dans Z2.

Abstract. We study a generalization of Pell’s equation, whose coefficients
are certain algebraic integers. Let X0 = 0 and Xn =

√
2 + Xn−1 for each

n ∈ Z≥1. We study the Z[Xn−1]-solutions of the equation x2 − X2
ny2 = 1.

By imitating the solution to the classical Pell’s equation, we introduce new
continued fraction expansions for Xn over Z[Xn−1] and obtain an explicit
solution of the generalized Pell’s equation. In addition, we show that our
explicit solution generates all the solutions if and only if the answer to Weber’s
class number problem is affirmative. We also obtain a congruence relation for
the ratios of the class numbers of the Z2-extension over the rationals and show
the convergence of the class numbers in Z2.

1. Introduction

For a non-square positive integer m, it is well-known that the solutions
in integers of Pell’s equation

x2 −my2 = 1
are given by the regular continued fraction expansion of

√
m (cf. Section 2).

The aim of this paper is to study the Z[Xn−1]-solutions of a generalization
of Pell’s equation:
(1.1) x2 −X2

ny2 = 1,
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where Xn = 2 cos(π/2n+1) satisfies X0 = 0 and Xn+1 =
√

2 + Xn. For
n = 1, this equation is a classical Pell’s equation x2 − 2y2 = 1.

Now we explain our main results. First, we give a new continued fraction
expansion of Xn (Theorem 3.4) as follows:

Xn = [1, 2(1 + Xn−1)−1, 2].
We obtain an explicit solution of (1.1) as

(x, y) = (1 + 2(1 + Xn−1)−1, 2(1 + Xn−1)−1)
by imitating the classical method (cf. Section 2). We conjecture that our
explicit solution “generates” all the solutions of (1.1) (Conjecture 3.6).

Secondly, we investigate the relation between our conjecture and Weber’s
class number problem, which asks the class number of Bn := Q(Xn). The
class numbers have been determined to be 1 for the cases 0 ≤ n ≤ 6 (see [7,
Theorem 2.1] for the case n = 6) and there are infinitely many prime num-
bers that do not divide the class numbers for all n (cf. [3, 4, 8]). Therefore,
it is conjectured that the class number of Bn is 1 for all n (Weber’s con-
jecture). We show that our conjecture is equivalent to Weber’s conjecture
(Theorem 4.1). In addition, we show a certain minimality property of the
explicit solutions (Theorem 5.1).

Thirdly, we obtain a congruence relation for the class numbers
hn

hn−1
≡ 1 (mod 2n)

for all n ≥ 1 by considering the Galois action on the group generated
by our explicit solution (Theorem 5.3). By this result, we have that the
sequence of the class numbers {hn}n≥0 converges in Z2. This is a rediscovery
of Kisilevsky’s result [5, Corollary 2] in a specific case from a different
approach (see Remark 5.4 for details).

Finally, we state a conjecture (Conjecture 6.2) that concerns the “sizes”
of our explicit solution, and give observations on the conjecture. By assum-
ing the conjecture, we present a contribution to Weber’s conjecture and
Conjecture 3.6.

2. Classical method

In this section, we briefly recall the classical method for Pell’s equation
(see [10, Chapter 7, §7.8] for detail). For a non-square positive integer m,
we consider Pell’s equation
(2.1) x2 −my2 = 1.

By mapping (x, y) to x +
√

my, the solutions of Pell’s equation are em-
bedded in Z[

√
m], and we set Pm its image. Since Pm forms a subgroup

of the multiplicative group Z[
√

m]∗ and has a torsion element −1, Pm is
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isomorphic to Z/2Z ⊕ Z by Dirichlet’s unit theorem. A fundamental solu-
tion of Pell’s equation is defined as a corresponding solution to a generator
of Pm/(Z/2Z) ∼= Z. It is classically known that a fundamental solution is
given by the regular continued fraction of

√
m.

Let
[a0, a1, a2, . . . ] = a0 + 1

a1 + 1

a2+
. . .

be a continued fraction (ai ∈ Z). Let p−1 = 1, p0 = a0 and q−1 = 0, q0 = 1.
For a positive integer k, we define pk and qk as follows:

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.

Then, it holds pk/qk = [a0, . . . , ak], and the rational number pk/qk is called
the k-th convergent of the continued fraction. It is well-known that the
regular continued fraction expansion of

√
m is of the form

√
m = [a0, a1, . . . , al] := [a0, a1, . . . , al, a1, . . . , al, . . . ]

and l is called the period of
√

m if we take the minimal l. Then we obtain
a fundamental solution of Pell’s equation

(p, q) =
{

(pl−1, ql−1) (l: even)
(p2l−1, q2l−1) (l: odd).

In Section 6, we observe a characterization of a fundamental solution
of (1.1). For comparison, we explain why the regular continued fraction
expansion of

√
m gives a fundamental solution. A solution (a, b) is a fun-

damental solution if and only if

(2.2)
∣∣log|a +

√
mb|

∣∣ = min
{∣∣log|x +

√
my|

∣∣ ∣∣ x, y ∈ Z, x2 −my2 = 1
}
,

or equivalently,

|a| = min{|x| ∈ Z | x ̸= 1, x2 −my2 = 1}.

On the other hand, the regular continued fraction of
√

m gives a best ap-
proximation to

√
m in the following sense.

Definition 2.1 (Best approximation, cf. [6, p. 9]). Let α be an irrational
number. A best approximation to α is a rational number p/q (q > 0) such
that for any rational number p′/q′ ̸= p/q with 1 ≤ q′ ≤ q, we have

|qα− p| < |q′α− p′|.

Theorem 2.2 (cf. [6, Theorem 6]). All of best approximations to α are
convergents of the regular continued fraction expansion of α.
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Let (x, y) ̸= (±1, 0) be a solution of the (2.1) with x/y > 0. Then x/y
satisfies

(2.3)
∣∣∣∣√m− x

y

∣∣∣∣ <
1

2y2 .

If a rational number satisfies the inequality (2.3), then the rational number
is a best approximation to

√
m (cf. [6, Corollary 2]). Thus we see that x/y

is a convergent of
√

m, and there exists an integer n such that x/y = pn/qn.
By the theory of continued fraction, if the period l of the regular continued
fraction expansion of

√
m is even (resp. odd), then l − 1 (resp. 2l − 1) is

the index of the convergent which has the smallest numerator in the set
of convergents that can be solutions to (2.1), that is, (pl−1, ql−1) (resp.
(p2l−1, q2l−1)) is a fundamental solution.

3. Generalized Pell’s equation

We study the generalized Pell’s equation
x2 −X2

ny2 = 1
with the Z[Xn−1]-solutions by imitating the classical method. We obtained
a continued fraction expansion of Xn over Z[Xn−1] by a new algorithm.
First, we prepare the algebraic property of Xn.

3.1. Algebraic aspects of Xn. For non-negative integer n, set Bn =
Q(Xn). Since Xn = ζ2n+2 +ζ−1

2n+2 we see that Bn is the maximal real subfield
of Q(ζ2n+2) where ζ2n+2 := exp(2π

√
−1/2n+2). By the theory of cyclotomic

field (see [12, Chapter 2] in detail), we have that Bn is an algebraic number
field of degree 2n, and Galois extension over Q with Galois group Z/2nZ,
and the ring of integers of Bn is Z[Xn]. We see that Bn is a relative quadratic
extension over Bn−1.

3.2. New continued fraction. We define a new continued fraction ex-
pansion algorithm over Z[Xn−1]. For n ≥ 1, we set β0 = 1 and βk =
2 cos(kπ/2n) for each 1 ≤ k ≤ 2n−1 − 1. Then,
(3.1) Bn−1 = {βk | k = 0, 1, . . . , 2n−1 − 1}
is an integral basis of Z[Xn−1]. By embedding

ϕn : Bn−1 −→ R2n−1 ; a 7→ (τ(a))τ∈Gal(Bn−1/Q),

the basis Bn−1 is orthogonal in R2n−1 (cf. [9, Lemma 6.3]), and Z[Xn−1]
forms a complete lattice in R2n−1 . Recall Xn =

√
2 + Xn−1. We define

ϕn(Xn) = (
√

2 + τ(Xn−1))τ∈Gal(Bn−1/Q)

and extend ϕn to

ϕn : Bn −→ R2n−1 ; a + Xnb 7→ ϕn(a) + ϕn(Xn)ϕn(b)
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for each a, b ∈ Bn−1 where the sum and the multiplication are component-
wise. For each x ∈ R, let round(x) denote the integer in (x− 1/2, x + 1/2].
We note that for each α ∈ Bn, there are unique rk ∈ R such that ϕn(α) =∑2n−1−1

k=0 rkϕn(βk).

Definition 3.1. For α ∈ Bn such that ϕn(α) =
∑2n−1−1

k=0 rkϕn(βk), we
define ⌊α⌋ =

∑2n−1−1
k=0 round(rk)βk ∈ Z[Xn−1] and the sequence (ak)k≥0 as

α0 = α, a0 = ⌊α0⌋,
αm = (αm−1 − am−1)−1, am = ⌊αm⌋ (m ≥ 1).

If αm−1 ∈ Z[Xn−1] then am−1 = αm−1 and αm is not defined.

Remark 3.2. By the orthogonality of ϕn(Bn−1), ϕn(⌊α⌋) is one of the
closest points to ϕn(α) in ϕn(Z[Xn−1]) for Euclidean distance of R2n−1 .

Before stating the next proposition, we note that 1 + Xn−1 ∈ Z[Xn−1] is
a unit. It will be explained in Section 4.

Proposition 3.3. Let α = Xn ∈ Bn. Then we have
a0 = 1,

a2k−1 = 2(1 + Xn−1)−1,

a2k = 2
for positive integers k.

Proof. By Remark 3.2, it suffices to show that ϕn(0) is
(a) a unique closest point to ϕn(

√
2 + Xn−1 − 1) and

(b) a unique closest point to ϕn((
√

2 + Xn−1−1)−1−2(1+Xn−1)−1) =
ϕn((1 +

√
2 + Xn−1)−1)

in ϕn(Z[Xn−1]). For (a), since ϕn(Bn−1) is orthogonal in R2n−1 and the
lengths of ϕn(βk) (k = 1, . . . , 2n−1 − 1) are

√
2n (see [9, Lemma 6.3]), it is

enough to show that
(a-1) ∥

√
2 + Xn−1 − 1− 0∥ <

√
2n/2 and

(a-2) ∥
√

2 + Xn−1 − 1− 0∥ < ∥
√

2 + Xn−1 − 1− (±1)∥.

(a-1). The left-hand side of the inequality is ∥
√

2 + Xn−1−1∥ =
√

2nAn/π,
where

An := π

2n

2n−1∑
k=1

(
2 cos

(2k − 1
2n+1 π

)
− 1

)2
<

∫ π
2 + π

2n+1

− π
2n+1

(2 cos x− 1)2dx =: In.

Now (In)n≥6 is decreasing with I6 = 0.762 · · · < π/4 and we can check
numerically that An < π/4 for the cases 1 ≤ n ≤ 5.

(a-2). We show that
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(a-2-i) ∥
√

2 + Xn−1 − 1∥ < ∥
√

2 + Xn−1 − 1− (+1)∥ and
(a-2-ii) ∥

√
2 + Xn−1 − 1∥ < ∥

√
2 + Xn−1 − 1− (−1)∥.

(a-2-i). Transform the inequality as following;

2n−1∑
k=1

(
2 cos

(2k − 1
2n+1 π

)
− 1

)2
<

2n−1∑
k=1

(
2 cos

(2k − 1
2n+1 π

)
− 2

)2

⇐⇒ π

2n−1

2n−1∑
k=1

cos
(2k − 1

2n+1 π

)
<

3
4π.

Since the proof of the inequality is almost the same as in case (a-1), using
a comparison series-integral with cos x, we omit it.

(a-2-ii). Similarly, we see that it suffices to show that

1 <
8
2n

2n−1∑
k=1

cos
(2k − 1

2n+1 π

)
for n ≥ 1. In fact, we prove a more general case

1 < SN := 4
N

N∑
k=1

cos
(2k − 1

4N
π

)
(N ≥ 1).

For N = 1, we have S1 = 4 cos(π/4) = 2
√

2 > 1. For N ≥ 2, a comparison
series-integral gives that

SN ≥ IN := 8
π

∫ 2N−1
4N

π

π
4N

cos x dx.

Since IN = 8/π(cos(π/(4N))− sin(π/(4N))) and the function x 7→ cos x−
sin x decreases in [0, π/4], we have that SN ≥ IN > I2 > 1.

Similarly to the proof of (a), we separate the proof of (b) into (b-1) and
(b-2).

(b-1). We show that
∥∥(1 +

√
2 + Xn−1)−1∥∥ <

√
2n/2, which means that

π

2n

2n−1∑
k=1

 1
2 cos

(
2k−1
2n+1 π

)
+ 1

2

<
π

4 .

However, in the proof of (b-2-ii), we show that

π

2n

2n−1∑
k=1

1
2 cos

(
2k−1
2n+1 π

)
+ 1

<
π

4

and this implies the statement because 2 cos(2k−1
2n+1 π)+1 > 1 for all 1 ≤ k ≤

2n−1.
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(b-2). Similarly to the proof of (a-2), we separate the proof into two cases.

(b-2-i). We show that∥∥∥∥(1 +
√

2 + Xn−1
)−1

∥∥∥∥ <

∥∥∥∥(1 +
√

2 + Xn−1
)−1
− (−1)

∥∥∥∥ .

This is easy because

2n−1∑
k=1


 1

2 cos
(

2k−1
2n+1 π

)
+ 1

+ 1

2

−

 1
2 cos

(
2k−1
2n+1 π

)
+ 1

2


=
2n−1∑
k=1

1 + 2
2 cos

(
2k−1
2n+1 π

)
+ 1

 > 0.

(b-2-ii).
∥∥∥(1 +

√
2 + Xn−1

)−1
∥∥∥ <

∥∥∥(1 +
√

2 + Xn−1
)−1 − (+1)

∥∥∥. Similarly
to the proof of (a-2-i), it suffices to show that

π

2n

2n−1∑
k=1

1
2 cos

(
2k−1
2n+1 π

)
+ 1

<
π

4 .

Since the proof of the inequality is almost the same as in case (a-1), using
a comparison series-integral with 1/(2 cos x + 1), we omit it. □

Proposition 3.3 only provides a formal expansion. We see that it does
converge.

Theorem 3.4. For n ≥ 1 and each τ ∈ Gal(Bn−1/Q), we have√
2 + τ(Xn−1) = [1, 2(1 + τ(Xn−1))−1, 2].

Here, [a0, a1, . . . ] denotes a0 + 1
a1+... and [a0, . . . , ar, ar+1, . . . , as] denotes

the periodicity of the part ar+1, . . . , as, namely

[a0, . . . , ar, ar+1, . . . , as] = [a0, . . . , ar, ar+1, . . . , as, ar+1, . . . , as, . . . ].

Remark 3.5. Theorem 3.4 states that the above continued fraction con-
verges in Euclidean space R2n−1 ϕn←↩ Bn. Namely we get a continued frac-
tion expansion of

√
2 + Xn−1 over Z[Xn−1] for each metric induced by

τ ∈ Gal(Bn−1/Q). We could not make sure whether this algorithm gives a
continued fraction expansion of any element of Bn, and whether this algo-
rithm terminates for any element of Bn−1.

Proof. If the continued fraction [1, 2(1 + τ(Xn−1))−1, 2] converges, then we
see that the numerical value of it is

√
2 + τ(Xn−1) by an easy calcula-

tion. We show the convergence of [1, 2(1 + τ(Xn−1))−1, 2] for each τ ∈
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Gal(Bn−1/Q). We check the conditions in [2, Theorem 4.3]. For a ∈ C,
we define

D(a) =
(

a 1
1 0

)
.

For a continued fraction [a1, a2, . . . , ak], we define

M([a1, a2, . . . , ak]) = D(a1)D(a2) . . . D(ak).

We should check the followings for all n ≥ 1 and τ ∈ Gal(Bn−1/Q);
(a) M([1, 2(1 + τ(Xn−1))−1, 2, 0,−1, 0]) ̸= ±

( 1,0
0,1
)

(b) |M([2(1 + τ(Xn−1))−1, 2])2,2| ≤ 1
(b′) |M([2, 2(1 + τ(Xn−1))−1])2,2| ≤ 1
(c) Tr(M([1, 2(1 + τ(Xn−1))−1, 2, 0,−1, 0]))2 ≥ 4

where M2,2 denotes the (2, 2)-element of a matrix M . The first three (a),
(b), and (b′) are trivial. We note that

Tr(M([1, 2(1 + τ(Xn−1))−1, 2, 0,−1, 0]))2 = 4(2(1 + τ(Xn−1))−1 + 1)2.

If τ(Xn−1) > −1, then we have (2(1 + τ(Xn−1))−1 + 1)2 ≥ 1 and (c)
holds. Otherwise, we have that −2 < τ(Xn−1) < −1. So we have (1 +
τ(Xn−1))−1 < −1 and an easy calculation shows that (c) holds. □

In the case n = 1, the above theorem states that
√

2 = [1, 2, 2] and this
is a classical continued fraction expansion of

√
2.

3.3. Z[Xn−1]-solutions. By imitating the classical method, we formulate
a conjecture for the Z[Xn−1]-solutions of the generalized Pell’s equation.
Since the period of [1, 2(1 + Xn−1)−1, 2] is 2, we look at the first convergent

p1
q1

= 1 + 2(1 + Xn−1)−1

2(1 + Xn−1)−1 .

It is easy to check that
p2

1 −X2
nq2

1 = 1

for all n ≥ 1. We set
ϵn = p1 + Xnq1.

We conjecture that the element ϵn generates the Z[Xn−1]-solutions as a
Galois module.

Conjecture 3.6. The Z[Xn−1]-solutions of the generalized Pell’s equation
x2 −X2

ny2 = 1 is a Gal(Bn/Q)-module generated by −1 and ϵn, namely,

{a + Xnb | a, b ∈ Z[Xn−1], a2 −X2
nb2 = 1} = ⟨−1, ϵn⟩Z[Gal(Bn/Q)].
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4. Weber’s class number problem

The aim of this section is to prove the following equivalence:

Theorem 4.1. Conjecture 3.6 is true for all n ≥ 0 if and only if Weber’s
conjecture is true for all n ≥ 0.

4.1. Some known results. We prepare some known results. Let En be
the group of units of Bn and

Cn :=
〈
−1, ζ

1−a
2

2n+2
1− ζa

2n+2

1− ζ2n+2
| a : odd integers such that 1 < a < 2n+1

〉
Z

be its subgroup of cyclotomic units. Then (En : Cn) = hn, by [12, Lemma 8.1
and Theorem 8.2]. Noticing that 3 is a generator of (Z/2n+2Z)∗/{±1} and
that

1 + Xn = ζ
1−3

2
2n+2

1− ζ3
2n+2

1− ζ2n+2
,

by [12, Proposition 8.11], we have

Cn = ⟨1 + Xn⟩Z[Gal(Bn/Q)].

We set Gn/n−1 = Gal(Bn/Bn−1) and define σn/n−1 to be the non-trivial
element of Gn/n−1. We note that σn/n−1(Xn) = −Xn. We define a relative
norm map by

Nn/n−1 : Bn −→ Bn−1; x 7→ xσn/n−1(x).

Lemma 4.2. The restrictions Nn/n−1|En : En → En−1 and Nn/n−1|Cn :
Cn → Cn−1 are well-defined and surjective.

Proof. Let Ĥr(Gn/n−1, En) be the r-th Tate cohomology group. It suffices
to show that Ĥ0(Gn/n−1, En) = {1} for the surjectivity of Nn/n−1|En :
En → En−1. Yokoi [14, Lemma 3] showed that

Q(En) =
|Ĥ0(Gn/n−1, En)|
|Ĥ1(Gn/n−1, En)|

= 1
2 .

Therefore, it suffices to show that |Ĥ1(Gn/n−1, En)| = 2. Let Hn−1 be
the maximal unramified abelian extension of Bn−1. Then we have Bn ∩
Hn−1 = Bn−1 because Bn/Bn−1 ramifies at the prime ideal lying above 2.
Furthermore, Bn/Bn−1 ramifies at only one prime, then Bn/Bn−1 satisfies
the assumption of [14, Theorem 1]. Thus we have hn−1 = |ClGn/n−1

n |. Since
we have 2 ∤ hn−1 by [13, Theorem C], we get |Ĥ1(Gn/n−1, En)| = 2 by the
Corollary of [14, Theorem 2]. Thus we see that Nn/n−1 : En → En−1 is
surjective.
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Next we consider Nn/n−1|Cn . The presentation Cn = ⟨1+Xn⟩Z[Gal(Bn/Q)]
and the easy calculations Nn/n−1(1 + Xn) = −1 −Xn−1 and Nn/n−1((1 +
Xn)σ(1 + Xn) . . . σ2n−1−1(1 + Xn)) = −1 show that Nn/n−1 : Cn → Cn−1
is well-defined and surjective, where σ is a generator of Gal(Bn/Q). □

Set RE+
n = ker(Nn/n−1|En) throughout this paper. Lemma 4.2 implies

the following exact sequence:

(4.1) 0 −→ RE+
n /An −→ En/Cn −→ En−1/Cn−1 −→ 0,

where An := RE+
n ∩ Cn. By the exact sequence (4.1), Weber’s conjecture

is equivalent to

(4.2) (RE+
n : An) = 1 for all n ≥ 1.

4.2. Proof of Theorem 4.1. For ϵ ∈ RE+
n , there exist unique a, b ∈

Z[Xn−1] such that ϵ = a + bXn and we have Nn/n−1(ϵ) = a2 − b2X2
n. Thus

we have a bijection;
RE+

n ←→ {the solutions of x2 −X2
ny2 = 1}

∈ ∈

ϵ = a + Xnb ←→ (a, b)

We recall that Conjecture 3.6 states

{a + Xnb | a, b ∈ Z[Xn−1], a2 −X2
nb2 = 1} = ⟨−1, ϵn⟩Z[Gal(Bn/Q)].

Therefore, Conjecture 3.6 is equivalent to that RE+
n = ⟨−1, ϵn⟩Z[Gal(Bn/Q)]

for all n. Combining this formulation and (4.2), to prove Theorem 4.1, it
suffices to prove that

An = ⟨−1, ϵn⟩Z[Gal(Bn/Q)].

By easy calculation, we have that

ϵn = Xn + 1
Xn − 1

for each n ≥ 1. Since Cn = ⟨−1, 1 + Xn⟩Z[Gal(Bn/Q)], we have ϵn ∈ Cn and
ϵn ∈ Cn ∩RE+

n = An. Thus we have ⟨−1, ϵn⟩Z[Gal(Bn/Q)] ⊂ An.
We put Ñn/n−1|Cn : Cn/{±1} → Cn−1/{±1}. Let σ be a generator

of Gal(Bn/Q). We note that the basis of Cn/{±1} and Cn−1/{±1} are
{σ(1 + Xn), σ2(1 + Xn), . . . , σ2n−1(1 + Xn)} and {σ(1 + Xn−1), σ2(1 +
Xn−1), . . . , σ2n−1−1(1+Xn−1)} respectively. By considering the representa-
tion matrix of Ñn/n−1|Cn , we see that the basis of the kernel of Ñn/n−1|Cn isσi

(1 + Xn

1−Xn

)
,

2n−1−1∏
j=0

σj (1 + Xn)

∣∣∣∣∣∣ i = 1, 2, . . . , 2n−1 − 1

 .
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Since σi
(

1+Xn
1−Xn

)
∈
〈
−1, Xn+1

Xn−1

〉
Z[Gn]

, the rest of the proof is showing, for
any e ∈ Z, that

2n−1−1∏
j=0

σj(1 + Xn)e ∈
〈
−1,

Xn + 1
Xn − 1

〉
Z[Gn]

if Nn/n−1
(∏2n−1−1

j=0 σj(1 + Xn)e
)

= 1. Such e is even because

Nn/n−1

2n−1−1∏
j=0

σj(1 + Xn)e

 =

2n−1−1∏
j=0

σj(1 + Xn)σj+2n−1(1 + Xn)

e

= (−1)e.

Therefore it suffices to show that
∏2n−1−1

j=0 σj(1 + Xn)2 ∈
〈
−1, Xn+1

Xn−1

〉
Z[Gn]

.

Since
∏2n−1

j=0 σj(1 + Xn) = −1, we have
2n−1−1∏

j=0
σj(1 + Xn)2 = −

2n−1−1∏
j=0

σj
(1 + Xn

1−Xn

)
∈
〈
−1,

Xn + 1
Xn − 1

〉
Z[Gn]

.

Then the assertion follows.

5. Results on the explicit unit ϵn

In this section, first we show the “minimality” of our explicit unit ϵn.
Secondly, from the Galois action on relative units and the explicitness of ϵn,
we obtain a congruence relation formula for the ratios of the class numbers.

5.1. The minimality of ϵn in RE+
n . For n = 1, ϵ1 = 3 + 2

√
2 comes

from the continued fraction of
√

2. By the classical method, we have that
ϵ1 generates all the Z-solutions of Pell’s equation x2− 2y2 = 1. This means
that ϵ1 is “minimal”, that is,

ϵ
l

m
1 ̸∈ RE+

1 for any reduced fraction l

m
with 0 <

∣∣∣∣ l

m

∣∣∣∣ < 1.

It follows that Weber’s conjecture for n = 1 holds true. We show that ϵn is
also “minimal” for n ≥ 2.

Theorem 5.1. ϵ
l

m
n ̸∈ RE+

n for any reduced fraction l
m with 0 < | l

m | < 1.

Proof. Let n ≥ 2. It suffices to show the statement in case l
m = 1

p for each
prime p. We separate the proof into two cases p = 2 or an odd prime.

Suppose p = 2. If ϵ
1/2
n ∈ RE+

n ⊂ Bn, then its conjugates are also included
in Bn. For τ ∈ Gal(Bn/Q), τ

(√
Xn+1
Xn−1

)2
= τ(Xn)+1

τ(Xn)−1 . On the other hand,
there exists τ ∈ Gal(Bn/Q) such that 0 < τ(Xn) < 1. For such τ , we have
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τ
(√

Xn+1
Xn−1

)2
< 0 and this contradicts the fact that Bn is a totally real field.

Thus we have ϵ
1/2
n ̸∈ RE+

n .
Now assume that p ≥ 3. By [9, Proposition 6.6] for n ≥ 2 and ±1 ̸= δ ∈

RE+
n we have

(5.1) Trn(δ2) ≥ 2n · 17

where Trn : Bn → Q be the trace map of Bn.
Suppose that ϵ

1/p
n ∈ RE+

n . For each τ ∈ Gal(Bn/Q), the conjugate of
ϵ
1/p
n is

(
τ(Xn+1)
τ(Xn−1)

)1/p
. Then we have

Trn

(
ϵ

2
p

)
=

2n∑
k=1

fp

(2k − 1
2n+1 π

)
, where fp(x) :=

∣∣∣∣2 cos x + 1
2 cos x− 1

∣∣∣∣ 2
p

.

Since
∣∣2 cos((2k − 1)π/2n+1) + 1

∣∣ <
∣∣2 cos((2k − 1)π/2n+1)− 1

∣∣ for k =
2n−1 + 1, . . . , 2n, we have fp((2k − 1)π/2n+1) < 1 for such k. Therefore,
by using (5.1) it suffices to show that

∑2n−1
k=1 fp((2k−1)π/2n+1) < 2n−1 ·17.

For k = 1, . . . , 2n−1, we have∣∣∣∣∣2 cos((2k − 1)π/2n+1) + 1
2 cos((2k − 1)π/2n+1)− 1

∣∣∣∣∣ > 1.

Then we have

fp

(2k − 1
2n+1 π

)
< f3

(2k − 1
2n+1 π

)
for p > 3. Therefore it suffices to show this in case p = 3. Thus our goal is
to show that

1
2n

2n−1∑
k=1

f3

(2k − 1
2n+1 π

)
<

17
2

for n ≥ 2. Let K be the integer satisfying (2K − 1)π/2n+1 < π/3 <
(2K + 1)π/2n+1. We write

(5.2) 1
2n

2n−1∑
k=1

f3

(2k − 1
2n+1 π

)
= 1

2n

K−1∑
k=1

f3

(2k − 1
2n+1 π

)
+ 1

2n
f3

(2K − 1
2n+1 π

)

+ 1
2n

f3

(2K + 1
2n+1 π

)
+ 1

2n

2n−1∑
k=K+2

f3

(2k − 1
2n+1 π

)
.
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A comparison series-integral gives that

(5.3) π

2n

K−1∑
k=1

f3

(2k − 1
2n+1 π

)
+ π

2n

2n−1∑
k=K+2

f3

(2k − 1
2n+1 π

)

<

∫ π/3

0
f3(x) dx +

∫ π/2

π/3
f3(x) dx = 6.4669 . . . .

We used a computer for the last integral calculations.
Finally, we claim that

1
2n

f3

(2K − 1
2n+1 π

)
+ 1

2n
f3

(2K + 1
2n+1 π

)
< 3.

for n ≥ 2. Indeed, the continuous function defined for nonzero x by x 7→
x2 cos(π/3+x)+1

2 cos(π/3+x)−1 is increasing from −π to 0 on [−π/3, π/3] \ {0}. So we have
f3(π/3+x) ≤ (π/|x|)2/3 on [−π/3, π/3]\{0}. Set r = 2n+1 +3−6K. So we
see that r ∈ {1, 5}, 2K−1

2n+1 π = π
3 −

r
3·2n+1 π and 2K+1

2n+1 π = π
3 + 6−r

3·2n+1 π. Since
5

3·2n+1 π < π
3 for n ≥ 2, we obtain that

(5.4) 1
2n

f3

(2K − 1
2n+1 π

)
+ 1

2n
f3

(2K + 1
2n+1 π

)

≤ 1
2n

(
π
1

3·2n+1 π

) 2
3

+ 1
2n

(
π
5

3·2n+1 π

) 2
3

= 2
2−n

3

(
3

2
3 +

(3
5

) 2
3
)

< 3

for n ≥ 2. Thus we have the claim and the assertion holds. □

Remark 5.2. For n = 2, we also show that h2 = 1 by a similar method
used above. Let σ be a generator of Gal(B2/Q). Since h1 = 1, we have
h2 = (RE+

2 : A2). We recall that A2 = ⟨−1, ϵ2⟩Z[Gal(B2/Q)] and note that
(RE+

2 : A2) < ∞. We should show that ϵx
2 · σ (ϵ2)y ̸∈ RE+

2 for any x, y ∈
[−1/2, 1/2] ∩Q except for x = y = 0. If ϵx

2 · σ (ϵ2)y ∈ B2, then we have

Tr2
(
ϵ2x
2 · σ (ϵ2)2y

)
=

4∑
i=1

σi (ϵ2)2x · σi+1 (ϵ2)2y .

Now we define a function f2(x, y) = Tr2
(
ϵ2x
2 ·σ(ϵ2)2y

)
on [−1/2, 1/2]2. Since

∂2f2
∂x2 (x, y) (resp. ∂2f2

∂y2 (x, y)) > 0 for each y (resp. x)∈ [−1/2, 1/2]2 and
f2 (±1/2, 0) = f2 (0,±1/2) < f2 (±1/2,±1/2), the maximum of f2(x, y) is
taken at the points (±1/2,±1/2). We have f2 (±1/2,±1/2) = 28 < 22 · 17.
This contradicts (5.1), so we have RE+

2 = A2 and h2 = 1.

5.2. The ratios of the class numbers. We define the relative class ratio
of Bn/Bn−1 by

kn = hn

hn−1
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for each n > 0. In this subsection, we obtain a congruence relation formula
for kn.

By (4.1) in Section 4, we have

kn =
(
RE+

n : An

)
.

For each prime l, let
(
RE+

n /An
)

l denotes the Sylow l-subgroup of RE+
n /An,

that is the subgroup consisting of elements of l-power order. Let (kn)l =∣∣(RE+
n /An

)
l

∣∣. The next theorem is our second main theorem.

Theorem 5.3. For all prime l and all positive integer n, we have

(kn)l ≡ 1 (mod 2n).

This theorem shows that the sequence {hn} is a Cauchy sequence in
2-adic topology. Thus the sequence {hn} converges in Z2.

Remark 5.4. Kisilevsky also obtained the convergence of the class num-
bers for more general setting in [5, Corollary 2]. He showed that for any
Zp-extension over any global field, the sequence of the class numbers of the
intermediate fields converges in Zp. He used the direct limit of the class
groups instead of the unit groups, and the proof is different from ours. We
give an extensive numerical study of the p-adic limits for elliptic curves and
knots in [11].

We prepare two lemmas. We note that Gal(Bn/Q) acts on RE+
n /An and

also on
(
RE+

n /An
)

l.

Lemma 5.5. For δ ∈ RE+
n /An, let O(δ) be the Gal(Bn/Q)-orbit of δ in

RE+
n /An. If |O(δ)| < 2n, then δ2 = 1 in RE+

n /An.

Proof. We recall that σ is a generator of Gal(Bn/Q). |O(δ)| < 2n means
σ2n−1(δ) = δ in RE+

n /An. Therefore, we have Nn/n−1(δ) = δσ2n−1(δ) = δ2

in RE+
n /An. On the other hand, since δ ∈ RE+

n , we have Nn/n−1(δ) = 1 in
RE+

n /An. Then we have δ2 = 1 in RE+
n /An. □

Lemma 5.6. Let δ ∈ RE+
n /An. If |O(δ)| = 1, then δ = 1 in RE+

n /An.

Proof. Set ϵ = (Xn + 1)/(Xn − 1) (abbreviate “n”). Suppose that there
exists δ ∈ RE+

n /An with δ ̸= 1 in RE+
n /An and |O(δ)| = 1. By Lemma 5.5,

we have δ2 ∈ An. Since An = ⟨−1, ϵ⟩Z[Gal(Bn/Q)], δ2 can be represented as

±ϵe0σ (ϵ)e1 . . . σ2n−1−1 (ϵ)e2n−1−1

by certain integers ei. Therefore, we have

δ = ±
√∣∣ϵe0σ (ϵ)e1 . . . σ2n−1−1 (ϵ)e2n−1−1

∣∣.
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On the other hand, |O(δ)| = 1 implies σ(δ) = δ in
(
RE+

n /An
)

2. Therefore,
we have√∣∣ϵe0σ (ϵ)e1 . . . σ2n−1−1 (ϵ)e2n−1−1

∣∣
=
√∣∣σ (ϵ)e0 σ2 (ϵ)e1 . . . σ2n−1 (ϵ)e2n−1−1

∣∣
=
√∣∣∣ϵ−e2n−1−1σ (ϵ)e0 . . . σ2n−1−1 (ϵ)e2n−1−2

∣∣∣ in
(
RE+

n /An
)

2.

Note that σ2n−1 (ϵ) = ϵ−1. Since
{
ϵ, σ(ϵ), . . . , σ2n−1−1(ϵ)

}
are linearly inde-

pendent over Z in RE+
n , we have

−e2n−1−1 ≡ e0 ≡ e1 ≡ · · · ≡ e2n−1−2 ≡ e2n−1−1 (mod 2).
This implies that ei ≡ 0 (mod 2) for all i or ei ≡ 1 (mod 2) for all i. Since
δ ̸= 1, we have ei = 1 for all i. Then we have

√∣∣ϵσ(ϵ) . . . σ2n−1−1(ϵ)
∣∣ ∈ RE+

n .
By easy calculation, we have∣∣∣∣∣∣

2n−1−1∏
k=0

σk((Xn + 1)(Xn − 1))

∣∣∣∣∣∣ = 1.

It follows that

|ϵσ(ϵ) . . . σ2n−1−1(ϵ)| =
(

1
(Xn − 1) . . . σ2n−1−1(Xn − 1)

)2

.

Thus we have√∣∣ϵσ(ϵ) . . . σ2n−1−1(ϵ)
∣∣ =

∣∣∣∣∣ 1
(Xn − 1) . . . σ2n−1−1(Xn − 1)

∣∣∣∣∣ .
Since Nn/n−1

(
(Xn − 1) . . . σ2n−1−1(Xn − 1)

)
= −1 and Nn/n−1(−1) = 1,

we have Nn/n−1
(∣∣∣ 1

(Xn−1)...σ2n−1−1(Xn−1)

∣∣∣) = −1. This contradicts√∣∣ϵσ (ϵ) . . . σ2n−1−1 (ϵ)
∣∣ ∈ ker Nn/n−1. □

Proof of Theorem 5.3. First, we prove this for an odd prime l. Suppose
that there exists an element δ ̸= 1 in

(
RE+

n /An
)

l such that |O(δ)| < 2n.
By Lemma 5.5, the order of δ is 2. This contradicts 2 ∤

∣∣(RE+
n /An

)
l

∣∣.
Therefore, all elements except 1 in

(
RE+

n /An
)

l have 2n distinct conjugates.
This implies the statement.

Next, we consider the case l = 2, independently of Weber’s proof. Sup-
pose that there exists an element δ ̸= 1 in

(
RE+

n /An
)

2 such that |O(δ)| < 2n

and we see that |O(δ)| > 1 by Lemma 5.6. Let δ be an element with the
smallest size of |O(δ)| = 2m. We note that δ satisfies σ2m(δ) = δ and
σ2m−1(δ) ̸= δ in

(
RE+

n /An
)

2. Since σ2m−1(δσ2m−1(δ)) = σ2m−1(δ)σ2m(δ) =
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σ2m−1(δ)δ in
(
RE+

n /An
)

2, we have |O(δσ2m−1(δ))| ≤ 2m−1. By the assump-
tion, we have that δσ2m−1(δ) = 1 and δ = σ2m−1(δ)−1 in

(
RE+

n /An
)

2. By
Lemma 5.5, we have σ2m−1(δ)−1 = σ2m−1(δ) in

(
RE+

n /An
)

2. Thus we have
δ = σ2m−1(δ) in

(
RE+

n /An
)

2 and this is a contradiction. □

Remark 5.7. By Theorem 5.3, we have 2 ∤ hn for all n ≥ 1. This result
was first proved by Weber [13, Theorem C], but the proof we have now
given is independent of the one by Weber. In the proof of Theorem 5.3, we
use the fact that Nn/n−1 : En/Cn → En−1/Cn−1 is surjective and it comes
from 2 ∤ hn−1 (see the proof of Lemma 4.2). Therefore it may seem like a
tautology, but if we admit h0 = h(Q) = 1, the proof goes well by induction
without using Weber’s result. Moreover, our result is a much more refined
version of Weber’s result.

Remark 5.8. Recall that h6 = 1, then we have (k7)l = (h7)l. By Theo-
rem 5.3, we have

(hn)l ≡ 1 (mod 27)
for all odd primes l and positive integers n.

6. Observations on the sizes of ϵn

In this section, by imitating the classical Pell’s equation, we observe some
“sizes” of the explicit unit ϵn and state the conjecture on the minimality of
ϵn. By assuming the conjecture, we give an upper bound for kn for small n.
Let σ be a generator of Gal(Bn/Q). By embedding ln : RE+

n → R2n−1 ; ϵ 7→
(log |σi(ϵ)|)i, ln(RE+

n ) forms a complete lattice in R2n−1 . For a positive
integer p, let ∥x∥p = (

∑2n−1
i=1 |xi|p)1/p denote the Lp norm of x in R2n−1 .

Definition 6.1 (Lp-minimal). Let S be a subset of RE+
n . For ϵ ∈ S \{±1},

if ln(ϵ) has a minimal Lp norm in ln(S \ {±1}), then ϵ is said to be Lp-
minimal in S.

We note that this definition is independent of the choice of a generator
σ of Gal(Bn/Q). In the case of n = 1, if ϵ ∈ RE+

1 corresponds to a fun-
damental solution, then ϵ is Lp-minimal in RE+

1 (cf. (2.2)) for any p. For
p = 1, 2, we conjecture the Lp-minimality of ϵn in RE+

n as an analogue of
the case n = 1.

Conjecture 6.2. For all n, ϵn is L1 and L2-minimal in RE+
n .

We observe that our explicit unit ϵn is L2-minimal in An for 1 ≤ n ≤ 10
by using Fincke–Pohst algorithm (qfminim command in PARI/GP). Since
An = RE+

n for 1 ≤ n ≤ 6, we obtain that ϵn is L2-minimal in RE+
n for 1 ≤

n ≤ 6. For each ϵ ∈ RE+
n , we see that ∥ln(ϵ)∥1 = log(

∏2n

i=1 max{1, |σi(ϵ)|}),
and the value in log is called the Mahler measure of algebraic numbers.
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Morisawa and Okazaki [9] investigate RE+
n by using the Mahler measure,

and obtained a lower bound for ln(RE+
n \{±1}) in L1 norm as 2n−1 log(2+√

5) (cf. [9, Lemma 3.2 and Theorem 5.3]). They also obtained a lower
bound in L2 norm as

√
2n−1 log(2 +

√
5) (cf. [8, Lemma 2.5(1)]). Note that

these two lower bounds are processed into forms that fit our definitions.
We compare ∥ln(ϵn)∥p and lower bounds for small n in Table 6.1.

Table 6.1. Comparison of ∥ln(ϵn)∥p and lower bounds

n ∥ln(ϵn)∥1 2n−1 log(2 +
√

5) ∥ln(ϵn)∥2
√

2n−1 log(2 +
√

5)
1 1.76 . . . 1.44 . . . 1.76 . . . 1.44 . . .
2 3.22 . . . 2.88 . . . 2.35 . . . 2.04 . . .
3 6.28 . . . 5.77 . . . 3.54 . . . 2.88 . . .
4 12.47 . . . 11.54 . . . 5.04 . . . 4.08 . . .
5 24.89 . . . 23.09 . . . 7.20 . . . 5.77 . . .
6 49.76 . . . 46.19 . . . 10.22 . . . 8.16 . . .
7 99.52 . . . 92.39 . . . 14.48 . . . 11.54 . . .

In the following, by assuming that Conjecture 6.2 holds, we give upper
bounds of kn = hn/hn−1 for small n. Let m be a positive integer. For
a Lebesgue measurable set S in Rm, vol(S) denote the volume of S in
Lebesgue measure on Rm. For a complete lattice L ⊂ Rm with a basis b =
{b1, . . . , bm}, we define the volume of L by the volume of the fundamental
parallel body of b, namely, vol(L) = |det([b1 · · ·m])|. Then we have

(6.1) (RE+
n : An) = vol(ln(An))/ vol(ln(RE+

n )).

We use the following Blichfeldt’s theorem. Note that the following state-
ment is processed into our settings.

Theorem 6.3 (cf. [1, Theorem II, III]). There exist ϵ, δ ∈ RE+
n \ {±1}

such that

∥ln(ϵ)∥2 ≤
√

2
π

Γ(2 + 2n−2)1/2n−1 vol(ln(RE+
n ))1/2n−1

and

∥ln(δ)∥1 ≤
√

2n

π
Γ(2 + 2n−2)1/2n−1 vol(ln(RE+

n ))1/2n−1
,

where Γ is the gamma function.

Conjecture 6.2 implies that ϵn satisfies these inequalities. Thus we have

(6.2) vol(ln(An))
vol(ln(RE+

n ))
≤ vol(ln(An))

√
2n/π

2n−1
Γ(2 + 2n−2)

∥ln(ϵn)∥2n−1
1
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and

(6.3) vol(ln(An))
vol(ln(RE+

n ))
≤ vol(ln(An))

√
2/π

2n−1
Γ(2 + 2n−2)

∥ln(ϵn)∥2n−1
2

.

We compute the numerical values of the right-hand sides of (6.2) and (6.3)
for each n ≤ 7 in Table 6.2. Combining the table at p = 2 and the fact that
each prime factor of hn is greater than 109 for all n (cf. [3, Corollary 1.2]),
we obtain kn = 1 for 1 ≤ n ≤ 6.

Table 6.2. Upper bounds for kn assuming Conjecture 6.2

n\p 1 2
1 1.06 . . . 1.06 . . .
2 1.35 . . . 1.27 . . .
3 2.51 . . . 1.55 . . .
4 14.44 . . . 4.89 . . .
5 4345.05 . . . 417.77 . . .
6 17992212754.52 . . . 147730099.26 . . .
7 14822653597271460343569281399.70 . . . 876387598588509574855259.98 . . .

Remark 6.4. By using Minkowski’s convex body theorem for the Lp norm
open ball of the radius ∥ln(ϵn)∥p, we also obtain upper bounds of kn. In
contrast to the discussion above, in this setting, the L1-minimality of ϵn

gives more precise bound than the L2-minimality.

By these arguments, the resolution of Conjecture 6.2 contributes to We-
ber’s conjecture and Conjecture 3.6. However, determining the shortest
vector in a lattice is generally a very difficult problem. If we propose to
approach Conjecture 6.2 by imitating the classical method in Section 2,
then we should establish “the best approximation to Xn at Q(Xn−1)”.
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